

APPENDIX 7-5

COLLISION RISK ASSESSMENT

Appendix 7-5 – Collision Risk Assessment

Slieveacurry Renewable Energy Development, Co. Clare

Client: Slieveacurry Ltd

Project Title: Slieveacurry Renewable Energy

Development, Co. Clare

Project Number: 170224c

Document Title: Appendix 7-5 – Collision Risk Assessment

Document File Name: Ch7 CRA -F - 2021.09.29 - 170224C

Prepared By: MKO

Tuam Road Galway Ireland H91 VW84

Rev	Status	Date	Author(s)	Approved By
01	Final	29/09/2021	MP	PC

Table of Contents

1.	INTRODUCTION	
2.	METHODOLOGY	
3.	RESULTS	6
	3.1 Random Flight Model	
BIBLI	GRAPHY	9
	TABLE OF TABLES	
	Table 2-1 Windfarm Parameters at Slieveacurry Renewable Energy Development	5
	Table 3-1 Slieveacurry Renewable Energy Development VP Survey Effort and Viewshed Coverage	6
	Table 3-2 Bird Biometrics (Taken from BTO BirdFacts & Alerstam et al. (2007)) and duration at PCH dur. Surveys	<i>ing VP</i> 6
	Table 3-3 Random CRM - Number of Transits per Turbine within the Viewshed of each VP	7
	Table 3-4 Number of Transits across site per year (Averages calculated from Table 4 Above and adjusted turbines)	for all 8 7
	Table 3-5 Collision Risk Workings (For both Flapping and Gliding Flights the average Collision Risk Percusas taken for upwind and downwind)	
	Table 3-6 Collision Probability assuming no Avoidance (Transits*Collision Risk)	8
	Table 3-7 Collision Probability using Avoidance Rates outlined in SNH (September 2018 V2)	8
	Table 1 Standard Measurements (Specific to Hen Harrier, Windfarm Site, Turbines modelled & VP3)	11
	Table 2 CRM Stage 1 Calculations using Standard Measurements in Table 1	11

1. INTRODUCTION

This document has been prepared by MKO to assess the collision risk for birds at the proposed Slieveacurry Renewable Energy Development, Co. Clare. The collision risk assessment, prepared by Ms. Margaux Pierrel (BSc, MSc, Eng), is based on vantage point watch surveys undertaken at the development site from April 2016 to March 2018 and from October 2020 to September 2021. This represents a 3-year survey period, consisting of three breeding seasons and three non-breeding seasons, in full compliance with SNH (2017)¹. Surveys were undertaken from three fixed Vantage Point (VP) Locations, (i.e. VP1 – VP3) between April 2016 and March 2018 and October 2020 to September 2021 and from four vantage points (i.e. VP1 – VP4) between April and September 2021.

Collision risk is calculated using a mathematical model to predict the numbers of individual birds, of a particular species, that may be killed by collision with moving wind turbine rotor blades. The modelling method used in this collision risk calculation follows Scottish Natural Heritage (SNH) guidance which is sometimes referred to as the Band Model (Band et al. 2007).

Two stages are involved in the model:

- > Stage 1: Estimation of the number of birds or flights passing through the air space swept by the rotor blades of the wind turbines. Transits are calculated using either the "**Regular** or **Random Flight**" model, depending on flight distribution and behaviour.
- > Stage 2: Calculation of the probability of a bird strike occurring. Calculated using a statistical spreadsheet that considers avian biometrics and turbine parameters. This spreadsheet is publicly available on the SNH website. https://www.nature.scot/wind-farm-impacts-birds-calculating-probability-collision

The product of Stage 1 and Stage 2 gives a theoretical annual collision mortality rate and is based on the assumption that birds do not attempt to avoid colliding with turbines.

The Band model has been the subject of academic assessment (e.g. Chamberlain et al., (2005 & 2006), Madders & Whitfield (2006), Drewitt & Langston (2006), Fernley, Lowther & Whitfield (2006)) and its results must be interpreted with a degree of caution.

An informal third stage is then applied to the generated outcome of Stage 1 and Stage 2. This third stage is to account for a "real-life" scenario, i.e. to account for the avoidance measures taken by each bird species, worked out as a percentage applied to the product of stage 1 and 2. This third "informal" stage is often the most important factor of collision risk modelling. For several years, SNH advocated a highly precautionary approach, recommending a value of 95% as an avoidance rate (Band et al., (2007)). However, based on empirical evidence and literature reviews, precautionary rates have now been increased to 98-99% or higher in most cases and are regularly evolving with further examination of bird behaviour and mortality rates at wind farm sites. The most recently recommended species' avoidance rates can be found on the SNH website at https://www.nature.scot/wind-farm-impacts-birds-guidance-avoidance-rates-guidance.

¹ SNH (2017). Recommended bird survey methods to inform impact assessment of onshore wind farms. Scottish Natural Heritage.

METHODOLOGY

Two forms of collision risk modelling are considered when referencing the Band Model. These are often referred to as the "Regular Flight Model" and the "Random Flight Model". The "Regular Flight Model" is generally applied to a suite of flightlines that form a regular pattern such as a commuting corridor between roosting and feeding grounds or migratory routes. As such the "Regular Flight Model" is typically relevant for waterbird species, particularly geese and swans. The "Random Flight Model" is relevant for scenarios whereby no discernible patterns or flight routes can be associated with a species within the study area. Random flights can occur for any species but is most prevalent when examining foraging or hunting flight behaviour.

- **Random Flight Model** examines the predicted number of transits through the windfarm by regarding all flights within the viewshed (i.e. a 2km arc of the vantage point) as randomly occurring. This model, therefore, assumes that any observed flight could just as easily occur within the wind farm site as outside it. Any flights recorded as flying within the rotor swept height inside the 2km arc of the vantage point is to be included in the model.

 This model has several key assumptions and limitations;
 - 1. Bird activity is not spatially explicit, i.e. activity is equal throughout the viewshed area and this is equal to activity in the wind farm area.
 - 2. Habitat and bird activity will remain the same over time and unchanged during the operational stage of the wind farm.
 - 3. All flight activity used in the model occurred within the viewshed area calculated at the lowest swept rotor height. (e.g. if the lowest swept height of the turbine blade is 25m, the viewshed coverage displaying the visibility of the area within the 2km arc at a height of 25m above ground level is used). All flights are assumed to have occurred within this visible area, although many are likely to have been above this. The AVP calculation in the model is therefore highly precautionary as it likely to have been a larger area of coverage for much of the flight activity.
- **Regular Flight Model** examines the predicted number of transits through a cross-sectional area of the windfarm which represents the width of the commuting corridor. A 2-dimensional line represents a "risk window" which is the width of the wind farm plus a 500m buffer of the turbines, multiplied by the rotor diameter. All commuting flights which pass through this risk window, within the swept height of the turbines, are included in collision risk modelling. Any regular flights more than 500m from the turbine layout can be excluded from the analysis. This model has several key assumptions and limitations;
 - 1. Firstly, that the turbine rotor swept area is 2-dimensional, i.e. there is a single row of turbines in the wind farm. This represents all turbines within the commuting corridor accounted for by a single straight line.
 - 2. It is assumed that bird activity is spatially explicit.
 - 3. Birds in an observed flight only cross the turbine area once and do not pass through the cross-section a second time (or multiple times).

More detail on both the Random and Regular Flight Model calculations are publicly available and can be found on the SNH website. https://www.nature.scot/wind-farm-impacts-birds-calculating-theoretical-collision-risk-assuming-no-avoiding-action.

In the case of all species observed during surveys for the proposed Slieveacurry Renewable Energy Development, flights during the survey period could be classified as randomly distributed flights that could occur anywhere within the given viewsheds. Therefore the "Random Flight Model" was applied to these species to calculate the predicted number of transits through the wind farm site.

The steps used to derive the collision mortality risk for each species observed at the proposed development according to the Band Model are outlined below:

- Stage 1 (Band): the model uses observations of birds flying through the study area during vantage point surveys to calculate the number of birds estimated to fly through the proposed turbines blade swept areas.
- 2. Stage 2 (Band): the model calculates the collision risk for an individual bird flying through a rotating turbine blade. The collision risk depends on the species biometrics and flight behaviour. Bird biometrics are available from the British Trust of Ornithology (BTO) online bird collision risk guidance, while flight speeds have been referenced from Alerstam et al. (2007).
- 3. The product of the number of birds calculated to fly through the turbines in a year multiplied by the collision risk (i.e. that a bird doing so will collide with the moving blades) gives the worst-case scenario for collision mortality. The worst-case scenario assumes that birds flying towards the turbines do not attempt to avoid them.
- 4. An avoidance factor is applied to the results to account for the avoidance of the turbines by birds in flight. This corrects for the ability of the birds to detect and manoeuvre around the turbines. Avoidance rates are available from SNH online bird collision risk guidance (SNH 2018).
- This final output after all steps to the model is a real-world estimation of the number of collisions that may occur at the wind farm based on observed bird activity during the survey period.

The Band Method makes several assumptions on the biometrics of birds and the turbine design. These are:

- **>** Birds are assumed to be of a simple cruciform shape.
- Turbine blades are assumed to have length, depth and pitch angle, but no thickness.
- **>** Birds fly through turbines in straight lines.
- **>** Bird flight is not affected by the slipstream of the turbine blade.
- Because the model assumes that no action is taken by a bird to avoid a collision, it is recognised that the collision risk figures derived are purely theoretical and represent worst-case estimates.

Several assumptions were made in the calculation of collision risk for the proposed Slieveacurry Renewable Energy Development. These assumptions are tailored specifically to this site and are as follows:

- Birds in flight within the study area at heights between 25m and 175m above ground level are assumed to be in danger of collision with the rotating turbine blades.
- Avoidance factors of individual species are those currently recommended by SNH (2018). An avoidance factor is applied to the results to account for the avoidance of the turbines by birds in flight. This corrects for the ability of the birds to detect and manoeuvre around the turbines.
- No preference was taken for birds using flapping or gliding flight through the study area for species that exhibit both behaviours. In the calculation of the percentage risk of collision for a bird flying through a rotating turbine, the mean of the worst-case scenario (i.e. a bird flying upwind through a turbine using flapping flight whilst the turbine is at its fastest rotation speed) and the best-case scenario (i.e. a bird flying downwind through a rotating turbine using a gliding flight whilst the turbine at its slowest rotation speed) has been used for species which exhibit both flapping and gliding flight.

The Collision Risk Assessment (CRA) also makes assumptions on the turbine specifications, such as rotor diameter and rotational speed. All flight activity within the height band 25-175m is considered to be within the Potential Collision Height (PCH). Therefore, the largest swept path of the proposed range of turbine dimensions is considered in collision risk calculations which are used to assess the significance of effects on key ornithological receptors.

The collision risk calculations use a combination of the maximum collision risk area (i.e. swept area determined by hub height and rotor blade length), the number of turbines proposed and turbine operational time. The turbine and wind farm characteristics for this assessment at the proposed Slieveacurry Renewable Energy Development are presented in Table 2-1.

Table 2-1 Windfarm Parameters at Slieveacurry Renewable Energy Development

Table 2-1 Windfarm Parameters at Slieveacurry Renewable Energy Development					
Wind Farm Component	Scenario Modelled				
Assumed turbine model	Vestas V150-4.0/4.2 MW Turbine				
Number of turbines	8				
Blades per turbine rotor (3d model used)	3				
Rotor diameter (m)	150				
Rotor radius (m)	75				
Hub height (m)	100				
Swept height (m)	25 – 175				
Pitch of blade (degrees)	6				
Maximum chord (m) (i.e. depth of blade)	4.2				
Speed Dynamic Operation range (m/s)	4.9-12.0				
Average Speed Dynamic (m/s)	8.5				
Rotational period (s) [60/8.5]	7.1				
*Turbine operational time (%)	85%				

^{*}This operational period of 85% is referenced from a report by the British Wind Energy Association (BWEA) (2007) which identifies the standard operational period of the wind turbines in the UK to be roughly 85%.

RESULTS

3.1 Random Flight Model

Collison estimates were calculated using flight data recorded during vantage point watches at three vantage point locations (VP1, VP2 and VP3) within the study area between April 2016 and March 2018 & October 2020 to September 2021 and from an additional VP (i.e. VP4) from April to September 2021. The target species recorded within the potential collision risk zone included hen harrier, golden plover, merlin, peregrine falcon, osprey, common snipe, kestrel and sparrowhawk. It is acknowledged that the predicted number of transits, and hence predicted rate of collision for common snipe may be largely underestimated, as flight activity for this species can be largely crepuscular (during twilight) while the VP surveys are predominantly undertaken during daylight hours (Table 1.4, SNH (2017)).

The calculation parameters are outlined in Tables 3-1 to 3-7. A fully worked example of the calculation of collision risk for hen harrier populations is available in Appendix 1 below.

Table 3-1 Slieveacurry Renewable Energy Development VP Survey Effort and Viewshed Coverage

Vantage Point	Visible Area at 25m (hectares)	Risk Area (hectares)	Turbines visible from VP	Total Survey Effort (hrs)
VP1	464	73	1	216
VP2	407	168	5	216
VP3	248	149	4	216
VP4	210	55	2	36

Table 3-2 Bird Biometrics (Taken from BTO BirdFacts & Alerstam et al. (2007)) and duration at PCH during VP Surveys

Species	Length (m)	Wingspan (m)	Ave. speed (m/s)	Seconds in flight at PCH (25-175m) *
Hen harrier	0.48	1.10	9.1	376
Golden plover	0.28	0.72	17.9	34,257
Merlin	0.28	0.56	12.1	20
Peregrine falcon	0.42	1.02	12.1	208
Osprey	0.56	1.58	13.3	234
Common snipe	0.26	0.46	17.1	80
Kestrel	0.34	0.76	10.1	4,765
Sparrowhawk	0.33	0.62	10.0	261

^{*}Seconds in flight at PCH is calculated by multiplying the number of birds observed per flight by the duration of the flight spent within the height band 25-175m.

Table 3-3 Random CRM - Number of Transits per Turbine within the Viewshed of each VP

Species	VP1	VP2	VP3	VP4
Hen harrier	0.57	2.77	2.69	2.41
*Golden plover	806.40	236.67	184.42	0
Merlin	0	0	0.57	n/a
Peregrine falcon	3.47	0	0	n/a
Osprey	5.10	0	0	0
**Common snipe	1.56	1.07	0	0
Kestrel	17.03	27.12	18.84	65.59
Sparrowhawk	4.08	0	0	0

^{*}Bird availability for Golden Plover is assumed to be from September to March, with activity 25% of the night as well as daylight hours as per SNH guidance accounting for Swan/Goose and Wader activity. This is calculated as a portion of the length of the night for the period September 2016 – March 2017, September 2017 – March 2018, October 2020 – March 2021 & September 2021 provided by www.timeanddate.com and is added to available hours for the activity of the species.

Table 3-4 Number of Transits across site per year (Averages calculated from Table 4 Above and adjusted for all 8 turbines)

Table 04 Number of Hansis across sie per year (Averages carculated from Fable 47) bove and adjusted for an outromes)					
Species	Average Transits	Transits Across Entire Site (All 8 Turbines) (Average Transits*8)			
Hen harrier	2.11	16.87			
Golden plover	409.16	3,273.29			
Merlin	0.19	1.51			
Peregrine falcon	1.16	9.25			
Osprey	1.28	10.20			
Common snipe	0.66	5.27			
-					
Kestrel	32.14	257.15			
Sparrowhawk	1.02	8.16			

Table 3-5 Collision Risk Workings (For both Flapping and Gliding Flights the average Collision Risk Percentage was taken for upwind and downwind)

Species	Flapping Flight	Gliding Flight	Collision Risk [(Flapping + Gliding)/2]
Hen harrier	5.8%	5.6%	5.7%
Golden plover	4.3%	N/A	4.3%
Merlin	4.4%	N/A	4.4%
Peregrine falcon	5.1%	4.9%	5.0%
Osprey	5.6%	5.3%	5.5%

^{**}Assumed to be active 25% of the night as well as daylight hours as per SNH guidance accounting for Swan/Goose and Wader activity. This is calculated as a portion of the length of the night for the survey period provided by www.timeanddate.com and is added to available hours for the activity of the species per year.

Species	Flapping Flight	Gliding Flight	Collision Risk [(Flapping + Gliding)/2]
Common snipe	4.1%	N/A	4.1%
Kestrel	4.9%	4.8%	4.9%
Sparrowhawk	4.8%	4.8%	4.8%

Table 3-6 Collision Probability assuming no Avoidance (Transits*Collision Risk)

Species	Collision Risk	Transits Across Entire Site	Collisions/year (No Avoidance)
Hen harrier	5.7%	2.35	0.96
Golden plover	4.3%	3,837.54	140.75
Merlin	4.4%	1.90	0.067
Peregrine falcon	5.0%	11.61	0.47
Osprey	5.5%	10.29	0.56
Common snipe	4.1%	5.19	0.22
Kestrel	4.9%	34.96	12.60
Sparrowhawk	4.8%	2.14	0.39

Table 3-7 Collision Probability using Avoidance Rates outlined in SNH (September 2018 V2)

Species	Collisions/year (no avoidance)	Avoidance factor (%)	Collisions /year	Collisions /30 Years	Note
Hen harrier	0.96	99%	0.0097	0.29	All year
Golden plover	140.75	98%	2.82	84.45	Winter/Migrant
Merlin	0.067	98%	0.0013	0.04	Winter
Peregrine falcon	0.47	98%	0.0093	0.28	Winter
Osprey	0.56	98%	0.0112	0.34	N/A
Common snipe	0.22	98%	0.0043	0.13	All year
Kestrel	12.60	95%	0.63	18.90	All year
Sparrowhawk	0.39	98%	0.0078	0.23	All year

BIBLIOGRAPHY

Alerstam, T., Rosen M., Backman J., G P., Ericson P & Hellgren O. 2007. Flight Speeds among Bird Species: Allometric and Phylogenetic Effects. PLoS Biol, 5, 1656-1662. DOI:10.1371/journal.pbio.0050197

Band, W., Madders, M. and Whitfield, D.P. (2007). *Developing field and analytical methods to assess avian collision risk at wind farms. In: Birds and wind power: risk assessment and mitigation.* M. De Lucas, G.F.E. Janss and M. Ferrer, Eds.: 259-275. Quercus, Madrid.

Chamberlain, D.E., Rehfisch, M.R., Fox, A.D., Desholm, M., Anthony, S.J. 2006. The effect of avoidance rates on bird mortality predictions made by wind turbine collision risk models. Ibis 148: 198–202

Cramp, S. (1993) Handbook of the Birds of the Western Palaearctic. Oxford University Press, Oxford.

Drewitt, A. & Langston, R. (2006). Assessing the impacts of wind farms on birds. Ibis 148 p.29-42

Fernley, J., Lowther, S. & Whitfield P. 2006. A Review of Goose Collisions at Operating Wind Farms and Estimation of the Goose Avoidance Rate. Unpublished Report by West Coast Energy, Hyder Consulting and Natural Research.

Madders, M. & Whitfield, P.D. (2006). *Upland Raptors and the Assessment of Wind Farm Impacts*. Ibis (2006), 148, 43-56.

Whitfield, D.P. & Urquhart, B. (2015). *Deriving an avoidance rate for swans suitable for onshore wind farm collision risk modelling.* Natural Research Information Note 6. Natural Research Ltd, Banchory, UK.

Scottish Natural Heritage (SNH) (2018). Use of Avoidance Rates in the SNH Wind Farm Collision Risk Model. Available at https://www.nature.scot/wind-farm-impacts-birds-use-avoidance-rates-snh-wind-farm-collision-risk-model

British Trust of Ornithology (BTO) online BirdFacts. Available at https://www.bto.org/about-birds/birdfacts

https://www.timeanddate.com/sun/

APPENDIX 1

WORKED EXAMPLE OF COLLISION RISK CALCULATION (RANDOM FLIGHT MODEL) – HEN HARRIER

Stage 1 (Transits through rotors per year) [Using figures from VP3 Column]

Table 1 Standard Measurements (Specific to Hen Harrier, Windfarm Site, Turbines modelled & VP3)

Table 1 Standard Measurements (Specific to Tien Trainer, Windiam) Site, 1 dibines mo	1	
Description	Value	Units
Survey area visible from VP (Hectares) [At 25m]	Avp	248
Survey Time at VP3 April 2016 – March 2018, October 2020 – September 2021 (secs)	s	777,600
Bird observation time at >25m (secs) at VP3	РСН	101
Rotor Radius (metres)	r	75
Rotor Diameter (metres)	D	150
Max chord width of turbine blade (metres)	d	4.2
No. of turbines in viewshed of VP3	х	4
Bird length in metres (hen harrier) [Taken from BTO online)	1	0.48
Ave. Flight speed of hen harrier (m/s) [Allerstam et al. 2007]	v	9.1
500m buffer of turbines within viewshed, i.e. Area of Risk (Hectares)	Arisk	149
Availability of species activity during survey period (hours) [Daylight hours]	Ва	15,639.90

Table 2 CRM Stage 1 Calculations using Standard Measurements in Table 1

Thore 2 exact ongs 1 characteristics assignment in the state of the st			
Description	Value	Formula	Units
Proportion of time in flight >25m	t1	PCH/s	0.00012989
Flight activity per visible unit of area	F	tl/Avp	5.24E-07
Proportion of time in risk area	Trisk	F*Arisk	0.0000780
Bird occupancy of risk area	n	Trisk*Ba	1.22048847
Risk volume (Area of risk*Rotor Diameter)	Vw	(Arisk*D)*10,000	223500000
Actual volume of air swept by rotors	0	X*(Pi*r2(d+l))	330809.706
	,	0.00047 47 767 11	C 5000 4 C 5 5
Bird occupancy of rotor swept area (seconds)	b	3600*(n*(o/Vw))	6.50334657
		(1.70)/	0.51.400551
Time taken for bird to pass through rotors	t2	(d+Bl)/v	0.51428571
(seconds)			
N I Clair d I d	N	1 40	10.6450061
Number of bird passes through the rotor in	N	b/t2	12.6453961
the survey period			

Description	Value	Formula	Units
Total transits adjusted for max annual Turbine Operation Time (85% in this case)	Tn	N*0.85	10.75
Number of transits per turbine within viewshed of VP3	TnT3	Tn/x	2.69

Table 3 CRM Stage 1 Calculations - Number of transits through windfarm

Table 5 CKM Stage 1 Calculations – Number of transits t	mough windi	ai iii	
Description	Value	Formula	Units
Number of transits per turbine with viewshed of VP3	TnT3	Tn/x	2.69
Number of transits per turbine with viewshed of VP1	TnT1	Tn/x	0.57
Number of transits per turbine with viewshed of VP2	TnT2	Tn/x	2.77
Number of transits per turbine with viewshed of VP4	TnT4	Tn/x	2.41
Average transits per turbine for all VPs	TnT	(TnT1+TnT2+TnT3+TnT4)/4	2.11
Predicted number of transits through windfarm site (All 8 turbines)	Т	ATnT*8	16.87

Transits through ro	otors for the	species in a	a one-year	period	across	the	site
16.87							

Stage 2 (Collision Probability)

Calculation of the probability of the birds colliding with the turbine rotors:

The probability of a bird colliding with the turbine blades when making a transit through a rotor depends on a number of estimated factors. These factors include the avoidance factor 99% – the ability of birds to take evasive action when coming close to wind turbine blades.

In the calculations, the length of a hen harrier was taken to be 0.48 metre and the wingspan 1.10 metre. The flight velocity of the bird is assumed to be 9.1 metres per second. The maximum chord of the blades is taken to be 4.2 metres, variable pitch is assumed to be 6 degrees and the average rotation cycle is taken to be 7.1 seconds per rotation, depending on wind conditions.

A probability, ρ (r, ϕ), of collision for a bird at radius r from the hub and at a position along a radial line that is at angle ϕ from the vertical is calculated. This probability is then integrated over the entire rotor disc, assuming that the bird transit may be anywhere at random within the area of the disc. Scottish Natural Heritage (SNH) have made available a spreadsheet to aid the calculation of these probabilities as referenced previously. For a full explanation of the calculation methods see Band et al. (2007). The results of these calculations for all species are shown in Table 3-7 above.

Collision Probability*

5.7%		

*This is calculated using the SNH collision risk probability model at https://www.nature.scot/wind-farm-impacts-birds-calculating-probability-collision

Collisions per year

• ,
he annual theoretical collision rate assuming no avoidance = Transits (T)*Collision probability
0.96
he annual theoretical collision rate assuming 99% avoidance (0.12*0.01)
0.0096
heoretical collision rate assuming 99% avoidance across the 30-year duration of the windfarm
0.001*30)
0.29