
APPENDIX 7.2

Waste Classification Report (August 2022)

MH21009 | Large-scale Residential Development 'Swift Square Apartments' | F01 | July 2023 **rpsgroup.com**

Tel: 01 601 5175 / 5176 Email: info@gii.ie Web: www.gii.ie

Directors: Fergal McNamara (MD), James Lombard, Conor Finnerty, Aisling McDonnell & Barry Sexton Ground Investigations Ireland Limited | Registered in Ireland Company Regsitration No.: 405726

Tel: 01 601 5175 / 5176 Email: info@gii.ie Web: www.gii.ie

DOCUMENT CONTROL SHEET

Project Title	Swift Square Northwood
Engineer	JB Barry
Project No	11877-05-22
Document Title	Waste Classification Report

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
А	Final	A Browne	J Cashen	B Sexton	Dublin	15 August 2022

Ground Investigations Ireland Ltd. present the results of the fieldworks and laboratory testing in accordance with the specification and related documents provided by or on behalf of the client. The possibility of variation in the ground and/or groundwater conditions between or below exploratory locations or due to the investigation techniques employed must be taken into account when this report and the appendices inform designs or decisions where such variation may be considered relevant. Ground and/or groundwater conditions may vary due to seasonal, man-made or other activities not apparent during the fieldworks and no responsibility can be taken for such variation. The data presented and the recommendations included in this report and associated appendices are intended for the use of the client and the client's geotechnical representative only and any duty of care to others is excluded unless approved in writing.

Tel: 01 601 5175 / 5176 Email: info@gii.ie Web: www.gii.ie

GROUND INVESTIGATIONS IRELAND

Geotechnical & Environmental

CONTENTS

1.0	Preamble1
2.0	Purpose & Scope1
3.0	Limitations2
4.0	Site Location and Layout2
5.0	Site History2
6.0	Subsurface Exploration
6.1.	General
6.2.	Trial Pits
6.3.	Cable Percussion Boreholes3
6.4.	Surveying4
7.0	Ground Conditions4
7.1.	General4
8.0	Laboratory Analysis
8.1.	Analysis Suite
8.2.	Asbestos5
9.0	Waste Classification
10.0	Conclusions & Recommendations9
10.1.	Conclusions
10.1.1	. Waste Classification9
10.1.2	9. Asbestos
10.1.3	9. Waste Categories
10.2.	Recommendations9
10.2.1	. Waste Transfer9
11.0	References10

Tel: 01 601 5175 / 5176 Email: info@gii.ie Web: www.gii.ie

LIST OF TABLES

Table 1 Potential Waste Categories for Disposal/Recovery	7
Table 2 Individual Sample Waste Category	8

APPENDICES

Appendix 1	Figures
Appendix 2	Trial Pit Records
Appendix 3	Cable Percussion Borehole Records
Appendix 4	Laboratory Testing
Appendix 5	HazWasteOnLine [™] Report
Appendix 6	WAC Data Summary
Appendix 7	Potential Material Outlets

1.0 Preamble

Ground Investigations Ireland (GII) was appointed by JB Barry Consulting Engineers to carry out a Waste Classification for a proposed residential development in Swift Square, Northwood, Dublin 9. All site investigation works were carried out under the supervision of a GII Geo-Environmental Engineer. The site investigation works were completed in July 2022.

2.0 Purpose & Scope

It is understood that as part of the proposed development there may be an excavation to accommodate a basement structure, foundations, services, pavements and carparking and as such the material which may be excavated and removed from site needs to be assessed in terms of waste disposal outlets. The waste classification was carried out in parallel with a wider geotechnical site investigation.

The purpose of the waste classification exercise was as follows.

- Assess the site in terms of historical use and environmental setting;
- Classification, in terms of waste management and final disposal outlets, of material that may require disposal following excavation during the construction phase;

The scope of the work undertaken to facilitate the waste classification exercise included the following:

- Site walkover;
- Excavation of two (2 No.) trial pits;
- Boring of two (2 No.) cable percussion boreholes;
- Collection of subsoil samples for chemical analysis;
- Environmental laboratory testing; and
- Waste Classification;

The additional scope of the geotechnical investigation included the following:

- Installation of 1 No. Groundwater monitoring well; and
- Geotechnical Laboratory testing.

The geotechnical site investigation is discussed in the GII Ground Investigation Report Dated 15th August 2022.¹

¹ Ground Investigations Ireland, Swift Square Northwood, Ground Investigation Report, 15th August 2022.

3.0 Limitations

GII has prepared this report for the sole use of JB Barry. No other warranty, express or implied, is made as to the professional advice included in this report or other services provided by GII.

The conclusions and recommendations contained in this report are based upon information provided by others and the assumption that all relevant information has been provided by those bodies from whom it has been requested. Information obtained from third parties has not been independently verified by GII, unless otherwise stated in this report.

This report has been prepared in line with best industry standards and within the project's budgetary and time constraints. The methodology adopted and the sources of information used by GII in providing its services are outlined in this report.

The work described was undertaken in July 2022, this report is based on the conditions encountered and the information available during that period. The scope of this Report and the services are accordingly factually limited by these circumstances.

Site investigation locations were selected by the consultant engineer.

GII disclaim any undertaking or obligation to advise any person of any change in any matter affecting the Report, which may come or be brought to GII's attention after the date of the Report.

The conclusions presented in this report represent GII's best professional judgement based on review of site conditions observed during any site visit and the relevant information available at the time of writing. The opinions and conclusions presented are valid only to the extent that the information provided was accurate and complete.

The investigation was focused on a broad assessment of the subsoil quality across the site. The assessment did not extend to the identification of asbestos containing materials associated with any on-site structures, ground gases or groundwater.

The waste classification exercise is reflective of and applicable to the ground conditions on site at the time of the site investigation and sampling. Alterations to the ground conditions or any further excavations carried out on site following the investigation are not reflected in this report.

4.0 Site Location and Layout

The site is located in Swift Square, Northwood Park, Northwood, Dublin 9 (Figure 1 Appendix 1). At the time of the assessment the surrounding land use was a mix of residential and commercial.

5.0 Site History

GII reviewed the aerial photographs and historical maps maintained by the Ordnance Survey of Ireland (OSI) and the google imagery records. These included the 6-inch maps that were produced between 1829 and 1842, the 25-inch maps that were produced between 1888 and 1913 and the 6-inch Cassini Maps that were produced between the 1830's and 1930's. The site is undeveloped on the 6-Inch, 25 Inch and Cassini maps.

Based on a review of the OSI and Google Imagery aerial photograph records the site has been in its current state of development since at least 2009.

6.0 Subsurface Exploration

6.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling and insitu testing was undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation and drilling. The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground Investigation and testing (ISEN 1997 – 2:2007) and B.S. 5930:2015+A1:2020.

6.2. Trial Pits

The trial pits were excavated using a JCB 3CX excavator at the locations shown in Figure 5 in Appendix 1. The locations were checked using a CAT scan to minimise the potential for encountering services during the excavation. The trial pits were sampled, logged and photographed by a Geotechnical Engineer/Engineering Geologist prior to backfilling with arisings. Notes were made of any services, inclusions, pit stability, groundwater encountered and the characteristics of the strata encountered and are presented on the trial pit logs which are provided in Appendix 2 of this Report.

6.3. Cable Percussion Boreholes

The Cable Percussion Boreholes were drilled, at the locations shown in Figure 5, using a Dando 2000 drilling rig with regular in-situ testing and sampling undertaken to facilitate the production of geotechnical logs and laboratory testing.

The standard method of boring in soil for site investigation is known as the Cable Percussion method. It consists of using a Shell in non cohesive soils and a clay cutter in cohesive soils, both operated on a wire cable. Very hard soils, boulders and other hard obstructions are broken up by chiselling and the fragments removed with the Shell. Where ground conditions made it necessary, the borehole was lined with 200mm diameter steel casing. While the use of the Cable Percussion method of boring gives the maximum data on soil conditions, some mixing of laminated soil is inevitable. For this reason, thin lenses of granular material may not be noticed. Disturbed samples were taken from the boring tools at suitable depths, so that there is a representative sample at the top of each change in stratum and thereafter at regular intervals down the borehole until the next stratum was encountered. The disturbed samples were then sealed and sent to the laboratory where they were visually examined to confirm the description of the relevant strata.

Standard Penetration Tests were carried out in the boreholes. The results of these tests, together with the depths at which the tests were taken are shown on the accompanying borehole records. The test consists of a thick wall sampler tube, 50mm external diameter, being driven into the soil by a monkey weighing 63.5kg and with a free drop of 760mm. For gravels and glacial till the driving shoe was replaced by a solid 60° cone. The Standard Penetration Test number referred to as the 'N' value is the number of blows

required to drive the tube 300mm, after an initial penetration of 150mm. The number gives a guide to the consistency of the soil and can also be used to estimate the relative strength/density at the depth of the test and also to estimate the bearing capacity and compressibility of the soil. The cable percussion borehole logs are provided in Appendix 3 of this Report.

6.4. Surveying

The exploratory hole locations have been recorded using a KQGeo M8 GNSS System which records the coordinates and elevation of the locations to ITM as required by the project specification. The coordinates and elevations are provided on the exploratory hole logs in the appendices of this Report.

7.0 Ground Conditions

7.1. General

The ground conditions encountered during the investigation are summarised below with reference to insitu and laboratory test results. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report.

The sequence of strata encountered were consistent across the site and generally comprised;

- Topsoil/Surfacing
- Made Ground
- Cohesive Deposits

TOPSOIL: Topsoil was encountered in all three of the exploratory holes and was present to a maximum depth of 0.40m BGL.

SURFACING: Tarmacadam surfacing was encountered in one of the exploratory holes was present typically to a depth of 0.20m BGL.

MADE GROUND: Made Ground deposits were encountered beneath the Topsoil/Surfacing and were present to variable depths ranging from 0.80m to 2.20m BGL. The full extent of the made ground deposit was not determined at TP01. These deposits were described generally as *brown/grey sandy slightly gravelly Clay* and contained *rare fragments of concrete, red brick, fabric and plastic.*

COHESIVE DEPOSITS: Cohesive deposits were encountered beneath the Made Ground and were described typically as *brown sandy gravelly CLAY with occasional cobbles and boulders* overlying a *stiff black sandy gravelly CLAY with occasional cobbles and boulders*. The secondary sand and gravel constituents varied across the site and with depth, with granular lenses occasionally present in the glacial till matrix. The strength of the cohesive deposits typically increased with depth and was firm to stiff or stiff

below 1.0m BGL in the majority of the exploratory holes. These deposits had occasional (<5%), some (5%-20%) or many (20%-50%) cobble and boulder content, where noted on the exploratory hole logs.

8.0 Laboratory Analysis

8.1. Analysis Suite

In order to assess materials, which may be excavated and removed from site, in terms of waste classification, a selection of samples collected were analysed for a suite of parameters which allows for the assessment of the soils in terms of total pollutant content for classification of materials as *hazardous* or *non-hazardous* (RILTA Suite). The suite also allows for the assessment of the soils in terms of suitability for placement at various categories of landfill. The parameter list for the RILTA suite includes analysis of the solid samples for arsenic, barium, cadmium, chromium, copper, cyanide, lead, nickel, mercury, zinc, speciated aliphatic and aromatic petroleum hydrocarbons, pH, sulphate, sulphide, moisture content, soil organic matter and an asbestos screen.

The RILTA suite also includes those parameters specified in the EU Council Decision establishing criteria for the acceptance of waste at Landfills (Council Decision 2003/33/EC), which for the solid samples are pH, total organic carbon (TOC), speciated aliphatic and aromatic petroleum hydrocarbons, BTEX, phenol, polychlorinated biphenyls (PCB) and PAH.

In line with the requirement of Council Decision 2003/33/EC a leachate was generated from the solid samples which was in turn analysed for antimony, arsenic, barium, cadmium, chromium, copper, lead, mercury, molybdenum, nickel, selenium, zinc, chloride, fluoride, soluble sulphate, sulphide, phenols, dissolved organic carbon (DOC) and total dissolved solids (TDS).

The laboratory testing was completed by Element Materials Technology (EMT) in the UK; EMT is a UKAS accredited laboratory. The full laboratory reports are included in Appendix 4.

8.2. Asbestos

Asbestos fibres were not detected in the samples. The laboratory did not identify asbestos containing materials (ACMs) in the samples.

9.0 Waste Classification

GII understands that any materials which may be excavated and removed from site would meet the definition of waste under the Waste Framework Directive. This may not be the case at the time of excavation when all or some of the materials may have been declared a by-product in line with Article 27 of the European Communities (Waste Directive) Regulations 2011².

Excess soil and stone resulting from excavation works (the primary purpose of which is not the production of soil and stone) may be declared a by-product if all four by-product conditions are met.³

² S.I. No. 126/2011 - European Communities (Waste Directive) Regulations 2011 (Article 27).

³ Irish EPA (June 2019), Guidance on Soil and Stone By-Products.

a) further use of the soil and stone is certain;

b) the soil and stone can be used directly without any further processing other than normal industrial practice;

c) the soil and stone is produced as an integral part of a production process; and

d) further use is lawful in that the soil and stone fulfils all relevant requirements for the specific use and will not lead to overall adverse environmental or human health impacts.

Due to the varying levels of anthropogenic materials encountered in the made ground there are potentially two sets of List of Waste (LoW)⁴ codes with "mirror" entries which may be applied to excavated materials to be removed from site.

- 17-05-03* (soil and stone containing dangerous substances, classified as hazardous) or 17-05-04 (soil and stone other than those mentioned in 17-05-03, not hazardous); or
- 17-09-03* (other construction and demolition wastes (including mixed wastes) containing hazardous substances) or 17-09-04 (mixed construction and demolition wastes other than those mentioned in 17 09 01, 17 09 02 and 17 09 03).

Where waste is a mirror entry in the LoW, it can be classified via a process of analysis against standard criteria set out in the Waste Framework Directive. The assessment process is described in detail in guidance published by the Irish (EPA Waste Classification, List of Waste & Determining if Waste is Hazardous or Non-Hazardous, June 2015) and UK regulatory authorities (Guidance on the Classification and Assessment of Waste: Technical Guidance WM3, 2015). The assessment involves comparison of the concentration of various parameters against defined threshold values.

The specific LoW code which should be applied to the material at each sample location is summarised in Table 2 below. These codes are only applicable where the material is being removed from a site as a waste.

GII use HazWasteOnline[™], a web-based commercial waste classification software tool which assists in the classification of potentially hazardous materials. This tool was used to determine whether the materials sampled are classified as hazardous or non-hazardous. The use of the online tool is accepted by the EPA (EPA 2014).

The conclusions presented in the report are based on GII's professional opinion. It should be noted that the environmental regulator (in this case the EPA) and the waste acceptor (in this case a landfill operator) shall decide whether a waste is hazardous or non-hazardous and suitable for disposal at their facility.

⁴ Formerly European Waste Catalogue Codes (EWC Codes)

9.1. HazWasteOnlineTM Results

In total, eight (8 No.) samples were assessed using the HazWasteOnLine[™] Tool. All samples were classified as being non-hazardous. The complete HazWasteOnLine[™] report for all samples is included in Appendix 5.

9.2. Landfill Waste Acceptance Criteria

Waste Acceptance Criteria (WAC) have been agreed by the EU (Council Decision 2003/33/EC) and are only applicable to material if it is to be disposed of as a waste at a landfill facility. Each individual member state and licensed operators of landfills may apply more stringent WAC. <u>WAC limits and the associated laboratory analysis are not suitable for use in the determination of whether a waste is hazardous or non-hazardous</u>. The data have been compared to the WAC limits set out in Council Decision 2003/33/EC as well as the specific WAC which the EPA have applied to the Walshestown and Integrated Materials Solutions (IMS) Landfills. The Walshestown and IMS landfills have higher limits for a range of parameters while still operating under an inert landfill licence. The WAC data considered in combination with the waste classification outlined in Section 9.0 allows the most suitable waste category to be applied to the material tested. The potentially applicable waste categories are summarised in Table 1. A summary of the WAC data is presented in Appendix 6. The waste category assigned to each sample is summarised in Table 2.

Waste Category	Classification Criteria
Category A	Soil and Stone only which are free from ⁵ anthropogenic materials such
Unlined Soil Recovery	as concrete, brick, timber. Soil must be free from "contamination" e.g.
Facilities	PAHs, Hydrocarbons ⁶ .
Category B1	Reported concentrations within inert waste limits, which are set out by
Inert Landfill	the adopted EU Council Decision 2003/33/EC establishing criteria and
	procedures for the acceptance of waste at landfills pursuant to Article
	16 and Annex II of Directive 1999/31/EC (2002).
	Results also found to be non-hazardous using the HWOL ⁷ application.
Category B2	Reported concentrations greater than Category B1 criteria but less
Inert Landfill	than IMS Hollywood Landfill acceptance criteria, as set out in their
	Waste Licence W0129-02.
	Results also found to be non-hazardous using the HWOL application.
Category C	Reported concentrations greater than Category B2 criteria but within
Non-Haz Landfill	non-haz landfill waste acceptance limits set out by the adopted EU
	Council Decision 2003/33/EC establishing criteria and procedures for

Table 1 Potential Waste Categories for Disposal/Recovery

⁵ Free from equates to less than 2%.

⁶ Total BTEX 0.05mg/kg, Mineral Oil 50mg/kg, Total PAHs 1mg/kg, Total PCBs 0.05mg/kg and Asbestos No Asbestos Detected – EPA Guidance on Waste Acceptance Criteria at Authorised Soil Recovery Facilities, 2020.

⁷ HazWasteOnLine[™] Tool.

Waste Category	Classification Criteria
	the acceptance of waste at landfills pursuant to Article 16 and Annex II
	of Directive 1999/31/EC (2002).
•	Results also found to be non-hazardous using the HWOL application.
Category C 1	As Category C but containing < 0.001% w/w asbestos fibres.
Non-Haz Landfill	
Category C 2	As Category C but containing >0.001% and <0.01% w/w asbestos
Non-Haz Landfill	fibres
Category C 3	As Category C but containing >0.01% and <0.1% w/w asbestos fibres.
Non-Haz Landfill	
Category D	Results found to be hazardous using HWOL Application.
Hazardous Treatment	
Category D 1	Results found to be hazardous due to the presence of asbestos
Hazardous Disposal	(>0.1%).

9.3. Final Waste Categorisation

All samples were assessed in terms of waste classification using the HazWasteOnLine[™] tool and also the WAC set out in Council Decision 2003/33/EC and the Walshestown/IMS specific WAC to give a final waste categorisation to determine the most appropriate disposal route for any waste generated. The final and most applicable waste category for each sample is summarised in Table 2.

The made ground deposits and the brown cohesive deposits met the inert criteria.

Sample ID	Sample Depth (m)	Material Type	Sample Date	LoW Code	Waste Category
BH01	0.5	Made Ground	26/07/2022	17 05 04	Category B1
BH01	2	Clay	26/07/2022	17 05 04	Category B2
BH02	0.5	Made Ground	26/07/2022	17 05 04	Category B2
BH02	1	Clay	26/07/2022	17 05 04	Category A
TP-01	0.00-1.10	Made Ground	14/07/2022	17 05 04	Category B1
TP-01	1.10-2.20	Made Ground	14/07/2022	17 05 04	Category B1
TP-02	0.00-1.10	Made Ground	14/07/2022	17 05 04	Category B1
TP-02	1.10-2.00	Clay	14/07/2022	17 05 04	Category A

Table 2 Individual Sample Waste Category

10.0 Conclusions & Recommendations

The conclusions and recommendations given and opinions expressed in this report are based on the findings of the site investigation works and laboratory testing undertaken. Where any opinion is expressed on the classification of material between site investigation locations, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for conditions which have not been revealed by the findings at the site investigation locations.

10.1. Conclusions

10.1.1. Waste Classification

Based on the results of the HazWasteOnLine[™] tool the material sampled across the site if being considered a waste can be classified as non-hazardous.

10.1.2. Asbestos

Asbestos was not detected in the soil samples.

10.1.3. Waste Categories

The most applicable waste categories for each of the samples if being considered a waste have been presented in Table 2.

10.2. Recommendations

10.2.1. Waste Transfer

In the event that material is excavated for removal from site, any firm engaged to transport waste material from site and the operator of any waste facility that will accept subsoils excavated from this site should be furnished with, at a minimum, copies of the **full unabridged** laboratory reports and HazWasteOnLine[™] report for all samples presented in this report.

The material on site if excavated should be removed to the most appropriate facility under the waste categories and LoW codes identified in Table 2. Potential outlets for the various waste categories are presented in Appendix 7, this list is not exhaustive and applicable at the time of the writing this report.

The non-hazardous material across the site if excavated should be removed from site to an appropriate facility under the LoW code 17 05 04. Where during excavation there is noted to be in excess of 2% anthropogenic material the appropriate LoW code which should be applied is 17 09 04.

11.0 References

Environment Agency (2013). Waste Sampling and Testing for Disposal to Landfill.

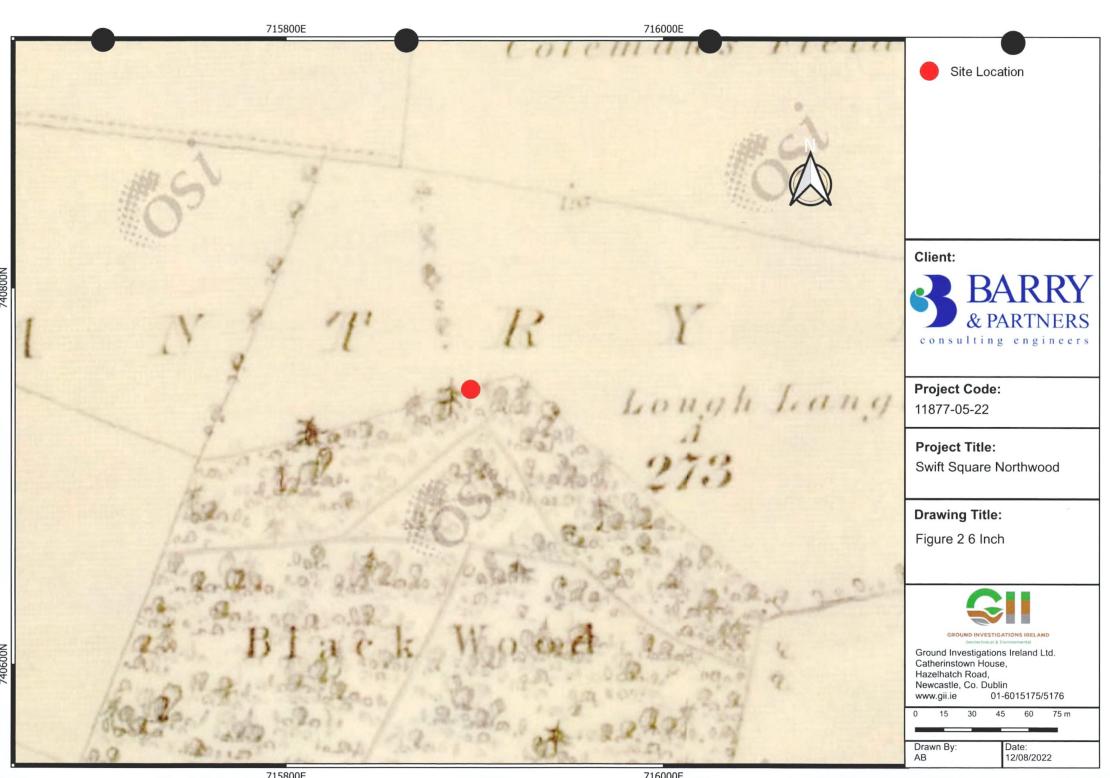
Environment Agency (2015). *Technical Guidance WM3 - Guidance on the classification and assessment of waste (1st edition 2015) Technical Guidance WM3.*

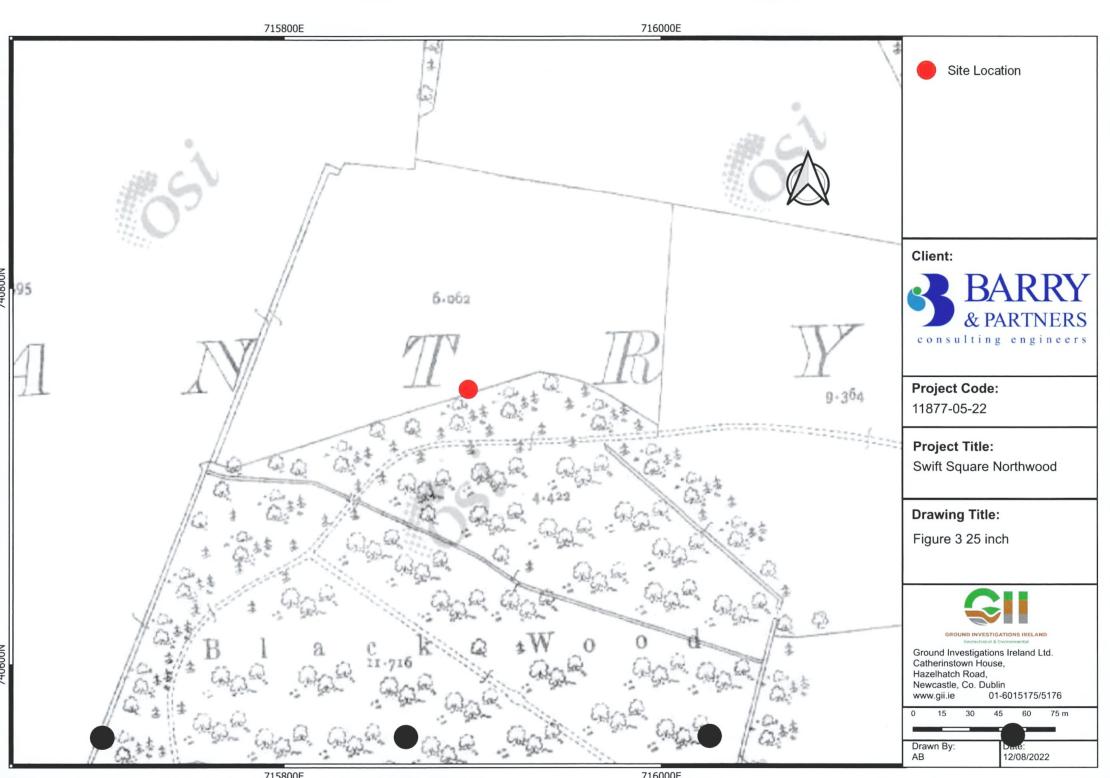
Environmental Protection Agency (EPA) (2014). Letter to Licences *Re: Waste Classification & Haz Waste On-Line™*.

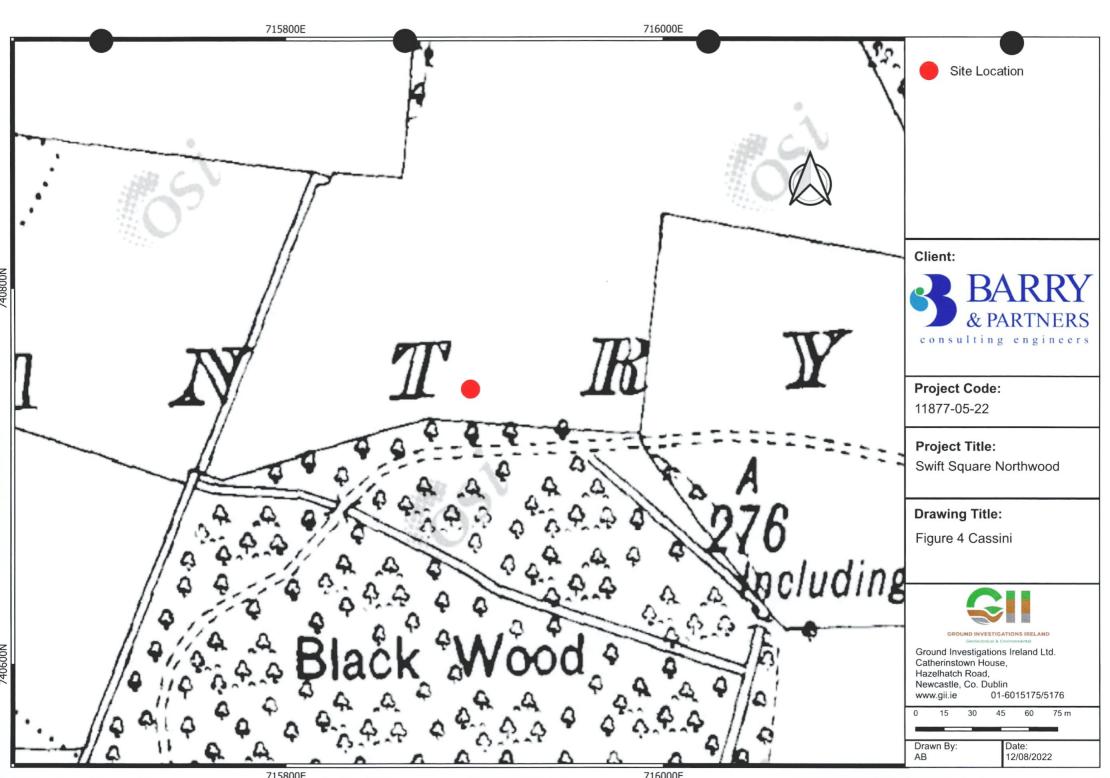
Environmental Protection Agency (EPA) (2015). Waste Classification List of Waste & Determining if Waste is Hazardous or Non-hazardous.

Environmental Protection Agency (EPA) (2020). Guidance on Waste Acceptance Criteria at Authorised Soil Recovery Facilities.

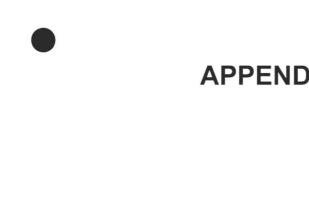
Environmental Protection Agency (EPA) (June 2019). *Guidance on Soil and Stone By-products in the context of article 27 of the European Communities (Waste Directive) Regulations 2011 Version 3.*


Association of Geotechnical and Geoenvironmental Specialists (2019). Waste Classification for Soils – A Practitioners Guide.


APPENDIX 1 - Figures

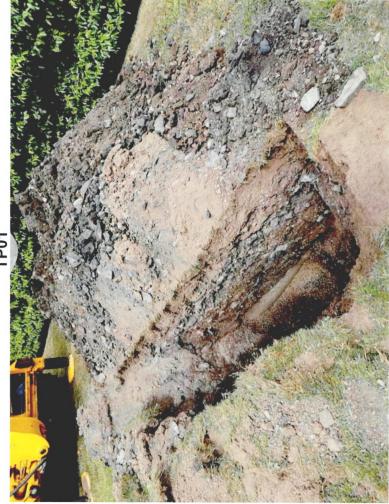


715500F



715900E

716000E


Grou	nd Investiga www.	ations Ireland gii.ie	Site Swift Square Northwood	Trial Pit Number TP01	
Machine : JCB 3CX Method : Trial Pit	Dimensions 3.70m x 1.10m x 2.2	20m Ground	d Level (mOD) 56.51	Client Cosgrave Developments	Jo Nun-sei 11877-05-
	Location 715829 E 7407		4/07/2022	Project Contractor GII	Sheet 1/1
Depth (m) Sample / Tests	Water Depth Field (m)	Records	Depth (m) (Thickness)	Description	Legend
100-1.10 ES 50 B 50 B 50 B		56.3 55.7 55.4 54.3		TOPSOIL MADE GROUND: Brownish grey slightly sandy gravelly CLAY with rare fragments of red brick, plastic, timber and fabric Pea gravel located at 0.60m BGL to left of pit MADE GROUND: Dark grey slightly sandy gravelly CLAY with rare fragments of fabric MADE GROUND: Brown mottled grey slightly clayey sandy gravelly CLAY with occassional cobbles and boulders 20mm chippings surrounding storm water pipe at 1.40m to 2.00m BGL Complete at 2.20m	
				No groundwater encountered Trial pit stable	
				Complete at 2.20m BGL Trial pit backfilled upon completion	
,					
· · ·					

Produced by the GEOtechnical DAtabase SYstem (GEODASY) © all rights reserved

		nd Inv	estigatio www.gii		land l	_td	Site Swift Square Northwood	Trial Pi Numbe TP02	
chine : Jo lethod : Tr		Dimensio 3.70m x (ons 0.80m x 2.50m			Level (mOD) 56.46	Client Cosgrave Developments		
		Location 715925.8 E 740725.5 N			Dates 14/	/07/2022	Project Contractor GII	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Re	cords	Level (mOD)	Depth (m) (Thickness)	Description	Legend	
.00-1.10	ES				56.26	(0.20) - 0.20	TOPSOIL MADE GROUND: Brown slightly sandy slightly gravelly		
					55.96	(0.30) 0.50	CLAY with occassional fragments of plastic, red brick and concrete.		
70	В				55.76	(0.20) 0.70	MADE GROUND: Grey slightly sandy slightly garvelly angular fine to coarse Gravel (FILL) MADE GROUND: Dark greyish brown slightly sandy slightl gravelly CLAY with rare fragments of plastic, concrete and	/	
					55.36	- (0.40) 	taping		
0-2.00	ES				55.06	- (0.30)	Firm brown mottled grey slightly sandy slightly gravelly CLAY with occassional cobbles	00000000000000000000000000000000000000	
50	В				55.06	- 1.40 	Firm to stiff brown slightly sandy slightly gravelly CLAY with occassional cobbles	00100000000000000000000000000000000000	
					54.46	 	Offer serve slightly and which the serve the OLAV with	00000000000000000000000000000000000000	
					-	- (0.50)	Stiff grey slightly sandy slightly gravelly CLAY with occassional cobbles and boulders		
50	В				53.96	2.50	Complete at 2.50m		
lan .							Remarks		
				•			No groundwater encountered Trial pit stable Complete at 2.50m BGL Trial pit backfilled upon completion		
				•					
)				•					
•						S	cale (approx) Logged By Figu	ire No.	

Produced by the GEOtechnical DAtabase SYstem (GEODASY) © all rights reserved

TP01

APPENDIX 3 – Cable Percussion Borehole Records

hine : Dando 200 Method : Cable Percussion		www.gii.ie Casing Diameter 200mm cased to 6.30m				Level (mOD) 56.82	Client Cosgrave Developments			ob umber 77-05-:
		Location 715		740765.9 N	Dates 18	/07/2022	Project Contractor GII		Sh	neet 1/1
Depth (m) Sar	nple / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
2.00-2.45 SP B ES 3.00-3.41 SP 3.00 -4.36 SP 6.00 -5.36 SP 5.00 -5.36 SP	T(C) N=39 T(C) N=48 T(C) 50/260 T(C) 50/210 T(C) 50/210			Water strike(1) at 0.70m, rose to 0.30m in 20 mins, sealed at 1.40m. 2,7/9,10,10,10 7,9/10,12,12,14 11,11/12,13,15,10 7,13/14,19,17 8,12/14,20,16 10,17/21,29		(0.30) 1.20 1.20 (2.80) (2.80) (2.80) (2.30)	TARMACADAM MADE GROUND: Light grey slightly clayey sandy rounded to subrounded fine to coarse Gravel MADE GROUND: Brown slightly sandy slightly gravelly Clay with occasional cobbles and rare fragments of concrete Very stiff dark grey slightly sandy slightly gravelly CLAY with occasional cobbles	성은 허수하은 허수하는 하수하는 하수하는 하수하는 하수하는 하수하는 하수하는 이는 하수하는 이는 하수하는 하는 하		
							Complete at 6.30m			
Remarks pundwater enco rehole complete 50mm slotted stand with a flush cover	at 6.30m BGL	-	rround in	stalled from 6.30m B	GL to 1.50	m BGL. 50mm	n plain standpipe installed from 1.50m BGL to GL	Scale (approx)	Lo By	gge

	lachine : Dando 200 Casing Diameter									Borehole Number BH02	
Method : Cable Percussion		-		r ed to 5.20m	Ground Level (mOD) 57.00			Client Cosgrave Developments		Jc Nu. 11877-05	
Depth (m) Sample / Tests		Location 715889.5 E 740769.8 N			Dates 19/07/2022			Project Contractor	Sheet 1/1		
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	D (Thic	epth (m) (kness)	Description		Legend	
.00-1.45 .00 .00-2.45 .00 .00-3.42 .00 .00-4.33 .00 .00-5.17	B SPT(C) N=14 B SPT(C) N=35 SPT(C) 50/265 T SPT(C) 50/180 SPT(C) 50/200			2,3/3,3,4,4 2,4/7,8,10,10 4,7/9,12,15,14 10,10/17,24,9 17,29/50	51.80		(0.40) 0.40 (0.40) 0.80 (1.00) (1.00) 2.00 (3.20) 5.20	TOPSOIL MADE GROUND: Brownish grey slightly sandy gravelly Clay with some plant rootlets and occasional cobbles Grey mottled brown slightly sandy slightly gravelly CLA with rare plant rootlets Firm to stiff grey mottled brown slightly sandy slightly gravelly CLAY with rare plant rootlets Very stiff dark grey slightly sandy gravelly CLAY with occasional cobbles and boulders Complete at 5.20m			
Borehole con	ater encountered nplete at 5.20m BG	L						S (ap	cale prox)	Log By	
borehole bac biselling fro	ckfilled upon completed of the second	for 1 hour.							:50 gure N	FOD	

APPENDIX 4 – Laboratory Testing

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention :	James Cashen
Date :	27th July, 2022
Your reference :	11877-05-22
Our reference :	Test Report 22/11741 Batch 1
Location :	Swift Square Northwood
Date samples received :	18th July, 2022
Status :	Final Report
Issue :	1

Four samples were received for analysis on 18th July, 2022 of which four were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Ly Kn

Liza Klebe Project Co-ordinator

Please include all sections of this report if it is reproduced

Element Materials Technology

Ground Investigations Ireland 11877-05-22 Swift Square Northwood James Cashen 22/11741

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Contact: EMT Job No:	James Ca 22/11741	ISHEIT								
						 	 	 1		
EMT Sample No.	1-4	5-8	9-12	13-16	i					
Comple ID	70.04	70.04	70.00	70.00						
Sample ID	TP-01	TP-01	TP-02	TP-02						
Depth	0.00-1.10	1.10-2.20	0.00-1.10	1.10-2.00	-77-0-					
	0.00-1.10	1.10-2.20	0.00-1.10	1.10-2.00					e attached n ations and a	
COC No / misc										,,
Containers	VJT	VJT	VJT	VJT						
Sample Date	14/07/2022	14/07/2022	14/07/2022	14/07/2022						
Sample Type	Soil	Soil	Soil	Soil	_					
Batch Number	1	1	1	1						Method
Date of Receipt	18/07/2022	18/07/2022	18/07/2022	18/07/2022				LOD/LOR	Units	No.
Antimony	3	3	2	3				<1	mg/kg	TM30/PM1
Arsenic *	12.9	8.7	12.0	12.2				<0.5	mg/kg	TM30/PM1
Barium *	112	94	129	91				<1	mg/kg	TM30/PM1
Cadmium *	1.7	1.6	1.5	1.9				<0.1	mg/kg	TM30/PM1
Chromium*	67.7	56.7	50.7	52.9				<0.5	mg/kg	TM30/PM15
Copper *	27	22	31	30				<1	mg/kg	TM30/PM1
Lead	21	17	19	19				<5	mg/kg	TM30/PM1
Mercury*	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM30/PM1
Molybdenum *	6.8	5.4	6.8	6.9				<0.1	mg/kg	TM30/PM1
Nickel"	40.0	30.3	37.7	45.7				<0.7	mg/kg	TM30/PM1
Selenium *	3	<1	4	2				<1	mg/kg	TM30/PM1
linc "	93	73	82	95				<5	mg/kg	TM30/PM1
PAH MS										
Naphthalene*	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Acenaphthylene	< 0.03	< 0.03	< 0.03	< 0.03				< 0.03	mg/kg	TM4/PM8
Acenaphthene *	< 0.05	< 0.05	< 0.05	< 0.05				< 0.05	mg/kg	TM4/PM8
luorene #	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Phenanthrene *	< 0.03	< 0.03	0.06	< 0.03				< 0.03	mg/kg	TM4/PM8
Anthracene *	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Fluoranthene *	<0.03	< 0.03	< 0.03	<0.03				<0.03	mg/kg	TM4/PM8
Pyrene *	< 0.03	< 0.03	< 0.03	<0.03				< 0.03	mg/kg	TM4/PM8
Benzo(a)anthracene *	<0.06	<0.06	<0.06	<0.06				<0.06	mg/kg	TM4/PM8
Chrysene *	<0.02	<0.02	0.04	<0.02				<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	<0.07	<0.07	<0.07	<0.07				<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
ndeno(123cd)pyrene *	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene *	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene *	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Coronene	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
AH 6 Total	<0.22	<0.22	<0.22	<0.22				<0.22	mg/kg	TM4/PM8
PAH 17 Total	<0.64	<0.64	<0.64	<0.64				<0.64	mg/kg	TM4/PM8
enzo(b)fluoranthene	<0.05	<0.05	<0.05	<0.05				<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02	<0.02	<0.02	<0.02				<0.02	mg/kg	TM4/PM8
Benzo(j)fluoranthene	<1	<1	<1	<1				<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	88	87	95	94				<0	%	TM4/PM8
lineral Oil (C10-C40) (EH_CU_1D_AL)	<30	<30	<30	<30				<30	mg/kg	TM5/PM8/PM

Element Materials Technology

Ground Investigations Ireland 11877-05-22 Swift Square Northwood James Cashen 22(11741

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Job No:	22/11741										
EMT Sample No.	1-4	5-8	9-12	13-16					1		
Sample ID	TP-01	TP-01	TP-02	TP-02							
Depth	0.00-1.10	1.10-2.20	0.00-1.10	1.10-2.00					Please se	e attached r	otes for all
COC No / misc								-		ations and a	
Containers	VJT	VJT	VJT	TLV							
Sample Date	14/07/2022	14/07/2022	14/07/2022	14/07/2022				_			
Sample Type		Soil	Soil	Soil							
Batch Number	1	1	1	1							
							1.000		LOD/LOR	Units	Method No.
Date of Receipt	18/07/2022	18/07/2022	18/07/2022	18/07/2022							
PH CWG Aliphatics											
C5-C6 (HS_1D_AL)	<0.1 ^{SV}	<0.1	<0.1 ^{sv}	<0.1					<0.1	mg/kg	TM36/PM12
C6-C8 (HS_1D_AL)	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1					<0.1	mg/kg	ТМ36/РМ
C8-C10 (HS_1D_AL)	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1					<0.1	mg/kg	TM36/PM12
C10-C12 (EH_CU_1D_AL)*	<0.2	<0.2	<0.2	<0.2					<0.2	mg/kg	TM5/PM8/PM16
C12-C16 (EH_CU_1D_AL)	<4	<4	<4	<4					<4	mg/kg	TM5/PM8/PM16
C16-C21 (EH_CU_1D_AL)	<7	<7	<7	<7					<7	mg/kg	TM5/PM8/PM16
·C21-C35 (EH_CU_1D_AL) * ·C35-C40 (EH_1D_AL)	<7 <7	<7 <7	<7 <7	<7 <7					<7 <7	mg/kg mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
otal aliphatics C5-40 (EH+HS_1D_AL)	<26	<26	<26	<26					<26	mg/kg	тистионногито
C6-C10 (HS_1D_AL)	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1					<0.1	mg/kg	TM36/PM12
C10-C25 (EH_1D_AL)	<10	<10	<10	<10					<10	mg/kg	TM5/PM8/PM16
C25-C35 (EH_1D_AL)	<10	<10	<10	<10					<10	mg/kg	TM5/PM8/PM16
Aromatics											
C5-EC7 (HS_1D_AR)	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1					<0.1	mg/kg	TM36/PM12
EC7-EC8 (HS_1D_AR)	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	< 0.1					< 0.1	mg/kg	TM36/PM12
EC8-EC10 (HS_1D_AR) * EC10-EC12 (EH_CU_1D_AR) *	<0.1 ^{SV} <0.2	<0.1 <0.2	<0.1	<0.1 <0.2					<0.1 <0.2	mg/kg mg/kg	TM36/PM12 TM5/PM8/PM16
EC12-EC16 (EH_CU_1D_AR)*	<4	<4	<4	<4					<4	mg/kg	TM5/PM8/PM16
EC16-EC21 (EH_CU_1D_AR)*	<7	<7	<7	<7					<7	mg/kg	TM5/PM8/PM16
EC21-EC35 (EH_CU_1D_AR)*	<7	<7	<7	<7					<7	mg/kg	TM5/PM8/PM16
EC35-EC40 (EH_1D_AR)	<7	<7	<7	<7					<7	mg/kg	TM5/PM8/PM16
otal aromatics C5-40 (EH+HS_1D_AR)	<26	<26	<26	<26					<26	mg/kg	TMSTMORPMERMI2
tal alphatics and aromatics(C5-40) (EH+HS_CU_1D_Total)	<52 <0.1 ^{sv}	<52	<52 <0.1 ^{sv}	<52					<52	mg/kg	THSTMMPMEPHI2PM
EC6-EC10 (HS_1D_AR) *	<0.1	<0.1 <10	<0.1	<0.1 <10					<0.1 <10	mg/kg mg/kg	TM36/PM12 TM5/PM8/PM16
EC25-EC35 (EH_1D_AR)	<10	<10	<10	<10					<10	mg/kg	TM5/PM8/PM16
	SV.	-	sv								THOOTHA
ATBE [#] Benzene [#]	<5 ^{\$V} <5 ^{\$V}	<5 <5	<5 ^{\$V}	<5 <5					<5 <5	ug/kg	TM36/PM12 TM36/PM12
oluene "	<5 <5 ^{\$V}	<5	<5 <5 ^{SV}	<5					<5	ug/kg ug/kg	TM36/PM12
Ethylbenzene *	<5 ^{SV}	<5	<5 ^{sv}	<5					<5	ug/kg	TM36/PM12
n/p-Xylene *	<5 ^{SV}	<5	<5 ^{SV}	<5					<5	ug/kg	TM36/PM12
-Xylene [#]	<5 ^{SV}	<5	<5 ^{SV}	<5					<5	ug/kg	TM36/PM12
°CB 28 *	<5	<5	<5	<5					<5	ug/kg	TM17/PM8
PCB 52 *	<5	<5	<5	<5					<5	ug/kg	TM17/PM8
PCB 101 *	<5	<5	<5	<5					<5	ug/kg	TM17/PM8
PCB 118*	<5	<5	<5	<5					<5	ug/kg	TM17/PM8
PCB 138*	<5	<5	<5	<5					<5	ug/kg	TM17/PM8
PCB 153	<5	<5	<5	<5					<5	ug/kg	TM17/PM8
PCB 180	<5	<5	<5	<5					<5	ug/kg	TM17/PM8
Fotal 7 PCBs	<35	<35	<35	<35					<35	ug/kg	TM17/PM8

Element Materials Technology

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Ground Investigations Ireland 11877-05-22 Swift Square Northwood James Cashen 22/11741

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

	22/11741							_		
EMT Sample No.	1-4	5-8	9-12	13-16]		
Sample ID	TP-01	TP-01	TP-02	TP-02						
Depth	0.00-1.10	1.10-2.20	0.00-1.10	1.10-2.00					e attached n	
COC No / misc								abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT						
Sample Date	14/07/2022	14/07/2022	14/07/2022	14/07/2022						
Sample Type	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1				LOD/LOR	Units	Metho
Date of Receipt	18/07/2022	18/07/2022	18/07/2022	18/07/2022				LODILOIN	Onits	No.
atural Moisture Content	9.7	10.0	7.2	11.6				<0.1	%	PM4/PN
bisture Content (% Wet Weight)	8.8	9.1	6.7	10.4				<0.1	%	PM4/PM
exavalent Chromium*	<0.3	<0.3	<0.3	<0.3				<0.3	mg/kg	TM38/PN
nromium III	67.7	56.7	50.7	52.9				<0.5	mg/kg	NONE/NC
tal Organic Carbon *	0.59	0.40	0.64	0.36				<0.02	%	TM21/PM
	8.64	8.61	8.49	8.80				<0.01	pH units	TM73/PN
ass of raw test portion	0.0976	0.0997	0.1014	0.0994					kg	NONE/PM
iss of dried test portion	0.09	0.09	0.09	0.09					kg	NONE/PM
						1				1

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Ground Investigations Ireland 11877-05-22 Swift Square Northwood James Cashen 22/11741

Report : CEN 10:1 1 Batch

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

mple No. 1-4 5-8	9-12 13-16		
ample ID TP-01 TP-01	TP-02 TP-02		
Depth 0.00-1.10 1.10-2.20	0.00-1.10 1.10-2.00	Please see attached notes	for all
lo / misc		abbreviations and acrony	yms
ontainers VJT VJT	VJT VJT		
ple Date 14/07/2022 14/07/2022	14/07/2022 14/07/2022		
ple Type Soil Soil	Soil Soil		
Number 1 1	1 1		
Receipt 18/07/2022 18/07/2022	18/07/2022 18/07/2022		No.
<0.002 <0.002	<0.002 <0.002	<0.002 mg/l TM3	30/PM17
10)* <0.02 <0.02	<0.02 <0.02		30/PM17
<0.0025 <0.0025	<0.0025 <0.0025		30/PM17
(0.025 < 0.025	<0.025 <0.025		30/PM
0.019 0.013	0.020 0.008		30/PM17
0.19 0.13	0.20 0.08		30/PM17
<0.0005 <0.0005	<0.0005 <0.0005		30/PM17
(10)* <0.005 <0.005	< 0.005 < 0.005		30/PM17
<0.0015 <0.0015	<0.0015 <0.0015		30/PM1
A10) [#] <0.015 <0.015	<0.015 <0.015		30/PM1
<0.007 <0.007	<0.007 <0.007	<0.007 mg/l TM3	30/PM1
(0.07 <0.07	<0.07 <0.07	<0.07 mg/kg TM3	30/PM1
<0.005 <0.005	<0.005 <0.005	<0.005 mg/l TM3	30/PM1
<0.05 <0.05	<0.05 <0.05	<0.05 mg/kg TM3	30/PM1
0.040 0.012	0.042 0.025	<0.002 mg/l TM3	30/PM1
n (A10) * 0.40 0.12	0.42 0.25	<0.02 mg/kg TM3	30/PM1
<0.002 <0.002	<0.002 <0.002	<0.002 mg/l TM3	30/PM1
* <0.02 <0.02	<0.02 <0.02	<0.02 mg/kg TM3	30/PM1
<0.003 <0.003	<0.003 <0.003	<0.003 mg/l TM3	30/PM17
10) * <0.03 <0.03	<0.03 <0.03	<0.03 mg/kg TM3	30/PM1
<0.003 0.005	<0.003 <0.003	<0.003 mg/l TM3	30/PM1
<0.03 0.05	<0.03 <0.03	<0.03 mg/kg TM3	30/PM1
CVAF < <0.00001 <0.00001	<0.00001 <0.00001		161/PM0
CVAF < <0.0001 < 0.0001	<0.0001 <0.0001	<0.0001 mg/kg TM	161/PM
<0.01 <0.01	<0.01 <0.01	<0.01 mg/l TM:	126/PM0
<0.1 <0.1	<0.1 <0.1	<0.1 mg/kg TM.	126/PM0
<0.3 <0.3	<0.3 <0.3	<0.3 mg/l TM1	173/PM
<3 <3	<3 <3	<3 mg/kg TM1	173/PM
18.0 22.5	12.8 1.8	<0.5 mg/l TM.	138/PM0
180 225	128 18	<5 mg/kg TM	138/PM0
0.4 0.5	0.9 0.4	<0.3 mg/l TM.	138/PM0
4 5	9 4	<3 mg/kg TM.	138/PM0
bon 5 2	6 2	<2 mg/l TM	160/PM0
bon 50 <20	60 <20		160/PM0
7.37 7.76	8.02 8.20		173/PM0
90 95	80 53	<35 mg/l TM.	120/PM
900 950	800 530		120/PMC
			53 <35 mg/l TN

Client Name: Reference: Location: Contact: Ground Investigations Ireland 11877-05-22 Swift Square Northwood James Cashen Report : EN12457_2

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Job No:	22/11741												
EMT Sample No.	1-4	5-8	9-12	13-16]					
Sample ID	TP-01	TP-01	TP-02	TP-02									
Depth	0.00-1.10	1.10-2.20	0.00-1.10	1.10-2.00							Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJT	VJT	VJT	VJT									
Sample Date	14/07/2022												
Sample Type	Soil	Soil	Soil	Soil						1			
Batch Number	1	1	1	1				Inert	Stable Non- reactive	Hazardous	LOD LOR	Units	Method No.
Date of Receipt	18/07/2022	18/07/2022	18/07/2022	18/07/2022						1			
Solid Waste Analysis													
Total Organic Carbon	0.59	0.40	0.64	0.36				3	5	6	<0.02	%	TM21/PM2
Sum of BTEX	<0.025 ^{\$V}	<0.025	<0.025 ^{\$V}	<0.025				6	•	•	<0.025	mg/kg	TM36/PM1
Sum of 7 PCBs*	<0.035	<0.035	<0.035	<0.035				1	•	-	<0.035	mg/kg	TM17/PM
Mineral Oil	<30	<30	<30	<30				500	•		<30	mg/kg	TM5/PM8/PM
PAH Sum of 6	<0.22	<0.22	<0.22	<0.22							<0.22	mg/kg	TM4/PM8
PAH Sum of 17	<0.64	<0.64	<0.64	<0.64				100			<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate													
Arsenic *	<0.025	<0.025	<0.025	<0.025				0.5	2	25	<0.025	mg/kg	TM30/PM
Barium *	0.19	0.13	0.20	0.08				20	100	300	< 0.03	mg/kg	TM30/PM1
Cadmium *	<0.005	< 0.005	<0.005	<0.005				0.04	1	5	<0.005	mg/kg	TM30/PM
Chromium *	< 0.015	< 0.015	<0.015	< 0.015				0.5	10	70	<0.015	mg/kg	TM30/PM1
Copper*	<0.07	<0.07	<0.07	<0.07				2	50	100	<0.07	mg/kg	TM30/PM1
Mercury *	< 0.0001	< 0.0001	< 0.0001	<0.0001				0.01	0.2	2	<0.0001	mg/kg	TM61/PM
Molybdenum *	0.40	0.12	0.42	0.25				0.5	10	30	<0.02	mg/kg	TM30/PM1
Nickel	<0.02	<0.02	<0.02	<0.02				0.4	10	40	<0.02	mg/kg	TM30/PM1
Lead"	<0.05	< 0.05	<0.05	< 0.05				0.5	10	50	<0.05	mg/kg	TM30/PM1
Antimony*	<0.02	<0.02	<0.02	< 0.02				0.06	0.7	5	<0.02	mg/kg	TM30/PM1
Selenium *	<0.03	<0.02	<0.03	< 0.03				0.1	0.5	7	< 0.03	mg/kg	TM30/PM1
Zinc *	<0.03	0.05	< 0.03	< 0.03				4	50	200	< 0.03	mg/kg	TM30/PM1
Total Dissolved Solids	900	950	800	530				4000	60000	100000	<350	mg/kg	TM20/PM
Dissolved Organic Carbon	50	<20	60	<20				500	800	1000	<20	mg/kg	TM60/PM
Dry Matter Content Ratio	91.9	90.1	89.2	90.3							<0.1	%	NONE/PM
Moisture Content 105C (% Dry Weight)	8.8	11.0	12.1	10.7							<0.1	%	PM4/PM0
рН *	8.64	8.61	8.49	8.80							<0.01	pH units	TM73/PM1
Phenol	<0.1	<0.1	<0.1	<0.1				1			<0.1	mg/kg	TM26/PM
Fluoride	<3	<3	<3	<3				10	150	500	<3	mg/kg	TM173/PN
Sulphate as SO4 *	180	225	128	18 4				1000	20000	50000	<5 <3	mg/kg	TM38/PM TM38/PM
Chloride "	-	5	9					800	15000	25000	2	mg/kg	1000710

EPH Interpretation Report

Matrix : Solia

Client Name:	Ground Investigations Ireland
Reference:	11877-05-22
Location:	Swift Square Northwood
Contact:	James Cashen

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	EPH Interpretation
22/11741	1	TP-01	0.00-1.10	1-4	No Interpretation Possible
22/11741	1	TP-01	1.10-2.20	5-8	No Interpretation Possible
22/11741	1	TP-02	0.00-1.10	9-12	No Interpretation Possible
22/11741	1	TP-02	1.10-2.00	13-16	No Interpretation Possible

Client Name:
Reference:
Location:
Contact:

Ground Investigations Ireland 11877-05-22 Swift Square Northwood James Cashen

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Asbestos subsamples are retained for not less than 6 months from the date of analysis unless specifically requested.

The LOQ of the Asbestos Quantification is 0.001% dry fibre of dry mass of sample.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

Where trace asbestos is reported the amount of asbestos will be <0.1%.

	MT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analyst Name	Date Of Analysis	Analysis	Result
22/	11741	1	TP-01	0.00-1.10	4	Rebecca Collins	21/07/2022	General Description (Bulk Analysis)	brown sandy clay and stone
1						Rebecca Collins	21/07/2022	Asbestos Fibres	NAD
						Rebecca Collins	21/07/2022	Asbestos ACM	NAD
						Rebecca Collins	21/07/2022	Asbestos Type	NAD
22/	11741	1	TP-01	1.10-2.20	8	Rebecca Collins		General Description (Bulk Analysis)	brown sandy clay and stone
						Rebecca Collins	21/07/2022	Asbestos Fibres	NAD
						Rebecca Collins	21/07/2022	Asbestos ACM	NAD
						Rebecca Collins	21/07/2022	Asbestos Type	NAD
22/	11741	1	TP-02	0.00-1.10	12	Rebecca Collins	21/07/2022	General Description (Bulk Analysis)	brown sandy clay and stone
						Rebecca Collins	21/07/2022	Asbestos Fibres	NAD
						Rebecca Collins	21/07/2022	Asbestos ACM	NAD
						Rebecca Collins	21/07/2022	Asbestos Type	NAD
22/	11741	1	TP-02	1.10-2.00	16	Andrew Alker	21/07/2022	General Description (Bulk Analysis)	brown soil and stone
						Andrew Alker	21/07/2022	Asbestos Fibres	NAD
						Andrew Alker	21/07/2022	Asbestos ACM	NAD
						Andrew Alker	21/07/2022	Asbestos Type	NAD

Notification	of	Deviating	Samples
--------------	----	-----------	---------

Client Name:	Ground Investigations Ireland
Reference:	11877-05-22
Location:	Swift Square Northwood
Contact:	James Cashen

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 22/11741	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 22/11741

SOILS and ASH

ese note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at $35^{\circ}C \pm 5^{\circ}C$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ}C \pm 5^{\circ}C$. Ash samples are dried at $37^{\circ}C \pm 5^{\circ}C$.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

cient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated ks.

Please include all sections of this report if it is reproduced All solid results are expressed on a dry weight basis unless stated otherwise.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have new met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

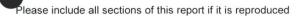
Sample ID and depth is information provided by the customer.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
w	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
Ν	Client Sample
ТВ	Trip Blank Sample
ос	Outside Calibration Range

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
си	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.


EMT Job No: 22/11741

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
ТМ5/ТМ36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
тм20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes

EMT Job No: 22/11741

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
тмзо	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
тмзо	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
тмзо	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
ТМ36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
ТМ36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
тм38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.	Yes		AR	Yes
тмзв	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007	PM0	No preparation is required.	Yes		AR	Yes

Method Code Appendix

Method Code Appendix

EMT Job No: 22/11741

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM65	Asbestos Bulk Identification method based on HSG 248 Second edition (2021)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
тм73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.			AR	Yes
ТМ73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention :	James Cashen
Date :	4th August, 2022
Your reference :	11877-05-22
Our reference :	Test Report 22/12292 Batch 1
Location :	Swift Square Northwood
Date samples received :	28th July, 2022
Status :	Final Report
Issue :	1

Five samples were received for analysis on 28th July, 2022 of which five were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Ly Kn

Liza Klebe Project Co-ordinator

Please include all sections of this report if it is reproduced

Ground Investigations Ireland 11877-05-22 Swift Square Northwood James Cashen 22/12292

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

	James Ca 22/12292	isnen								
EMT Sample No.	1-4	5-8	9-12	13-16	17			 1		
			0.12	10 10						
Sample ID	BH01	BH01	BH02	BH02	BH02					
Depth	0.50	2.00	0.50	1.00	3.00				e attached n	
COC No / misc								abbrev	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT	т					
Sample Date	26/07/2022	26/07/2022	26/07/2022	26/07/2022	26/07/2022					
Sample Type	Soil	Soil	Soil	Soil	Soil					
Batch Number	1	1	1	1	1			LOD/LOR	Units	Method
Date of Receipt	28/07/2022	28/07/2022	28/07/2022	28/07/2022	28/07/2022					No.
Antimony	<1	2	5	3	-			<1	mg/kg	TM30/PM15
Arsenic *	2.2	10.4	439.7 _{AA}	12.2	-			<0.5	mg/kg	TM30/PM15
Barium	38	129	73	150	-			<1	mg/kg	TM30/PM15
Cadmium * Chromium *	0.6 13.1	1.4 32.1	0.2 79.7	2.2 48.3				<0.1 <0.5	mg/kg mg/kg	TM30/PM15 TM30/PM15
Copper [#]	6	26	32	29	-			<1	mg/kg	TM30/PM15
Lead "	<5	18	27	25	-			<5	mg/kg	TM30/PM15
Mercury *	<0.1	<0.1	<0.1	<0.1	-			<0.1	mg/kg	TM30/PM15
Molybdenum *	1.0	4.7	5.8	3.9	-			<0.1	mg/kg	TM30/PM15
Nickel *	7.0	39.8	50.8	47.6	-			<0.7	mg/kg	TM30/PM15
Selenium *	<1	3	2	2	-			<1	mg/kg	TM30/PM15
Zinc *	9	81	118	162	-			<5	mg/kg	TM30/PM15
PAH MS							 A			
Naphthalene	<0.04	<0.04	<0.04	<0.04				< 0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03 <0.05	<0.03 <0.05	<0.03 <0.05	<0.03 <0.05				<0.03 <0.05	mg/kg mg/kg	TM4/PM8 TM4/PM8
Fluorene	<0.04	<0.04	<0.04	<0.04				<0.03	mg/kg	TM4/PM8
Phenanthrene *	< 0.03	0.05	<0.03	<0.03				<0.03	mg/kg	TM4/PM8
Anthracene *	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Fluoranthene *	<0.03	<0.03	<0.03	<0.03				<0.03	mg/kg	TM4/PM8
Pyrene *	0.20	<0.03	<0.03	<0.03	-			<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene	0.14	<0.06	<0.06	<0.06	•			< 0.06	mg/kg	TM4/PM8
Chrysene [#] Benzo(bk)fluoranthene [#]	0.20 <0.07	0.04 <0.07	<0.02 <0.07	<0.02 <0.07				<0.02 <0.07	mg/kg mg/kg	TM4/PM8 TM4/PM8
Benzo(a)pyrene	0.07	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene #	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene *	<0.04	<0.04	<0.04	<0.04	-			<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	<0.04	<0.04	<0.04	<0.04	-			<0.04	mg/kg	TM4/PM8
Coronene	<0.04	<0.04	<0.04	<0.04	-			<0.04	mg/kg	TM4/PM8
PAH 6 Total	<0.22	<0.22	<0.22	<0.22	•			<0.22	mg/kg	TM4/PM8
PAH 17 Total	< 0.64	<0.64 <0.05	<0.64 <0.05	<0.64 <0.05				<0.64 <0.05	mg/kg	TM4/PM8 TM4/PM8
Benzo(b)fluoranthene Benzo(k)fluoranthene	<0.05 <0.02	< 0.05	<0.05	<0.05				<0.05	mg/kg mg/kg	TM4/PM8 TM4/PM8
Benzo(j)fluoranthene	<1	<1	<1	<1				<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	79	79	74	83	-			<0	%	TM4/PM8
Mineral Oil (C10-C40) (EH_CU_1D_AL)	54	<30	<30	<30				<30	mg/kg	TM5/PM8/PM16