Appendix 10.2: Methodology for calculating from different hub heights and standardising hub height wind speed

Supplementary Guidance Note 4: Wind Shear Equations

a) Standardising from hub height (hh) to 10 m

$$
\mathrm{v}_{10}=\mathrm{v}_{\mathrm{hh}}{ }^{*}(\mathrm{LN}(10 / 0.05) / \mathrm{LN}(\mathrm{hh} / 0.05))
$$

[EQUATION 1]
$\mathrm{v}_{10}=$ Standardised 10 m wind speed
$V_{\text {hh }}=$ Hub height wind speed $=104 \mathrm{~m}$
0.05 = Standard ground roughness length which remains constant (fixed)
b) Calculating from different heights
$\mathrm{v}_{1}=\mathrm{v}_{2}{ }^{*}\left(\mathrm{~h} 1 / \mathrm{h}_{2}\right)^{\wedge} \mathrm{m}$
[EQUATION 2]
$\mathrm{v}_{1}=$ wind speed at h_{1}
$\mathrm{V}_{2}=$ Wind speed at h_{2}
$h_{2}=10 \mathrm{~m}$
$\mathrm{m}=$ Wind shear
c) Equation \mathbf{b} can be re-arranged to determine wind shear exponent ' m ' based on known data at two different Met mast heights (80 m and 60 m). With wind shear calculated this can be applied to the wind speed at higher (differing) height of 80 m to determine hub height wind speed (higher hub height being 104m).
$m=L N\left(v_{2} / v_{1}\right) / L N\left(h_{2} / h_{1}\right)$
[EQUATION 3]

The calculations for standardising hub height of 104 m was derived using equation \mathbf{a}
See following page

