Redukto to the state of the sta

Environmental Impact Assessment Report - Vol II **Kildare Innovation Campus**

Hewlett Packard

Groundwater Monitoring Assessment

Hewlett Packard, Liffey Park, Leixlip, Co. Kildare

602128- R2 (00)

RSK GENERAL NOTES

Project No.: 602128- R2 (00)

Title: Groundwater Monitoring Assessment: Hewlett Packard, Liffey Park, Leixlip, Co.

Kildare

Client: EFIV IRISH PROPERTY ICAV

Date: June 2018

Office: Dublin

Status: DRAFT

Author	Kimberly Porter	Technical reviewer	Peter Rodgers
	KIMBERLY	PORTER	Q. Ashy.
Signature:		Signature:	
Date:	June 2018	Date:	June 2018

RSK Ireland Limited (RSK) has prepared this report for the sole use of the client, showing reasonable skill and care, for the intended purposes as stated in the agreement under which this work was completed. The report may not be relied upon by any other party without the express agreement of the client and RSK. No other warranty, expressed or implied, is made as to the professional advice included in this report.

Where any data supplied by the client or from other sources have been used, it has been assumed that the information is correct. No responsibility can be accepted by RSK for inaccuracies in the data supplied by any other party. The conclusions and recommendations in this report are based on the assumption that all relevant information has been supplied by those bodies from whom it was requested.

No part of this report may be copied or duplicated without the express permission of RSK and the party for whom it was prepared.

Where field investigations have been carried out, these have been restricted to a level of detail required to achieve the stated objectives of the work.

This work has been undertaken in accordance with the quality management system of RSK Ireland Ltd.

CONTENTS

1	INTRODUCTION	<u></u>
	1.1 Aim	TO 2.
	1.2 Objective	2
	1.3 Scope	2
	1.4 Existing reports	2
	1.5 Limitations	2
2	THE SITE	4
	2.1 Site location and description	4
3	MONITORING PLAN	5
	3.1 Groundwater Monitoring Plan	5
	3.1.1 Groundwater developing, sampling and analysis	5
	3.1.2 Visual/olfactory evidence of groundwater contamination	6
4	GROUND WATER QUALITY DATA	7
5	CONCLUSIONS	10

TABLES

Table 1: Groundwater levels during groundwater monitoring round (10th May, 2018)

Table 2: TPH, BTEX and MTBE Groundwater Analytical Results

Table 3: PAH and VOCs Groundwater Analytical Results
Table 4: Dissolved Metal Groundwater Analytical Results

FIGURES

Figure 1: Site Location Figure 2: Site Layout

Figure 3: Monitoring Well Location Plan

APPENDICES

Appendix A: Service Constraints

Appendix B: Laboratory Certificates for Groundwater Analysis

Appendix C: Human health generic assessment criteria

Appendix D: Generic assessment criteria for controlled waters

1 INTRODUCTION

RSK Ireland Limited (RSK) was commissioned by EFIV Irish Property ICAV to undertake a groundwater monitoring programme at Hewlett Packard Campus, Liffey Park, Leixlip, Co. Kildare.

This report is subject to the RSK service constraints given in Appendix A.

1.1 Aim

The aim of this study was to establish the potential sources of environmental risk and liabilities associated with any groundwater contamination at the site.

1.2 Objective

The purpose of the ground monitoring programme is to:

- Define the baseline water quality and physical conditions in the monitoring wells;
- Identify all vulnerable receptors and help identify potential pathways; and,
- Provide an early warning of adverse environmental impacts.

1.3 Scope

In the absence of specific guidance for the Republic of Ireland the scope of the investigation and layout of this report has been designed in accordance with industry acknowledged best practice presented in CLR11, Model Procedures for the Management of Land Contamination. The scope of works for the assessment included:

- Groundwater monitoring undertaken at the six (BH3, BH4, BH6, BH9/07, BH12/07 & BH13/08) previously installed monitoring locations;
- Review of groundwater monitoring data and subsequent laboratory results; and,
- A factual and interpretative report with recommendations for further works (if required).

1.4 Existing reports

This report should be read in conjunction with the following document:

• RSK. Preliminary Environmental Site Assessment: 'Hewlett Packard, Liffey Park, Leixlip, Co. Kildare' Ref: 602128-R01 dated March 2018.

1.5 Limitations

The options and recommendations expressed in this report are based on the ground conditions encountered during the site works, the results of field and laboratory testing and the interpretation between explanatory holes. The material encountered and samples obtained represents only a small proportion of the material present on-site,

wealed by this in the partial of the

2 THE SITE

2.1 Site location and description

The site is located on the Celbridge Road, Leixlip, County Kildare located approximately 4km south of Leixlip town and approximately 21km west of Dublin city centre. The site is centred at Irish Grid reference N 99080 34746 at an altitude of approximately 51m. The site operates as an inkjet cartridge manufacturing plant and construction of the site was completed in 1996. The topography of the site slopes gently down towards the south east, which is consistent with the surrounding area.

The 194.5 acres site comprises of 10 buildings with approximately 1,600 car spaces and associated green spaces. The site includes a two storey office building, two manufacturing facilities, warehousing and lab spaces, a main canteen building and two energycentre buildings which house heating boilers and associated ancillary equipment. The site is accessible by via the Celbridge Road and a private road located near the M4 motorway slipway (Junction 6).

The site is bordered to the north by the M4 motorway, to the south Barnhall Rugby and football club with residential dwellings and the river Liffey beyond, to the west agricultural land with Celbridge town beyond and to the east is agricultural land with Weston Airport beyond. The land use in the surrounding area predominantly comprises of agricultural land with a few scattered residential dwellings.

A site location plan is presented in Figure 1.

3 Monitoring Plan

3.1 Groundwater Monitoring Plan

A groundwater monitoring plan was utilised to assess the groundwater quality within the previously installed monitoring wells on the subject site.

Groundwater levels were recorded during the groundwater monitoring round, which was undertaken by a third party contractor TRC Companies Inc. on 10th May 2018 as detailed in Table 1 below.

Table 1: Groundwater levels during groundwater monitoring round (10th May, 2018)

Screened Strata	Level (mbgl)
Unknown *	4.117
Unknown	4.383
Unknown	3.731
Unknown	3.909
Unknown	2.791
Unknown	2.474
he time of reporting.	
	Unknown * Unknown Unknown Unknown Unknown Unknown

Light non-aqueous phase liquid (LNAPL) was not identified in any monitoring well during well development and sampling.

As shown in Table 1, groundwater was recorded at depths ranging from 2.474 to 4.383mbgl. Groundwater at the site is considered to flow in an east-south-east direction towards the River Liffey.

3.1.1 Groundwater developing, sampling and analysis

Groundwater samples were retrieved using a United States Environment Protection Agency (USEPA) approved low-flow purging and sampling methodology. The low-flow method relies on moving groundwater through the well screen at approximately the same rate as it flows through the geological formation. This results in a significant reduction in the volume of water extracted before sampling and significantly reduces the amount of disturbance of the water in the monitoring well during purging and sampling. Drawdown levels in the monitoring well and water quality indicator parameters (pH, temperature, electrical conductivity, redox potential and dissolved oxygen) are monitored during low-flow purging and sampling, with stabilisation indicating that purging is complete and sampling can begin. As the flow rate used for purging, in most cases, is the same or only slightly higher than the flow rate used for sampling, and

because purging and sampling are conducted as one continuous operation in the field, the process is referred to as low-flow purging and sampling.

In situ water quality measurements undertaken during the low-flow sampling process can be provided upon request.

Groundwater analytical results are presented within Appendix B.

3.1.2 Visual/olfactory evidence of groundwater contamination

No olfactory or visual evidence of contamination was detected in any monitoring well during the groundwater monitoring.

In addition, no LNAPL was detected within the groundwater during the sampling process.

4 GROUND WATER QUALITY DATA

The results of the laboratory analysis of the groundwater samples retrieved from BH3, BH4, BH6, BH9/07, BH12/07, and BH13/08 are presented in Tables 2 to 4 below. The GAC for a sandy loam soil type with groundwater at 2.50mbgl, most representatives of on-site conditions has been sued. The laboratory report is presented in Appendix D.

Table 2: TPH, BTEX and MTBE Groundwater Analytical Results

Contaminant of Concern	Max Concentration (μg/L)	GAC Human Health – Commercial (μg/L)	GAC – Protection of Water Environment (μg/L)
Aliphatics EC5-EC6	<10	35,900	**
Aliphatics EC6-EC8	<10	5,370	**
Aliphatics EC8-EC10	<10	427	**
Aliphatics EC10-EC12	<10	33.9	**
Aliphatics EC12-EC16	<10	0.759	**
Aliphatics EC16-EC21	<10	- "W	**
Aliphatics EC21-EC35	<10		**
Aromatics EC5-EC7	<10	20-	**
Aromatics EC7-EC8	<10	0 -	**
Aromatics EC8-EC9	<10	-	**
Aromatics EC9-EC10	<10	64,600	**
Aromatics EC10-EC12	<10	24,500	**
Aromatics EC12-EC16	<10	5,750	**
Aromatics EC16-EC21	<10	-	**
Aromatics EC21-EC35	<10	-	**
Total TPH	<10	-	7.5 ⁽¹⁾ *
Benzene	<7	30,740	0.75 ⁽¹⁾ *
Toluene	<4	590,000	525 ⁽¹⁾
Ethylbenzene	<5	180,000	10 ⁽²⁾
Xylene	<11	173,000	10 ⁽²⁾ *
MTBE	<28	2,065,395,0	10 ⁽¹⁾

Where values are in $\ensuremath{\textbf{bold}}$ they have exceeded the GAC for Human Health

Where values are <u>underlined</u> the have exceeded the GAC for Environmental Waters

⁽¹⁾ S.I. 366 European Union Environmental Objectives (Groundwater) (Amendment) Regulations 2016

⁽²⁾ EPA Interim Report Towards Setting Guideline values for the Protection of Groundwater in Ireland 2003

⁻ GAC not calculated owing to low volatility of substance and therefore no pathway, or an absence of toxicological data

Table 3: Polycyclic Aromatic Hydrocarbons and Volatile Organic Compounds Groundwater Analytical Results

Contaminant of Concern	Max. Reported Concentration (µg/l)	GAC Human Health – Commercial * (µg/l)	GAC – Protection of Water Environment (μg/L)
Naphthalene	0.0141	19,000	1.0 ⁽²⁾
Acenaphthylene	<0.005	7,950	**
Acenaphthene	<0.005	4,100	**
Trichloroethane	<1	130	*
Tetrachloroethane	<1	810	*
1,1,1-Trichloroethane	<1	71,450	*
1,1,1,2 Tetrachloroethane	<1	5,330	*
1,1,2,2 -Tetrachloroethane	<1	27,650	*
Carbon Tetrachloride	<1	120	*
1,2-Dichloroethane	<1	170	*
Vinyl Chloride	O <1	12	*
1,2,4-Trimethylbenzene	<1	9,850	*

As shown in Table 2 & 3 above, all samples returned concentrations below the RSK derived GAC for commercial end use and GrAC for protection of water environment for petroleum hydrocarbons and polycyclic aromatic hydrocarbons in groundwater.

In addition, a groundwater sample retrieved from all sampling locations was analysed for concentrations of Volatile Organic Compounds (VOCs) and all compounds were below the laboratory detection of limit and therefore poses a low risk to the site.

Table 4: Dissolved Metal Groundwater Analytical Results

Contaminant of Concern	Max Concentration (μg/L)	GAC Human Health – Commercial (μg/L)	GAC – Protection of Water Environment (μg/L)
Arsenic	0.733	-	7.5
Cadmium	<0.08	-	**
Chromium VI	<0.03	- 🗶 🖊	7.5
Copper	0.545		30
Lead	<0.2	C	7.5
Mercury	<0.01	51,110	0.75
Nickel	0.646	.0 -	20
Selenium	1.56	-	**
Zinc	3.02	-	75

Where values are in **bold** they have exceeded the GAC for Human Health

Where values are <u>underlined</u> the have exceeded the GAC for Environmental Waters

As shown in Table 4 above, all groundwater samples returned concentrations below the RSK derived GrAC metallic compounds and protection of water environment.

Given the above, it is concluded that the site does not pose an unacceptable risk to controlled water receptors.

The screening values for human health and their derivation are included in Appendix C & D.

⁽¹⁾ S.I. 366 European Union Environmental Objectives (Groundwater) (Amendment) Regulations 2016

⁽²⁾ EPA Interim Report Towards Setting Guideline values for the Protection of Groundwater in Ireland 2003

⁻ GAC not calculated owing to low volatility of substance and therefore no pathway, or an absence of toxicological data

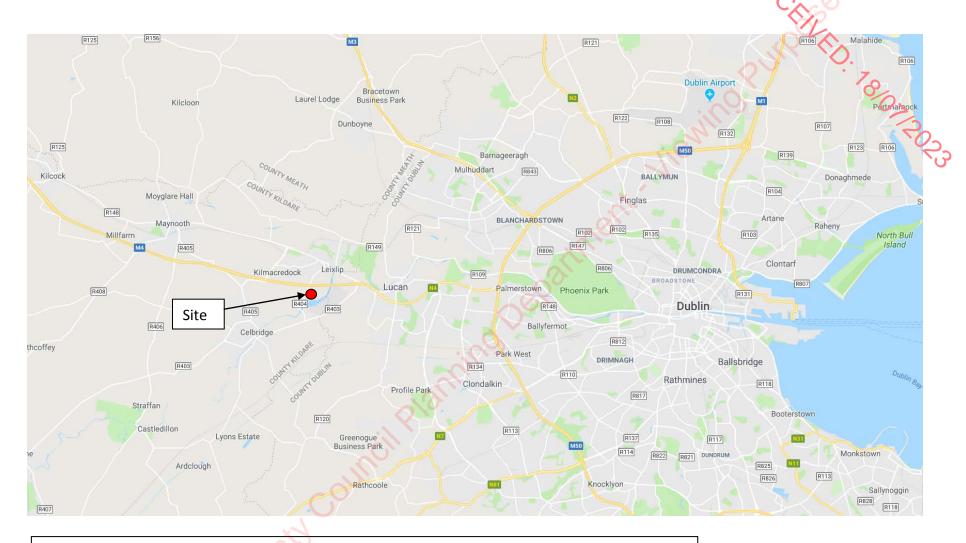
^{*} GAC is set below the LMDL .Where the analysis indicates concentrations below the LMDL a non-exceedence of the criteria will be inferred.

** No GAC available in legislation or guidance

5 CONCLUSIONS

Following the completion of the environmental site assessment works and receipt of laboratory analytical results, a groundwater assessment was completed to assess risks to human health and controlled waters at the site.

The groundwater GACs for protection of human health with regards to commercial end use were not exceeded in the shallow groundwater underlying the site.


The groundwater GACs for the protection of environmental waters did not exceed in the shallow groundwater underlying the site.

Given the above findings, it is considered that the site does not pose an unacceptable risk to human health and controlled water receptors from the groundwater.

Tenner to the standard of the

Job Number: 602128

Job Name: HP Leixlip EDD, Leixlip, Co. Kildare

Drawing Title: Figure 1 Site Location Plan (source: Google mapping)

Date: June 2018

Job Number: 602128

Job Name: HP Leixlip EDD, Leixlip, Co. Kildare

Drawing Title: Figure 2—Site Boundary (source: Google mapping)

Date: June 2018

902

Job Number: 602128

Job Name: HP Leixlip EDD, Leixlip, Co. Kildare

Drawing Title: Figure 3 – Borehole Location Map (source: Google mapping)

Date: June 2018

3/02/202

APPENDIX A SERVICE CONSTRAINTS

RSK ENVIRONMENT LIMITED SERVICE CONSTRAINTS

- 1. This report and the site investigation carried out in connection with the report (together the "Services") were compiled and carried out by RSK Ireland Limited (RSK) for EFIV Irish Property ICAV (the "client") in accordance with the terms of a contract between RSK and the "client", dated May 2018. The Services were performed by RSK with the skill and care ordinarily exercised by a reasonable environmental consultant at the time the Services were performed. Further, and in particular, the Services were performed by RSK taking into account the limits of the scope of works required by the client, the time scale involved and the resources, including financial and manpower resources, agreed between RSK and the client.
- 2. Other than that expressly contained in paragraph 1 above, RSK provides no other representation or warranty whether express or implied, in relation to the Services.
- 3. Unless otherwise agreed the Services were performed by RSK exclusively for the purposes of the client. RSK is not aware of any interest of or reliance by any party other than the client in or on the Services. Unless expressly provided in writing, RSK does not authorise, consent or condone any party other than the client relying upon the Services. Should this report or any part of this report, or otherwise details of the Services or any part of the Services be made known to any such party, and such party relies thereon that party does so wholly at its own and sole risk and RSK disclaims any liability to such parties. Any such party would be well advised to seek independent advice from a competent environmental consultant and/or lawyer.
- 4. It is RSK's understanding that this report is to be used for the purpose described in the introduction to the report. That purpose was a significant factor in determining the scope and level of the Services. Should the purpose for which the report is used, or the proposed use of the site change, this report may no longer be valid and any further use of or reliance upon the report in those circumstances by the client without RSK 's review and advice shall be at the client's sole and own risk. Should RSK be requested to review the report after the date hereof, RSK shall be entitled to additional payment at the then existing rates or such other terms as agreed between RSK and the client.
- 5. The passage of time may result in changes in site conditions, regulatory or other legal provisions, technology or economic conditions which could render the report inaccurate or unreliable. The information and conclusions contained in this report should not be relied upon in the future without the written advice of RSK. In the absence of such written advice of RSK, reliance on the report in the future shall be at the client's own and sole risk. Should RSK be requested to review the report in the future, RSK shall be entitled to additional payment at the then existing rate or such other terms as may be agreed between RSK and the client.
- 6. The observations and conclusions described in this report are based solely upon the Services which were provided pursuant to the agreement between the client and RSK. RSK has not performed any observations, investigations, studies or testing not specifically set out or required by the contract between the client and RSK. RSK is not liable for the existence of any condition, the discovery of which would require performance of services not otherwise contained in the Services. For the avoidance of doubt, unless otherwise expressly referred to in the introduction to this report, RSK did not seek to evaluate the presence on or off the site of asbestos, electromagnetic fields, lead paint, heavy metals, radon gas or other radioactive or hazardous materials.
- 7. The Services are based upon RSK's observations of existing physical conditions at the Site gained from a walk-over survey of the site together with RSK's interpretation of information including documentation, obtained from third parties and from the client on the history and usage of the site. The Services are also based on information and/or analysis provided by independent testing and information services or laboratories upon which RSK was reasonably entitled to rely. The Services clearly are limited by the accuracy of the information, including documentation, reviewed by RSK and the observations possible at the time of the walk-over survey. Further RSK was not authorised and did not attempt to independently verify the accuracy or completeness of information, documentation or materials received from the client or third parties, including laboratories and information services, during the performance of the Services. RSK is not liable for any inaccurate information or conclusions, the discovery of which inaccuracies required the doing of any act including the gathering of any information which was not reasonably available to RSK and including the doing of any independent investigation of the information provided to RSK save as otherwise provided in the terms of the contract between the client and RSK.
- 8. The phase II or intrusive environmental site investigation aspects of the Services is a limited sampling of the site at pre-determined borehole and soil vapour locations based on the operational configuration of the site. The conclusions given in this report are based on information gathered at the specific test locations and can only be extrapolated to an undefined limited area around those locations. The extent of the limited area depends on the soil and groundwater conditions, together with the position of any current structures and underground facilities and natural and other activities on site. In addition chemical analysis was carried out for a limited number of parameters [as stipulated in the contract between the client and RSK] [based on an understanding of the available operational and historical information,] and it should not be inferred that other chemical species are not present.
- 9. Any site drawing(s) provided in this report is (are) not meant to be an accurate base plan, but is (are) used to present the general relative locations of features on, and surrounding, the site.

APPENDIX B LABORATORY CERTIFICATES FOR GROUNDWATER ANALYSIS

Hewlett Packard Groundwater Monitoring Assessment: Helwett Packard, Liffey Park 602128-01 (00)

Manor Road (off Manor Lane)

Fax: (01244) 528701 email: hawardencustomerservices@alsglobal.com

Unit 7-8 Hawarden Business Park

Hawarden Deeside CH5 3US

Tel: (01244) 528700

Website: www.alsenvironmental.co.uk

RSK Group Plc Unit B Bluebell Business Centre Old Naas Road Dublin Dublin 12

Attention: Paul Feely

CERTIFICATE OF ANALYSIS

Date: 25 May 2018 **Customer:** D RSK DUB 180512-41 Sample Delivery Group (SDG): 602128 Your Reference: HP Location: 457687 Report No:

This report has been revised and directly supersedes 457479 in its entirety.

We received 6 samples on Friday May 11, 2018 and 6 of these samples were scheduled for analysis which was completed on Friday May 25, 2018. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Environmental Hawarden (Method codes TM) or ALS Environmental Aberdeen (Method codes S).

Approved By

Sonia McWhan **Operations Manager**

ALS Environmental is part of ALS Life Sciences Limited. ALS Life Sciences Limited registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No. 4057291.

Validated

180512-41 Client Reference: Report Number: Superseded Report: 457687 SDG: 602128 457479 Location: HP Order Number: P2021483

Received Sample Overview

ch Comple No/e)				
_ab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
17543971	BH3		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	10/05/2018
17543972	BH4			10/05/2018
17543973	вн6		· 7.	10/05/2018
17543970	BH9/07		0	10/05/2018
17543974	BH12/07			10/05/2018
17543975	BH13/08			20/05/2018
ximum Sample/Coolbox	Temperature (°C) :	11.4		5
5667-3 Water quality - Sampling - Paing Transportation samples shall be smperature of (5±3)°C.	art3 - tored in a cooling device capable of maintaining	ALS have data which show that a cool maintaining pre-chilled samples at a te	mperature of (5±3)°C for a period	
ily received samples whi	ich have had analysis scheduled w	vill be shown on the following pa	nges.	
			lien.	
		went.		
		Odrill		
		OSA		
	nis en	O Debar		
	ilbiai			
	cilPlan			
	Incil Plan			
	CONUCII LIST			
	Conucil bian			
	S CONUCII Plan			
	S Conucil Plan			
	S Conucil Plan			
CONY	S Council Plan			
, e Colin	S Council Plan			
MeConn	S Council Plan			
idaie Coun	S Council Plan			
ildate	S Council Plan			
ildaie	S Council Plan			
ildaie	S Council Plan			
ildate	S Council Plan			

ALS

 SDG:
 180512-41
 Client Reference:
 602128
 Report Number:
 457687

 Location:
 HP
 Order Number:
 P2021483
 Superseded Report:
 457479

(ACS) Eccutions		Tradi Hamber: 1 2021-00																				
Results Legend X Test N No Determination	Lab Sample I	No(s)					17543971					17543972	•	PA		17543973				17543970		17543974
Possible Sample Types -	Custome Sample Refer						внз					BH4						07	30-	ВН9/07		BH12/07
S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refere	nce																			0	
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (m)															\ \ !	719				
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Containe	r	0.5l glass bottle (ALE227)	500ml Plastic (ALE208)	H2SO4 (ALE244)	NaOH (ALE245)	Vial (ALE297)	0.5l glass bottle (ALE227)	500ml Plastic (ALE208)	H2SO4 (ALE244)	NaOH (ALE245)	Vial (ALE297)	250ml Amber Gl. PTFE/PE	330ml plastic bottle (ALE503)	H2SO4 (ALE244)	Vial (ALE297)	250ml Amber Gl. PTFE/PE	330ml plastic bottle (ALE503)	H2SO4 (ALE244)	Vial (ALE297)	250ml Amber Gl. PTFE/PE	330ml plastic bottle (ALE503)
OTTI - Ottlei	Sample Typ	ре	Ę	N N	Z N	N N	۶	S N	NF	Z N	N N	UNI	N N	۶	S N	N N	۶	N N	N N	N N	ΣE	N N
Ammoniacal Nitrogen	All	NDPs: 0 Tests: 6		•	X			'	'	X	1	_	'	'	X	'	'	'	X	'	<u>'</u>	
Anions by Kone (w)	All	NDPs: 0 Tests: 6		X				- X	x	0				X				Х				X
Cyanide Comp/Free/Total/Thiocyanate	All	NDPs: 0 Tests: 6				X	9	<u>D</u> ,			X			X				Х				Х
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 6		X	S S				X					Х				Х				Х
EPH CWG (Aliphatic) Aqueous GC (W)	All	NDPs: 0 Tests: 6	X					Х					Х				Х				X	
EPH CWG (Aromatic) Aqueous GC (W)	All	NDPs: 0 Tests: 6	х					X					X				Х				Х	
Fluoride	All	NDPs: 0 Tests: 6		X					X					X				X				X
GRO by GC-FID (W)	All	NDPs: 0 Tests: 6					X					X				X				X		
Hexavalent Chromium (w)	All	NDPs: 0 Tests: 6		X					X					X				X				X
Mercury Dissolved PAH Spec MS - Aqueous (W)	All	NDPs: 0 Tests: 6 NDPs: 0		X					X							X				X		
pH Value	All	Tests: 6 NDPs: 0	X					X					X				X				X	
Phenois by HPLC (W)	All	Tests: 6 NDPs: 0		X					X					X				X				X
Sulphide	All	Tests: 6 NDPs: 0			X					X					X				X			
TPH CWG (W)	All	Tests: 6 NDPs: 0		X					X					X				X				X
		Tests: 6	Х					X					X				X				X	

	17543974				17543975
	BH12/07				ВН13/08
H2SO4 (ALE244)	Vial (ALE297)	250ml Amber Gl. PTFE/PE	330ml plastic UNL bottle (ALE503)	H2SO4 (ALE244)	Vial (ALE297) UNL
UN	SE.	UN.	UNL	UNL	N N
X				X	
			X		
			Х		
			Х		
		X			
		X			
		^			
			Х		
	X				X
			X		
	Х				Х
		X	3		
	Z	0			
			Х		
X				Х	
			X		
		X			
		^			

Redunds Bonds of the Parting Purposes Only And Council Presented Department.

CERTIFICATE OF ANALYSIS

VOC MS (W)

All

Wildare County Council Planning Depart

NDPs: 0

Tests: 6

Report Number: Superseded Report: 180512-41 457687 SDG: Client Reference: 602128 457479 Location: HP Order Number: P2021483 Results Legend 17543971 17543972 17543974 17543970 Lab Sample No(s) Test Х No Determination Possible Customer BH9/07 BH3 BH4 Sample Reference Sample Types -S - Soil/Solid UNS - Unspecified Solid GW - Ground Water **AGS Reference** SW - Surface Water LE - Land Leachate PL - Prepared Leachate PR - Process Water SA - Saline Water Depth (m) TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage 0.5l glass bottle (ALE227) 0.5l glass bottle (ALE227) RE - Recreational Water 330ml plastic bottle (ALE503) 500ml Plastic (ALE208) NaOH (ALE245) NaOH (ALE245) Vial (ALE297) Vial (ALE297) Vial (ALE297) H2SO4 (ALE244) H2SO4 (ALE244) DW - Drinking Water Non-regulatory (ALE244) UNL - Unspecified Liquid Container SL - Sludge G - Gas OTH - Other Sample Type Z Z Z Z Z Z Z Ž Σ S Z Z Ž Z Ž Ž Ž Ę Ž Ž

X

Х

Х

Χ

	Ž.	H2SO4 (ALE244)			
X	Ž.	Vial (ALE297)		BH12/07	17543974
	CNL				
	UNL	330ml plastic bottle (ALE503)			
	UNL	H2SO4 (ALE244)			
Х	UNL	Vial (ALE297) UNL		BH13/08	17543975

tenum nonness de Onti Penning Department. Viening Purposes Onti Niening Department.

CERTIFICATE OF ANALYSIS

 SDG:
 180512-41
 Client Reference:
 602128
 Report Number:
 457687

 Location:
 HP
 Order Number:
 P2021483
 Superseded Report:
 457479

	Populto Logard		Customer Com de D. C.						
#	Results Legend ISO17025 accredited.		Customer Sample Ref.	BH3	BH4	BH6	BH9/07	BH12/07	BH13/08
M aq	mCERTS accredited. Aqueous / settled sample.		Double (c.)						
diss.filt tot.unfilt	Dissolved / filtered sample. Total / unfiltered sample.		Depth (m) Sample Type	Unspecified Liquid (UNL)	Unspecified Liquid (UNL)	Unspecified Liquid (UNL)	Unspecified Liquid (UNL)	. Vulnspecified Liquid (UNL)	Unspecified Liquid (UNL)
*	Subcontracted test. % recovery of the surrogate standa	urd to	Date Sampled Sampled Time	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
	check the efficiency of the method. results of individual compounds wi	The	Date Received	11/05/2018	11/05/2018	11/05/2018	11/05/2018	11/05/2018	11/05/2018
	samples aren't corrected for the red		SDG Ref Lab Sample No.(s)	180512-41 17543971	180512-41 17543972	180512-41 17543973	180512-41 17543970	180512-41 175 <mark>1</mark> 3974	180512-41 17543975
(F) 1-5&+§@	Trigger breach confirmed Sample deviation (see appendix)		AGS Reference	17010011	17010072	170,0070	170.0070		11010010
Compo	nent	LOD/Units	Method					13	
Ammon	iacal Nitrogen as N	<0.2	TM099	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
		mg/l	T11000	2.0		0.0	2.0	0.0	
Ammon	iacal Nitrogen as NH4	<0.3 mg/l	TM099	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Sulphide	е	<0.01	TM101	<0.01	<0.01	<0.01	0.0237	0.0542	<0.01
Cu.pu	•	mg/l		2	2	0.0.	0.020.	-0	0.01
Fluoride)	<0.5	TM104	1.33	<0.5	<0.5	<0.5	1.01	<0.5
		mg/l							
Arsenic	(diss.filt)	<0.5	TM152	0.733	0.588	<0.5	<0.5	<0.5	<0.5
0-4	(di £IA)	μg/l	TMACO	2 20.00	2 20 00	*0.00	*0.00	*0.00	*0.00
Cadmiu	m (diss.filt)	<0.08 µg/l	TM152	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Chromii	um (diss.filt)	μg/i <1	TM152	<1	2.88	<1	<1	<1	<1
L	V	μg/l		2	2.00		"W.		
Copper	(diss.filt)	<0.3	TM152	<0.3	0.545	<0.3	<0.3	<0.3	<0.3
		μg/l		2	2				
Lead (d	iss.filt)	<0.2	TM152	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
NE-L-L	-U EIII)	μg/l	TMACO	2	2	0.504	-0.4	-0.4	0.040
Nickel (uiss.ilit)	<0.4 µg/l	TM152	<0.4 2	3 2	0.584	<0.4	<0.4	0.646
Seleniu	m (diss.filt)	μg/i <1	TM152	<1	1.08	<1	<1	<1	1.56
00.0	(4.00)	µg/l	02	2	2		·	·	
Zinc (dis	ss.filt)	<1	TM152	1.34	3.02	1.52	<1	<1	<1
		μg/l		2	2				
Mercury	(diss.filt)	<0.01	TM183	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Oblasida		μg/l	TM404	2	2	45.0	47.0	04.7	00
Chloride	•	<2 mg/l	TM184	32.9	18	15.8	17.2	24.7	22
Cyanide	e. Total	<0.05	TM227	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
',' '	,	mg/l			(9)				
Chromit	um, Hexavalent	<0.03	TM241	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
		mg/l							
pН		<1	TM256	7.86	7.37	7.88	7.65	7.85	7.69
Phenol		pH Units <0.002	TM259	<0.002	0.03	<0.002	<0.002	<0.002	<0.002
1 Honor		mg/l	11/12/03	10.002	0.00	10.002	10.002	10.002	10.002
Cresols		<0.006	TM259	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
		mg/l							
Xylenols	5	<0.008	TM259	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008
Di .	T-4-1D-4 1 1	mg/l	T14050	.0.040	2.22	.0.040	.0.040	.0.040	.0.040
Phenols monohy	s, Total Detected	<0.016 mg/l	TM259	<0.016	0.03	<0.016	<0.016	<0.016	<0.016
monorly	uno	myn	_						
		ν_{x}							
		U_{σ} ,							
		,							
	76								
	7.0,	<u></u> _							
	0								

CERTIFICATE OF ANALYSIS

180512-41 HP Report Number: Superseded Report: SDG: Client Reference: 602128 457687 457479 Location: Order Number: P2021483

	pec MS - Aqueous Results Legend		Customer Sample Ref.	BH3	BH4	BH6	BH9/07	BH12/07	BH13/08
# M aq diss.filt tot.unfilt	ISO17025 accredited. mCERTS accredited. Aqueous / settled sample. Dissolved / filtered sample. Total / unfiltered sample.		Depth (m) Sample Type	Unspecified Liquid (UNL)	Unspecified Liquid (UNL)	Unspecified Liquid (UNL)	Unspecified Liquid (UNL)	. V Unspecified Liquid (UNL)	Unspecified Liquid (UNL)
*	Subcontracted test. % recovery of the surrogate standa	ird to	Date Sampled Sampled Time	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
	check the efficiency of the method results of individual compounds with	The	Date Received SDG Ref	11/05/2018 180512-41	11/05/2018 180512-41	11/05/2018 180512-41	11/05/2018 180512-41	11/05/2018 180512-41	11/05/2018 180512-41
(F)	samples aren't corrected for the re- Trigger breach confirmed Sample deviation (see appendix)	covery	Lab Sample No.(s)	17543971	17543972	17543973	17543970	175/3974	17543975
Compo		LOD/Units	AGS Reference Method					73	
Naphtha	lene (aq)	<0.01 µg/l	TM178	0.0105	<0.01	0.0117	0.0143	0.0141	0.0123
Acenaph	othene (aq)	<0.005 µg/l	TM178	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Acenaph	ithylene (aq)	<0.005 µg/l	TM178	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Fluorant	hene (aq)	<0.005 µg/l	TM178	<0.005	<0.005	<0.005	<0.005	0.0059	<0.005
Anthrace	ene (aq)	<0.005 µg/l	TM178	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Phenant	hrene (aq)	<0.005	TM178	0.0057	0.00551	0.00775	0.00757	0.0114	0.00901
Fluorene	e (aq)	μg/l <0.005	TM178	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Chrysen	e (aq)	μg/l <0.005	TM178	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Pyrene (aq)	μg/l <0.005	TM178	<0.005	<0.005	<0.005	<0.005	0.00789	<0.005
Benzo(a)anthracene (aq)	μg/l <0.005	TM178	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Benzo(b)fluoranthene (aq)	μg/l <0.005	TM178	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Benzo(k)fluoranthene (aq)	μg/l <0.005	TM178	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Benzo(a)pyrene (aq)	μg/l <0.002	TM178	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Dibenzo	(a,h)anthracene (aq)	μg/l <0.005	TM178	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Benzo(g	,h,i)perylene (aq)	μg/l <0.005	TM178	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Indeno(1	,2,3-cd)pyrene (aq)	μg/l <0.005	TM178	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
PAH, To	tal Detected USEPA 16	μg/l <0.082	TM178	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082
(aq)		μg/l							
)						
		CX							
	.0								
	10,								
	<u> </u>								

CERTIFICATE OF ANALYSIS

180512-41 HP Report Number: Superseded Report: SDG: Client Reference: 602128 457687 457479 Location: Order Number: P2021483

TPH CWG (W) Results Legend		Customer Sample Ref.	BH3	BH4	BH6	BH9/07	BH12/07	BH13/08
# ISO17025 accredited.		customer cample ref.	RH3	BH4	RHP	внуот	BH12/U/	BH13/08
 M mCERTS accredited. aq Aqueous / settled sample. 		Depth (m)				CA.		
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Sample Type	Unspecified Liquid (UNL)					
* Subcontracted test.		Date Sampled	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
check the efficiency of the method	The	Sampled Time Date Received	11/05/2018	11/05/2018	11/05/2018	11/05/2018	. 11/05/2018	11/05/2018
results of individual compounds w samples aren't corrected for the re		SDG Ref	180512-41	180512-41	180512-41	180512-41	180512-41	180512-41
(F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix)	, i	Lab Sample No.(s)	17543971	17543972	17543973	17543970	175/3974	17543975
Component	LOD/Units	AGS Reference Method						
GRO Surrogate % recovery**	LOD/OIIIto	TM245	98	99	91	91	101	100
GNO Surrogate % recovery	%	1101243	90	99	91	31	101	3
GRO >C5-C12	<50	TM245	<50	<50	<50	<50	<50	<50
	μg/l							0,5
Methyl tertiary butyl ether	<3	TM245	<3	<3	<3	<3	<3	<3
(MTBE)	μg/l						_()	
Benzene	<7	TM245	<7	<7	<7	<7	<7	<7
	μg/l							
Toluene	<4	TM245	<4	<4	<4	<4	<4	<4
	μg/l							
Ethylbenzene	<5	TM245	<5	<5	<5	<5	<5	<5
	μg/l						9)	
m,p-Xylene	<8	TM245	<8	<8	<8	<8	<8	<8
V.1	μg/l						_	_
o-Xylene	<3	TM245	<3	<3	<3	<3	<3	<3
	μg/l							
Sum of detected Xylenes	<11	TM245	<11	<11	<11	<11	<11	<11
0 (11 1 1575)	μg/l	TN40.45	.00	-00	.00	.00	.00	-00
Sum of detected BTEX	<28	TM245	<28	<28	<28	<28	<28	<28
Alimbetics > CE_CG	μg/l	TMOAE	z10	-10	-10	z10	-10	z10
Aliphatics >C5-C6	<10 µg/l	TM245	<10	<10	<10	<10	<10	<10
Aliphatics >C6-C8	μg/i <10	TM245	<10	<10	<10	<10	<10	<10
Aliphatics >Co-Co	μg/l	1101245	\10	\10	~10	\10	\10	\10
Aliphatics >C8-C10	<10	TM245	<10	<10	<10	<10	<10	<10
7 iiipiialios 7 00 0 10	μg/l	TWETO	110	110	110	110	110	110
Aliphatics >C10-C12	<10	TM245	<10	<10	<10	<10	<10	<10
7 iiiphadoo - 0 10 0 12	μg/l	11112 10	10		110	10	110	10
Aliphatics >C12-C16 (aq)	<10	TM174	<10	<10	<10	<10	<10	<10
	μg/l							
Aliphatics >C16-C21 (aq)	<10	TM174	<10	<10	<10	<10	<10	<10
	μg/l							
Aliphatics >C21-C35 (aq)	<10	TM174	<10	<10	<10	<10	<10	<10
	μg/l		10					
Total Aliphatics >C12-C35 (aq)	<10	TM174	<10	<10	<10	<10	<10	<10
	μg/l							
Aromatics >EC5-EC7	<10	TM245	<10	<10	<10	<10	<10	<10
	μg/l) `					
Aromatics >EC7-EC8	<10	TM245	<10	<10	<10	<10	<10	<10
	μg/l							
Aromatics >EC8-EC10	<10	TM245	<10	<10	<10	<10	<10	<10
Aromatics >EC10-EC12	μg/l <10	TM245	<10	<10	<10	<10	<10	<10
Afornatics >EC 10-EC 12	µg/l	1101245	×10	×10	×10	×10	×10	<10
Aromatics >EC12-EC16 (aq)	μg/i <10	TM174	<10	<10	<10	<10	<10	<10
Alomatics >EC12-EC10 (aq)	μg/l	1101174	\10	\10	\10	\10	\10	\10
Aromatics >EC16-EC21 (aq)	<10	TM174	<10	<10	<10	<10	<10	<10
71011dte3 - 2010 2021 (dq)	μg/l	111174	110	110	110	110	110	110
Aromatics >EC21-EC35 (aq)	<10	TM174	<10	<10	<10	<10	<10	<10
	μg/l							
Total Aromatics >EC12-EC35	<10	TM174	<10	<10	<10	<10	<10	<10
(aq)	μg/l							
Total Aliphatics & Aromatics	<10	TM174	<10	<10	<10	<10	<10	<10
>C5-35 (aq)	μg/l							
Aliphatics >C16-C35 Aqueous	<10	TM174	<10	<10	<10	<10	<10	<10
	μg/l							

 SDG:
 180512-41
 Client Reference:
 602128
 Report Number:
 457687

 Location:
 HP
 Order Number:
 P2021483
 Superseded Report:
 457479

VOC IV	IS (W) Results Legend		Customer Sample Ref.	BH3	BH4	BH6	DHO/6/2	BH12/07	BH13/08
	ISO17025 accredited.		Customer Sample Ref.	ВНЗ	BH4	BH6	BH9/07	BH12/07	BH13/08
aq .	mCERTS accredited. Aqueous / settled sample.		Depth (m)				CA		
tot.unfilt	Dissolved / filtered sample. Total / unfiltered sample.		Sample Type	Unspecified Liquid (UNL)					
	Subcontracted test. % recovery of the surrogate standa	rd to	Date Sampled Sampled Time	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
	check the efficiency of the method.	The	Date Received	11/05/2018	11/05/2018	11/05/2018	11/05/2018	11/05/2018	11/05/2018
	results of individual compounds wi samples aren't corrected for the rec		SDG Ref	180512-41	180512-41	180512-41 17543973	180512-41	180512-41 17543974	180512-41 17543975
	Trigger breach confirmed Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	17543971	17543972	17545975	17543970	1 3 3 7 4	17545975
Compon		LOD/Units							
Dibromof	fluoromethane**		TM208	108	119	114	107	110	109
		%						7	()
Toluene-	d8**		TM208	96.8	94.2	94.8	97.7	96.9	97.1
		%							(2)
4-Bromot	fluorobenzene**		TM208	94.9	93.7	97.7	96.4	96.1	94.7
		%							
Dichlorod	difluoromethane	<1	TM208	<1	<1	<1	<1	<1.	<1
		μg/l							
Chlorome	ethane	<1	TM208	<1	<1	<1	<1	<1	<1
		μg/l							
Vinyl chlo	oride	<1	TM208	<1	<1	<1	<1	<1	<1
_		μg/l						9	
Bromome	ethane	<1	TM208	<1	<1	<1	<1	<1	<1
011 11		µg/l	T14000	.4	.4	.4		.4	.4
Chloroeth	nane	<1	TM208	<1	<1	<1	<1	<1	<1
T: 11	0 11	μg/l	T14000	.4	.4	.4	<1	.4	.4
Irichioro	fluoromethane	<1 .ug/l	TM208	<1	<1	<1	<1	<1	<1
1.1 Diabl	oroethene	μg/l <1	TM208	<1	<1	<1	<1	<1	<1
I, I-DIÇNI	oroethene	µg/l	1101200	<u> </u>	`1	"	<u> </u>	<u> </u>	<u> </u>
Carbon d	lisulphido	μg/i <1	TM208	<1	<1	<1	<1	<1	<1
Carbon	iisuipriide	µg/l	1101200	\ 1	`'		``	`'	`'
Dichloror	nethane	<3	TM208	<3	<3	<3	<3	<3	<3
Dictrictor	nethane	μg/l	TIVIZOO	••			•	~	~
Methyl te	rtiary butyl ether	<1	TM208	<1	<1	<1	<1	<1	<1
(MTBE)	and buty out of	μg/l	200	·		·	·	i i	·
, ,	-Dichloroethene	<1	TM208	<1	<1	<1	<1	<1	<1
		μg/l		·		·	·	· ·	·
1,1-Dichl	oroethane	<1	TM208	<1	<1	<1	<1	<1	<1
ĺ .		μg/l			(9)				
cis-1,2-D	ichloroethene	<1	TM208	<1	<1	<1	<1	<1	<1
		μg/l							
2,2-Dichl	oropropane	<1	TM208	<1	<1	<1	<1	<1	<1
		μg/l		<u> </u>					
Bromoch	loromethane	<1	TM208	<1	<1	<1	<1	<1	<1
		μg/l							
Chlorofor	m	<1	TM208	<1	<1	<1	<1	<1	<1
		μg/l		<u> </u>					
1,1,1-Tric	chloroethane	<1	TM208	<1	<1	<1	<1	<1	<1
		μg/l							
1,1-Dichi	oropropene	<1 //	TM208	<1	<1	<1	<1	<1	<1
Carbonto	straablarida	μg/l <1	TM208	<1	<1	<1	<1	<1	<1
Carbonie	etrachloride	µg/l	1101200	<u> </u>	`1	<u> </u>	<u> </u>	<u> </u>	<u> </u>
1.2 Dichl	oroethane	μg/i <1	TM208	<1	<1	<1	<1	<1	<1
1,2-DICIII	ordernane	µg/l	1101200	\ 1	``	`1	` '	``	`1
Benzene		×1	TM208	<1	<1	<1	<1	<1	<1
Delizerie		μg/l	1101200	31	``	``	``	\ \frac{1}{2}	``
Trichloro	ethene	<1	TM208	<1	<1	<1	<1	<1	<1
1110111010	ounding.	μg/l	1111200	-1	''	- ''		.'	''
1.2-Dichl	oropropane	<1	TM208	<1	<1	<1	<1	<1	<1
.,	7.0	μg/l			· ·	·	·	· ·	·
Dibromor	methane	<1	TM208	<1	<1	<1	<1	<1	<1
		μg/l							
Bromodio	chloromethane	<1	TM208	<1	<1	<1	<1	<1	<1
•		μg/l							
cis-1,3-D	ichloropropene	<1	TM208	<1	<1	<1	<1	<1	<1
		μg/l							
Toluene		<1	TM208	<1	<1	<1	<1	<1	<1
		µg/l							
trans-1,3	-Dichloropropene	<1	TM208	<1	<1	<1	<1	<1	<1
		μg/l							
1,1,2-Tric	chloroethane	<1	TM208	<1	<1	<1	<1	<1	<1
		μg/l	1		I			l	

 SDG:
 180512-41
 Client Reference:
 602128
 Report Number:
 457687

 Location:
 HP
 Order Number:
 P2021483
 Superseded Report:
 457479

VOC MS (W)								
Results Legend # ISO17025 accredited.		Customer Sample Ref.	BH3	BH4	BH6	BH9.07	BH12/07	BH13/08
M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test. ** % recovery of the surrogate stand	and to	Depth (m) Sample Type Date Sampled Sampled Time	Unspecified Liquid (UNL) 10/05/2018	Unspecified Liquid (UNL) 10/05/2018	Unspecified Liquid (UNL) 10/05/2018	Unspecified Liquid (UNL)	Unspecified Liquid (UNL) 10/05/2018	Unspecified Liquid (UNL) 10/05/2018
check the efficiency of the method results of individual compounds w samples aren't corrected for the re (F) Trigger breach confirmed 1-5&+\$@ Sample deviation (see appendix)	d. The vithin	Date Received SDG Ref Lab Sample No.(s) AGS Reference	11/05/2018 180512-41 17543971	11/05/2018 180512-41 17543972	11/05/2018 180512-41 17543973	11/05/2018 180512-41 17543970	11/05/2018 150512-41 115-3974	11/05/2018 180512-41 17543975
Component	LOD/Units	_					2	
1,3-Dichloropropane	<1 µg/l	TM208	<1	<1	<1	<1	<1 2	6 €1
Tetrachloroethene	<1 μg/l	TM208	<1	<1	<1	<1	<1	S <1
Dibromochloromethane	<1 µg/l	TM208	<1	<1	<1	<1	<1	<1
1,2-Dibromoethane	<1 µg/l	TM208	<1	<1	<1	<1	<1	<1
Chlorobenzene	<1 µg/l	TM208	<1	<1	<1	<1	ব	<1
1,1,1,2-Tetrachloroethane	<1 µg/l	TM208	<1	<1	<1	<1	<1	<1
Ethylbenzene	<1 µg/l	TM208	<1	<1	<1	<1	<1	<1
m,p-Xylene	<1 µg/l	TM208	<1	<1	<1	<1	<1	<1
o-Xylene	<1 µg/l	TM208	<1	<1	<1	<1	<1	<1
Styrene	<1 µg/l	TM208	<1	<1	<1	<1	<1	<1
Bromoform	<1 µg/l	TM208	<1	<1	<1	<1	<1	<1
Isopropylbenzene	<1 µg/l	TM208	<1	<1	<1	<1	<1	<1
1,1,2,2-Tetrachloroethane	<1 µg/l	TM208	<1	<1	<1	<1	<1	<1
1,2,3-Trichloropropane	<1 µg/l	TM208	<1	<1	<1	<1	<1	<1
Bromobenzene	<1 µg/l	TM208	<1	<1	<1	<1	<1	<1
Propylbenzene	<1 µg/l	TM208	<1	<1	<1	<1	<1	<1
2-Chlorotoluene	<1 µg/l	TM208	<1	<1	<1	<1	<1	<1
1,3,5-Trimethylbenzene	<1 μg/l	TM208	ব	<1	<1	<1	<1	<1
4-Chlorotoluene	<1 μg/l	TM208	<1	<1	<1	<1	<1	<1
tert-Butylbenzene	<1 μg/l	TM208	<1	<1	<1	<1	<1	<1
1,2,4-Trimethylbenzene	<1 μg/l	TM208	<1	<1	<1	<1	<1	<1
sec-Butylbenzene	<1 µg/l	TM208	<1	<1	<1	<1	<1	<1
4-iso-Propyltoluene	<1 μg/l	TM208	<1	<1	<1	<1	<1	<1
1,3-Dichlorobenzene	<1 μg/l	TM208	<1	<1	<1	<1	<1	<1
1,4-Dichlorobenzene	<1 μg/l	TM208	<1	<1	<1	<1	<1	<1
n-Butylbenzene	<1 μg/l	TM208	<1	<1	<1	<1	<1	<1
1,2-Dichlorobenzene	<1	TM208	<1	<1	<1	<1	<1	<1
1,2-Dibromo-3-chloropropane	μg/l <1	TM208	<1	<1	<1	<1	<1	<1
1,2,4-Trichlorobenzene	μg/l <1	TM208	<1	<1	<1	<1	<1	<1
Hexachlorobutadiene	μg/l <1	TM208	<1	<1	<1	<1	<1	<1
tert-Amyl methyl ether (TAME)	μg/l <1	TM208	<1	<1	<1	<1	<1	<1
Naphthalene	μg/l <1	TM208	<1	<1	<1	<1	<1	<1
	μg/l							

180512-41 HP 602128 P2021483 Report Number: Superseded Report: SDG: Client Reference: 457687 457479 Location: Order Number:

VOC MS (W)								
# ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Customer Sample Ref. Depth (m)	BH3	BH4	BH6	BH9/03	BH12/07	BH13/08
tot.unfilt Total / unfiltered sample. * Subcontracted test. ** % recovery of the surrogate standards.	ard to	Sample Type Date Sampled	Unspecified Liquid (UNL) 10/05/2018	Unspecified Liquid (UNL) 10/05/2018	Unspecified Liquid (UNL) 10/05/2018	Unspecified Liquid (UNL) 10/05/2018	Unspecified Liquid (UNL) 10/05/2018	Unspecified Liquid (UNL) 10/05/2018
check the efficiency of the method results of individual compounds w	. The rithin	Sampled Time Date Received SDG Ref	11/05/2018 180512-41	11/05/2018 180512-41	11/05/2018 180512-41	11/05/2018 180512-41	11/05/2018 150512-41	11/05/2018 180512-41
samples aren't corrected for the re (F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix)	covery	Lab Sample No.(s) AGS Reference	17543971	17543972	17543973	17543970	150512-41 11573974	17543975
Component	LOD/Uni	ts Method					2	
1,2,3-Trichlorobenzene	<1 µg/l	TM208	<1	<1	<1	<1	<1	5 (1)
1,3,5-Trichlorobenzene	<1 µg/l	TM208	<1	<1	<1	<1	<1	<1
	μул							
							30	
						NII.		
						110		
						7		
					*)		
				0	,			
				76%				
			•_•	(9)				
			10					
			0/0					
		- ~	<u>) </u>					
	(
	Lx							
= 0								
SO								
20)								
1.10								
	<u> </u>							

Validated

 SDG:
 180512-41
 Client Reference:
 602128
 Report Number:
 457687

 Location:
 HP
 Order Number:
 P2021483
 Superseded Report:
 457479

Table of Results - Appendix

Method No	Reference	Description
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (€10-C40)
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser
TM101	Method 4500B & C, AWWA/APHA, 20th Ed., 1999	Determination of Sulphide in soil and water samples using the Kone Analyser
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS
TM174	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	Determination of Speciated Extractable Petroleum Hydrocarbons in Waters by GC-FID
TM178	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS in Waters
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM208	Modified: US EPA Method 8260b & 624	Determination of Volatile Organic Compounds by Headspace / GC-MS in Waters
TM227	Standard methods for the examination of waters and wastewaters 20th Edition, AWWA/APHA Method 4500.	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate
TM241	Methods for the Examination of Waters and Associated Materials; Chromium in Raw and Potable Waters and Sewage Effluents 1980.	The Determination of Hexavalent Chromium in Waters and Leachates using the Kone Analyser
TM245	By GC-FID	Determination of GRO by Headspace in waters
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter
TM259	by HPLC	Determination of Phenols in Waters and Leachates by HPLC

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Environmental Hawarden (Method codes TM) or ALS Environmental Aberdeen (Method codes S).

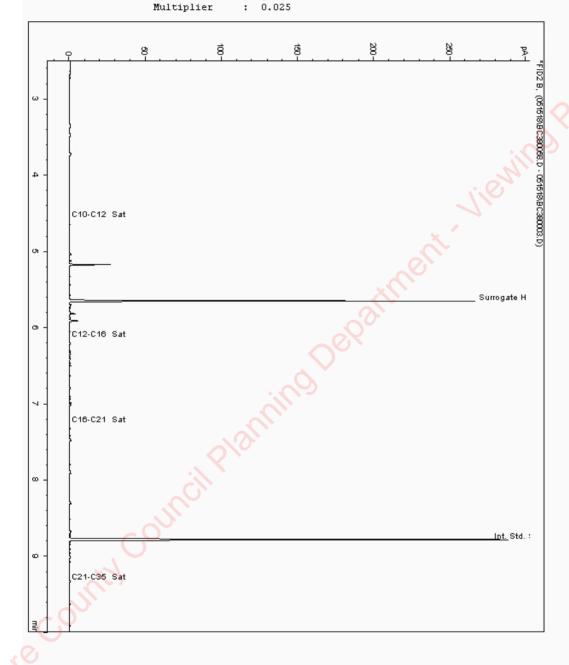
ALS Location:	180512-41 HP		Client Refere Order Number		128 21483		oort Number: erseded Report:	457687 457479
(- 1 -) <u></u>								
			st Com	-			A.	TO TO TO THE TOTAL OF THE TOTAL
Lab Sample No(s)		17543972	17543973	17543970	17543974	17543975	' (S)	
Customer Sample Ref.	BH3	BH4	BH6	BH9/07	BH12/07	BH13/08		
AGS Ref.								
Depth							\ Ø.	
Туре		Linenesified Lie	. I languagified Lie	Unanacified Lie	Unanasified Lie	Linemanified Lin	•	70.
nmoniacal Nitrogen			Unspecified Liq			Unspecified Liq		0
ions by Kone (w)	14-May-2018 25-May-2018	15-May-2018 25-May-2018	14-May-2018 25-May-2018	14-May-2018 25-May-2018	14-May-2018 25-May-2018	14-May-2018 25-May-2018		2
anide Comp/Free/Total/Thiocyanate	16-May-2018	16-May-2018	16-May-2018	16-May-2018	16-May-2018	16-May-2018		رکی ()
ssolved Metals by ICP-MS	16-May-2018	16-May-2018	15-May-2018	15-May-2018	16-May-2018	16-May-2018		6
PH CWG (Aliphatic) Aqueous GC (W) PH CWG (Aromatic) Aqueous GC (W)	16-May-2018 16-May-2018	16-May-2018 16-May-2018	16-May-2018 16-May-2018	16-May-2018 16-May-2018	16-May-2018 16-May-2018	16-May-2018 16-May-2018		
oride (Aromatic) Aqueous GC (W)	25-May-2018	25-May-2018	25-May-2018	25-May-2018	25-May-2018	25-May-2018		
RO by GC-FID (W)	15-May-2018	15-May-2018	15-May-2018	15-May-2018	15-May-2018	15-May-2018		
exavalent Chromium (w)	14-May-2018	15-May-2018	14-May-2018	14-May-2018	14-May-2018	14-May-2018		40
ercury Dissolved	15-May-2018 15-May-2018	15-May-2018 17-May-2018	16-May-2018 15-May-2018	16-May-2018 15-May-2018	16-May-2018 15-May-2018	16-May-2018 15-May-2018		
H Spec MS - Aqueous (W) Value	15-May-2016 14-May-2018	17-May-2016 14-May-2018	15-May-2016 14-May-2018	15-May-2016 14-May-2018	15-May-2016 14-May-2018	15-May-2016 14-May-2018	\bigcirc	
enols by HPLC (W)	14-May-2018	16-May-2018	15-May-2018	14-May-2018	16-May-2018	16-May-2018		
Iphide	16-May-2018	16-May-2018	14-May-2018	16-May-2018	16-May-2018	14-May-2018		
H CWG (W)	16-May-2018 14-May-2018	16-May-2018 14-May-2018	16-May-2018 14-May-2018	16-May-2018 14-May-2018	16-May-2018 14-May-2018	16-May-2018 14-May-2018		
				oebs	itine			
		0/2	Ining	Debs	HINE			
	alinci	Pla	Ining	Debs	HINE			
	ounci	Pla	Ining	Debs	Kilmer			
ildare	ounci	Plas	Ining	Delog	A THINE STATE OF THE PARTY OF T			

 SDG:
 180512-41
 Client Reference:
 602128
 Report Number:
 457687

 Location:
 HP
 Order Number:
 P2021483
 Superseded Report:
 457479

Chromatogram

Analysis:EPH CWG (Aliphatic) Aqueous GC (W)Sample No :17545765Sample ID :BH4


Depth :

Speciated TPH - SATS (C12 - C40)

Sample Identity: 16482955-

Date Acquired : 16/05/18 09:47:07 PM

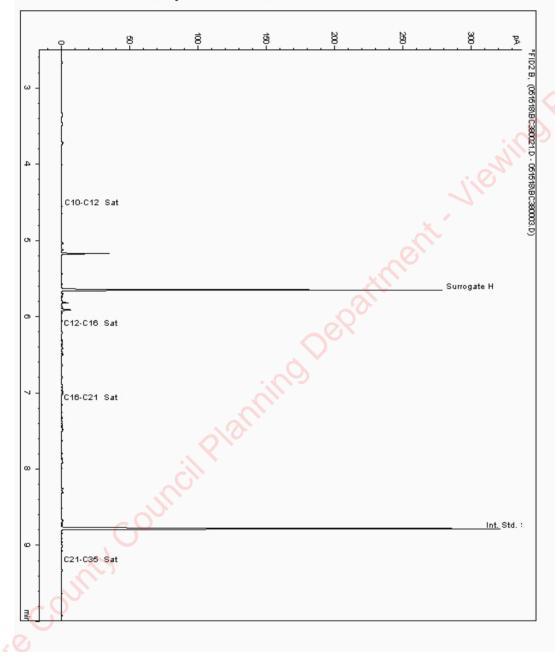
Units : ppb Dilution : CF : 1

 SDG:
 180512-41
 Client Reference:
 602128
 Report Number:
 457687

 Location:
 HP
 Order Number:
 P2021483
 Superseded Report:
 457479

Chromatogram

Depth :


Speciated TPH - SATS (C12 - C40)

Sample Identity: 16482940-

Date Acquired : 15/05/18 21:27:18 PM

Units : ppb Dilution : CF : 1

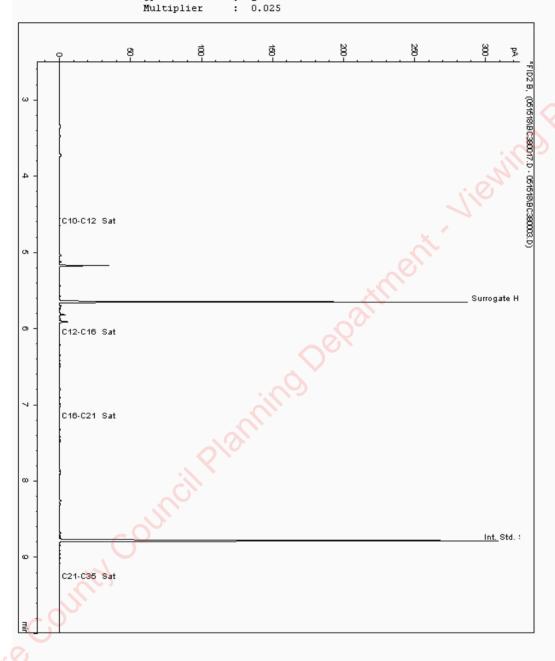
CF : 1 Multiplier : 0.025

 SDG:
 180512-41
 Client Reference:
 602128
 Report Number:
 457687

 Location:
 HP
 Order Number:
 P2021483
 Superseded Report:
 457479

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No: 17545773 Sample ID: BH12/07


Depth :

Speciated TPH - SATS (C12 - C40)

Sample Identity: 16482985-

Date Acquired : 15/05/18 19:54:49 PM

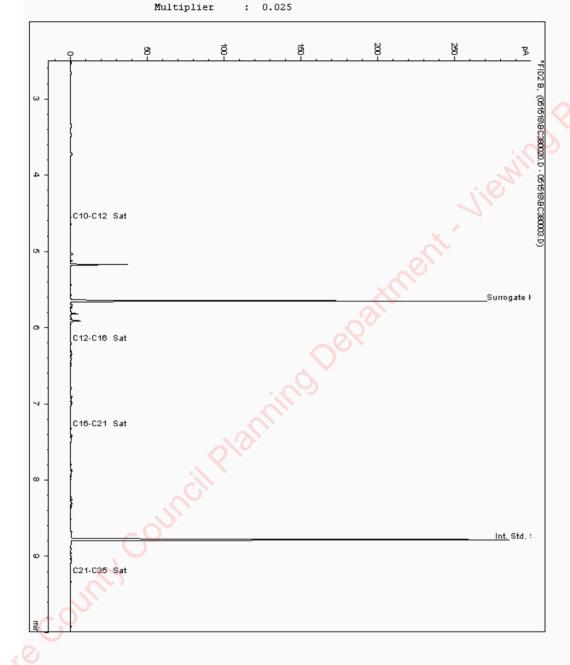
Units : ppb
Dilution :
CF : 1

 SDG:
 180512-41
 Client Reference:
 602128
 Report Number:
 457687

 Location:
 HP
 Order Number:
 P2021483
 Superseded Report:
 457479

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No : 17545776 Sample ID : 8H6


Depth :

Speciated TPH - SATS (C12 - C40)

Sample Identity: 16482970-

Date Acquired : 15/05/18 21:04:02 PM

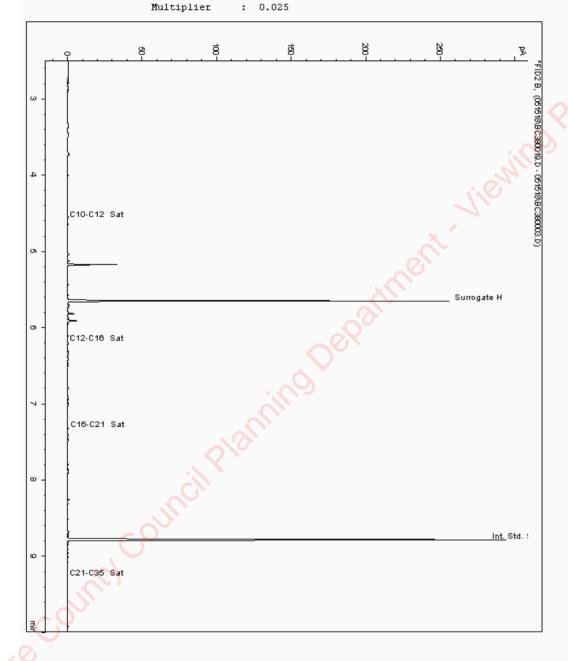
Units : ppb Dilution : CF : 1

 SDG:
 180512-41
 Client Reference:
 602128
 Report Number:
 457687

 Location:
 HP
 Order Number:
 P2021483
 Superseded Report:
 457479

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No: 17545778 Sample ID: BH9/07


Depth :

Speciated TPH - SATS (C12 - C40)

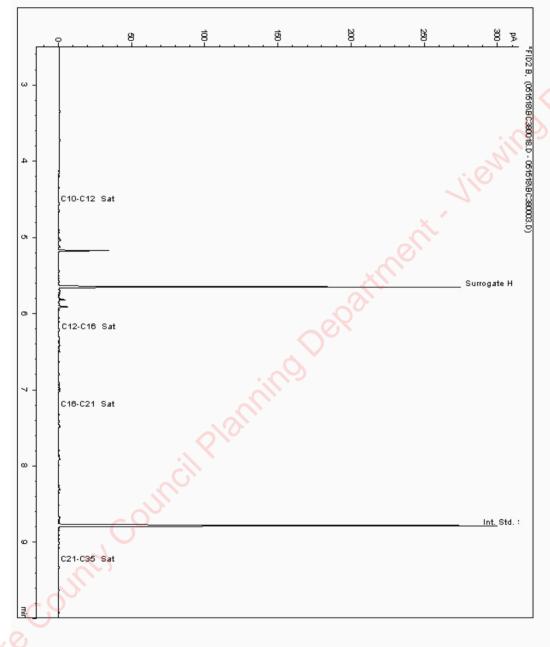
Sample Identity: 16482925-

Date Acquired : 15/05/18 20:40:44 PM

Units : ppb Dilution : CF : 1

180512-41 602128 Report Number: Superseded Report: 457687 SDG: Client Reference: HP 457479 Location: Order Number: P2021483

Chromatogram


Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No : 17545793 Sample ID : BH13/08

Speciated TPH - SATS (C12 - C40)

Sample Identity:

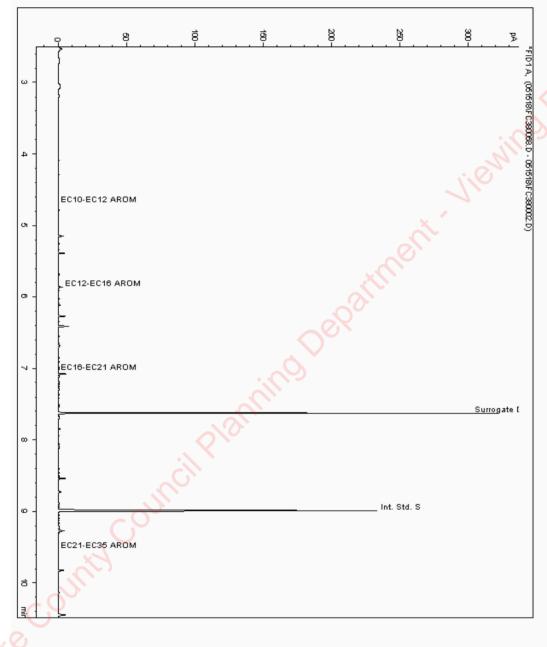
16483000-15/05/18 20:17:42 PM Date Acquired :

Units Dilution CF ppb

CERTIFICATE OF ANALYSIS

180512-41 602128 Report Number: Superseded Report: 457687 SDG: Client Reference: HP 457479 Location Order Number: P2021483

Chromatogram


Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : 17545765 Sample ID : BH4

Speciated TPH - AROM (C12 - C40)

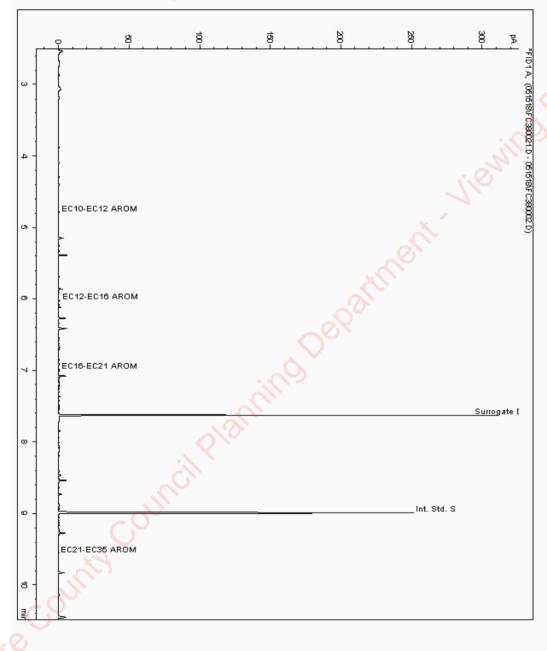
Sample Identity: 16482956-

16/05/18 09:47:07 PM Date Acquired :

Units Dilution CF ppb

180512-41 602128 Report Number: Superseded Report: 457687 SDG: Client Reference: HP 457479 Location Order Number: P2021483

Chromatogram


Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : 17545770 Sample ID : ВН3

Speciated TPH - AROM (C12 - C40)

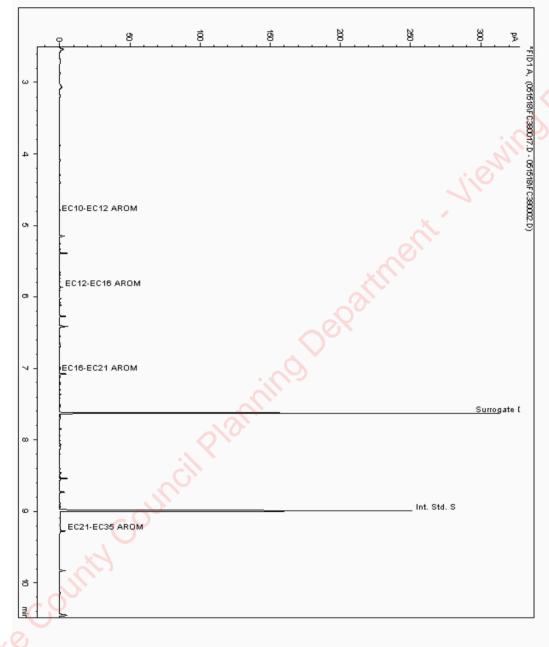
Sample Identity: 16482941-

15/05/18 21:27:18 PM Date Acquired :

Units Dilution CF ppb

180512-41 602128 Report Number: Superseded Report: 457687 SDG: Client Reference: HP 457479 Location Order Number: P2021483

Chromatogram


Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No: 17545773 Sample ID : BH12/07

Speciated TPH - AROM (C12 - C40)

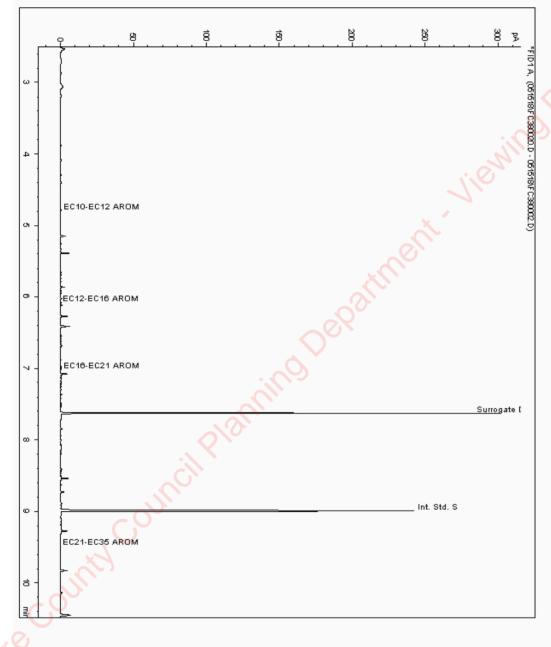
Sample Identity: 16482986-

15/05/18 19:54:49 PM Date Acquired :

Units Dilution CF ppb

180512-41 602128 Report Number: Superseded Report: 457687 SDG: Client Reference: HP 457479 Location Order Number: P2021483

Chromatogram


Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : 17545776 Sample ID : BH6

Speciated TPH - AROM (C12 - C40)

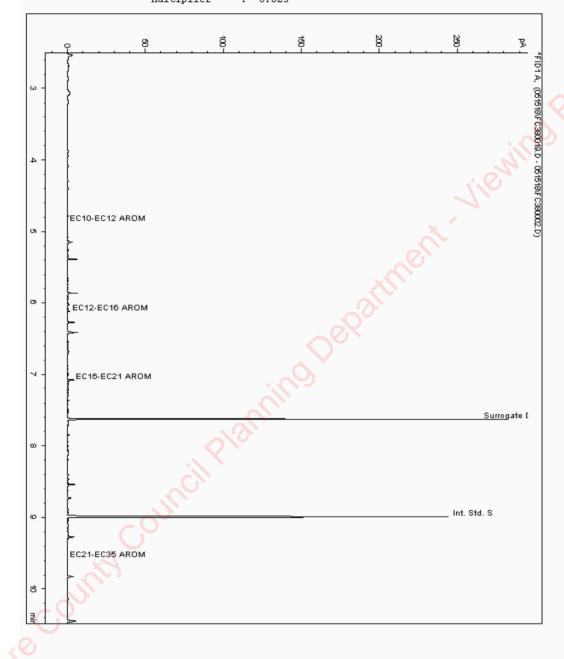
Sample Identity: 16482971-

15/05/18 21:04:02 PM Date Acquired :

Units Dilution CF ppb

180512-41 602128 Report Number: Superseded Report: 457687 SDG: Client Reference: HP 457479 Location Order Number: P2021483

Chromatogram


Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No: 17545778 Sample ID : BH9/07

Speciated TPH - AROM (C12 - C40)

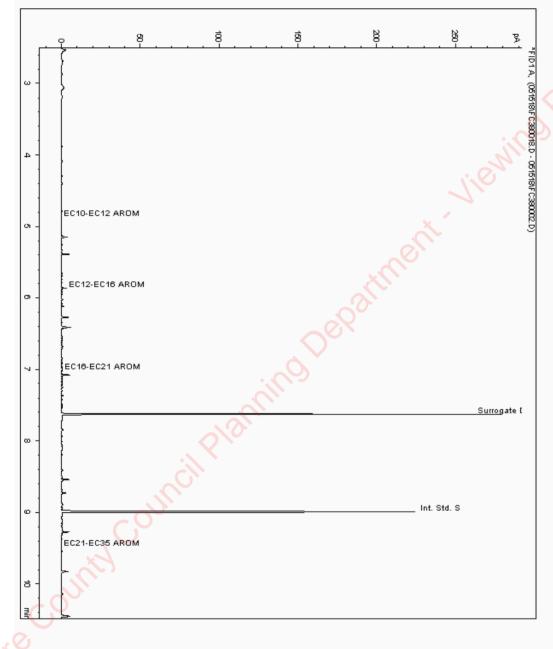
Sample Identity:

16482926-15/05/18 20:40:44 PM Date Acquired :

Units ppb Dilution CF Multiplier 0.025

180512-41 602128 Report Number: Superseded Report: 457687 SDG: Client Reference: HP 457479 Location Order Number: P2021483

Chromatogram


Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No: 17545793 Sample ID : BH13/08

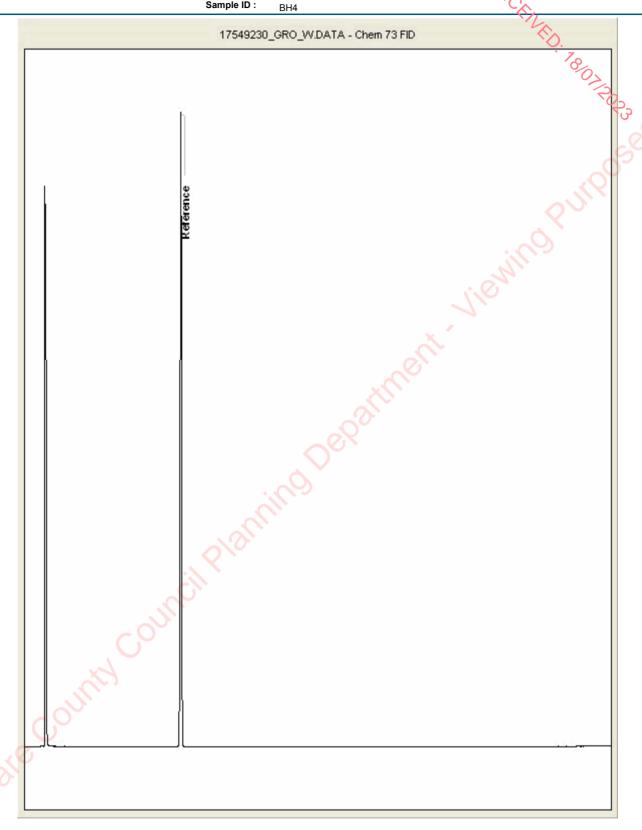
Speciated TPH - AROM (C12 - C40)

Sample Identity:

16483001-15/05/18 20:17:42 PM Date Acquired :

Units Dilution CF ppb

 SDG:
 180512-41
 Client Reference:
 602128
 Report Number:
 457687

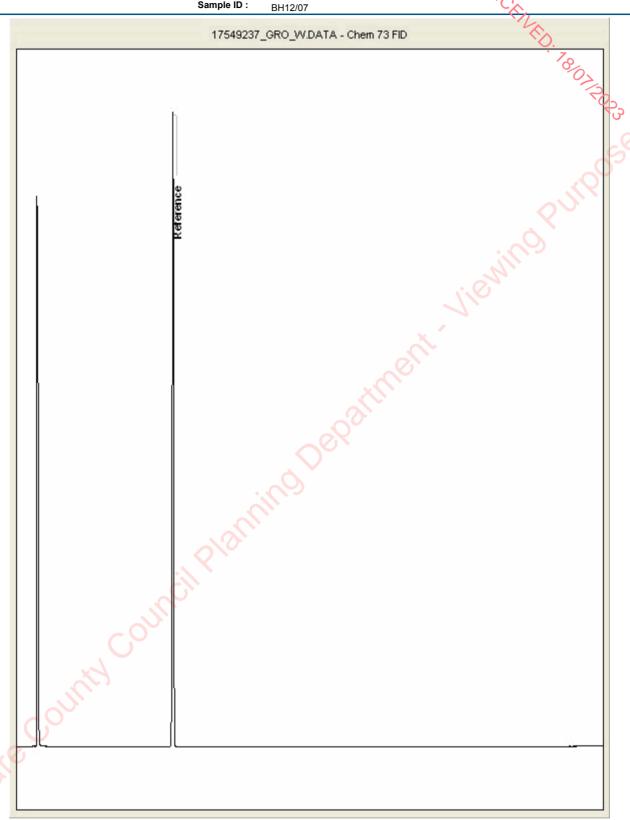

 Location:
 HP
 Order Number:
 P2021483
 Superseded Report:
 457479

Chromatogram

 Analysis:
 GRO by GC-FID (W)
 Sample No : 17549230
 17549230

 Sample ID :
 BH4

Depth :

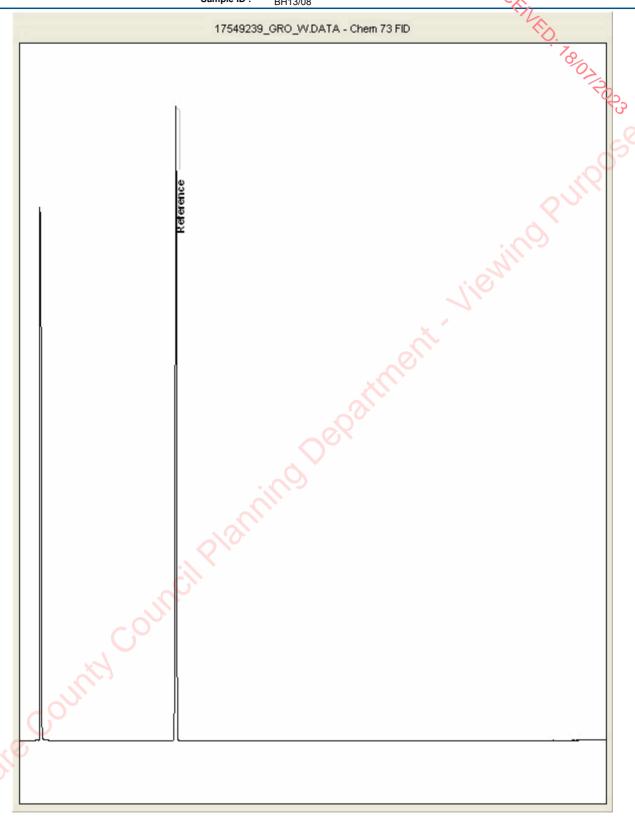

Analysis: GRO by GC-FID (W)

SDG: 180512-41 602128 Report Number: Superseded Report: 457687 Client Reference: HP Location: Order Number: P2021483

Chromatogram

Sample No : Sample ID : 17549237

457479


Analysis: GRO by GC-FID (W)

 SDG:
 180512-41
 Client Reference:
 602128
 Report Number:
 457687

 Location:
 HP
 Order Number:
 P2021483
 Superseded Report:
 457479

Chromatogram

Sample No: 17549239 **Sample ID**: BH13/08

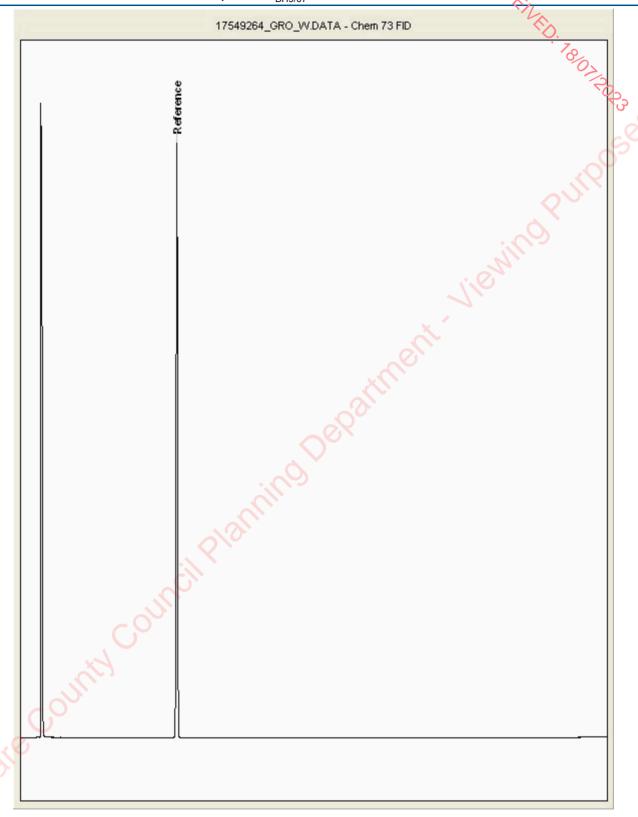
SDG: 180512-41 602128 Report Number: Superseded Report: 457687 Client Reference: HP 457479 Location: Order Number: P2021483

Chromatogram

Sample No : Sample ID : Analysis: GRO by GC-FID (W) 17549250

внз

Validated



SDG: 180512-41 602128 Report Number: Superseded Report: 457687 Client Reference: HP 457479 Location: Order Number: P2021483

Chromatogram

Sample No : Sample ID : Analysis: GRO by GC-FID (W)

17549264 BH9/07

Validated

 SDG:
 180512-41
 Client Reference:
 602128
 Report Number:
 457687

 Location:
 HP
 Order Number:
 P2021483
 Superseded Report:
 457479

Chromatogram

Analysis: GRO by GC-FID (W) Sample No : 17549269 Sample ID : BH6

Depth :

180512-41 602128 457687 SDG: Client Reference: Report Number: Superseded Report: P2021483 457479 Location: HP Order Number:

Appendix

General

- for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised
- 6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.
- 7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals - total metals must be requested separately
- 11. Results relate only to the items tested.
- 12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected
- 13. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%, they are generally wider for volatiles analysis, 50-150%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.
- 14. Product analyses Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).
- Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

- 1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except 21. For the BSEN 12457-3 two batchorocess to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
 - 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
 - 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised
 - 24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Holding time exceeded before sample received
5	Samples exceeded holding time before presevation was performed
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to sampled on date
&	Sample Holding Time exceeded - Late arrival of instructions.

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbe stos Type	Common Name		
Chrysof le	White Asbests		
Amosite	Brown Asbestos		
Cro di dolite	Blue Asbe stos		
Fibrous Act nolite	-		
Fib to us Anthop hyll ite	-		
Fibrous Tremolite	- -		

Visual Estimation Of Fibre Content

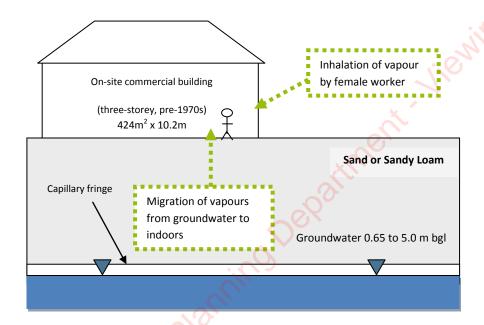
Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

APPENDIX C HUMAN HEALTH GENERIC ASSESSMENT CRITERIA

Hewlett Packard Groundwater Monitoring Assessment: Helwett Packard, Liffey Park 602128-01 (00)



Generic groundwater assessment criteria (GrAC) for human health: commercial scenario (adult receptor)

Background

Volatile organic compounds (VOC) in groundwater have the potential to pose risks to residential site end users via indoor and outdoor inhalation exposure. Due to significant dilution effects in outdoor air, inhalation risk is dominated by indoor exposure. The GrAC conceptual site model (CSM) is shown in Figure 1 (not to scale).

Figure 1: GrAC conceptual model for a generic commercial scenario

RSK GrAC derivation

Model selection

The Society for Brownfield Risk Assessment (SoBRA) published a set of generic assessment criteria for assessing vapour risk to human health from volatile contaminants in groundwater in February 2017⁽¹⁾. The criteria were developed for a list of common VOC using the Environment Agency Contaminated Land Exposure Assessment (CLEA) tool⁽²⁾ based on a sand soil type and a groundwater depth of 0.65 m below foundation base level. The CLEA tool is not designed to directly model VOC in groundwater and the SoBRA generic criteria are recognised as being conservative since calculations in CLEA are based on three-phase partitioning in the unsaturated zone between soil, soil vapour and soil moisture, with the latter taken by SoBRA as a groundwater equivalent. This method does not take account of the presence of a semi-saturated capillary fringe above the water table, which will serve to provide some mitigation to vertical soil vapour migration.

RSK GrAC are calculated using the RBCA Toolkit for Chemical Releases (version 2.6) with the Johnson and Ettinger model, based on the CSM in Figure 1 for a pre-1970 three storey office

building (as defined in SR3⁽³⁾, Table 4.21) and which allows consideration of a capillary fringe. The capillary fringe is the subsurface layer in which groundwater seeps up from a water table by capillary action to partially fill soil pores.

The RBCA model was used in preference to the Environment Agency Contaminated Land Exposure Assessment (CLEA) tool⁽²⁾, as the CLEA tool is not designed to directly model VOC in groundwater and does not take account of the presence of a semi-saturated capillary zone:

Conceptual model

In accordance with SR3⁽³⁾, the commercial scenario considers risks to an adult female worker who works from the age of 16 to 65 years. It should be noted that this end use is not suitable for a workplace nursery (where children will be present for an extended period of time) but may be appropriate for a sports centre or shopping centre where children are present but for limited periods of time.

The pollutant linkage considered in production of the GrAC is the volatilisation of compounds from groundwater and subsequent vapour inhalation by the identified receptor while indoors. Figure 1 illustrates this linkage. Although the outdoor air inhalation pathway is also valid, this contributes little to the overall risks owing to the dilution in outdoor air. RBCA does not take account of the presence of non-aqueous phase chemicals but highlights when the assessment criterion exceeds the solubility limit of the pure compound.

Input selection - chemical and toxicological parameters

Key parameters used in the RBCA model are listed and justified in Table 1. The most up-to-date published chemical and toxicological data was obtained from EA Report SC050021/SR7⁽²⁾, the EA TOX⁽⁵⁾ reports, and published by Nathanial et al.,⁽⁶⁾, as appropriate. Toxicological and specific chemical parameters for aromatic hydrocarbon C8–C9 (styrene), 1,2,4-trimethylbenzene and methyl tertiary-butyl ether (MTBE) were obtained from the CL:AIRE Soil Generic Assessment Criteria report⁽⁷⁾.

The toxicological input parameters are associated with minimal risk, rather than low risk.

For petroleum hydrocarbon fractions, aromatic hydrocarbons C5–C8 were not modelled, as this range comprises benzene and toluene, which are modelled separately. The aromatic C8–C9 hydrocarbon fraction comprises ethylbenzene, xylenes and styrene. As ethylbenzene and xylenes are being modelled separately, the physical, chemical and toxicological data for aromatic C8–C9 have been taken from styrene.

For the Commercial GrAC, the Health Criteria Values (HCV) used in the modelling were derived using the toxicological data discussed above, amended as follows:

- An adult weighing 70kg and breathing 15.7m³ air per day in accordance with the revised exposure parameters used in the SP1010 final project report for the Category 4 Screening Levels (C4SL) (Table 3.2⁽⁸⁾) and USEPA data⁽⁹⁾
- Background inhalation (mean daily intake(MDI)) for an adult (Age Class 17).

The amended HCV used in the derivation of the RSK GrAC are presented in Table 1.

Table 1: Amended Health Criteria Values

	Modified HCV (mg/m³)
voc/svoc	Adult (Commercial)
MTBE	3.2064
Benzene	0.0062
Toluene	6.2362
Ethylbenzene	0.3301
Xylenes	0.2609
Trimethybenzenes	0.0085
TPH_Aliph EC5-EC6	11.1465
TPH_Aliph >EC6-EC8	11.1465
TPH_Aliph >EC8-EC10	0.6465
TPH_Aliph >EC10-EC12	0.6465
TPH_Aliph >EC12-EC16	0.6465
TPH_Arom >EC8-EC9 (styrene)	0.5350
TPH_Arom >EC9-EC10	0.1338
TPH_Arom >EC10-EC12	0.1338
TPH_Arom >EC12-EC16	0.1338
Acenaphthene	0.2675
Acenaphthylene	0.2675
Naphthalene	0.0037
Vinyl chloride	0.0013
Dichloroethane-1,2	0.0005
Tetrachloroethene	0.0363
Carbon tetrachloride	0.0114
Trichloroethane-1,1,1	2.6752
Trichloroethene	0.0025
Tetrachloroethane 1,1,2,2 & 1,1,1,2	0.0257
1,1,2-Trichloroethane	0.0216
1,1-dichloroethane	0.8915
1,1-dichloroethene	0.2541
Chloroethane	12.7374
Chloromethane	0.0115
cis-1,2-dichloroethene	0.0264
Dichloromethane	0.5765
trans-1,2-dichloroethene	0.0754
Trichloromethane (chloroform)	0.1752

Note on Trimethylbenzenes

For trimethylbenzenes the CL:AIRE report⁽⁷⁾ based background inhalation from non-soil sources (MDI) on a Dutch study from 1985, which is reported to have identified an average daily dose of 1,2,4-trimethylbenzene of 86 ug d⁻¹ (1,3,5-trimethylbenzene was 20.5 ug d⁻¹). This dose value was based on the upper end of the identified concentration range of 1,2,4-trimethylbenzene (2.46 – 5.66 ug m⁻³) and was used to calculate an a MDI of 1.23 ug kg⁻¹ bw d⁻¹ for a 70 kg adult breathing 20 m³ of air daily.

The approach recommended in SR2⁽¹⁰⁾, and also adopted for the C4SLs⁽⁸⁾ for non-carcinogenic (threshold) compounds such as trimethylbenzenes is to subtract the MDI from the tolerable daily intake (TDI) to obtain a tolerable daily intake from soil (TDSI) in units of ug kg⁻¹ by d⁻¹. For 1,2,4-trimethylbenzene, the adult MDI from the Dutch study used in the CL:AIRE report (1.23 ug kg⁻¹ by d⁻¹) is a significant proportion of the TDI (2.0 ug kg⁻¹ by d⁻¹), resulting in a low TDSI (1.0 ug kg⁻¹ by d⁻¹) when the 50% rule is applied (i.e. TDSI = TDI * 0.5 when MDI is high relative to TDI). This TDSI equates to an Inhalation Reference Concentration (or modified Health Criteria Value) for adults of 3.4 ug m⁻³ (70 kg adult breathing 15.7 m³ d⁻¹).

By comparison the adult inhalation modified HCV for benzene is 6.2 ug m⁻³, which is proven human carcinogen (non-threshold compound).

The MDI for 1,2,4-trimethylbenzene is considered by RSK to be overly conservative for the following reasons:

- The Dutch 1985 study is dated and air quality has improved since this time
- The maximum value in the range (5.66 ug m⁻³) was used in calculating the MDI
- Experience has shown that trimethylbenzenes often appear to drive inhalation risks to a greater extent than benzene, even though the latter is carcinogenic and more volatile.

As an alternative to the 1985 Dutch study, RSK have obtained automated roadside air quality monitoring data for the UK from www.uk-air.defra.gov.uk/. The average concentration of 1,2,4-trimethylbenzene measured during 2015 at Eltham, south-east London (urban) was 0.309 ug m⁻³, significantly lower than that identified in the Dutch study and used by CL:AIRE⁽⁷⁾ for calculation of a MDI. Whilst an average concentration of 1,2,4-trimethylbenzene in UK urban and rural areas is likely to be significantly below 0.0.309 ug m⁻³, this value is considered to be suitably conservative for the calculation of a modified HCV for trimethylbenzenes in the UK.

On this basis, the HCV for 1,2,4-trimethylbenzene for adults and children was calculated as 8.5 ug m⁻³ (0.0085 mg m⁻³) and 2.6 ug m⁻³ (0.0026 mg m⁻³), respectively (see Table 3). Due to the paucity of toxicological data for 1,2,3-trimethylbenzene and 1,3,5-trimethylbenzene the modified HCV for 1,2,4-trimethylbenzene is considered suitable for assessing total trimethylbenzenes.

Note on aqueous solubility and the RSK GrAC

Where the modelled assessment criteria, or the modelled assessment criteria with the correction factor applied to those contaminants specified below, exceeds the aqueous solubility limit the assessment criteria defaults to this concentration and consequently the GrAC is set at the limit of solubility. These assessment criteria are shaded in red in Table 3 at the end of this document.

The theoretical aqueous solubility is the maximum amount of a single chemical that will dissolve in pure water at a specified temperature. Above this concentration, the chemical will exist in the non-aqueous phase (i.e. in its natural physical form as a solid, liquid (NAPL) or gas). If the contaminant, based on its toxicity, is not considered to pose a risk to human health at the aqueous solubility concentration then the contaminant can be considered not to pose a risk to human health. Where the GrAC is set at the aqueous solubility limit (shaded in red on Table 3), this is not a risk based assessment criteria but is indicative of the maximum amount of chemical that would be found dissolved in the water. Therefore an exceedance of the RSK GrAC set at the aqueous solubility limit is not indicative that there may be potential risks to human health. It

should be noted that for certain contaminants (e.g. the lighter petroleum bydrocarbon fractions) the aqueous solubility is very low and may be at, or below, the laboratory method detection limit. It should also be noted that non-aqueous phase may exist where concentrations of individual compounds are well below their solubility limits where they are part of a mixture, in accordance with Raoult's Law.

Input selection - physical parameters

For the commercial scenario, the CLEA default pre-1970s three-storey office building was used SR3⁽³⁾ notes this commercial building type to be the most conservative in terms of risk from vapour intrusion. The building parameters used in the production of the RSK GACs are the default CLEA v1.06 inputs presented in Table 3.3 of SR3⁽³⁾.

The RSK GrAC have been calculated for both Sand and Sandy Loam soils. The soil parameters used in the derivation of the RSK GrAC are those presented in Table 3.1 of SR3⁽³⁾.

The RSK GrAC have been derived for groundwater depths of 0.65 m, 1.5 m, 2.5 m and 5.0 m below ground level, incorporating a capillary fringe (see Table 2).

Input selection - attenuation factors

In line with recommendations provided in Environment Agency SR3⁽³⁾ a sub-surface to indoor attenuation factor of 10 has been applied to certain RBCA derived 'site-specific target levels'. SR3⁽³⁾ states that, as a general rule of thumb, it is recognised that estimating vapour phase concentrations from dissolved and sorbed phase petroleum hydrocarbons by using partition coefficients are at least a factor of ten higher than those likely to be measured on-site. This difference is likely to be due to a number of factors, however aerobic biodegradation in the unsaturated zone is believed to be largely responsible. RSK has therefore applied this attenuation factor to all volatile petroleum hydrocarbon fractions (including BTEX, trimethylbenzenes and the polycyclic aromatic hydrocarbons (PAH) naphthalene, acenaphthene and acenaphthylene). No such attenuation factors have been applied to other non-hydrocarbon chemical species, including chlorinated hydrocarbons or fuel oxygenates such as MtBE.

Convective (volumetric) air flow through foundation cracks (Q_{soil}) is a sensitive parameter in the calculation of GrAC and has been calculated within RBCA on a soil-specific basis for Sand and Sandy Loam in a residential exposure scenario (see Table 2). This approach is less conservative than using the default Q_{soil} value recommended in SR3⁽³⁾ for a Sandy Loam (150 cm³ s⁻¹) and used in the CLEA model (version 1.071) for Sandy Loam (and Sand) soils (150 cm³ s⁻¹) in a commercial scenario.

Table 2: Commercial scenario – RBCA inputs

		-	The second secon
Parameter	Unit	Value	Justification
Receptor – female child			.
Averaging time	Years	49	From Box 3.5, SR3 ⁽³⁾
Receptor weight	kg	70	Female adult, Table 4.6, SR3 ⁽³⁾
Exposure duration	Years	49	From Box 3.5, SR3 ⁽³⁾
Exposure frequency	Days yr ⁻¹	86.25	Weighted using occupancy period of 9 hours per day for 230 days of the year ((9hours x 230 days)/24 hours)
Soil type - sand			
Total porosity	-	0.54	,,0
Volumetric water content – unsaturated (vadose) zone	-	0.24	CLEA value for sand. Parameters for sand from Table 4.4,
Volumetric air content - unsaturated (vadose) zone	-	0.30	SR3 ⁽³⁾ Volumetric water content in the vadose zone is a highly sensitive parameter within the model and potentially highly variable in the field.
Dry bulk density	g cm ⁻³ or kg L ⁻¹	1.18	· CAIII
Volumetric water content – capillary zone	-	0.35	Calculated using SR3 Equation 4.1. Value taken as the average moisture content calculated for suction heads (cm H ₂ O); 0 (i.e. saturated), 10, 20, 30, 40, 50 (i.e. unsaturated soil at field capacity). This is a highly sensitive parameter within the model.
Volumetric air content - capillary zone	-	0.19	Calculated from total porosity and volumetric water content of capillary zone. This is a highly sensitive parameter within the model.
Vertical hydraulic conductivity	cm d ⁻¹	636	CLEA value for saturated conductivity of sandy loam, Table 4.4, SR3 ⁽³⁾ equivalent to 7.36 E-03 cm s ⁻¹
Vapour permeability	m ²	5.83 E-12	Calculated for sandy loam using equations in Appendix 1, SR3 ⁽³⁾
Capillary zone thickness	m	0.25	Taken from C W Fetter, Applied Hydrogeology 4 th Ed, 1994 ⁽¹¹⁾ and R Heath, Basic groundwater hydrology 1992 ⁽¹²⁾ for a medium sand
Fraction organic carbon	%	0.0058	Equivalent to SOM = 1%. Note that GrAC are independent on FOC/SOM content since partitioning is assumed to be between aqueous and vapour phases only
Soil type – sandy loam			
Total porosity	-	0.53	
Volumetric water content – unsaturated (vadose) zone	-	0.33	CLEA value for sandy loam. Parameters for sandy loam from
Volumetric air content - unsaturated (vadose) zone	-	0.20	Table 4.4, SR3 ⁽³⁾ . Volumetric water content in the vadose zone is a highly sensitive parameter within the model and potentially highly variable in the field.
Dry bulk density	g cm ⁻³ or kg/L	1.21	
Volumetric water content – capillary zone	-	0.42	Calculated using SR3 Equation 4.1 ⁽³⁾ . Value taken as the average moisture content calculated for suction heads (cm H ₂ O); 0 (i.e. saturated), 10, 20, 30, 40, 50 (i.e. unsaturated soil at field capacity). This is a highly sensitive parameter within the model.
Volumetric air content - capillary zone	-	0.11	Calculated from total porosity and volumetric water content of capillary zone. This is a highly sensitive parameter within the model.

Parameter	Unit	Value	Justification
Vertical hydraulic conductivity	cm d ⁻¹	308	CLEA value for saturated conductivity of sandy loam, Table 4.4, SR3 ⁽³⁾ equivalent to 3.56E-3 cm s
Vapour permeability	m ²	2.96 E-12	Calculated for sandy loam using equations in Appendix 1, SR3 ⁽³⁾
Capillary zone thickness	m	0.4	Taken from R Heath, Basic Groundwater Hydrology (1992 ⁽¹²⁾) for a fine sand. Note: C W Fetter, Applied Hydrogeology 4 th Ed, 1994 ⁽¹¹⁾ value for fine sand is 0.5 m
Fraction organic carbon	%	0.0058	Equivalent to SOM = 1%. Note that GrAC are independent on FOC/SOM content since partitioning is assumed to be between aqueous and vapour phases only
Building - pre-1970 three storey	office		
Building volume/area ratio	m	9.6	Table 3.10, SR3 ⁽³⁾
Foundation area	m ²	424	Table 3.10, SR3**
Foundation perimeter	m	82.40	Based on square root of building area being 20.59m
Building air exchange rate	d ⁻¹	24	
Depth to bottom of foundation slab	m	0.15	Table 3.10, SR3 ⁽³⁾ Building air exchange rate equivalent to 2.8 E-04 s ⁻¹
Foundation thickness	m	0.15	
Foundation crack fraction	-	3.89E-04	Calculated from floor crack area of 0.165m ² and building footprint of 424m ² in Table 4.21, SR3 ⁽³⁾
Volumetric water content of cracks	-	0.24 / 0.33	For sand / sandy loam, assumed equal to underlying soil type in assumption that cracks become filled with
Volumetric air content of cracks	-	0.30 / 0.20	unsaturated zone soil over time. Parameters for sand and sandy loam from Table 4.4, SR3 ⁽³⁾
Indoor/outdoor differential pressure	Pa	4.4	From Table 3.3, SR3 ⁽³⁾ Equivalent to 44g/cm/s ²
Convective air flow through cracks (Q _{soil}) - Sand	m ³ s ⁻¹	1.43E-04	Soil-specific calculated parameter in RBCA equivalent (and cross checked) with equations A1, A2, A3, A8, A9 in SR3 ⁽³⁾ . Equivalent to 142.6 cm³ s⁻¹
Convective air flow through cracks (Q _{soil}) – Sandy Loam	m ³ s ⁻¹	7.24E-05	Soil-specific calculated parameter in RBCA equivalent (and cross checked) with equations A1, A2, A3, A8, A9 in SR3 ⁽³⁾ . Equivalent to 72.4 cm³ s⁻¹

RSK GrAC derivation outputs

The RSK GrACs are presented in Table 3.

Within the RSK GrAC the following should be noted:

- GrAC do not take account of outdoor inhalation exposure to VOC, which is considered to contribute minimally to overall inhalation exposure
- GrAC do not take account of other exposure routes potentially relevant to VOC in shallow groundwater such as direct contact or root uptake
- No biodegradation is assumed to occur in the unsaturated zone. Where aerobic conditions on site are known to exist the GrAC for hydrocarbons may therefore be conservative
- GrAC do not take account of preferential flow into buildings such as through unsealed service entries. In such circumstances GrAC may not be appropriate for use
- GrAC are based on a soil vapour intrusion CSM and are not appropriate for use when the foundation is in direct contact with contaminated groundwater

- GrAC assume that the capillary fringe is un-contaminated with VQC, which is unlikely, particularly where groundwater levels are variable
- GrAC set at the theoretical aqueous solubility limit are not considered to pose a risk to human health
- GrAC do not take into account the interaction between contaminants and the influence this may have on the theoretical aqueous solubility
- GrACs are only applicable to dissolved phase contaminants where the modelled assessment criteria is below the aqueous solubility limits

References

- 1. Society for Brownfield Risk Assessment (SoBRA) (2017), Development of generic risk assessment criteria for assessing vapour risks to human health from volatile contaminants in groundwater (https://sobra.org.uk/). (accessed March 2017)
- 2. Environment Agency (2009), Science Report SC050021/SR4 CLEA Software (version 1.05) Handbook (Bristol: Environment Agency).
- 3. Environment Agency (2009), Science Report SC050021/SR3 Updated technical background to the CLEA model (Bristol: Environment Agency).
- 4. Environment Agency (2008), Science Report SC050021/SR7. Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values (Bristol: Environment Agency).
- 5. Environment Agency (2009), 'Science Reports SC050021 SGV and TOX reports for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs'; 'Supplementary information for the derivation of SGV for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs', and 'Contaminants in soil: updated collation of toxicological data and intake values for humans: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs'. Available at: https://www.gov.uk/government/publications/land-contamination-soil-guideline-values-sgvs (accessed 4 February 2015)
- 6. Nathanial, C. P., McCaffrey, C., Ashmore, M., Cheng, Y., Gillet, A. G., Ogden, R. C. and Scott, D. (2009), LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment, second edition (Nottingham: Land Quality Press).
- 7. CL:AIRE (2009), Soil Generic Assessment Criteria for Human Health Risk Assessment (London: CL:AIRE).
- 8. Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination', Revision 2, DEFRA research project SP1010.
- 9. USEPA (2011), *Exposure factors handbook*, EPA/600/R-090/052F (Washington, DC: Office of Research and Development).
- 10. Environment Agency (2009), *Human health toxicological assessment of contaminants in soil. Science Report Final SC050021/SR2* (Bristol: Environment Agency).
- 11. Fetter, C.W. (1994), Applied Hydrogeology. 4th Ed.
- 12. Heath, R. (1992), *Basic Groundwater Hydrology*. U.S. Geological Survey, Water Supply Paper 2220.

				Table 3	: RSK GrAC	(ug/l)			
				C	OMMERCIAL				
		SA	ND				SANDY	LOAM	
GW Depth (m)	0.65	1.5	2.5	5		0.65	1.5	2.5	5
Metals	Ī							10	
Elemental mercury	56	56	56	56	1 1	56	56	56	56
Methyl mercury	100000	100000	100000	100000		100000	100000	100000	20000
wietryr mercury	100000	100000	100000	100000		100000	100000	100000	
Volatile Organic Compounds									73
Benzene	34730	44200	55330	83160		159690	194750	235990	33909
Toluene	59000	59000	59000	59000		59000	59000	59000	59000
Ethylbenzene	180000	180000	180000	180000	1	180000	180000	180000	180000
Xylene - m	20000	20000	20000	20000]	20000	20000	20000	20000
Xylene - o	173000	173000	173000	173000	1	173000	173000	173000	17300
Xylene - p	200000	200000	200000	200000]	200000	200000	200000	20000
Methyl tertiary-Butyl ether (MTBE)	13554980	17499620	22140360	33742220		48000000	48000000	48000000	480000
Trichloroethene	930	1190	1510	2290]	4440	5430	6580	9470
Tetrachloroethene	8290	10790	13720	21060		41420	50680	61580	88830
1,1,1-Trichloroethane	511410	659300	833290	1268260		1300000	1300000	1300000	130000
1,1,1,2 Tetrachloroethane	39110	51080	65170	100390		181910	226070	278020	40790
1,1,2,2-Tetrachloroethane	258860	340390	436310	676110		851170	1138720	1477010	232275
Carbon Tetrachloride	1350	1740	2200	3350	1	6640	8090	9800	14080
1,2-Dichloroethane	1460	1860	2340	3520		5900	7380	9110	13440
Vinyl Chloride	110	130	160	240		460	560	660	940
1,2,4-Trimethylbenzene	55900	55900	55900	55900	× 1	55900	55900	55900	55900
Semi-Volatile Organic Compounds					100				
Acenaphthene	4100	4100	4100	4100	(O)	4100	4100	4100	4100
Acenapththylene	7950	7950	7950	7950		7950	7950	7950	7950
Naphthalene	19000	19000	19000	19000	1	19000	19000	19000	19000
Naphthalene	13000	13000	13000	13000		13000	13000	13000	15000
Petroleum Hydrocarbons			(50					
Aliphatic hydrocarbons EC5-EC6	35900	35900	35900	35900		35900	35900	35900	35900
Aliphatic hydrocarbons >EC6-EC8	5370	5370	5370	5370		5370	5370	5370	5370
Aliphatic hydrocarbons >EC8-EC10	427	427	427	427]	427	427	427	427
Aliphatic hydrocarbons >EC10-EC12	33.9	33.9	33.9	33.9		33.9	33.9	33.9	33.9
Aliphatic hydrocarbons >EC12-EC16	0.759	0.759	0.759	0.759]	0.759	0.759	0.759	0.759
Aromatic hydrocarbons >EC8-EC9 (styrene)	29000	29000	29000	29000		29000	29000	29000	29000
Aromatic hydrocarbons >EC9-EC10	64600	64600	64600	64600]	64600	64600	64600	64600
Aromatic hydrocarbons >EC10-EC12	245000	245000	245000	245000		24500	24500	24500	24500
Aromatic hydrocarbons >EC12-EC16	5750	5750	5750	5750		5750	5750	5750	5750
Notes:									
Values less than 100 have not been rounded up	; values great	er than 10 ha	ve been roun	ded up to the	nearest 10.				

Highlighted values exceed solubility limit for the pure compound in water (aqueous solubility); GrAC defaults to the limit of solubility. No vadose zone

biodegradation considered

Sub-surface to indoor air correction factor of 10 applied to all petroleum (non-chlorinated) hydrocarbons, the PAHs and trimethylbenzene

All GrAC are for 1% SOM (0.0058 FOC)

APPENDIX D GENERIC ASSESSMENT CRITERIA FOR CONTROLLED WATERS

Hewlett Packard Groundwater Monitoring Assessment: Helwett Packard, Liffey Park 602128-01 (00)

GENERIC ASSESSMENT CRITERIA FOR CONTROLLED WATERS

Protection of the water environment

The water environment in the United Kingdom is protected under a number of regulatory regimes. The relevant environmental regulator is consulted where there may be a risk that pollution of 'controlled waters' may occur or may have occurred in the past.

The term 'controlled waters' refers to coastal waters, inland freshwaters and groundwater. The EU Water Framework Directive (WFD) (2000/60/EC) is implemented via domestic regulations and guidance, covering aspects of groundwater and surface water protection as well as drinking water supply policy. Domestic legislation and guidance will vary across the United Kingdom. Therefore, the relevant legislation for England, Wales, Northern Ireland and Scotland should be reviewed, alongside guidance provided by the Environment Agency (EA), Natural Resource Wales (NRW), the Scottish Environmental Protection Agency (SEPA) or the Northern Ireland Environment Agency (NIEA), as appropriate.

The main objectives of the protection and remediation of groundwater under threat from land contamination are set out within "The Environment Agency's approach to groundwater protection", version 1.0 (March 2017)⁽¹⁾ and the associated guidance "Land contamination groundwater compliance points: quantitative risk assessments (March 2017)^(1a) that have replaced the previous guidance document "Groundwater Principles and Practice (GP3)". When assessing risks to groundwater, the following need to be considered:

- Where pollutants have not yet entered groundwater, all necessary and reasonable measures must be taken to:
 - prevent the input of hazardous substances into groundwater (see description of hazardous substances below)
 - **limit** the entry of other (non-hazardous) pollutants into groundwater to avoid pollution, deterioration in the status of groundwater bodies and to prevent sustained, upward trends in pollutant concentrations in groundwater.
- Where pollutants have already entered groundwater, the priority is to take all necessary and reasonable measures to:
 - minimise further entry of "contaminants" where there is a defined source
 - **limit the pollution** of groundwater or any effect on the status of the groundwater body from the future expansion of the 'plume', if necessary, by actively reducing its extent.

Within the context of groundwater risk assessments on sites affected by land contamination, "reasonable" means feasible without involving disproportionate costs. What costs are "disproportionate" depends on site-specific circumstances, which may include:

- Considerations of technical feasibility such as identified by the remedial options appraisal, this may be due to the distribution or nature of the contamination and the available remedial methods to treat the identified contamination;
- Sustainability considerations.

DEFINITIONS AND SUBSTANCE CLASSIFICATIONS

Risks to surface waters:

When assessing risks to surface waters, the following list of definitions should be understood:

Priority substances (PS) are harmful substances originally identified under the Water Framework Directive (WFD) 2000/60/EC as substances 'presenting a significant risk to or via the aquatic environment' at a European level. Member States are required to incorporate the identified PS into their country-wide monitoring programmes. There are currently 33 PS defined within the Priority Substances Directive (2013/39/EU; Annex 1), with a further 12 additional substances due to come into force from 22 December 2018. Directive 2013/39/EU has been transposed into domestic legislation for England and Wales by The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015.

Under the umbrella of **PS**, there is a sub-set of substances identified as being "hazardous", and these are referred to as **Priority hazardous substances (PHS).** The list of **PHS** is defined at EU level within the Priority Substances Directive (2013/39/EU). The WFD defines hazardous substances as 'substances (or groups of substances) that are toxic, persistent and liable to bio-accumulate, and other substances or groups of substances that give rise to an equivalent level of concern.' There are currently 15 **PHS**, with a further 6 additional substances due to come into force from 22 December 2018.

There is also another group of substances defined at EU level and which are referred to as **other pollutants (OP)** in Directive 2013/39/EU. These are additional substances which although not **priority substances**, have EQS which are identical to those laid down in the legislation which applied prior to 13 January 2009 (Directive 2008/105/EU). The **OP** are listed along with the **priority substance (PS)** within the Priority Substances Directive (2013/39/EU), and their associated EQS are also listed therein. There are 6 **OP** defined within the Priority Substances Directive (2013/39/EU).

In addition to the EU level substances, there are also a group of pollutants defined at a Member State level, referred to as **Specific pollutants (SP)**. These substances are pollutants which are released in significant quantities into water bodies in each of the individual European Member States. Under the WFD, Member States are required to set their own EQS for these substances. An indicative list of **SP** is given in Annex VIII of the WFD. Many of the substances categorised as **SP** in the UK were formerly List 2 substances under the old Groundwater Directive (80/68/EEC). The **SP** are defined within Part 2 (Table 1) of The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015.

Risks to groundwater:

When assessing risks to groundwater, the following definitions should be understood:

Under the requirements of the Groundwater Daughter Directive (2006/118/EU), the UK has published a list of substances it considers to be **hazardous substances** with respect to groundwater. In their advisory capacity to the government, this list has been derived by the UK Joint Agencies Groundwater Directive Advisory Group (JAGDAG), of which the Environment Agency is a member. The JAGDAG list of **hazardous substances** was published in January 2017 and the Environment Agency will use the updated list of hazardous substances from this date for all new activities that may lead to the discharge of hazardous substances to groundwater. The list is extensive and can be found in full at:

https://www.wfduk.org/stakeholders/jagdag

Selecting the appropriate assessment criteria

When assessing the risks to controlled waters, various assessment criteria apply, depending on the nature of the assessment and the conceptual site model.

Where a surface water body is involved, then Environmental Quality Standards (EQS) are the relevant assessment criteria as they are designed to be protective of surface water ecology.

Where a public water supply or a Principal aquifer is involved, then the standards defined in The Water Supply (Water Quality) Regulations⁽²⁾ are the primary source of assessment criteria. The Private Water Supplies Regulations⁽³⁾ may also be applicable in some cases. For instances where there are no UK assessment criteria, then the World Health Organisation (WHO) drinking water quidelines⁽⁴⁾ may be used.

This appendix presents the generic assessment criteria (GAC) that RSK considers suitable for assessing risks to controlled waters for our most commonly encountered determinants. A full list of EQS for England and Wales are included in The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015.

The RSK GAC for controlled waters are presented in **Table 1** and **Table 2**. In line with the Environment Agency's Remedial Targets Methodology, the GAC for controlled waters are termed 'target concentrations'.

The appropriate target concentrations should be selected with consideration to:

- the site conceptual model (i.e. the receptor at potential risk);
- whether the substance is already present in groundwater at the site;
- whether or not the substance is classified as a priority hazardous substance under the Priority Substances Directive (2013/39/EC) (see above), or as a hazardous substance according to the current list of JAGDAG determinations⁽⁵⁾; and
- background concentrations in the aquifer (if applicable).

It is important to remember that the WFD and Environment Agency guidance^(1 & 1a) support a sustainable, risk-based approach be applied to groundwater contamination. Exceedance of any target concentration does not necessarily imply that an unacceptable risk exists or that remediation is inevitably required.

Target concentrations shaded in green are statutory values

Target concentrations shaded in orange are non-statutory values

Note: Units µg/l throughout (unless otherwise stated)

Table 1: Target concentrations for controlled waters (excluding TPH CWG fractions)

Substance classification			Target concentrations (μg/l)					
					EQS or best equivalent			
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	Minimum reporting value	UK drinking water standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters		
		Metal	s & other inor	ganics				
Hazardous substance	Specific pollutant	Arsenic	- O	10 ⁽²⁾	50 ^(6a)	25 ^(6a)		
Non-hazardous pollutant	Priority substance	Cadmium	0.1 ⁽⁷⁾	5 ⁽²⁾	≤0.08, 0.08, 0.09, 0.15, 0.25 ^(6b)	0.2 ^(6a)		
(Not determined)	-	Chromium (total)	-	50 ⁽²⁾	Sum values for chromium III and VI			
(None	Specific pollutant	Chromium (III)	-	Use value for total chromium	4.7 ^(6a)	-		
Hazardous substance	Specific pollutant	Chromium (VI)			3.4 ^(6a)	0.6 ^(6a)		

Substance classification			Target concentrations (µg/l)					
			Minimum	III drinking woter	EQS or best equivalent			
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	reporting value	UK drinking water standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters		
				i	Shilling	3.76 dissolved, where DOC ≤1mg/l ^(6a)		
(Not determined)	Specific pollutant	Copper	-	2,000(2)	1 bioavailable ^(6a)	3.76µg/l + (2.677µg/l x ((DOC/2) – 0.5µg/l)) dissolved, where DOC >1mg/l ^(6a)		
Hazardous substance	Priority substance	Lead	- 00	10 ⁽²⁾	1.2 bioavailable ^(6a)	1.3 ^(6a)		
Hazardous substance	Priority hazardous substance	Mercury	0.01 ⁽⁷⁾	1 ⁽²⁾	0.07 ^(6c)	0.07 ^(6c)		
Non-hazardous pollutant	Priority substance	Nickel		20 ⁽²⁾	4.0 bioavailable ^(6a)	8.6 ^(6a)		
Non-hazardous pollutant	-	Selenium	-	10 ⁽²⁾	-	-		
Non-hazardous pollutant	Specific pollutant	Zinc	-	3,000 ⁽⁸⁾	10.9 bioavailable ^(6a)	6.8 dissolved (6a)		
None	Specific pollutant	Iron	-	200 ⁽²⁾	1000 ^{(6a)*1}	1000 ^(6a))*1		
None	Specific pollutant	Manganese	-	50 ⁽²⁾ (0.05mg/l)	123 bioavailable ^(6a) (0.123mg/l)	-		
(Not determined)	-01/10	Aluminium	-	200 ⁽²⁾	-	-		

Substance classification			Target concentrations (μg/l)				
			Minimum	UK drinking water	EQS or best	equivalent	
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	reporting value	standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters	
Hazardous substance	Priority hazardous substance	Tributyltin compounds (Tributyltin-cation)	0.001 ⁽⁷⁾	-	0.0002 ^(6a)	0.0002 ^(6a)	
(Not determined)	-	Sodium	-	200,000 ⁽²⁾ (200 mg/l)	-	-	
Non-hazardous pollutant	Specific pollutant	Cyanide (Hydrogen cyanide)	-	50 ⁽²⁾ (0.05 mg/l)	1 ^(6a) (0.001 mg/l)	1 ^(6a) (0.001 mg/l)	
Non-hazardous pollutant	-	Total ammonia ^{\$} (ammonium (as NH ₄ ⁺) plus ammonia (NH ₃)	-	500 ⁽²⁾ (0.5 mg/l)	300 ^(6f) (0.3 mg/l)	-	
Non-hazardous pollutant	Specific pollutant	Ammonia un-ionised (NH ₃)	-06	-	-	21 ^(6a) (0.021 mg/l)	
Non-hazardous pollutant	Specific pollutant	Chlorine	VILE	-	2 ^(6a) (0.002 mg/l)	10 ^(6d) (0.01 mg/l)	
(Not determined)	-	Chloride	-	250,000 ⁽²⁾ (250 mg/l)	-	-	
(Not determined)	-	Sulphate	-	250,000 ⁽²⁾ (250 mg/l)	-	-	
(Not determined)	-	Nitrate (as NO ₃)	-	50,000 ⁽²⁾ (50 mg/l)	-	-	
(Not determined)	- Unit	Nitrite (as NO ₂)	-	500 ⁽²⁾ (0.5 mg/l)	10 ⁽⁹⁾ (0.01 mg/l)	-	

Substance classification			Target concentrations (μg/l)							
		Determinant	Minimum	UK drinking water	EQS or best equivalent					
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾		reporting value	standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters				
	Volatile organic compounds (VOC)									
Non-hazardous pollutant	Other pollutant	Tetrachloroethene (tetrachloroethylene; PCE)	0.1 ⁽⁷⁾	10 ⁽²⁾ sum of TCE and	10 ^(6a)	10 ^(6a)				
Hazardous substance	Other pollutant	Trichloroethene (trichloroethylene; TCE)	0.1 ⁽⁷⁾	PCE	10 ^(6a)	10 ^(6a)				
None	Specific pollutant	Tetrachloroethane	-		140 ^(6a)	-				
Hazardous substance	Other pollutant	Carbon tetrachloride (tetrachloromethane)	0.1 ⁽⁷⁾	3.0 ⁽²⁾	12 ^(6a)	12 ^(6a)				
Non-hazardous pollutant	Priority substance	1,2-Dichloroethane	1.0 ⁽⁷⁾	3.0 ⁽²⁾	10 ^(6a)	10 ^(6a)				
Non-hazardous pollutant	-	1.2-Dichloroethene (DCE)		50.0 ⁽⁴⁾	-	-				
Hazardous substance	-	Vinyl chloride (chloroethene)	-	0.5 ⁽²⁾	-	-				
Non-hazardous pollutant	Priority substance	Dichloromethane	-	20 ⁽⁴⁾	20 ^(6a)	20 ^(6a)				
Non-hazardous pollutant	Priority substance	Trichlorobenzenes	0.01 ⁽⁷⁾	-	0.4 ^(6a)	0.4 ^{((6a)}				
(Not determined)	- ,,	Trihalomethanes	-	100 ^(2a)	-	-				

Substance classification			Target concentrations (μg/l)					
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	Minimum		EQS or best equivalent			
			Minimum reporting value	UK drinking water standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters		
Hazardous substance	Priority substance	Trichloromethane (Chloroform)	0.1 ⁽⁷⁾	(see "Trihalomethanes" above)	2.5 ^(6a)	2.5 ^(6a)		
Non-hazardous pollutant	Priority hazardous substance	Di(2-ethylhexyl) phthalate (bis(2-ethylhexyl) phthalate, DEHP)	-	8 ⁽⁴⁾	1.3 ^(6a)	1.3 ^(6a)		
None	Specific pollutant	Benzyl butyl phthalate	-		7.5 ^(6a)	0.75 ^(6e)		
Hazardous substance	Priority hazardous substance	Hexachlorobutadiene	0.005 ⁽⁷⁾	0.6 ⁽⁴⁾	0.6 ^(6c)	0.6 ^(6c)		
		Semi-volatile	organic comp	ounds (SVOC)				
(Not determined)	-	Acenaphthylene (C12-C16)	Cinio	-	5.8 ⁽¹⁰⁾			
Hazardous substance	Priority hazardous substance	Anthracene (C16-C21)	-	-	0.1 ^(6a)	0.1 ^(6a)		
Non-hazardous pollutant	Priority substance	Naphthalene (C10-C12)	-	-	2 ^(6a)	2 ^(6a)		

Substance classification			Target concentrations (µg/l)					
			Minimum	UK drinking water	EQS or best equivalent			
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	reporting value	standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters		
Hazardous substance	Priority substance	Fluoranthene (C21-C35)	-	- Ji	0.0063 ^(6a)	0.0063 ^(6a)		
		Benzo(a)pyrene (C21-C35)	-	0.01 ⁽²⁾	0.00017 ^(6a)	0.00017 ^(6a)		
Hazardous substance(s)	Priority hazardous substance(s)	Benzo(b)fluoranthene (C21-C35) Benzo(k)fluoranthene (C21-C35) Benzo(g,h,i)perylene (C21-C35) Indeno(1,2,3-cd) pyrene (C21-C35)		0.1 ⁽²⁾ sum of the concentration of the four specified compounds	No EQS for thes B(a)P should be use compound	ed as the indicator		
Non-hazardous pollutant	Specific pollutant	Phenol		-	7.7 ^(6a)	7.7 ^(6a)		
Hazardous substance	Specific pollutant	2,4-Dichlorophenol	0.1 ⁽⁷⁾	-	4.2 ^(6a)	0.42 ^(6a)		
Hazardous substance	Priority substance	Pentachloro-phenol (PCP)	0.1 ⁽⁷⁾	9 ⁽⁴⁾	0.4 ^(6a)	0.4 ^(6a)		

Substance classification			Target conc		entrations (µg/l)		
Groundwater Surface water receptors ⁽⁵⁾ receptors ⁽⁶⁾		Minimum	UK drinking water	EQS or best equivalent			
		Determinant	reporting standard		Freshwater	Transitional (estuaries) and coastal waters	
		Petro	leum hydroca	rbons	dille	12	
Hazardous substance	-	Total petroleum hydrocarbons	-	See Table 2 for individual (non-statutory) TPH CWG fractions with respect to drinking water receptors	See individual risk driving and PAH) for s	. ,	
Hazardous substance	Priority substance	Benzene (C5-C7)	1 ⁽⁷⁾	1(2)	10 ^(6a)	8 ^(6a)	
Hazardous substance	Specific pollutant	Toluene (C7-C8)	4 ⁽⁷⁾	700 ⁽⁴⁾	74 ^(6a)	74 ^(6a)	
Hazardous substance	-	Ethylbenzene (C8-C9)	-06	300 ⁽⁴⁾	-	-	
(Not determined)	-	Xylenes (C8-C10)	3 ⁽⁷⁾	500 ⁽⁴⁾	30 ⁽¹¹⁾	-	
Non-hazardous pollutant	-	Methyl tertiary butyl ether (MTBE)	-	15 ⁽¹²⁾	-		
Pesticides, fungicides, insecticides and herbicides							
Hazardous	Other pollutant	Aldrin	0.003 ⁽⁷⁾	0.03 ⁽²⁾	0.01 ^(6a) (sum of all	0.005 ^(6a) (sum	
substance(s)	substance(s)	(Cyclodiene	Dieldrin	0.003 ⁽⁷⁾	0.03 ⁽²⁾	four)	of all four)

Substance classification			Target concentrations (µg/l)			
Groundwater		Determinant	Minimum reporting value UK drinking water standard (or best equivalent)	UK drinking water	EQS or best equivalent	
receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾			Freshwater	Transitional (estuaries) and coastal waters	
	pesticides)	Endrin	0.003 ⁽⁷⁾	0.1 ^(2b)		12
		lsodrin*2	0.003 ⁽⁷⁾	0.1 ^(2b)	27	`(
Hazardous substance	Other pollutant	DDT (total)	0.002 ⁽⁷⁾	1 ⁽⁴⁾	0.025 ^(6a)	0.025 ^(6a)
(Not determined) – assume to be Hazardous Substance	-	Total pesticides	-	0.5 ⁽²⁾	-	-
(Not determined) - assume to be Hazardous Substance	-	Other individual pesticides	aing De	0.1 ⁽²⁾		
Hazardous substance	Specific pollutant	Carbendazim	-	-	0.15 ^(6a)	-
Hazardous substance	Specific pollutant	Chlorothalonil	-	-	0.035 ^(6a)	-
Hazardous substance	Specific pollutant (until 22/12/18, after which it becomes a Priority substance)	Cypermethrin	-	-	0.0001 ^(6a) From 22/12/18: 8.0E-5 ^(6a)	0.0001 ^(6a) From 22/12/18: 8.0E-6 ^(6a)
Hazardous substance	Specific pollutant	Dimethoate	0.01 ⁽⁷⁾	-	0.48 ^(6a)	0.48 ^(6a)

Substance classification			Target concentrations (μg/l)			
		Determinent	Minimum	UK drinking water	EQS or best equivalent	
Groundwater Surface water Determine receptors (5) receptors (6)	Determinant	reporting value	standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters	
(Not determined)	Specific pollutant	Glyphosate	-	-	196 ^(6a)	196 ^(6a)
Hazardous substance	Specific pollutant	Linuron		- 3	0.5 ^(6a)	0.5 ^(6a)
Non- hazardous pollutant	Specific pollutant	Mecoprop	0.04 ⁽⁷⁾	Ment	18 ^(6a)	18 ^(6a)
Non- hazardous pollutant	Specific pollutant	Methiocarb	-	Pairi -	0.01 ^(6a)	-
Non- hazardous pollutant	Specific pollutant	Pendimethalin	(0)	20 ⁽⁴⁾	0.3 ^(6a)	-
Hazardous substance	Specific pollutant	Permethrin	0.001 ⁽⁷⁾	-	0.001 ^(6a)	0.0002 ^(6a)
Hazardous substance	Priority substance	Alachlor	-	20 ⁽⁴⁾	0.3 ^(6a)	0.3 ^(6a)
Hazardous substance	Priority substance	Atrazine	0.03 ⁽⁷⁾	100 ⁽⁴⁾	0.6 ^(6a)	0.6 ^(6a)
Hazardous substance	Priority substance	Diuron	-	-	0.2 ^(6a)	0.2 ^(6a)
Hazardous substance	Priority hazardous substance	Endosulphan	0.005 ⁽⁷⁾	-	0.005 ^(6a)	0.0005 ^(6a)

Substance classification			Target con			centrations (µg/l)	
		Minimum		EQS or best equivalent			
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	reporting value	UK drinking water standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters	
Non- hazardous pollutant	Priority substance	Isoproturon	-	9 ⁽⁴⁾	0.3 ^(6a)	0.3 ^(6a)	
Hazardous substance	Priority substance	Simazine	0.03 ⁽⁷⁾	2 ⁽⁴⁾	1 ^(6a)	1 ^(6a)	
Hazardous substance	Priority hazardous substance	Trifluralin	0.01 ⁽⁷⁾	20 ⁽⁴⁾	0.03 ^(6a)	0.03 ^(6a)	
(Not determined)	From 22/12/18: Priority substance	Dichlorovos	-	Odli -	From 22/12/18: 6.0E-4 ^(6a)	From 22/12/18: 6.0E-5 ^(6a)	
Hazardous substance	From 22/12/18: Priority substance	Heptachlor and heptachlor epoxide	-06	0.03 ⁽²⁾	From 22/12/18: 2.0E-7 ^(6a)	From 22/12/18: 1.0E-08 ^(6a)	
			Miscellaneous	i			
None	Specific pollutant	Triclosan (antibacterial agent)	-	-	0.1 ^(6a)	0.1 ^(6a)	
Hazardous substance	From 22/12/18: Priority hazardous substance	Perfluoro-octane sulfonic acid (and its derivatives) (PFOS)	-	-	From 22/12/18: 6.5E-4 ^(6a)	From 22/12/18: 1.3E-4 ^(6a)	
Hazardous substance	From 22/12/18: Priority hazardous substance	Hexabromo cyclododecane (HBCDD)	-	-	From 22/12/18: 0.0016 ^(6a)	From 22/12/18: 0.0008 ^(6a)	

Substance classification			Target concentrations (µg/l)			
		Determinant	Minimum UK drinking water		EQS or best equivalent	
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾		reporting value	ng standard	Freshwater	Transitional (estuaries) and coastal waters

Notes:

- *1 Please note that although iron is listed in the 2015 Direction as 1.000 μg/l, the EQS remains at 1mg/l in Scotland and it is assumed this is an error and should read either 1,000 or 1000μg/l.
- *2 Please note that although Isodrin is not listed in name within the group of "Cyclodiene pesticides" in Table 1 of Schedule 3 Part 3 of the 2015 Direction⁽⁶⁾, the CAS number for Isodrin (465-73-6) **is** listed and therefore it is assumed that it has been missed off the named list of substances.
- *3 Total petroleum hydrocarbons is used for consistency, but is an analytical method-defined measurement for a mixture of hydrocarbons subject to environmental analysis¹¹.
- "Bioavailable" in relation to copper, zinc, nickel and manganese (but not lead) is the generic EQSbioavailable (a) derived from the Metal Bioavailability Assessment Tool (M-BAT) developed by the Water Framework Directive UK Technical Advisory Group (WFDTAG). Exceedance of this value should prompt a site-specific assessment using the M-BAT with pH, DOC and Ca to derive a site-specific EQS termed the PNEC dissolved. http://www.wfduk.org/resources/rivers-lakes-metal-bioavailability-assessment-tool-m-bat.

For zinc, if there is an exceedance of the EQSbioavailable in an initial GQRA, Tier 2 required that the EQS for zinc should also have the ambient background concentration of zinc added as well

^{&#}x27;-' A target concentration is not available.

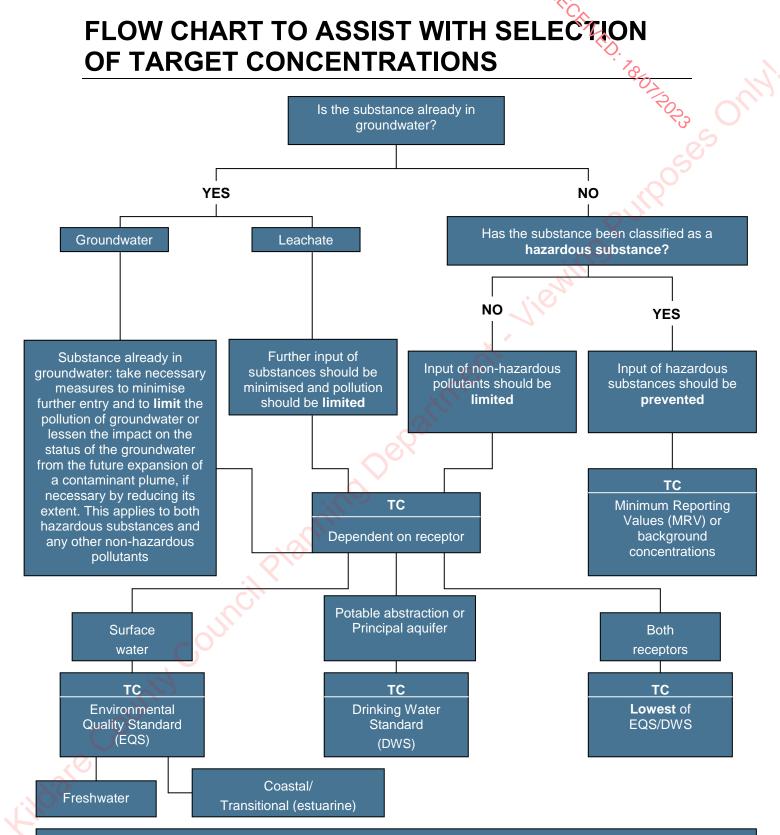
^{\$}Please note that total ammonia (NH₄⁺ and NH₃) is equivalent to ammoniacal nitrogen in laboratory reports

Table 2: World Health Organization (WHO) guide values for TPH CWG fractions in drinking water⁽¹³⁾ (as referenced in CL:AIRE, 2017⁽¹¹⁾)

TPH CWG fraction	WHO guide value for drinking water ⁽¹³⁾ (µg/l)					
Aliphatic fractions:						
Aliphatic EC5-EC6	15,000					
Aliphatic >EC6-EC8	15,000					
Aliphatic >EC8-EC10	300					
Aliphatic >EC10-EC12	300					
Aliphatic >EC12-EC16	300					
Aliphatic >EC16-EC21	-					
Aliphatic >EC21-EC35	-					
Aromatic fractions:						
Aromatic EC5-EC6	10 (benzene)					
Aromatic >EC6-EC8	700 (toluene)					
Aromatic >EC8-EC10	300 (ethyl benzene)					
	500 (xylenes)					
Aromatic >EC10-EC12	90					
Aromatic >EC12-EC16	90					
Aromatic >EC16-EC21	90					
Aromatic >EC21-EC35	90					

Reference: World Health Organisation (WHO), 2008. Petroleum products in drinking-water. Background document for development of WHO guidelines for drinking water quality. WHO/SDE/WSH/05.08/123. World Health Organisation, Geneva (15).

References


- Environment Agency (2017), 'The Environment Agency's approach to groundwate protection', version 1.0, March 2017 (formerly contained within GP3) [accessed 29 March 2017]. https://www.gov.uk/government/collections/groundwater-protection
- 1a. Environment Agency (2017), 'Land contamination groundwater compliance points: quantitative risk assessments', March 2017 (formerly contained within GP3) [accessed 29 March 2017]. https://www.gov.uk/government/collections/groundwater-protection
- 2. The Water Supply (Water Quality) Regulations 2016 (SI 2016/619)
 - 2a. Sum of chloroform, bromoform, dibromochloromethane and bromodichloromethane
 - 2b. Standard applies to individual pesticides except aldrin, dieldrin, heptachlor and heptachlor epoxide, for which a separate standard is defined.
- 3. The Private Water Supplies (England) Regulations 2016. SI 2016 / 618
- 4. WHO (2011), Guidelines for drinking-water quality, 4th edn
- 5. JAGDAG hazard substance determinations: This list contains substances that are determined to be hazardous substances or non-hazardous pollutants for the purposes of the groundwater directive 2006/118/EC. The absence of an assessment or substance from the list means an assessment has not been done yet and is presented as 'Not yet determined'; if a substance has been assessed but does not fall into either category it is presented as 'None'. For further details on how substances are assessed, see the Joint Agencies Groundwater Directive Advisory Group (JAGDAG) 'Methodology for the determination of hazardous substances in groundwater for the purposes of the groundwater directive 2006/118/EC' which is available from the JAGDAG website. The methodology is a UK –wide framework that sets criteria for how to assess whether a substance is a hazardous substances in groundwater. The list of substances can be found at:
- https://www.wfduk.org/stakeholders/jagdag
- 6. The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015.
 - 6a. The EQS for these substances are based on a "long term mean" or an "annual average (AA)" EQS.
 - 6b. For cadmium and its compounds the EQS values vary depending on the hardness of the water as specified in five class categories (Class 1: < 40 mg CaCO3/I, Class 2: 40 to < 50 mg CaCO3/I, Class 3: 50 to < 100 mg CaCO3/I, Class 4: 100 to < 200 mg CaCO3/I and Class 5: ≥ 200 mg CaCO3/I).
 - 6c. The EQS for Mercury and hexachlorobutadiene are based on a "maximum acceptable concentration (MAC)" EQS in absence of an "annual average (AA)" EQS.
 - 6d. The EQS for chlorine in saltwater is based on the 95th percentile concentration of total residual oxidant, which refers to the sum of all oxidising agents existing in water, expressed as available chlorine.
 - 6e. The recommended saltwater standard is derived using a safety factor of 100. Where the standard is failed, it is recommended that supporting evidence of ecological damage should be obtained before committing to expensive action.
 - 6f. EQS for total ammonia is as per Schedule 3, Part 1, Table 7 of of the above directions. EQS applies to river types 1, 2 and 4 and 6 (namely upland and low alkalinity). The EQS for a lowland and high alkalinity rivers (types 3, 5 and 7) is 600μg/l (0.6mg/l).

Additional information on the Metal Bioavailability Assessment Tool (M-BAT) is available at http://www.wfduk.org/resources/rivers-lakes-metal-bioavailability-assessment-tool-m-bat

- 7. Minimum reporting values listed at https://www.gov.uk/government/publications/values-for-groundwater-risk-assessments/hazardous-substances-to-groundwater-minimum-reporting-values (updated 13 January 2017; accessed 29 March 2017). Note target concentration for xylenes is 3 µg/l each for o-xylene and m/p xylene as it may not be possible to separate m- and p-xylene; 135 tcb, 124 tcb, 123 tcb each to 0.01 µg/l)
- 8. The Surface Waters (Abstraction for Drinking Water) (Classification) Regulations 1996 (as amended). SI 1996 / 3001
- Council Directive on the Quality of Fresh Waters Needing Protection or Improvement in Order to Support Fish Life (Freshwater Fish Directive) (78/659/EEC)
- 10. WRc plc (2002), R&D Technical Report P45.
- 11. CL:AIRE, 2017. Petroleum Hydrocarbons in Groundwater: Guidance on assessing petroleum hydrocarbons using existing hydrogeological risk assessment methodologies. V1.1.
- 12. Drinking Water Inspectorate (London, UK). Environmental Information Request on MTBE in drinking water. Ref. DWI 1/10/18; dated 28 November 2006. Value is based on the odour threshold for MTBE, which is lower than a health-based guideline value
- 13. World Health Organisation (WHO), 2008. Petroleum products in drinking-water. Background document for development of WHO guidelines for drinking water quality. WHO/SDE/WSH/05.08/123. World Health Organisation, Geneva. [accessed 29 March 2017] http://www.who.int/water_sanitation_health/dwq/chemicals/petroleumproducts_2add_june2008.pdf

TC = Target concentration

When leachate is being assessed the 'compliance point' is the groundwater body. Therefore dilution within the groundwater body may be applied <u>with caution</u> before comparing with the TC.

When directly assessing a receptor, e.g., a river, the appropriate TC should be selected.