

The second se	-

Digital Cartographic Model (DCM)

Publisher / Source:

Ordnance Survey Ireland (OSI)

Data Source / Reference:

PRIME2

File Format: Autodesk AutoCAD (DWG_R2013)

File Name:

v_50235911_1.dwg

Clip Extent / Area of Interest (AOI); LLX,LLY= 705898.984,778067.7008 LIX,LLY= 705898.984,778067.7008 ULX,LLY= 705898.984,778682.7008 URX,LIXY= 705819.984,778682.7008

ection / Spatial Reference:

Projection= IRENET95_Irish_Transverse_Mercator

Reference Index: Map Series | Map Sheets 1:2,500 | 2318-B

Data Extraction Date: Date= 26-Nov-2021

Source Data Release: DCLMS Release V1.146.112

Product Version:

/ersion= 1.3

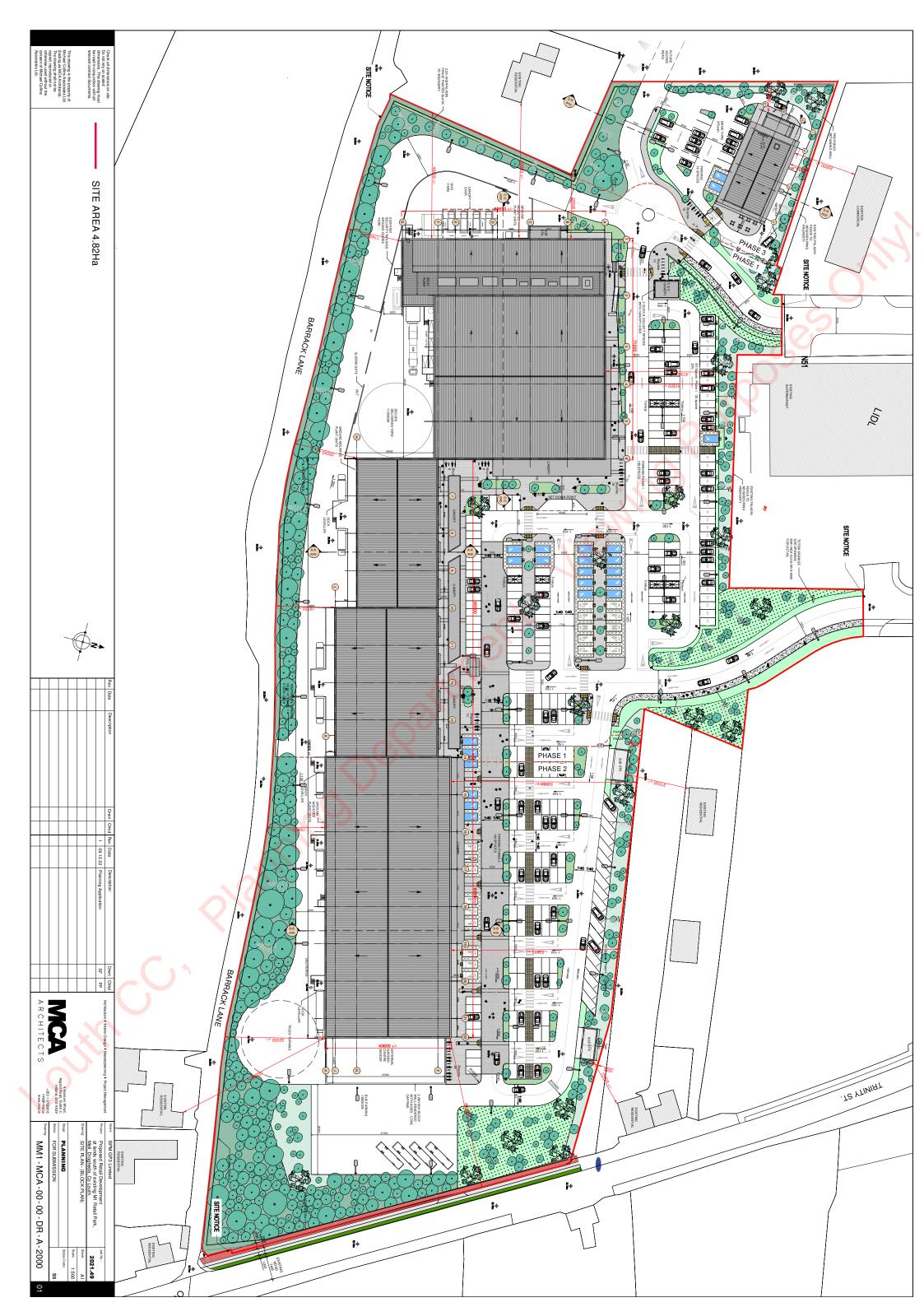
License / Copyright: Ordnance Survey Ireland Terms of Use' apply. Please visit Yww.csi.le/aboutharms-conditions'.

© Ordnance Survey Ireland, 2021 Compiled and published by Ordnance Survey Ireland, Phoenix Park, Dublin 8, Ireland.

(C) ORDMANCE SURVEY IRELAND LICENCE NO. AR 0016222 (C) ORDMANCE SURVEY IRELAND AND GOVERNMENT OF IRELAND

OS MAP

SITE BOUNDARY OUTLINED N RED ADJONING LANDS IN THE SAME OWNERSHP OUTLINED N BLUE WAYLEAVES HIGH LIGHTED N YELLOW

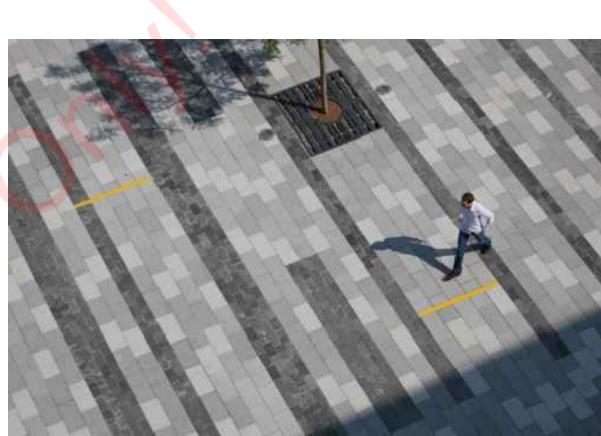


4 Hano ver Wharf, Stope Ang and Read (Jublin 2) Horizm L Dice Hot2) Status +3551 H Once Hot2 Integermasia www.mcta.io

_	- 1000	MTH - MCA - 00 - 00 - DR - A - 1000	Cuper.
	S5	Mus: FOR SUBMISSION	tatus: B
	Status Code:	PLANNING	tiçi:
-	Scale: 1:1,000		
-	Seet: AC	revine Site Location Map	Ourse :
-	2021.49	south of existing M1 Hetail Park, Mell, Drogheda, Co Louth	
	Job No.:	Proposed Retail Development at lands	roject:

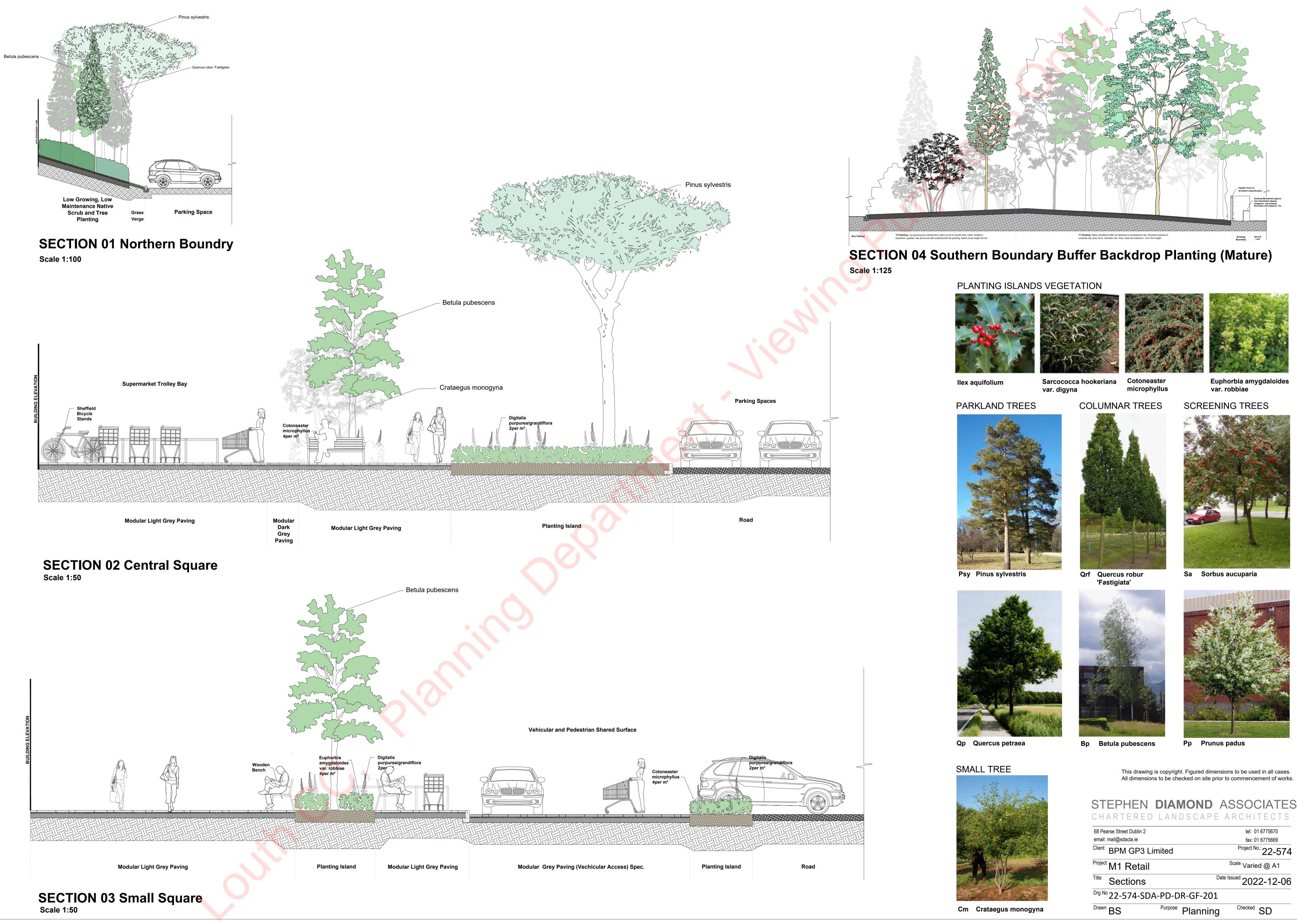
Client: Project:

All trees to be provided with 1.2m3 multi-purp where appropriate to ensure adjacent paving					
Pinus Sylvestris (Scots Pine)		ar stemmed to 2m h		—	
Quercus petraea (Oak)		16-18 cmg clear stemmed to 2m height planted to Planting Detail A			
Belula pubescens (Downy Birch)		ar stemmed to 2m h			
Belula pubescens (Downy Birch)					
Quercus robur 'fastigiata' (Columinar Oak)		16-20 cmg clear stemmed to 2m height planted to Planting Detail A			
Quercus robur 'festigiete' (Columinar Oek)	-	iar stemmed to 2m h		-	
Crataegus monogyna (Common Hawthom)	-			m base 14-16cmg) plan	ted to Planting Detail A
Sorbus aucuparia (Rowan)	•	iar slemmed to 2m h	•	•	
Prunus padus (Bird Cherry)	18•20 cmg cle	iar stemmed to 2m h	eight planted to f	Planting Detail A	
<u>Shrubs & Perennials</u> Excavate to 400mm depth and back/ill with 3	10 mm multi nu	inace stade topcal t	- BE3893 and I	on with non-woven 90ac	im black
geotextile landscape weed-guard type fabric	•	. – .		op with hon-woven avga	
Species	Height (cm)	Pot Size	Density	Container-grown (cg) / Bare Root (br)	Quality Specification
Rowering Evergreen Perennial Mix	2	plants per m²			
Digitalis purpurea	40-60cm	20		cg	
Digitalis grandifiora	40-60cm	2lt		cg	
Single Species					
Excavate to 400mm depth and backfill with 3 geotextile landscape weed-guard type fabric				op with non-woven 90gs	/m black
Shrubs	4	per m2			
llex Aquifolium (Holly)	40-60cm	211		~~	
Coloneaster microphyllus	40-60cm	2it		cg cg	
Sarcococca hookeriana var digyna	40-60cm	2it		cg	
Euphorbia amygdaloides var. robbiae	40-60cm	20		cg	
Native woodland transplant mix in double	2	! plants per m*			
slaggered row					
Pinus Sylvestris (Scots Pine)	40-60cm	Transplant 1+1		br	
Quercus petraea (Oak)	40-60cm	Transplant 1+1		br	
Beluie pubescens (Downy Birch)	40-50cm	Transplant 1+1		br	
Sorbus aucuparia (Rowan)	40-60cm	Transplant 1+1		br	
llex Aquifolium (Holly)	40-60cm	Transplant 1•1		br	
Corylus avellana (Hazel)	40-60cm	Transplant 1+1		br	
Crataegus monogyna (Common Hawthorn)	40-60cm	Transplant 1+1		br	
Prunus padus (Bird Cherry)	40-60cm	Transplant 1+1		br	
Native scrub transplant mix in double	2	l plants per m ²			
slaggered row	40.00	54			Duration E traine in Lawrence 4.3
llex Aquifolium (Hally)	40-60cm	2lt		¢ĝ	Bushy 5 brks in Lower 1/
Corylus availana (Hazel)	40-60cm	Transplant 1+1		br	
Cretaegus monogyna (Common Hawthorn)	40-60cm	Transplant 1+1		br	
Prunus spinosa (Blackthorn/Sice)	40-60cm	Transplant 1+1		14	
Viburnum opulus (Guelder Rose)					
Ligustrum vulgare (Privel)	40-60cm 40-60cm	Transplant 1+1 Transplant 1+1		Dr br	


	SPECIFICATION KEY
	BRUSHED CONCRETE TO FOOTPATH
	PERMEABLE MODULAR PAVING TO PEDESTRIAN AREAS
	RIGID BOUND IMPERMEABLE MODULAR PAVING TO SHARED SURFACE FOR TRAFFIC LOADINGS
R	 SEATING: S59.2ms by OMOS 4 leg seat for ground fixing or free standing in galvanised mild steel with polyester powder coating and treated hardwood laths Dimensions: 1860mm (L) x 629mm (D) x 819mm (H)
# #	SHEFFIELD BICYCLE STANDS
	 LOW GROWING LOW-MAINTENANCE Pollinator Friendly Ground Cover Planting to BS3882 multi-purpose topsoil on free-draining sub-base, topped with 90gs/m² black landscape fabric and 50mm depth medium-grade pine bark mulch.
	 TRANSPLANT PLANTING - WOODLAND (T1) Excavate planter to 400mm depth and break up base of planted area to ensure free-drainage to subsoil. Remove excavated material and any builder's rubble before back-filling with min. 300mm depth multi-purpose grade topsoil to BS:3882 (to be approved by LA). Apply non-woven Weed-guard type filter geotextile membrane landscape fabric, black colour, 90g/m² Weedguard by Terram or EQA. 75mm depth medium grade bark mulch topping.

 Semi-mature trees provided with 1200mm³ multi-purpose grade topsoil to BS: 3882, topped with black 90gs/m² landscape fabric secured with plastic pegs at 300mm c/cs & 75mm depth medium-grade bark mulch.
Trees double- staked & supplied with planting accessories, and provided with root Trees double- staked a supplied with planting accessories, and provided with root restrictors within 2m of paving, underground services and foundations.
 Apply non-woven Weed-guard type filter geotextile membrane landscape fabric, black colour, 90g/m² Weedguard by Terram or EQA. SEMI-MATURE NATIVE TREES • Semi-mature native species provided with 1200mm³ multi-purpose grade topsoil to BS: 3882, topped with black 90gs/m² landscape fabric secured with plastic pegs at 300mm c/cs & 75mm depth medium-grade bark mulch. Trees double- staked & supplied with planting accessories, and provided with root restrictors within 2m of paving, underground services and foundations. Apply non-woven Weed-guard type filter geotextile membrane landscape fabric, F.F. black colour, 90g/m² Weedguard by Terram or EQA.

- parking to present a maintained appearance.
- 4. Shared surface modular paving to define pedestrian priority, slow vehicles and enhance safety.
- 5. Modular paving to pedestrian areas.


- TE+ Top of Edging

This drawing is copyright. Figured dimensions to be used in all cases. All dimensions to be checked on site prior to commencement of works.

	•	
STEPHEN	DIAMOND A	SSOCIATES
CHARTEREE	D LANDSCAPE	ARCHITECTS
68 Pearse Street Dublin 2		tel: 01 6775670
email: mail@sdacla.ie		fax: 01 6775669
Client BPM GP3 L	imited	Project No.: 22-574
Project M1 Retail		^{Scale} 1:500 @ A1
Title Landscap	e Masterplan	e Issued 2022-12-06
Drg No 22-574-SD	A-PD-DR-GF-001	
Drawn BS	Purpose Planning	Checked SD

	IOND ASSOCIATES DSCAPE ARCHITECTS
68 Pearse Street Dublin 2	tel: 01 6775670
email: mail@sdacla.ie	fax: 01 6775669
Client BPM GP3 Limited	Project No.: 22-574
Project M1 Retail	^{Scale} Varied @ A1
Title Sections	Date Issued 2022-12-06
Drg No 22-574-SDA-PD-DI	R-GF-201
Drawn DO Purpose	Checked OD

RETAIL IMPACT ASSESSMENT

RETAIL IMPACT ASSESSMENT

Retail/Commercial Development

Lands to the south of the existing M1, Retail Park, Mell, Drogheda, Co. Louth

Louth County Council

December 2022

SUBMITTED ON BEHALF OF: BPM GP3 Limited

Table of Contents

1.0	Introduction	.3
2.0	Assessment of the Context	.4
2.1	Site Location and Description	.4
2.3	Profile of the Application Site	.7
3.0	Proposed Development	.7
4.0	Assessment Criteria	9
4.1	Proposed Occupation	20
4.2	Design Year	21
5.0	Strategic Policy Context	21
5.1	Retail Planning Guidelines for Planning Authorities (2000, Revised 2005 and 2012)	21
5.2	Louth County Development Plan & Retail Strategy	23
6.0	Assessment of Retail Impact	
6.1	Defining the Catchment Area	30
6.2	Catchment Area Population	32
6.3	Estimated Available Expenditure	34
6.4	Turnover Estimates	
7.0	Conclusion	39

CGI of the proposed scheme as prepared by Digital Dimensions

1.0 Introduction

This Retail Impact Assessment has been prepared by Hughes Planning and Development Consultants, 85 Merrion Square, Dublin 2, on behalf of our clients BPM GP3 Limited, in respect of a proposed retail development on greenfield lands, located to the immediate south of the existing M1 Retail Park, Mell, Drogheda, Co. Louth. For clarity, it is noted that the existing M1 Retail Park was initially approved by Louth County Council under **Reg. Ref. 03510292** in April 2004. This parent permission has been subject to a number of alterations applications since the original grant of permission.

A full description of the proposed development is set out in Section 4.0 of this report. The purpose of this report is to provide a rationale, in qualitative terms, for retail development on the subject lands. This assessment will have due regard to the vitality and viability of the catchment area in relation to a planning application for a retail development of a significant scale and involves a detailed analysis of the relevant planning policy context as well as a statistical analysis. The assessment has been prepared in conjunction with a comprehensive Sequential Test which will consider alternative sites and provide a justification for the final chosen location for the proposed development.

This assessment has regard to the Retail Planning Guidelines methodology and appropriately uses current, most up-to-date figures to provide a robust assessment. The Louth Retail Strategy 2021-2027, included as part of the Louth County Development Plan 2021-2027 was also consulted throughout the design evolution and during the preparation of this report. This Retail Impact Assessment provides an assessment of the likely impacts of additional retail comparison and warehouse/bulky goofs floor space upon the vitality and viability of Drogheda Town Centre, allowing the Planning Authority to identify the effects (if any) or change in the economic pr physical environment that may be resultant from any such addition.

As will be demonstrated as part of the accompanying Sequential Test, it is submitted that given the scale of development proposed, cannot be accommodated on an alternative site within the retail core area of Drogheda. Moreover, it is not considered that there is another more suitable location for the subject development, with the subject site neighbouring an existing, established and commercially strong Retail Park, The M1 Retail Park. Whilst the proposed development does not represent an extension to the existing M1 Retail Park, both the existing and proposed retail developments will be complimentary of one another, delivering significant improvements to the offering of Drogheda, and the operation of the existing M1 Retail Park, whilst also providing for an enhanced customer experience. By locating the proposed retail development adjacent lands will see a concentration of retail floor space in one accessible and established retail destination. Having regard to the ongoing commercial success of the existing M1 Retail Park, it is considered that the provision of a wider variety of shopping opportunities will significant bolster is successful functioning.

In addition to the above, it is also noteworthy that the proposed retail comparison and retail warehouse floor space is seeking to counterbalance the leakage of comparison and bulky goods expenditure to other competing centres outside of the county by increasing the service offering to the residents of Louth. This Retail Impact Assessment will demonstrate that there is sufficient capacity within County Louth to accommodate the proposed retail development and that there will be no resultant adverse impacts on the viability and vitality of Drogheda Town Centre.

There are three key impacts that should be considered as part of any retail development application, particularly those which are of a significant scale. These include social, economic and environmental impacts as summarised below:

- Social Impacts these relate to demographic and behavioural change, considering the social role of town centres and indicating if there would be any impact on shopper profiles as a result of new retail development;
- **Economic Impacts** these relate to changes in retail turnover or trading patterns resultant from new retail developments. The creation of employment opportunities as well as growth in retail expenditure are particularly relevant.

• **Environmental Impacts** – these generally relate to traffic impacts and issues relating to the sustainability of new retail developments.

Taking the above into consideration, we note that restricting competition or preserving existing commercial interests is not within the remit of the planning system, rather the primary consideration should be the effect of any such retail proposal, if any, on the vitality and viability of a town centre. This is particularly pertinent given the direction of national, regional and local level planning policy which promotes the town centre approach in the first instance, and where appropriate.

We also note that the proposed retail/commercial development will also generate a significant economic spinoff, both in terms of construction stage, providing employment for construction workers and at operational stage, providing full and part-time employment positions for residents of Drogheda and the county more broadly.

In the context of the proposed development, it is contended that the growing population and expenditure capacity of the surrounding area of Drogheda will serve to support an increase in retail floorspace at this location.

2.0 Assessment of the Context

2.1 Site Location and Description

The proposed development site, of c. 4.82hectares, is situated to the immediate south of the existing M1 and approximately 554 metres west of the M1. The site comprises of greenfield lands and is bound to the east by Trinity Street (R168), to the north by the existing M1 Retail Park, to the south by Barrack Lane, and to the west by undeveloped greenfield lands, which are also within the ownership of the applicant. The site is accessible at Junction 9, off the M1, with access also easily available from the nearby Drogheda Town Centre which is approximately 2.5km southeast of the subject lands. The sites eastern boundary fronts the adjacent R168 Regional Road (Trinity Street) for approximately 130 metres, the N51 National Road is also located due north of the lands. The site is currently obsolete, with an entrance and access path running through the site from its eastern frontage to the north-western boundary.

Figure 1.0 Aerial image showing the wider locational context surrounding the subject site.

With respect to public transport, it is noted that there is a serviced bus stop located within the M1 retail park, which serves Bus Eireann routes 190 (Drogheda Bus Station – Trim Castle) and 173 (St. Peter's Church Drogheda – Marley's Lane Drogheda). At present, the M1 Retail Park comprises a number of national and international bulky comparison retailers including, Woodie's, Smyths Toys, Brand Max,

Hubert Tully, Choice Drogheda, Lidl, Equipet, Choice Drogheda and Power City to cite a few. The eastern portion of the subject site also comprises 2 no. car dealerships, Western Motors, and Malones Toyota, whilst Costa Coffee and Supermac's are located along the northern extremities of the park. A range of national and international bulky comparison retailers are located within the M1 Retail Park and Drogheda Retail Park.

Figure 2.0 Aerial image showing the immediate locational context surrounding the subject site.

Figure 3.0 Aerial image indicating the existing businesses located within the neighbouring M1 Retail Park.

Figure 4.0 Street view image showing the existing access gate and eastern site boundary.

As is indicated in the above street view image the eastern site boundary is bordered by a gate and is heavily vegetated and overgrown at present. It is also noted that there are some single and two-storey dwellings located adjacent to the northern, southern, and western site boundaries, with Barrack Lane flanking the site to the immediate south. Drogheda Recycling Centre is also located adjacent to the site, on the eastern side of Trinity Street.

Figure 5.0 Aerial image showing the subject site's abuttals (subject site highlighted in red).

Figure 6.0 Aerial views of the subject site looking east (left) and looking south (right)

Figure 7.0 Street view image of the subject site looking west from Barrack Lane (left) and north along Trinity Street (right).

2.3 Profile of the Application Site

To demonstrate the necessity and appropriate scale of retail provision within the proposed scheme, this section provides an overview of the characteristics of the application site within the context of the surrounding area.

The application site constitutes an out-of-centre location situated on the periphery of Drogheda Town, immediately adjacent to the existing M1 Retail Park. Drogheda is an industrial and port town in County Louth in the east coast of Ireland, c. 56 kilometres north of Dublin. The town is located on the Dublin-Belfast corridor and is mostly situated within County Louth, with the south fringes of the town stretching to County Meath. Drogheda is designated at a Regional and Local level as a *Regional Growth Centre* and is noted as being the fastest growing town in the Country. *Regional Growth Centres* are defined within the Regional Spatial and Economic Strategy for the Eastern and Midland Region (RSES) as 'Large towns with a high level of self-sustaining employment and services that act a regional economic driver and play a significant role for a wide catchment area.' The role of these Regional Growth Centres as stated within the RSES is 'to serve as focal point to gain critical mass and to deliver positive impacts to their surrounding areas and enhance overall regional and national growth.' It is further stipulated that the growth strategy for the Eastern and Midland Region Growth Centres, including Drogheda.

According to the 2016 census data, Drogheda has maintained its position as the largest town in Ireland with a population of **40,956 persons**. At the time of preparing this Retail Impact Assessment, the preliminary Census results for 2022 were available. These results indicate that the population of Drogheda increased exponentially to **46,280 persons**, up from just under 41,000 in 2016.

The subject site and the adjacent M1 Retail Park fall within the St. Peter's, Louth, Electoral division which has an estimated area of 38.7km. According to the 2016 Census summary, the total population of this Electoral Division in 2016 was **9,721 persons.** The preliminary Census 2022 results indicate that this figure rose to **10,858 persons** over the period from 2016-2022, representing a percentage change of **11.7%**. Given that the 2022 Census results are preliminary in nature at this stage, the assessment section of this report will utilise the published 2016 Census data its baseline.

3.0 Proposed Development

The proposed development seeks permission for the construction of a retail/commercial development comprising a total 10 no. retail/commercial units ranging in size from **c. 300sq.m** to **4,085 sq.m gfa** to be constructed in **three phases.** In summary the overall development comprises 1 no. part-licenced anchor retail supermarket store (Unit 1) (4,085sq.m gfa), a DIY/Home store, including a garden centre (Unit 10)(2,350sq.m gfa), 8 no. smaller retail/commercial units, including a café and a pharmacy (Units 2-8)(ranging in size from 300sq.m – 760sq.m gfa) and 1 no. single storey Drive-Thru Restaurant/Café unit (375sq.m gfa). For clarity, the table below indicates the gross and net floor areas of each of the proposed units:

Pro	posed Retail/Commercial Development –	Schedule of Areas	
Unit No.	Proposed Use	Gross Floor Area (GFA) (Sq.m)	Nett Floor Area (NFA) (Sq.m)
	Phase 1		
1	Supermarket	4,085	2750
2	Coffee Shop / Tearoom	300	294
3	Shop	300	294
4	Shop	600	594
5	Shop	380	374
6	Shop	380	374
7	Pharmacy	760	754
	Total Phase 1	6,805	5,434
	Phase 2		
8	Shop	460	454
9	Shop	700	694
10	Diy / Home / Leisure	2350	2344
	Total Phase 2	3,510	3,492
	Phase 3		
	Drive Thru	375	375
	Total Phase 3	375	375
	TOTAL (Phase 1, Phase 2, Phase 3)	10,690	9,301

As is indicated in the Masterplan drawing below, prepared by MCA Architects, a deliveries area, service yard and plant compound will be provided to the side (south) and rear (west) of Retail Unit 1, a dedicated set down point is also proposed adjacent to the front entrance of Retail Unit 1. Deliveries for Units 2-10 will be accommodated to the rear (south) of the proposed units, with a HGV turning area provided to the rear of Unit 10.

A surface car park is proposed to serve the proposed development, with a total of 311 no. car parking spaces and 104 no. bicycle parking spaces proposed to serve Units 1-10 and the proposed Drive-Thru unit. Included in this calculation are 23 no. accessible parking spaces, 2 no. click and collect spaces and 17 no. parent and child spaces. A bus/coach parking area is also proposed within the eastern section of the site, adjacent to the sites Trinity Street frontage. The proposed Drive-Thru unit is served by 19 no. car parking spaces and 12 no. bicycle parking spaces.

Car Parking	Schedule
Phase 1 (Units 1-7)	188 no. spaces
Phase 2 (Units 8-10)	104 no. spaces
Phase 3 (Drive-Thru)	19 no. spaces
Total	311 no. spaces

As demonstrated in the above drawing extract, access to the proposed development will be provided via the existing M1 Retail Park to the north, with 2 no. separate connection points proposed; one of which provide direct access to the western portion of the site and the second which will provide access to the central and eastern portion of the site. The proposed internal road network will seamlessly connect to the existing network within the main Retail Park.

Figure 9.0 Aerial view showing the proposed vehicular connection points (indicated with green stars).

The proposed layout also incorporates pedestrian walkways and pedestrian crossings, providing for a pedestrian friendly environment. The proposal also includes the provision of footpaths and hard and soft landscaping, creating a quality public realm which will aid in creating a people centred space for future customers.

As indicated above, a phasing plan has been developed for the construction of the proposed scheme, further details on each of the proposed phases of construction are outlined under the headings below. The proposed phasing is considered to represent a logical progression of development across the site,

ensuring that development can proceed in an orderly fashion on the lands, whilst providing for significant elements of planning gain.

<u> Phase 1 – Units 1-7</u>

Phase one will compromise the construction of 7 no. retail units (Units 1-7) including Unit 1 which is proposed to comprise a large anchor supermarket (4,085q.m gfa) which will be located within the western portion of the subject lands, with the entrance facing east, and will include a loading and deliveries area to the rear. The 6-no. remaining retail units will range from 300sq.m to 760sq.m, including a coffee shop/tea room (300sq.m gfa) (Unit 2) and a Pharmacy (760sq.m gfa) (Unit 7).

A total of 188 no. parking spaces are proposed to be provided as part of Phase 1 of the overall development, together with the delivery of the 2 no. road connections to the adjacent M1 Retail Park to the north. Pedestrian footpaths, circulation spaces and pedestrian crossings, trolly bays and bicycle parking spaces will also be provided as part of Phase 1. Soft and hard landscaping will be provided along the site and road boundaries and between parking bays to enhance the visual aesthetic of the scheme as well as provide a degree of screening from adjoining roads and residential properties.

Figure 10.0 Extract from the Site Plan drawing as prepared by MCA Architects, indicating the extent of the proposed Phase 1 (Units 1-7).



Figure 11.0 Extract from the ground floor plan showing Units 1-6 (Phase 1).

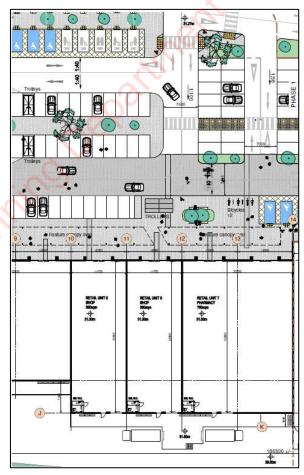


Figure 12.0 Extract from the ground floor plan showing units 5-7 (Phase 1).

Figure 13.0 Architectural model demonstrating the proposed units featuring within Phase 1 (Units 1 -7).

Figure 14.0 Architectural model demonstrating the elevational treatment of the proposed units featuring within Phase 1 (Units 1-7).

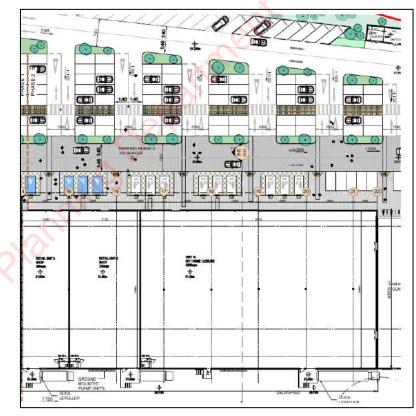
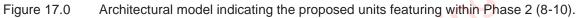
Phase 2 (Units 8-10)

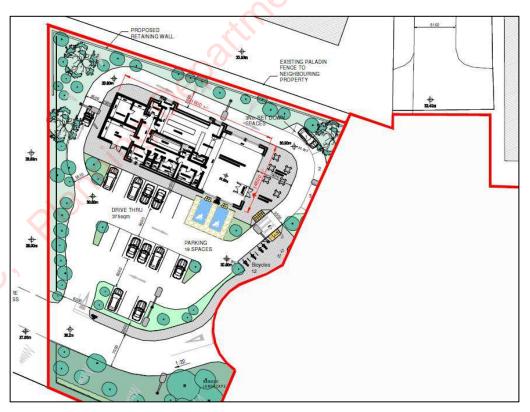
Phase 2 will be located within the eastern portion of the subject site and will comprise 3 no. retail/commercial units (Units 8-10) ranging in size from 460sq.m to 2,350sq.m (gfa), with the most eastern unit being a secondary anchor store (2,350sq.m gfa) comprising a DIY/Home store and an adjoining garden centre area. These units are orientated with north facing entrances and loading and deliveries area to the rear (south) of each unit.

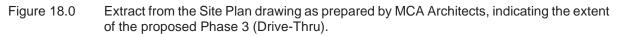
104 no. car parking spaces are provided to serve retail Units 8-10, together with a bus/coach parking area to adjacent to the eastern site boundary. A large landscaped green space will feature along the eastern boundary, providing a degree of visual separation between the proposed scheme and the

adjoining Trinity Road. Pedestrian crossings, footpaths and a pedestrian circulation space is proposed to the front of the units, providing sufficient space for movement and public interaction.

Figure 15.0 Extract from the Site Plan drawing as prepared by MCA Architects, indicating the extent of the proposed Phase 2 (Units 8-10).


Figure 16.0 Extract from the ground floor plan showing units 8-10 (Phase 2).



<u> Phase 3 – Drive-Thru</u>

Phase 3 of the overall development comprises the provision of a single-storey Drive-Thru Restaurant/Café unit (375 sq.m gfa) within the western most portion of the subject site, including an internal access road, a surrounding pedestrian circulation area and an external seating area. A total of 19 no. car parking spaces and 12 no. bicycle parking spaces are provided to serve this unit. The drive through is accessible via the proposed internal roundabout. 3 no. set-down spaces are also proposed to serve the drive thru unit.

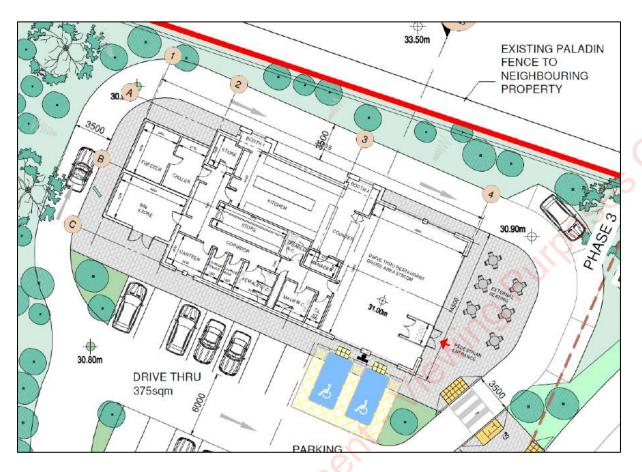


Figure 19.0 Extract from the ground floor plan showing the proposed Drive-Thru unit (Phase 3).

As indicated in the above drawing extracts, the proposed development will be of a high-quality design and of an appropriate scale, relative to the site's surrounding context. The development has also been designed by the project architects to ensure that ease of circulation for pedestrians and vehicles.

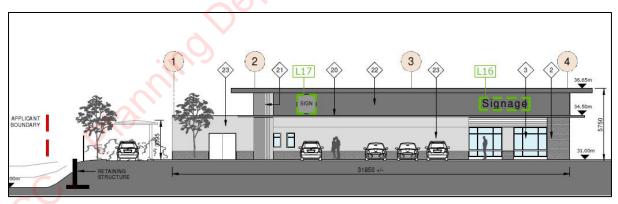


Figure 20.0 South elevation of the proposed Drive-Thru unit (Phase 3).

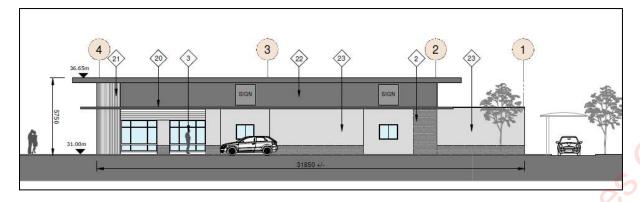


Figure 21.0 North elevation of the proposed Drive-Thru unit (Phase 3).

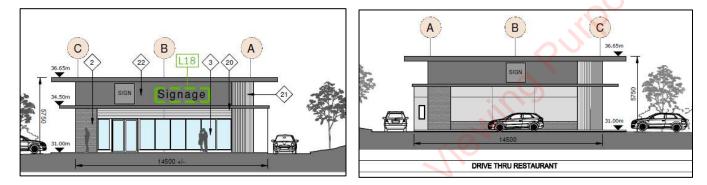


Figure 22.0 East (left) and west (right) elevations of the proposed Drive-Thru unit (Phase 3).

The overall intent of the proposed development is to enhance an existing prominent economic driver in the area and provide a destination that offers more than just shopping. The future development of the area, we believe, can deliver a long-term sustainable asset with seamless linkages between land uses, the public realm, and the community, generating employment and attracting people to come together, interact and creating an added sense of community.

The proposed development will attract new retailer representatives into the county and deliver an increased diversity of uses that will synergise with the retail offer and existing built environment. Supporting the proposed development means promoting enterprise, associated benefits in terms of new industries and services gravitating to the area and employment generation to support same. By attracting recognised drivers and achieving competitive advantages, the town and county can benefit from inward investment and overall economic regeneration.

Not only will the proposal effectively bring numerous jobs to the area and the city more broadly, but we believe it will also breathe new life into the site and area more broadly. It must be noted also that the site has been zoned for mixed-use type development for some time, and we are fully cognisant of the strategic qualities associated with same and aspire to create an imaginative, energetic, and vibrant area which provides new jobs and bolsters the economic profile of Drogheda.

Public Realm and Landscaping

A landscape strategy for the proposed scheme has been developed by Stephen Diamond and Associates as part of this application, an extract from which is included below. It is proposed to incorporate various types of hard and soft landscaping, with a mix of lawned areas, wildflower meadows and semi-mature tree planting proposed along the site boundaries, road edges and bookending the proposed parking bays. Brushed concrete footpaths will be provided along the proposed access points with modular paving proposed to the pedestrian and shared surface areas. External seating will be provided within the pedestrian circulation area and will be provided with natural tree cover.

A generously sized public plaza area with an overhanging canopy has been provided adjacent to the front entrance of Units 1-10 to facilitate ease of movement between units, whilst also creating a pedestrian friendly and people centred environment. We note that the movement of people from one area to another is central to public realm development, in this instance, the covered linkage between buildings is integral to creating a *'sense of place'* on site. It also provides the opportunity for the proposed retail/commercial uses to provide break out spaces onto this public street, creating an attractive environment for residents, workers, and visitors of the scheme.

Figure 23.0 Extract from the proposed Landscape Strategy as prepared by Stephen Diamond and Associates.



Figure 24.0

Precedent images showing examples of the proposed wildflower meadow and modular paving.

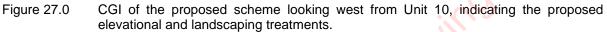


Figure 25.0 CGI of the proposed scheme showing the proposed elevational and landscaping treatments (Units 1-3).

Figure 26.0 CGI of the proposed scheme showing the proposed elevational and landscaping treatments (Units 3-10).

As indicated in the above drawing extracts, the proposed development will be of a high-quality design and of an appropriate scale, relative to the site's surrounding context. The development has also been designed by the project architects to ensure that ease of circulation for pedestrians and vehicles.

Overall, the proposed retail development is of a scale that assimilates with its location within the area. The proposed development has been designed having due consideration for the surrounding context of the site, with the proposed layout taking cognisance of the existing built form featuring within the immediate area surrounding the site. Planning permission is being sought for the development of a greenfield site which comprises of grossly underutilised lands which are obsolete at present. The proposed development will provide for the renewal of the subject site and will represent a strategic retail development which will enhance the retail offering at this location.

We also highlight that out-of-centre locations provide an opportunity for businesses to establish which require space that is not afforded in more central locations. Locating these businesses in these out-of-centre locations allows for town centres to facilitate businesses that do not require as much space to provide for more variety with regard to retail units. Urban areas typically have smaller plot sizes which aid in creating animated and active streets, promoting a sense of place and defining the character of an area.

4.0 Assessment Criteria

This Retail Impact Assessment has been prepared following pre-planning consultation discussions with Louth County Council on 19th May 2022 and is prepared un accordance with the Department of the Environment, Heritage and Local Government Retail Planning Guidelines 2012. The Retail Planning Guidelines require that a Retail Impact Assessment examines the potential retail impact and cumulative impact of new retail developments on the vitality and viability of existing centres to identify any adverse impacts.

In accordance with the above, this Retail Impact Assessment will consider the impact on the vitality and viability of the town centre of Drogheda or any other relevant centre. Specifically the assessment will:

• Demonstrate compliance with relevant strategic policy including the Retail Planning Guidelines for Planning Authorities (DoEHLG, 2012), which supersede the Retail Planning Guidelines for Planning Authorities (DoEHLG, 2005), the Regional Spatial and Economic Strategy for the Eastern and Midlands Region, Louth County Development Plan 2021-2027,

• Demonstrate that there will not be a material and unacceptable adverse impact on the vitality and viability of any existing centre and that the proposal has the potential to increase employment opportunities and will respond to consumer demand for its retail offering.

The Guidelines require that the following criteria are addressed in the assessment of retail impact, and it is demonstrated whether or not the proposal would:

- Support the long-term strategy for city/town centres as established in the retail strategy/development plan, and not materially diminish the prospect of attracting private sector investment into one or more such centres;
- Have the potential to increase employment opportunities and promote economic regeneration;
- Have the potential to increase competition within the area and thereby attract further consumers to the area;
- Respond to consumer demand for its retail offering and not diminish the range of activities and services that an urban centre can support;
- Cause an adverse impact on one or more city/town centres, either singly or cumulatively with
 recent developments or other outstanding planning permissions (which have a realistic
 prospect of implementation) sufficient to undermine the quality of the centre or its wider function
 in the promotion and encouragement of the arts, culture, leisure, public realm function of the
 town centre critical to the economic and social life of the community;
- Cause an increase in the number of vacant properties in the primary retail area that is likely to persist in the long term;
- Ensure a high standard of access both by public transport, foot and private car so that the proposal is easily accessible by all sections of society; and/or
- Link effectively with an existing city/town centre so that there is likely to be commercial synergy

The net retail floor area for the proposed development is 9,301 sq.m.

The RIA will demonstrate that the proposed development will not have an adverse impact on any other retailer and that the proposed development is justified and appropriate in this instance.

4.1 Proposed Occupation

It is anticipated that the proposed retail Unit No. 1, will comprise a large known brand supermarket which will provide primarily for the weekly convenience goods shopping of households in accordance with the definition comprised within the Retail Planning Guidelines. Referring to the 2012 Retail Planning Guidelines, it is noted that *'it may not be possible to bring forward suitable sites in or on the edge of a city or town because of the site requirements of large convenience goods stores, heritage constraints in historic towns, or because of the road network does not have the capacity to accommodate additional traffic and service vehicles.'*

It is envisaged that the proposed Retail Unit No. 2 will comprise a coffee shop/tearoom, which is a permitted in principle use and Unit 7 will comprise a Pharmacy unit. The remaining Units featuring within Phase 1 and Units 8 and 9 of Phase 2 of the proposed development will comprise a series of smaller shops, selling lower order goods, which again are permissible uses on B4 zoned lands.

Unit No. 10 will comprise a larger DIY/Home store which will generally specialise in the sale of bulky household goods and DIY items, catering mainly for car borne-customers.

4.2 Design Year

The design tear for the proposed development is assumed to be 2025 as it is estimated to take approximately three years for the proposed development to establish a pattern of trading noting the amount of time required for completion of the planning process, construction and the establishment of a trade and market presence.

Stage	Description	Duration	Start-End Date
Stage 1	Planning Process (From Application Stage)	December 2021 (8- week timeframe for a decision)	October 2022 – August 2023
		AI/Appeal (Approx 8- months August 2023)	S
Stage 2	Site Enabling Works	3 months	August 2023 – November 2023
Stage 3	Construction Works	12 months	November 2023- November 2024
Stage 4	Establishment of Market Presence	12 months	November 2024 - November 2025
Stage 5	Fully Operational as of November 2025		

5.0 Strategic Policy Context

This Retail Impact Assessment has been prepared with full cognisance of the relevant policy context (national, regional and local), including the Retail Planning Guidelines 2012, the Retail Planning Guidelines for the Midland Region 2010-2022, and the Louth County Development Plan 2021-2027.

5.1 Retail Planning Guidelines for Planning Authorities (2000, Revised 2005 and 2012)

The Retail Planning Guidelines, which were first published in 2000 and subsequently revised in 2005 and 2012, provide the strategic policy framework for the spatial distribution of new retail development. In addition, these Guidelines provide a comprehensive framework to guide both local authorities in preparing development plans and assessing applications for planning permission, and retailers and developers in formulating development proposals. The guidelines specify hat retailing should generally be directed into existing settlements, while having regard to the sequential approach in relation to the appropriate location for new rerail development that is not capable of or suitable for town centre locations. It is noteworthy that the Guidelines also recognise the importance of the retail sector for employment, highlighting the fact that the sector accounted for 14.7% of all jobs in 2010.

The Guidelines indicate that the key challenge to be faced is how to accommodate the additional development that is projected to be required, in a way which is efficient, equitable and sustainable. It is important to establish the optimum location for new retail development which is accessible to all sections of society and is of a scale which allows for the continued prosperity of traditional town centres and existing retail centres and facilitates a competitive and health environment for the retail industry. This can only be achieved if strategic retail policies and proposals are incorporated into the development system. The guidelines also stipulate that retail development can thus be guided by development plans.

The 2012 guidelines outline five key policy objectives, of equal weight, which are as follows:

• Ensuring that retail development is plan-led;

This application site falls between two separate zoning objectives, with the majority of the site, located to the west of Trinity Street being zoned objective '*B4-District Centre*', areas zoned as such have been planned specifically to maintain and enhance retail led mixed uses. As such the principle of the retail proposal should be considered plan-led and policy compliant in this regard.

Promoting city/town centre vitality through a sequential approach to development;

The proposed development will not negatively impact on the vitality or viability of existing centres, this has been demonstrated through the sequential approach that was applied to the proposed development. The proposal will allow for the consolidation of retail/commercial units and retail warehousing units in an area which is readily accessible from the local, regional, and national road network and is already established as a retail destination. The proposal will not only reinvigorate and revitalise a long-standing retail destination but will further augment the range and choice of services available in this area of Drogheda, as well as facilitating increased footfall and the generation of additional revenue.

 Securing competitiveness in the retail sector by actively enabling good quality development proposals to come forward in suitable locations;

Section 2.5.3 of the Guidelines acknowledges that 'strong competition is essential to reduce retail costs and ensure that savings are passed on to retail customers through lower prices. Competition also promotes innovation and productivity. The planning system should not be used to inhibit competition, preserve existing commercial interests or prevent innovation.'

The proposed retail/commercial units will provide new retail facilities as a suitably zoned site and will improve the retail offer for the resident and working community. This will introduce new competition in the retail sector and provide improved choice and the economy more generally.

• Facilitating a shift towards increased access to retailing by public transport, cycling and walking in accordance with the Smarter Travel strategy; and

This application is accompanied by a Traffic Assessment and detailed Mobility Management Plan, as prepared by Barrett Mahony Consulting Engineers. With regards to existing public transport, it is noted that the 173N route connects the north town centre of Drogheda town centre to the M1 Retail Park. This service runs every 60 minutes from Monday through to Saturday. This service also connects into the south town area via the 173S service which runs from the town centre to the south area.

This report also outlines the various planned bus routes for Louth put forward as part of the National Transport Authority's document 'Connecting Ireland – Rural Mobility Plan', published in November 2021. Moreover, as part of the proposed Cycle Scheme for Drogheda, in the area aligning the Collon Road Hill of Rath Roundabout, onto which the proposed development directly access via the R168, and Rosehall Roundabout directly east of the Hill of Rath Roundabout, 2.25km of footpaths and cycle lanes will be constructed. This will provide access to the proposed scheme and the adjoining M1 Retail Park. In addition a cycle lane and footpath will be installed on the North Road from Rosehall roundabout to Patrick Street. This will also serve commercial, retail and residential developments in the vicinity.

Given the significant public transport and cycling enhancements planned for the area, it is considered that there will be a great incentive, particularly for future workers of the scheme, to rely on sustainable forms of transport. Planned enhancements to bus and rail services will also increase the attractiveness of public transport. The significant cycle parking facilities proposed on site and the enhanced cycle land facilities planned for the surrounding road network will also enhance the attractiveness of travel to and from the scheme.

Delivering quality urban design outcomes.

Detailed consideration has been given by the Design Team to the building placement, massing, finishes and the relationship between the built form and landscaping. The overall intent of the proposed development is to enhance an existing prominent economic driver in the area and provide a destination that offers more than just shopping. The future development of the area, we believe, can deliver a longterm sustainable asset with seamless linkages between land uses, the public realm, and the community, generating employment and attracting people to come together, interact and creating an added sense of community. The Guidelines clearly acknowledge that it is imperative for the proper planning and sustainable development of an area that new retail development is located at the optimum location having regard to the type of retail offering and the context of the existing environs.

Comparison and large Convenience stores should be located in city or town or in district centres or on the edge of these centres and be of a size which accords with the general floorspace requirements set out in the Development Plan/Retail Strategy to support and add variety and vitality to existing shopping areas and also to facilitate access by public transport for shoppers. Thus, the Guidelines note that Retail Strategies and Development Plans are identified as a means of providing area specific location policies. In this regard, the Development Plan identifies the site as a 'Mixed-Use District Centre' which is suitable for the type of retail/commercial development proposed. In this context, the 2012 Guidelines stress that district centres should be supported in developing their retail offer to a scale which accords with the retail strategy.

The Sequential Test completed and submitted as part of this application, clearly demonstrates that the subject site, is the most appropriate available, compatible site within Drogheda to accommodate a new Retail Development of this scale.

Section 4.1 of the Guidelines state that retail proposals that comply with development plan policies, the objectives of the Retail Planning Guidelines and any retail strategy (if appropriate) and which promote a vital and viable retail sector 'will benefit the economy as a whole and also individual retailers and consumers'. The Guidelines to on to conclude that 'the development management process should proactively support such applications.'

5.2 Louth County Development Plan & Retail Strategy

The Louth County Development Plan 2021-2027 is the relevant statutory development plan for the proposed application site. Section 5.20 of the current county development plan has regard to Retail development and recognises that the retail sector has long been a key sector and major employer both nationally and locally and accounts for the largest proportion of the workforce in Ireland.

With respect to employment related land-uses, Section 13.13 '*Employment*' of the current plan requires that all employment related developments are development to a high standard to aid in creating an attractive environment for people to work and business to invest. Given the high-quality, contemporary design of the proposed scheme, including is associated public realm, it is strongly considered that this criteria has been successfully met as part of this proposal.

In terms of retailing, it is noted that Drogheda town is designated as a Level 2 Centre in the Louth County Council Retail Hierarchy, which accords with its designation as a *Regional Growth Centre* in the Regional Spatial and Economic Strategy, this places Drogheda on top of the county retail hierarchy. The key district centres of Drogheda are indicated as being at Level 3 of the county's retail hierarchy. It is further noted that the current plan confirms that the M1 retail park is noted as being one of the principal destinations for bulky goods shopping within Drogheda.

Retailing Level	Type of Centre	Centre
Level 2 * *Level 1 is Dublin City Centre	Major Town Centre / County Town	Drogheda Dundalk
Level 3	Town and/or District Centres and Sub County Town Centres	Ardee Drogheda District Centre: Matthews Lane Dundalk District Centres: Dublin Road & Ard Easmuinn
Level 4	Neighbourhood Centres, Local Centres, Small Towns And Villages	Dunleer, Annagassan, Bellurgan, Baltray, Castlebellingham/Kilsaran, Carlingford, Clogherhead, Collon, Dromiskin, Knockbridge, Louth Village, Omeath, Tallanstown, Termonfeckin, Tullyallen, Drogheda Neighbourhood Centres, Dundalk Neighbourhood Centres
Level 5	Small villages	Various

Figure 28.0 Table 5.3 'Louth County Hierarchy' of the Louth County Development Plan 2021 – 2027

As indicated in the current 2021 Development Plan, Louth County Council aims to ensure that all retail development permitted within the County's administrative boundary, is in accordance with the Retail Planning Guidelines for Planning Authorities, 2012, the Retail Design Manual – A Good Practice Guide, 2012 and the Louth Retail Strategy, which has been prepared as part of the current development plan. The proposed development has thus been prepared in line with the above documents.

It is also noted that the retail sector has been a long-established key sector and significant employer both nationally and locally, and accounts for the largest proportion of the workforce in the Country, with approximately 298,000 employees working in the sector, according to 2019 Census data. More locally, the 2016 Census results demonstrate that at a local level, the retail and wholesale sector was the largest industrial sector in the County, employing 15.9% of the total working population, with the retail sector also supporting indirect employment within the County, in other sectors such as logistics and distribution.

In the context of the above, it is clear that the retail sector plays a pivotal role in providing sustainable employment and supporting a vibrant economy in County Louth, and as such the addition of additional retail space would serve to bolster this role.

The Louth Retail Strategy further sets out indicative potential for additional convenience comparison and bulky household goods floorspace in Louth, which are referenced overleaf. The additional floorspace requirement is estimated having regard to the changes in population, population forecasts, updated information on expenditure, trading retail floorspace and vacant retail floor space.

Table 5.4 Indicative Floorspace Requirements for County Louth

Year	Convenience (m²)	Comparison (m ²)	Bulky Comparison (m²)
2027	6,479	4,749	2,098
2030	8,039	11,242	5,849

Figure 29.0 Extract from Table 5.4 of the Louth County Development Plan 2021-2027, indicating the retail space requirements for County Louth to 2030

In accordance with the above, it is clear that there is a need for additional retail floorspace within the County to the year 2030. The proposed development will thus aid in meeting the above requirements and the needs growth population of both Louth and Drogheda.

The following policies as included within the Louth County Development Plan are also considered to be of relevance to the subject proposal.

Policy Objective EE 64	To promote a healthy competitive retail environment within County Louth and to maintain the vitality and viability of the town and village centres and their role as primary retail core areas.
Policy Objective EE 66	To ensure that applications for retail development comply with the provisions of the Louth Retail Strategy
Policy Objective EE 73	To support the development of Drogheda and Dundalk as Regional Growth Centres and principle locations for future retail development, Ardee and Dunleer as Self Sustaining Growth Centres and the retail function of all other settlements, commensurate with locally generated needs.

Having considered the afore referenced policy content, we would highlight that the subject development would enhance the overall retail environment within Drogheda and County Louth more broadly and would support the economic growth of Drogheda as a key Regional Growth Centre. In addition, it is highlighted that the proposed application site is located immediately adjacent to the existing M1 Retail Park and as such, the development of the subject lands for additional retail development will ensure a consolidation of such uses within this area of Drogheda, without negatively impacting upon vitality or impeding the growth of the retail offering located within the town centre. Moreover, the proposal will promote and attract further economic investment and employment generating development within Drogheda, which is a key objective of the current plan.

Section 5.25 of the current 2021 Plan also sets out the Louth County Council's guidance in respect of the assessment retail development proposals, and states that *'new retail developments of significant scale should be targeted primarily within the core retail areas of Level 2 and Level 3 centres, as identified within the Louth Retail Strategy.'* In this regard it is submitted that the subject site presents as an ideal location for the provision of additional out of centre retail development, given the established retail environment immediately adjacent to the site, its scale and proximity to public transport. It is considered that the proposed scheme would provide for a logical expansion existing retail and commercial uses at this location and will represent an efficient and sustainable use of available and serviceable zoned lands.

Land Use Zoning

As is indicated in the below extract from the Drogheda Zoning and Flood Zones Map included as part of the 2021 Development Plan, the subject site is split between two separate land use zones. The majority of the site, located to the west of Trinity Street is zoned objective '*B4 – District Centre*', with the western most portion of the lands being zoned objective '*C1 – Mixed Use*'.

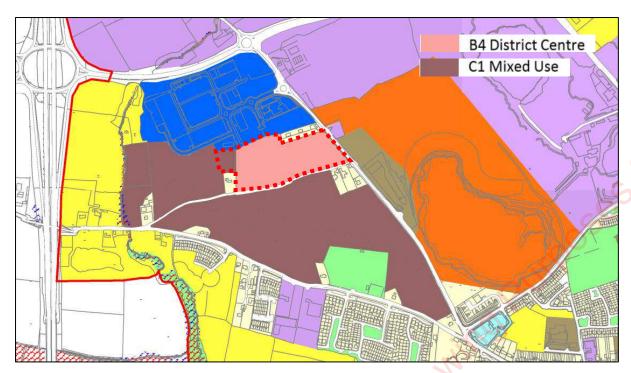


Figure 30.0 Extract from the Drogheda Zoning and Flood Map, showing the subject lands zoned B4-District Centre and C1-Mixed Use, in the Louth County Development Plan 2021-2027 (subject site outlined in red)

The stated objective for 'B4-District Centre' zoned lands is to 'maintain and enhance retail led mixed use district centres.' It is further stipulated within Section **13.21.11** of the 2021 Development Plan that District Centres provide a range of primary retail and non-retail functions and serve a wide catchment population. It is further noted that the range of services and functions available at District Centres is higher than a Neighbourhood Centre. This generally includes a **supermarket a**nd non-retail services such as banks, local offices, restaurants, and community facilities.

The use classes which are considered to be *Generally Permitted Uses* within B4 zoned lands are as follows:

Generally Permitted Use:

Car Park, Coffee Shop/Tea Room, Community facility, Restaurant, Service Station, Shop, Shop (Convenience) ≥1,500m².

Land uses which are listed as being *Open for Consideration Uses* within B4 zoned lands, where the Planning Authority is satisfied that the proposed development would be compatible with the overall policy objectives for the zoning category, include the following:

Open for Consideration Use

Bank/Financial Institution, Betting Office, Bring Banks, Childcare Facility, **Drive thru Restaurant**, **Garden Centre**, Health Care Centre, Healthcare Practitioner, Nursing Home, Offices, Plant and Tool Hire, Public Services, Takeaway/Fast Food Outlet, Telecommunications Structures, Utilities.

In respect of the above it is noted that shop and shop (convenience $\geq 1,500m^2$) are listed as generally permitted uses within B4 zoned lands. Furthermore, the zoning objective for B4 zoned lands evidently sets out that uses, including supermarkets are suitable land-uses on District Centre zoned lands. On this basis it is considered that the proposed development fully accords with the overarching development plan guidance in respect of B4 zoned lands.

In respect of 'C1-Mixed Uses' zoned lands, the primary objective is 'to provide for commercial, business and supporting residential uses.' The guidance provided within **Section 13.21.13** of the Plan in respect of C1 zoned lands states that such lands shall provide for both commercial and business uses and the facilitation of residential uses as appropriate. Moreover, it is provided that mixed-use developments which generate daytime and evening activities will be encouraged and supported, however an over concentration of any one use will not normally be permitted. Maintaining the existing urban character, quality of design, integration, and links between uses and spaces are noted as being important considerations for any new developments within C1 zoned lands. In this regard, we note that the proposed retail development will connect with the existing retail park via the proposed road network within the scheme, providing for a cohesive and connected development which will serve to improve the retail offering within the area.

Land uses which are considered to be *Generally Permitted Uses* within C1 zoned lands are listed below for ease of reference:

Generally Permitted Use:

Bank/Financial Institution, B&B/ Guest House, Bring Banks, Business Enterprise Centre, Coffee Shop/Tea Room, **Car Park**, Casual Trading, Childcare Facility, Cinema, Community Facility, Craft Centre/Shop, Cultural Facility, Digital Innovation Hub/Co-working Space, E-Charging Facility, Hotel/Hostel/Aparthotel, Offices, Park/Playgrounds, Place of Worship, Public House, Public Services, Nursing Home, Recreational/Amenity Open Space, Residential, Residential Institution, Retirement Village, Restaurant, Sheltered Accommodation, **Shop, Shop** (**Convenience**) ≤1,500m², Telecommunications Structures, Third Level, Student Accommodation, Tourist Facility, Training Centre, Utilities.

The use classes which are subsequently considered as being Open for Consideration within C1 zoned lands are as follows:

Open for Consideration Use

Advertisements and Advertising Structures, Amusement Arcade, Betting Office, Crematorium, Funeral Home/Mortuary, Garden Centre, Health Care Centre, Healthcare Practitioner, Nightclub, Recreational/Sports Facility, Recycling Facility (Civic & Amenity), Service Station, Taxi Office, Traveller Accommodation.

It is noted that the proposed Drive Thru unit will be located in the portion of the site which is zoned C1-Mixed Use. Whilst it is acknowledged that the zoning matrix for C1 zoned lands does not include Drive Thru facilities as a generally permitted use or an open for consideration use, we would note the provisions of Section 13.21.2.3 of the current plan which provides guidance in respect of uses not listed and states that whilst there is a comprehensive list of potential uses in 'Generally Permitted' and 'Open for Consideration' categories, it is recognised that there may be scenarios where there are proposals for uses not included on these lists.

Where such a situation arises, it is noted that proposals will be considered on their individual merits, taking into consideration the surrounding land uses, the compatibility of the use/development in the area in which it is proposed to locate any such development, as well as demonstrating compliance with the relevant policy objectives, standards and requirements as set out in the Louth County Development Plan 2021-2027.

On the basis of the foregoing, we submit that the proposed drive-thru facility is appropriately located on the subject site and will integrate well with the proposed retail development located further east within the site.

Louth Retail Strategy 2021-2027

Appendix 4 of the current 2021 Development Plan comprises the *Louth Retail Strategy*, the overarching aim of which is to ensure that future retail development in the County is accommodated in a manner that is efficient, equitable and sustainable. Section 1.4.1 if the Louth Retail Strategy

The Strategy outlines a number of key retail objectives which aim to protect and reinforce existing retail offering, some of which are listed below:

- To ensure that the **retail needs of the residents of County Louth are catered for** as much as possible within the area, to enable a reduction in the requirement to travel to meet these needs and accessibility to shopping and services across all sectors of the community.
- To ensure the orderly development of future retail developments within County Louth, to keep the Retail Strategy under review having regard to changes in the retail sector and have regard to any such review in determining applications for retail development;
- Maintain, and where possible, enhance the existing competitiveness of the County's main centres by facilitating the development of additional retail floorspace in keeping with the analysis within Section 1.5;
- To encourage and facilitate the re-use and regeneration of derelict land and vacant buildings for retail uses, with due cognisance to the Sequential Approach;
- Encourage infill retail developments and the redevelopment of derelict and obsolete sites in all existing Core Retail Areas;
- Encourage **a healthy diversity of retail types and scales**, as well as uses that are complementary to retail, in particular leisure uses, within all Core Retail Areas;

Having regard to the above objectives, we also note the following retail policies which have been developed to ensure that future retail developments are carried out in accordance with the requirements of the Retail Planning Guidelines 2012.

- To support applications for **retail development which are in line with the Retail Hierarchy** and accord with the scale and type of retailing identified for that location in accordance with Section 1.5 (Quantitative Analysis);
- To recognise the growth centres of Drogheda and Dundalk as the principle locations for future retail development particularly for middle to high order comparison goods;
- To adhere to the Sequential Approach principle in the consideration of retail applications located outside of core retail areas;
- To require a high quality of design and finish for new and replacement shopfronts, signage, and advertising;
- To ensure that a number of local centres be provided to meet the basic convenience and lower order comparison requirements of any expanding communities;
- To promote the Retail Design Manual 2012 and ensure that the identified Key Principles of Urban Design are an integral part of any application for retail development;
- To have regard to the policies and objectives of the Regional Spatial and Economic Strategy for the Eastern and Midland Regional Authority

In consideration of the above policies and objectives, it is considered that the proposed retail development will support the growth and evolution of the Drogheda retail base and will cater for the retail requirements of a growing population. The proposal provides for the sustainable and efficient use of zoned lands, which are within easy reach of the main town centre of Drogheda, and will act as a catalyst for increased economic growth.

In addition to the above, it is also acknowledged that it is the policy of the Council to require a Retail Impact Assessment to be undertaken for the following development proposals:

• Proposals featuring greater than 1,000 sq.m of net floorspace for both convenience and comparison type developments in Level 1 towns;

 Proposals featuring greater than 500 sq.m of net retail floorspace for both convenience and comparison type developments in all other settlements

The Strategy goes onto discuss population growth hand expenditure potential in the County and allocation of projected retail floor space capacity. This is set out in tables 16.0 and 17.0 of the Strategy extracts from which are included below.

2027	Convenience (m ²)	Comparison (m ²)	Bulky Comparison (m ²)
Drogheda	3,060	2,243	1,043
Dundalk	2,696	1,976	919
Ardee	399	292	136
Remainder of County	324	238	-

Table 16.0	Indicative	Floorsnace	Potential h	Settlement - 2	027
10010 10.0	Indicative	riouispace	r otential M	Jettientein	

Table 17.0 Indicative Floorspace Potential by Settlement – 2030

2030	Convenience (m ²)	Comparison (m ²)	Bulky Comparison (m ²)
Drogheda	3,797	5,310	2,908
Dundalk	3,345	4,678	2,562
Ardee	495	692	379
Remainder of County	402	562	

The following commentary is provided within the strategy in respect of these tables:

'Tables 16.0 and 17.0 above set out the indicative potential for additional convenience, comparison and bulky comparison floorspace in the towns of Drogheda, Dundalk and Ardee to 2027 and 2030. The potential floor space capacity for each town is in accordance with the settlement and Retail Hierarchy of the County and has been proportioned in accordance with the population target of the aforementioned settlements for 2027.

In accordance with the Retail Planning Guidelines 2012, the indicative floorspace requirements set out in the tables above are only intended to provide broad guidance as to the additional quantum of floorspace provision.

The quantum of floorspace should bit be considered as upper or lower limits, merely as indicative of the scale of new floor space required to meet the needs of existing and future population and expenditure within the County.

Any additional new floorspace proposed could replace some existing, outdated or poorly located retail floor space. In the event that a planning application is submitted for retail development which does not conform to the scale outlined in this retail strategy the onus is on the applicant to prove to the Planning Authority that the development will not detract from the vitality or viability of the town centre.'

6.0 Assessment of Retail Impact

The purpose of this Retail Impact Assessment is to establish the capacity for retail floorspace in Drogheda and is based on defining a catchment area, existing and projected population and available expenditure. The applicant has prepared a Retail Impact Assessment in line with pre-planning consultation discussions and in order to demonstrate the merits of the proposal. This Assessment will

adopt the six step methodological approach set out in the Retail Assessment Guidelines (2012), as follows:

- 1. Identification of catchment or study area;
- 2. Estimation of expenditure available within the defined catchment or study area;
- **3.** Estimation of the turnover of existing centres within the catchment area which is likely to be affected by a new development.
- Estimation for the turnover of the new development for which a planning application is being lodged.
- 5. Estimation of the quantum of consumer retail spending available in the catchment area which will be diverted from existing centres to the new retail development; this assessment normally highlights the diversion of expenditure by zone within the catchment area.
- 6. Aggregation of the zonal diversions from each centre to the new development to provide an estimate of trade diversion; trade is then expressed as a proportion of a centre's turnover at the target year to provide a measure of impact.

In assessing the retail impact based on the proposed development due regard has been had to the steps outlined in Annex 5 of the Retail Planning Guidelines for Planning Authorities, which are outlined in the table below:

Retail Impact Assessment Methodology
Identification of Catchment Area
Estimation of Expenditure Available Within Catchment Area
Estimation of Turnover Of Existing Centres Likely to Be Affected By The New Development Within
The Catchment Area
Estimation of The Turnover of New Development
Estimation of the Quantum of Convenience and Comparison Expenditure Available Within
Catchment Area
Estimation of the Retail Trade Share (i.e. Zonal Diversion) of Available Convenience and Comparison
Goods Expenditure based on the Development of the Proposed Discount Foodstore Development

The retail catchment area for the proposed development has been determined by Hughes Planning and Development Consultants, based on experience and noting the patterns of travel in the surrounding area. Regard has also been had to the location of the subject lands within Drogheda, Co. Louth, the surrounding population, surrounding residential areas, nearby retail centres/areas and surrounding services.

The Retail Impact Assessment will demonstrate that the proposed development will not have a detrimental impact on the vitality and viability of the town centre.

The base and price year for the purposes of this assessment is 2016, which reflects the latest Census of Population data and the latest date for the Annual Services Inquiry. The design year is 2025 for the purposes of this study. This allows for a decision on the planning application (including potential appeals to An Bord Pleanála), the construction of the proposed retail development and a settling down of trading for approximately one year after the opening of the development.

6.1 Defining the Catchment Area

The definition of a catchment area is a matter of professional judgement based on experience and information available regarding travel patterns for retail in the surrounding area, and where available, information from research conducted by the Planning Authority. It is also informed by the nature and scale of the proposed development, the distribution of population in the area, the accessibility of the

site and the location of competing retail centres. In the context of the subject scheme, it is proposed to follow the general approach of the Louth Retail Strategy 2021 - 2027.

It is normal practice to define a catchment area having regard to the time it takes to drive to that centre from various locations, the retail offer of adjoining centres and the resulting shopping patterns in the area. This is done using drive time isochrones linking places of equal driving time from a particular location. The drive time isochrones are adjusted to account for likely shopping patterns in the area. Having regard to the 'out of town' location of this development combined with the nature of goods provided, which will be on the bulkier scale, it is considered more appropriate to assess the catchment area in terms of driving distance, rather than walking.

The catchment area or 'sphere of influence' for the purposes of this study extends to the north of the County outside of Termonfeckin, to the south between Duleek and Julianstown and to the west containing Drogheda and its environs. The catchment represents approximately 15 kilometres and includes the settlements of Bettystown, Donore and Tulleyallen. See the map of the catchment area provided in Figure 31.0 below.

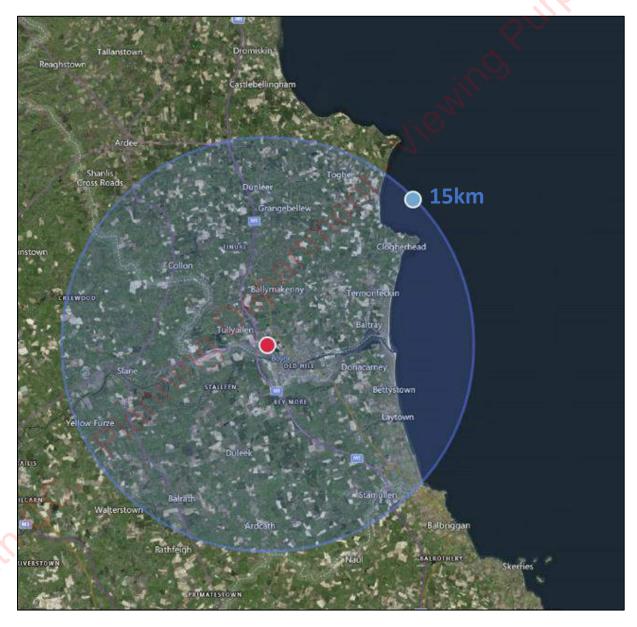


Figure 31.0 Aerial view of the subject 15km catchment area in relation to the subject site (red star)

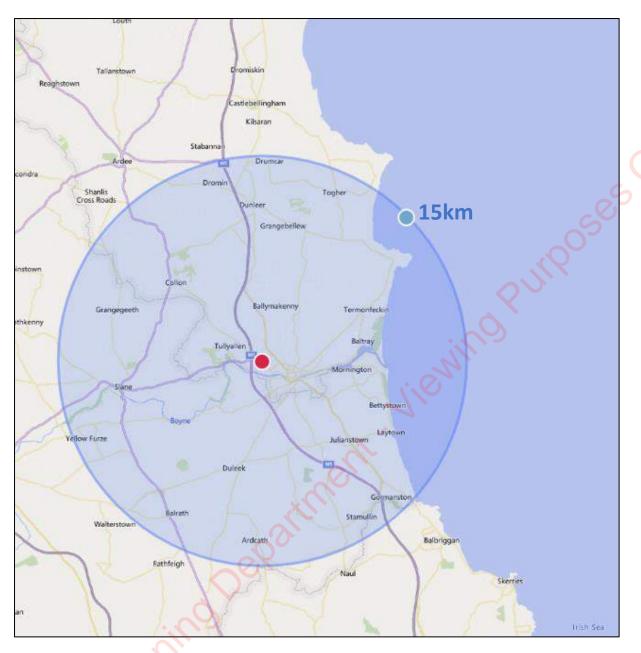


Figure 32.0 Map depicting the 15km catchment area in relation to the subject site (red star)

The rationale for the sizable catchment area is that Drogheda, the country's most populous town on the border of Meath, serves as the primary shopping destination for all of Louth, and as a result, it is assumed that the majority of residents of the county and neighbouring towns and villages will commute to Drogheda to fulfil their shopping needs. The population of the catchment area has been obtained from the electoral division population figures available on SAPMAPS from the 2016 Census.

6.2 Catchment Area Population

For the purposes of this Retail Impact Assessment consideration has been given to the recent national and local population trends and projections utilising the results of the Census of population 2016. As per the Louth Retail Strategy 2021 – 2027, Drogheda has established itself as a Regional Growth Centre within the National Planning Framework.

'Census 2016 results show that Drogheda has maintained its position as the largest town in Ireland. The town has a population of 40,956 (Census 2016). It should be noted

that 34,199 of the total population live within the Louth County boundary, with the remaining 6,757 residents within County Meath. The total population of Drogheda grew by 2,378 (6.2%) between 2011 and 2016'.

The Catchment Area for this impact assessment has been informed by the study area set out within the County Retail Strategy 2021-2027. The study area is mentioned in section 1.4.1.1 of the Retail Strategy, specifically relating to the catchment area of Drogheda:

'Drogheda serves a wide catchment area stretching northwards towards Dunleer, west towards Slane and south towards the expanding populations of Laytown, Bettystown and Duleek'.

It is noted that the majority of towns listed in the catchment area from the Retail Strategy are included in the 15km radius adopted for the purposes of this report.

Electoral Division	السايسى Population 2016
Dysart	924
Dunleer	2,855
Dromin	626
Collon	1,881
Grangegeeth, Meath	659
Slane, Meath	1,853
Painestown, Meath	1,185
Mellifont, Meath	541
Duleek, Meath	5,565
Kentstown, Meath	2,152
Rathfeigh, Meath	988
Ardcath, Meath	1,949
Stamllin, Meath	5,009
Julianstown, Meath	10,176
Termonfeckin, Louth	3,545
Clogher, Louth	3,237
Mullary Louth	1,757
Monasterboice, Louth	1,373
St. Peters, Louth	9,721
St. Mary's, Meath	11,864
St. Mary's, Louth	6,859
West Gate, Louth	6,305
Fair Gate, Louth	10,424
St. Laurence Gate, Louth	4,068
Total	95,516

 Table 1.0
 Approximate population of the catchment area as per the 2016 census

In the wider context, the 2016 Census indicates a population of 95,516 for the entire 15-kilometre catchment area. Based on the results of the Census which found that there was an average annual rate of increase in the population of 1.6% nationally, it can be expected that by 2022 the population of the catchment area may be c.104,684. The table below assumes a conservative increase of 1.6%, with the existing and projected population of the catchment area provided for the subject site.

Catchment A	Catchment Area Population						
2016	95,516						
2017	97,044						
2018	98,597						
2019	100,175						
2020	101,778						
2021	103,407						
2022	105,062						
2023	106,743						

2024	108 451
2024	100,101
2025	110,186

 Table 2.0
 2016 Census Assumption: Population growth rate of 1.6% per annum

Overall, it is predicted that the catchment area as a whole will experience a population increase of c. 13,752 to 2025. Further to this, recent trends and housing pressures sprawling outwards from Dublin since the last census suggest that a 1.6% per annum increase in population is an underestimation of actual increases, particularly with Drogheda's proximity and connections to Dublin. On the basis of this, the proposal which seeks to provide a sizeable retail/commercial development within a designated mixed-use district centre location is necessitated by this said increase.

6.3 Estimated Available Expenditure

In estimating available expenditure, Hughes Planning and Development Consultants have projected forward the per capita expenditure for comparison retailing for the Drogheda region based on the application of the Louth County Retail Strategy which assumes conservative annual growth rates for expenditure per capita, including 1% growth per annum for convenience expenditure and 2.5% pre annum for comparison expenditure (from 2016-2030), in line with the recorded economic growth statistics and forecasted levels of growth.

Projected Per Capita Spend from 2016 – 2025							
Year	Annual Growth Rate %						
	Convenience	Convenience	Comparison	Comparison			
2016	1	€3,769 🖌	2.5	€3,417			
2017	1	€3,807	2.5	€3,502			
2018	1	€3,845	2.5	€3,590			
2019	1	€3, <mark>883</mark>	2.5	€3,680			
2020	1	€3,922	2.5	€3,772			
2021	1	€3,961	2.5	€3,866			
2022	1	€4,001	2.5	€3,954			
2023	1	€4,041	2.5	€4,042			
2024	1	€4,081	2.5	€4,130			
2025	1	€4,122	2.5	€4,218			

 Table 3.0
 Projections of the available per capita comparison retail spend for County Louth

These figures indicate a modest gradual increase per annum in convenience and comparison per capita spends. Table 3.0 indicates our calculated convenience and comparison spend from 2016-2025.

The annual growth rate which is based on the Retail Strategy for Louth (Table 6.0) permits the convenience and comparison per capita spend to be calculated. These figures can then be used in conjunction with the existing and projected populations for the catchment area to determine an annual calculation of total convenience and comparison expenditure available within the proposed developments catchment area. It is important to consider the percentage of expenditure occurring through non-store sales and competing centres and these have been extrapolated from the County Retail Strategy and are included within the calculations set out within the tables below.

Quanti	Quantum of Total Convenience Expenditure Available within Catchment Area					
Year of Analysis	Per Capita Spend – Louth Region Convenience (based on Per Capita Spend Calculations	Population of Catchment Area	Calculation of Total Convenience			
2016	€3,769	95,516	€359,999,904			

2017	€3,807	97,044	€369,446,508
2018	€3,845	98,597	€379,105,465
2019	€3,883	100,175	€388,979,525
2020	€3,922	101,778	€399,173,316
2021	€3,961	103,407	€409,595,127
2022	€4,001	105,062	€420,353,062
2023	€4,041	106,743	€431,348,463
2024	€4,081	108,451	€442,588,531
2025	€4,122	110,186	€454,186,692

 Table 4.0
 Quantum of Convenience Expenditure Available within Catchment Area

Table 4.0 above indicates that the available convenience expenditure in the catchment area in 2022 is \notin 420,353,062 with an estimated expenditure in 2025 (i.e., the expected first year of trading for the proposed development) at \notin 454,186,692.

For the purpose of this Retail Impact Assessment, it is necessary to differentiate between comparison non-bulky goods and bulky household goods. In accordance with the Louth Retail Strategy 2021-2027, an 80:20 split has been applied to the total available comparison spend. This is broken down in the columns below.

Q	Quantum of Total Comparison Expenditure Available Within Catchment Area					
Year	Per Capita Spend – Louth Region Convenience (based on Per Capita Spend Calculations	Population of Catchment Area	Calculation of Total Comparison + Bulky Goods Expenditure Available	Calculation of Total Comparison Goods Expenditure Available (80%)	Calculation of Total Bulky Goods Expenditure (20%)	
2016	€3,417	95,516	€326,378,172	€261,102,537.60	€65,275,634.40	
2017	€3,502	97,044	€339,488,088	€271,590,470.40	€67,897,617.60	
2018	€3,590	98,597	€3 53,963,230	€283,170,584.00	€70,792,646.00	
2019	€3,680	100,175	€368,644,000	€294,915,200.00	€73,728,800.00	
2020	€3,772	101,778	€383,906,616	€307,125,292.80	€76,781,323.20	
2021	€3,866	103,407	€399,771,462	€319,817,169.60	€79,954,292.40	
2022	€3,954	< 10 <mark>5,06</mark> 2	€415,415,148	€332,332,118.40	€83,083,029.60	
2023	€4,042	106,743	€431,455,206	€345,164,164.80	€86,291,041.20	
2024	€4,130	108,451	€447,902,630	€358,322,104.00	€89,580,526.00	
2025	€4,218	110,186	€464,764,548	€371,811,638.40	€92,952,909.60	

Table 5.0 Quantum of Comparison Expenditure Available within Catchment Area

Table 5.0 above demonstrates that the available comparison expenditure in the catchment area in 2022 is \notin 415,415,148, with an estimated expenditure in 2025(i.e., the expected firs year of trading for the proposed development) at \notin 464,764,548. Section 1.5.3 of the Louth Retail Strategy notes that it is estimated that 20% of comparison expenditure will be accounted for by bulky household goods. Therefore \notin 83,083,029.60 of the available expenditure can be applied to bulky goods retail and \notin 332,332,118.40 of available expenditure to comparison goods in 2022.

Adjustments to the available expenditure need to be made with regards to online shopping and shopping outside the catchment area. As part of this Retail Impact Assessment, it is necessary to estimate spending inflows and outflows from the catchment area. Having regard to the Louth Retail Strategy 2021-2027 it is outlined that the projected outflow rates by 2030 will be 3.3% for convenience spend, 9.8% for comparison (non-bulky) spend and 11.2% for bulky comparison spend. These figures which represent a worst case scenario basis have been used to form the basis of the below calculations. The increase in outflow rates is a direct result of the rise in popularity of online shopping.

As per Table 8.0 of the Retail Strategy inflow rates from the survey data from 2014 was relied upon to estimate spending inflows. This is consistent with the approach taken by the Planning Authority.

Total Available Expenditure adjusted to account for Inflows and Outflows						
Year	Conve	enience (€)	Compa	rison Goods	Compa	arison Bulky
2016			<u> </u>			.
Catchment Area Total Expenditure		€359,999,904		€261,102,537.60		€65,275,634.40
Less Outflows %	3.3%	€11,879,996.83	9.8%	€25,588,048.70	11.2%	€7,310,871.10
Total Expenditure		€348,119,907.17		€235,514,488.90		€57,964,763.30
Plus Inflows %	3.8%	€13,228,556.47	8.0%	€18,841,159.11	1.0%	€579,647.63
Total Spend Catchment Area		€361,408,463.64		€254,355,648.01		€58,544,410.93
2018						>
Catchment Area Total Expenditure		€379,105,465		€283,170,584.00	NI.	€70,792,646.00
Less Outflows %	3.3%	€12,510,480.35	9.8%	€27,750,717.23	11.2%	€7,928,776.35
Total Expenditure		€366,594,984.65		€255,419,866.77		€62,863,869.65
Plus Inflows %	3.8%	€13,930,609.24	8.0%	€20,433,589.34	1.0%	€628,638.70
Total Spend Catchment		€380,525,593.90		€275,853,451.11		€63,492,508.40
Area 2020	l					
Catchment Area Total Expenditure		€399,173,316		€307,125,292.80		€76,781,323.20
Less Outflows %	3.3%	€13,172,719.43	9.8%	€30,098,278.70	11.2%	€8,599,508.20
Total Expenditure		€386,000,596.58		€277,027,014.10		€68,181,815
Plus Inflows %	3.8%	€14,668,022.67	8%	€22,162,161.13	1%	€681,818.15
Total Spend Catchment Area		€400,668,619.25		€299, 189, 175.23		€68,863,63.15
2022						
Catchment Area Total Expenditure		€420,353,062		€332,332,118.40		€83,083,029.60
Less Outflows %	3.3%	€13,871,651.05	9.8%	€32,568,547.60	11.2%	€9,305,299.32
Total Expenditure		€406,481,410.95		€299,763,570.80		€73,777,730.28
Plus Inflows %	3.8%	€15,446,293.62	8%	€23,981,085.67	1%	€737,777.30
Total Spend Catchment Area		€421,927,704.57		€323,744,656.46		€74,515,507.30

Lands south of the M1 Retail Park, Mell, Drogheda, Co. Louth

2024						
Catchment Area Total Expenditure		€442,588,531		€358,322,104.00		€89,580,526.00
Less Outflows %	3.3%	€14,605,421.52	9.8%	€35,115,566.19	11.2%	€10,033,018.91
Total Expenditure		€427,983,109.48		€323,166,537.81		€79,547,507.09
Plus Inflows %	3.8%	€16,263,358.16	8%	€25,853,323.03	1%	€795,475.10
Total Spend Catchment Area		€444,246,467.64		€349,019,860.83		€80,342982.16
2025 (Design	Year)	•				
Total Expenditure		€454,186,692		€371,811,638.40		€92,952,909.60
Less Outflows %	3.3%	€14,988,160.84	9.8%	€36,437,540.56	11.2%	€10,410,725.88
Total Expenditure		€439,198,531.20		€335,374,097.84	Ċ	€82,542,183.72
Plus Inflows %	3.8%	€16,689,544.10	8%	€26,829,97.83	1%	€825,421.84
Total Spend Catchment Area		€456,188,075.38		€362,204,025.67	1	€83,367,605.56

Table 6.0 Total Available Expenditure adjusted to account for Inflows and Outflows

6.4 Turnover Estimates

The average convenience and comparison retail floorspace turnover figures are contained within the Louth Retail Strategy 2021-2027. These indicative turnover figures are an estimate of the amount of expenditure that is currently being sustained by the amount of floor space in the County. Table 10.0 of the Strategy outlines that the indicative turnover per sq.m for **convenience is €11,531, €5,199 for comparison (non-bulky) and €2,101 for comparison (bulky).** Applying the annual growth rate of 1% as depicted in Section 1.5.7 of the Louth Retail Strategy, these figures have been extrapolated for the current year (2022) and the anticipated first year of operation (2025) providing for the below ratios:

	Estimated Turn Over Rates for 2022 and 2025 (Design Year)						
Year	ar Convenience – Indicative Comparison – Indicative Bulky Comparison – Turnover Per sq.m (€) Turnover Per sq.m (€) Indicative Turnover Per sq.m (€)						
2022	€11,880.63	€5,356.03	€2,164.43				
2025	€12,240.62	€5,518.34	€2,230.01				

Table 7.0Turn over estimates per sq.m for 2022 and 2025

The table below estimates the existing convenience and comparison floor space in Drogheda as per a survey undertaken by the Planning Authority in 2019 and 2020. The figures presented in the below table are nett figures.

Existing Retail Space in Drogheda						
SettlementConvenience sq.mComparison (sq.m)Bulky Comparison (sq.m)Total						
Drogheda	16,376	32,922	21,998	71,296		

Table 8.0Existing Retail floor space in Drogheda Louth

Catchment Existing Convenience Floorspace Turnover (2022)							
Area Nett Floor Area Turnover per sq.m Turnover							
Drogheda	16,376	€11,880.63	€194,557,197				
Vacant Units	Vacant Units 1,791 €11,880.63 €21,278,208.30						
Total	18,167	€11,880.63	€215,835,405				

 Table 9.0
 Catchment Existing Convenience Floor Space Turnover (2022)

Catchment Existing Comparison (non-bulky) Floorspace Turnover (2022)					
Area	Nett Floor Area	Turnover per sq.m	Turnover		
Drogheda	32,922	€5,356.03	€ 176,331,219.66		
Vacant Units	8,615	€5,356.03	€ 46,142,198.50		
Total	41,537	€5,356.03	€ 222,473,418.11		

 Table 10.0
 Catchment Existing Comparison (non-bulky) Floor Space Turnover (2022)

Catchment Existing Comparison (bulky) Floorspace Turnover (2022)						
Area	Nett Floor Area	Turnover per sq.m 认	Turnover			
Drogheda	21,998	€2,164.43	€ 47,613,131.14			
Vacant Units	463	€2,164.43	€ 1,002,131.09			
Total	22,451	€2,164.43	€ 48,615,262.23			

 Table 11.0
 Catchment Existing Comparison (bulky) Floor Space Turnover (2022)

The above analysis indicates, that in the current year 2022, there is an existing turnover in convenience retail floorspace within Drogheda of €215,835,405 with the quantum of available expenditure within the catchment area (15km of the subject site) of €421,927,704.57 in 2022. Therefore, the quantum of available expenditure within the catchment area for convenience goods is € 206,092,299.57.

It is also demonstrated that there is an existing turnover in comparison (non-bulky) retail floorspace of **€222,473,418.11** (2022) within Drogheda, with the quantum of available expenditure available within the catchment area (15km of the subject site) of **€323,744,656.46**. Therefore, the quantum of available expenditure within the catchment area for comparison (non-bulky) is **€101,271,238.35**.

The final table above, depicts that there is an existing turnover in comparison (bulky) retail floorspace of €48,615,262.23 (2022) within Drogheda, with the quantum of available expenditure within the catchment area (15km of subject site) of €74,515,507.30, equating to an available expenditure in the area of €25,900,245.07.

The above analysis demonstrates that there is an under provision if convenience and comparison, both non-bulky and bulky floor, retail floor space in the catchment area for the existing population.

The proposed development provides for a nett floor area of 2,750 sq.m (nett) convenience floor space which provides for an estimated turnover, based on the 2025 figures presented in table 7.0 above, of €33,661,705. The proposed development also provides for 3,382sq.m (nett) of comparison (non-bulky) retail floor space, which will provide for an estimated turnover of €18,663,025.90. The scheme will also provide for a total quantum of 2,344 sq.m (nett) bulky goods retail floor space, which will provide for an estimated turnover of significant capacity within the catchment area to accommodate the additional convenience, comparison and bulky comparison floorspace proposed as part of this application.

Table 5.4 of the Louth County Development Plan 2021-2027 provides for an indicative floorspace requirement for the County of 6,479sq.m for comparison, 4,749sq.m for comparison (non-bulky) and 2,098sq,m for comparison (bulky). The proposed scheme will aid in reaching these targets.

7.0 Conclusion

This Retail Impact Assessment has demonstrated that the proposed development is of an appropriate scale for the location and that it will adequately serve the growing demand for convenience, comparison and bulky goods providers in the area.

The subject site is currently vacant providing no practical use. The proposed retail scheme provides an opportunity to provide for the regeneration of the site and caters for their growing commercial customer base who buy in bulk. The quantitative assessment in this report has demonstrated that there is sufficient capacity to cater for the proposed bulky goods floorspace.

, Guide The proposed development is therefore consistent with the proper planning and sustainable development of the area and complies with the provisions of the Retail Planning Guidelines and the policies and objectives of the Meath Retail Strategy, and Louth Retail Strategy.

BARRETT MAHONY CIVIL & STRUCTURAL CONSULTING ENGINEERS

Civil Infrastructure Report

Project: Retail Development on Lands to the South of the M1 Retail Park, Mell, Drogheda, Co. Louth

DOCUMENT CONTROL

Project: Park, Mell, Drogł	•	on Lands to the South of the M1 Retail
Project No:	21.344	OUN
Document Title:	Civil Infrastructure Re	port
Document No:	21.344-IR-01	PURP
DOCUMENT STAT	TUS	
lssue D	Date Description Orig.	PE Issue Check

DOCUMENT STATUS

Issue	Date	Description	Orig.	PEN	Issue Check
PL1	06/12/22	Issued for planning	SE	LMC	LMC
			e		
			<u>Al</u>		

© Copyright Barrett Mahony Consulting Engineers. All rights reserved.

The report has been prepared for the exclusive use of our client and unless otherwise agreed in writing by Barrett Mahony Consulting Engineers no other party may use, make use of or rely on the contents of this report. The report has been compiled using the resources agreed with the client and in accordance with the scope of work agreed with the client. No liability is accepted by Barrett Mahony Consulting Engineers for any use of this report, other than the purpose for which it was prepared. Barrett Mahony Consulting Engineers accepts no responsibility for any documents or information supplied to Barrett Mahony Consulting Engineers by others and no legal liability arising from the use by others of opinions or data contained in this report. It is expressly stated that no independent verification of any documents or information supplied by others has been made. Barrett Mahony Consulting Engineers has used reasonable skill, care and diligence in compiling this report and no warranty is provided as to the report's accuracy. No part of this report may be copied or reproduced, by any means, without the written permission of Barrett Mahony Consulting Engineers.

Prepared by:

BMCE

52-54 Lower Sandwith Street Dublin 2 D02 WR26

Prepared for:

BPM GP3 Ltd Bridge House, 27/28 D'Olier Street, Dublin 2

BARRETT MAHONY CIVIL & STRUCTURAL www.bmce.ie

CONTENTS

1.	INTRODUCTION	
1.1	General Description3	
1.2	Scope of this report4	
1.3 1	Pre-submission Discussions	
1.4	Existing Surface Water Infrastructure5	
1.5	Proposed Surface Water Drainage System5	
1 1 1 1 1 1	Compliance with the Principles of Sustainable Urban Drainage Systems.6.1Compliance with the principles of the CIRIA C753 SuDS Manual.6.2SuDS Measure Selection.6.3Permeable Paving.6.4Attenuation Devices.6.5Bio-Retention and Tree Pits.6.6Filter Trenches.6.7Interception Storage.6.8Attenuation Storage.6.9Storage	
1.7	Summary9	
2.	FOUL DRAINAGE SYSTEM	
2.1	Existing Foul Sewer Infrastructure10	
2.2	Proposed Foul Sewer System	
2.3	Foul Design	
3.	WATER SUPPLY	
3.1	Existing Water Supply Infrastructure12	
3.2	Proposed Water Supply System12	

APPENDIX 1 FLOW CALCULATIONS APPENDIX 2 IRISH WATER CORRESPONDANCE APPENDIX 3 CONFIRMATION LETTER OF TAKEN IN CHARGE ROADWAYS

1. INTRODUCTION

1.1 GENERAL DESCRIPTION

Barrett Mahony Consulting Engineers Ltd. have been commissioned by BPM GP3 Ltd to complete the Civil Infrastructure Report in respect of a proposed retail/commercial development on lands to the south of the existing M1 Retail Park, Mell, Drogheda, Co. Louth.

The development will consist of:

- (i) A retail/commercial development comprising: (i) provision of 10 no. single storey retail units including a part-licenced anchor retail supermarket store (Unit 1)(4,085sq.m gfa), a DIY/Home store, including a garden centre(Unit 10)(2,350sq.m gfa), 8 no. smaller retail/commercial units, including a café and pharmacy (Units 2-8) (ranging in size from 300sq.m – 760sq.m gfa) and 1 no. single storey Drive-Thru Restaurant/Café unit (375sq.m), including an external seating area. A deliveries area, service yard and ground mounted plant units will be provided to the side (south) and rear (west) of Retail Unit 1, a dedicated set down point is also proposed adjacent to the front entrance to Retail Unit 1. Deliveries will also be accommodated to the rear (south) of the proposed retail units (Units 2-10) with a truck turning area provided to the rear (south) of unit 10. Dock levellers will be provided to the rear of units 2-10 to facilitate loading and unloading of goods. A total of 311 no. car parking spaces are proposed to serve the proposed development, including 23 no. accessible parking spaces, 2 no. click and collect spaces and 17 no. parent and child spaces. A bus/coach parking area comprising 4 no. bus/coach parking spaces is also provided within the eastern portion of the site, adjacent to the Trinity Street Frontage. 104 no. bicycle parking spaces are proposed at surface level to serve the proposed retail/commercial units. A partially covered pedestrian circulation space will be provided to the front of each of the proposed retail units. The development also includes:
- (ii) provision of 2 no. vehicular and pedestrian connection points to the existing M1 Retail Park to the north which will provide access to the proposed retail development;
- (iii) internal roads, footpaths and pedestrian crossings;
- (iv) trolly bays, signage, hard and soft landscaping, boundary treatments, Electric Vehicle Charging spaces, and lighting;
- (v) associated site and infrastructural works are also proposed which include: foul and surface water drainage, plant areas; 3 no. ESB substations; and
- (vi) all associated site development works necessary to facilitate the proposed development.

This application is accompanied by an Environmental Impact Assessment Report and a Natura Impact Statement.

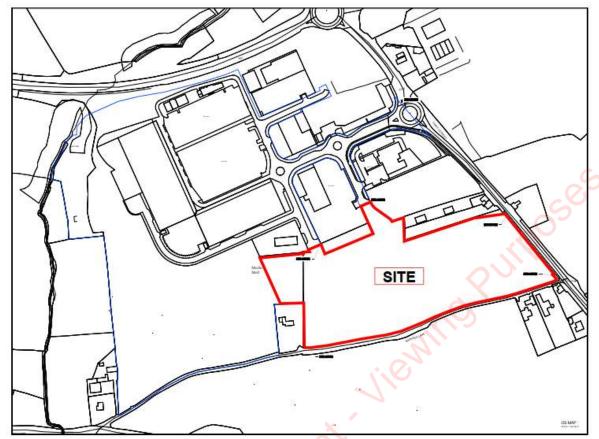


Figure 1 – Site Plan

1.2 SCOPE OF THIS REPORT

This report describes the proposed civil engineering infrastructure for the development and how it connects to the public infrastructure serving the area. In particular, foul and surface water drainage, and water supply aspects are considered. This report should be read in conjunction with the following drawings submitted with the Planning Application:

1.3 PRE-SUBMISSION DISCUSSIONS

1.3.1 Irish Water

A pre-connection enquiry was submitted to Irish Water New Connections and the Confirmation of Feasibility received. This can be found in Appendix 2.

Surface Water Drainage System

1.4 EXISTING SURFACE WATER INFRASTRUCTURE

Currently there is an existing 225mm uPVC sewer that Barrack Lane to the south of the site.

1.5 PROPOSED SURFACE WATER DRAINAGE SYSTEM

It is proposed to discharge the surface water runoff from the site to a tributary stream into the River Boyne. Surface water run-off from the roof will be collected in a gravity network and directed to an attenuation tank located under the car park before travelling to the stream via the Barrack Lane which has been confirmed to be taken in charge by the Louth County Council. The exact outfall point to the stream is to be agreed with County Council following a pre-construction ecology survey, should a Grant of Planning be forthcoming

Discharge from the site will be controlled via a flow control device set at 16.2l/s, located in a manhole adjacent the attenuation tank. The discharge will be pumped to a surface water manhole at ground level. The surface water discharge to the public sewer via a non-return manhole.

See Appendix 1 for calculations and refer to drawings 21.344-C-1000, C-1001, C-1005 and C-1200 issued with this report for layout and details.

1.6 COMPLIANCE WITH THE PRINCIPLES OF SUSTAINABLE URBAN DRAINAGE SYSTEMS

The proposed development has been designed in accordance with the principles of Sustainable Drainage Systems (SuDS) as embodied in the recommendations of the Greater Dublin Strategic Drainage Study (GDSDS). The GDSDS addresses the issue of sustainability by requiring designs to comply with a set of drainage criteria which aim to minimize the impact of urbanization by replicating the run-off characteristics of the greenfield site:

- Criterion 1 River Water Quality Protection
- Criterion 2 River Regime Protection
- Criterion 3 Flood Risk Assessment
- Criterion 4 River Flood Protection
 The requirements of SuDS are typically addressed by provision of the following:
- Interception storage
- Treatment storage (not required if interception storage is provided)
- Attenuation storage
- Long term storage (not required if growth factors are not applied to QBAR when designing attenuation storage)

1.6.1 Compliance with the principles of the CIRIA C753 SuDS Manual

The C753 SuDS Manual explains that the primary function of SuDS measures is to protect watercourses from any impact due to the new development. However, SuDS can also improve the quality of life in a new development and urban spaces by making them more vibrant, visually attractive, sustainable, and more resilient to change. This document explains the wider social context of SuDS and how SuDS can deliver high quality drainage while supporting urban areas to cope better with sever rainfall both now and in the future.

There are four main categories of benefits that can be achieved by SuDS:

- 1. Water Quantity (mitigate flood risk & protect natural water cycle)
- 2. Water Quality (manage the quality of the runoff to prevent pollution)
- 3. Amenity (create and sustain better places for people)
- 4. Biodiversity (create and sustain better places for nature)

1.6.2 SuDS Measure Selection

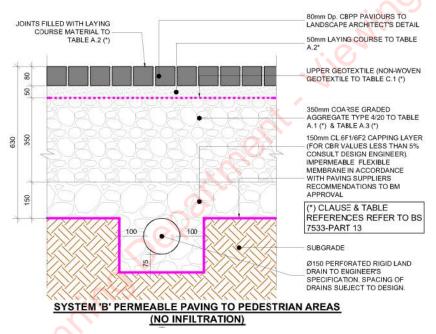
Below are the applicable SuDS measures which have been chosen for the site.

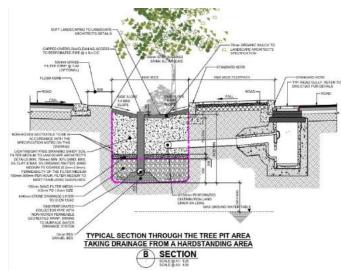
1.6.3 Permeable Paving

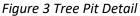
Permeable paving provides a surface suitable for pedestrian and/or vehicular traffic, while also allowing rainwater to infiltrate through the surface and into the underlying structural layers. The water is temporarily stored beneath the overlying surface before slowly infiltrating. Permeable paving systems are an effective way of managing surface water runoff close to its source.

The car parking spaces, throughout the site will be made up of permeable paving.

By providing a raised drainage outlet above the base of the coarse graded gravel bed it is possible to achieve interception storage. Raising the invert of the drainage pipe to 100mm above the gravel bed gives 30mm interception storage @ 30% voids in the gravel. Refer to detail below.

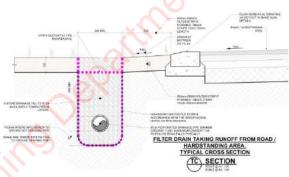



Figure 2 – Permeable Paving Detail


1.6.4 Attenuation Devices

Attenuation tanks are used to create below-ground void space for the temporary storage of surface water before infiltration, controlled release or use.

1.6.5 Bio-Retention and Tree Pits


Both catchments contain bio-retention areas and tree pits to treat and intercept runoff from neighbouring road surfaces and to take the rainwater from adjacent rainwater downpipes. These systems also allow some direct infiltration to the ground since they will be lined with permeable geotextile material. In each case there is a slotted drainage pipe above the base which collects and re-directs excess runoff to the stormwater network. For the location of these SuDS measures on BMCE drawing C1209

1.6.6 Filter Trenches

Filter Trenches systems are shallow landscaped depressions adjacent to the roadway. The trenches collect, intercepts and treat the road runoff. Filter trenches can reduce the runoff rates and volumes of surface water. They treat pollution using engineered soils and vegetation. They are very effective in delivering interception and treatment storage. By including filter strips within the depression, the effectiveness of the overall system in meeting the requirements of water quality, water quantity, amenity and biodiversity is significantly improved.

1.6.7 Interception Storage

The GDSDs requires that Interception storage, where provided, should ensure that at a minimum the first 5mm and preferably the first 10mm of rainfall is intercepted on site and does not directly pass to the receiving watercourse. Interception storage can be attained using SuDS features which allow the rainwater to infiltrate into the ground, evaporate into the atmosphere or transpire through vegetation.

The overall impermeable area of the site 3.24ha.

Providing the target of 10mm interception storage (in accordance with the requirements of the GDSDS) equates to a volume of 324m³. Interception storage for the new development will be provided as outlined above. Respective areas of each type of interception are given below:

Interception storage will be provided using a combination of Filter Trenches, Tree Pits, Bio Retention & Permeable Paving.

Interception Provided	Area (m2)	Storage I/m2	Capacity m ³
Filter Trench	1138	75	85.35
Tree Pit	1713	75	128.475
Permeable paving	5020	30	150.6
		TOTAL	364.425

The total interception storage provided (364m³) is greater than the required (324m³)

Refer to drawings issued with this report for proposed SUDS details.

1.6.8 Attenuation Storage

An attenuation tank will be located under the ground level on the southwestern corner of the development site.

In accordance with the IH124 method, the greenfield runoff for existing undeveloped sites measuring less than 50ha can be estimated using the following formula:

Qbarrural (in m³/s) = $0.00108 \times (0.01 \times AREA)^{0.89} \times SAAR^{1.17} \times SPR^{2.17}$

- where:
- Qbarrural is the mean annual flood flow from a catchment.
- AREA is the area of the catchment in ha.
- SAAR is the standard average annual rainfall for the period 1981-2010 Annual Average Rainfall Grid produced by Met Éireann.
- SPR is Standard Percentage Runoff coefficient for the SOIL category geotechnical report.

Rainfall data for the site was sourced from an Annual Average Rainfall (AAR) Grid (1981-2010) produced by Met Éireann (Available from: http://www.met.ie/climate/products03.asp). The rainfall data for the Irish Grid Coordinates closest to the site indicates a SAAR value of 807mm is appropriate.

	Table 2.2: Met Éireann An	nual Average Rainfall	(AAR) Grid (1981-2010) Extract
--	---------------------------	-----------------------	--------------------------------

easting	northing	Annual Average Rainfall (mm)
307000	274000	787
307000	275000	791
307000	276000	798
307000	277000	807
307000	278000	831
307000	279000	866
307000	280000	915

Soakaway testing to Building Research Establishment (BRE) 365 was carried out by Causeway Geotech in September 2020. Eleven trial pits were excavated (TP01-TP11), which indicated a combination of sandy silty gravelly clay. The infiltration rates were also found to be very low, and it is appropriate to use a SOIL Type 4 for the calculations.

Interpolating linearly, this corresponds with a Qbar figure for the drained area (4.82 ha) of 16.2 l/s.

The attenuation tank has been designed to attenuate a volume of 1500m3 with a flow control device limiting the discharge rate from the attenuation structure.

Appendix 1 contains Flow output for attenuation storage. Refer to drawings 21.344-C-1000 and C-1205 issued with this report.

1.7 SUMMARY

A two-stage treatment system is proposed for this site. Interception and Attenuation storage are provided, and 20% climate change has been applied to the design calculations in accordance with the GDSDS guidelines.

2. FOUL DRAINAGE SYSTEM

2.1 EXISTING FOUL SEWER INFRASTRUCTURE

The Foul drainage system installed as part of the original retail park development outfalls to an existing pumping station constructed at the southwest corner of the site. A 225mm diameter gravity sewer collects the foul effluent from the retail park and runs south towards Barrack lane where it connects to another 225mm diameter gravity sewer that falls westwards along Barrack lane (inside the site boundary) from its junction with Trinity Street to the pumping station at the south west corner. From there the effluent is pumped back up through a 100mm diameter rising main that runs eastwards along Barrack lane (inside the site boundary) to a 225mm diameter sewer in Trinity Street. The Trinity Street sewer runs southwards where it connects into the town's main sewerage network.

Part of the original brief was to future proof, where cost effective, the Foul System and an additional 300mm rising main was laid parallel with the live 100mm main so that in the future, if the pumping station was upgraded for a bigger population, the larger rising main is already in place.

2.2 PROPOSED FOUL SEWER SYSTEM

The proposed foul drainage system can connect to the existing 225mm sewer pipe laid parallel to Barrack lane that outfalls to the pumping station. The pumping station will need to be upgraded to accommodate the increase in population but the rising main infrastructure is already in place as described.

Liaison with Irish water will be required to ensure there is adequate capacity in the town system (Drainage pipelines within the town and Foul Effluent Treatment Plant capacity) to cater for the increase in population.

2.3 FOUL DESIGN

With 10,690 m² of retail area proposed, the design foul flows from the retail units are calculated has been assessed using the Employment density guide and assuming a dry weather flow of 30 l/person/day

Daily flow

= (Number of Units) × (Number of occupants) × (Occupancy Rate) + (Retail area x 1PE/18m2) x (Staff rate)

= 10,690/18 x 30 = 17,817 l / day

Average Flow

= "Daily Flow"/(("Flow Duration")(3600)) = 1.1x (17,817 l/day)/(24)(3600) = 0.23 l/s

Peak Flow

= (Average Flow) × ("Peaking Factor") + 10% infiltration = 0.23 l/s × 6 + 0.023 = 1.39 l/s

The proposed pipe network has been designed in accordance with the relevant requirements of the Irish Water Code of Practice for Wastewater Infrastructure. The proposed foul outfall

pipe, 225mm diameter at a gradient of 1:150 has a capacity = 30.6 l/s which is sufficient for all Planning Department. Viewing Pupposes Only foul pipework within the site. Refer to drawings 21.344-C-1000 and 21.344-C-1001 for foul network layout. Confirmation of Feasibility was received from Irish Water and can be found attached in Appendix 4.

3. WATER SUPPLY

3.1 EXISTING WATER SUPPLY INFRASTRUCTURE

The water supply system installed as part of the original Retail Park development included constructing a new 450mm diameter watermain out along Trinity Street to connect the town system to the new watermain that had been already laid in the link road from the motorway.

3.2 PROPOSED WATER SUPPLY SYSTEM

A new connection can be taken from the 450mm diameter watermain in Trinity Street to supply the proposed development in accordance with the Irish Water Confirmation of Feasibility. Refer to Appendix 2 of this report.

The water demand for the development has been assessed using the Employment density guide and assuming a dry weather flow of 30 l/person/day. The average day/peak week demand is taken as 1.25 times the average daily domestic demand. The peak demand factor is taken as 5 times the average day/peak week demand.

<u>Retail</u>

Daily Demand

- = (Retail area x 1PE/18m2) x(Staff rate)
- = 10,690/18 x 30
- = 17,817 l / day

Average Demand

- = "Daily Demand" /("Demand Duration")"(3600) ×1.25
- = (17,817 | / day)/(24)(3600) × 1.25
- = 0.258 l/s

Peak Demand

- = (Average Demand) × ("Peaking demand Factor")
- = 0.258 l/s × 5
- = 1.291 l/s

Al stions on models of the second sec

BARRETT MAHONY CONSULTING ENGINEERS CIVIL & STRUCTURAL Barrett Mahony Consulting Engineers Ltd. 52-54 Lower Sandwith Street Dublin, D02 WR26	File: Tank size_M1-25-11-2022Page 1Network: Storm Network21.344Dirk KotzeM1 Retail25/11/2022
Design	<u>Settings</u>
Rainfall MethodologyFSRIReturn Period (years)100Additional Flow (%)0FSR RegionScotland and IrelandM5-60 (mm)17.000Ratio-R0.300CV1.000Time of Entry (mins)4.00	Maximum Time of Concentration (mins)30.00Maximum Rainfall (mm/hr)50.0Minimum Velocity (m/s)1.00Connection TypeLevel SoffitsMinimum Backdrop Height (m)0.200Preferred Cover Depth (m)1.200Include Intermediate Ground✓Enforce best practice design rules✓
<u>N</u>	odes S
Name Area (ha) Attenuation Tank 2.500	T of E Cover Depth (mins) Level (m) (m) (m) 4.00 31.300 4.790
Simulat	on Settings
Rainfall Methodology FSR FSR Region Scotland and Irelan M5-60 (mm) 17.000 Ratio-R 0.300 Summer CV 1.000 Analysis Speed Detailed	d Drain Down Time (mins) 240 Additional Storage (m³/ha) 20.0 Check Discharge Rate(s) x Check Discharge Volume √ 100 year +20% 360 minute (m³)
15 60 180 360 600	Durations 960 2160 4320 7200 10080 440 2880 5760 8640 10080
Return PeriodClimate Change (years)120302010020	Additional AreaAdditional Flow(A %)(Q %)00000000
Pre-developmen	: Discharge Volume
Site Makeup Brown Brownfield Method Green Greenfield Method FSR/F Positively Drained Area (ha) 750.0 Soil Index 5 SPR 0.53 CWI	fieldClimate Change (%)20EHStorm Duration (mins)360
Node Attenuation Tank C	nline Hydro-Brake [®] Control
Design Flow (I/s) 16.2 Min No	Objective (HE) Minimise upstream storage Sump Available ✓ Product Number CTL-SHE-0150-1620-3200-1620 tlet Diameter (m) 0.225 e Diameter (mm) 1500
Hydrobrake set 1	5.2I/s
Flow+ v10.3 Copyright © 1988	2022 Causeway Technologies Ltd

	1					1	
	Barrett Mahony C	onsulting	File: Tank size	e_M1-25-	11-2022	Page 2	
RM BARRETT MAHONY CONSULTING ENGINEERS	Engineers Ltd.		Network: Sto	orm Netwo	ork	21.344	
	52-54 Lower Sand	with Street	Dirk Kotze			M1 Retai	l
	Dublin, D02 WR26		25/11/2022				
	Node Attenua	ation Tank Dept	th/Area Stora	age Struct	<u>ture</u>		
				_			
Base Inf Coefficien	t (m/hr) 0.00000	Safety Fact	tor 1.0		Invert	Level (m)	26.510
Side Inf Coefficien	t (m/hr) 0.00000	Poros	ity 1.00	Time to	half emp	ty (mins)	
Depth	Area Inf Area	Depth Area	a Inf Area	Dept	h Area	Inf Area	
-	(m²) (m²)	(m) (m²)		(m)		(m²)	
	167.0 0.0	3.200 467.		3.20		0.0	
	, i l			1			
	ス	<u>Rainf</u>	all				
Tank Size = 15	00m3						
		Event	Р	eak /	Average		
			Inte		ntensity		
				-	mm/hr)		
	1 year +20% CC 1	5 minute summ		.2.579	31.856		
	1 year +20% CC 30			6.307	21.592		
	1 year +20% CC 60			3.572	14.158		
	1 year +20% CC 12			4.505	9.119		
	1 year +20% CC 18			7.280	7.020		
	1 year +20% CC 24			2.045	5.826		
	1 year +20% CC 36			.7.384	4.474		
	1 year +20% CC 48			4.013	3.703		
	1 year +20% CC 60			1.693	3.198		
	1 year +20% CC 72			.0.588	2.838		
	1 year +20% CC 96			8.970	2.362		
	1 year +20% CC 14			6.734	1.805		
	1 year +20% CC 22			4.987	1.378		
	1 year +20% CC 28			4.247	1.138		
	1 year +20% CC 43			3.328	0.870		
	1 year +20% CC 57			2.810	0.719		
	1 year +20% CC 72			2.427	0.619		
	1 year +20% CC 86			2.148	0.548		
	1 year +20% CC 10			1.937	0.494		
	30 year +20% CC			0.319	70.832		
	30 year +20% CC 3			9.534 C 572	47.972		
	30 year +20% CC 6			.6.572	30.807		
	30 year +20% CC 2			3.169	19.337		
	30 year +20% CC 1			6.807	14.618		
	30 year +20% CC 2			5.293	11.970		
	30 year +20% CC 3			5.007	9.008		
	30 year +20% CC 4			7.832	7.355		
	30 year +20% CC 6			2.966	6.282		
	30 year +20% CC 7			0.599	5.521		
	30 year +20% CC 9			.7.095	4.502		
	30 year +20% CC 2			2.593	3.375		
	30 year +20% CC 2			9.154	2.530		
	30 year +20% CC 2			7.689	2.061		
	30 year +20% CC 4			5.898	1.542		
	30 year +20% CC 5			4.902	1.255		
	30 year +20% CC 7			4.191	1.069		
	30 year +20% CC 8			3.677	0.938		
	30 year +20% CC 2			3.291	0.840		
	100 year +20% CC			5.091	91.990		
	100 year +20% CC			1.434	62.658		
	100 year +20% CC	60 minute sum	nmer 15	1.342	39.995		
	100 year +20% CC	120 minute su	mmer 9	4.238	24.904		
	100 year +20% CC	180 minute su	mmer 7	2.733	18.717		
			22.0	T 1 1			

BARRETT MAHONY CONSULTING ENGINEERS CIVIL & STRUCTURAL	Barrett Mahony Consulting Engineers Ltd. 52-54 Lower Sandwith Street Dublin, D02 WR26	File: Tank size_M1-2. Network: Storm Net Dirk Kotze 25/11/2022		Page 3 21.344 M1 Retail
	Event 100 year +20% CC 240 minute s 100 year +20% CC 360 minute s 100 year +20% CC 480 minute s	ummer 44.349 ummer 35.092	Average Intensity (mm/hr) 15.262 11.412 9.274	OC
	100 year +20% CC 600 minute s 100 year +20% CC 720 minute s 100 year +20% CC 960 minute s 100 year +20% CC 1440 minute 100 year +20% CC 2160 minute 100 year +20% CC 2880 minute 100 year +20% CC 4320 minute 100 year +20% CC 5760 minute 100 year +20% CC 7200 minute 100 year +20% CC 8640 minute	ummer 25.793 ummer 21.298 summer 15.578 summer 11.244 summer 9.395 summer 7.151 summer 5.908 summer 5.028 summer 4.394	7.890 6.913 5.608 4.175 3.107 2.518 1.870 1.512 1.283 1.121	PURPOSES
	100 year +20% CC 10080 minut	e summer 3.920	1.000	
	anning Departi			
CC' Pla				
outh				
	Flow+ v10.3 Copyright © 1988-	2022 Causeway Techno	ologies Ltd	

BARRETT MAHONY CONSULTING ENGINEERS CIVIL & STRUCTURAL	Barrett Mahony Cor Engineers Ltd. 52-54 Lower Sandw Dublin, D02 WR26			ork: Storr otze	M1-25-1: n Networ		Page 4 21.344 M1 Retail		
Results f	or 1 year +20% CC C	ritical Storr	n Duratio	on. Lowe	est mass l	balance:	<u>99.99%</u>		
Node Event	US			Depth	Inflow	Node		Status	
960 minute summer	Node Attenuation Tank	(mins) 660 2	(m) 27.521	(m) 1.011	(I/s) 62.3	Vol (m ³ 482.521		ОК	
(Upstr	nk Event æam Depth) nute summer Atter	US Node nuation Tan		Link [.] o-Brake [®]	Outflo (I/s) 13		charge I (m³) 757.3		00
			Disch	<mark>arge ra</mark>	ate				
					jier				
P12	minope								
out									

BARRETT MAHONY CONSULTING ENGINEERS CIVIL & STRUCTURAL	Barrett Mahony Consulting Engineers Ltd. 52-54 Lower Sandwith Stree Dublin, D02 WR26	Network: Sto	e_M1-25-11-2022 orm Network	Page 5 21.344 M1 Retail			
Results for 30 year +20% CC Critical Storm Duration. Lowest mass balance: 99.99%							
Node Event	US Peak	Level Depth	Inflow Node		Status		
960 minute summer	Node(mins)Attenuation Tank780	(m) (m) 28.944 2.434	(I/s) Vol (m 118.7 1162.29		ОК		
(Upstr	nk Event US ream Depth) Node nute summer Attenuation		e® 14.2 Vo	scharge bl (m³) 850.2	05 ⁶⁵ 01		
		Discharge	rate				
			Jien.				
	minopeps						
Rhie Rhie							
OUTIN							
	Flow+ v10.3 Copyright © 19	988-2022 Causeway	y Technologies Ltd				

BM BARRETT MAHONY CONSULTING ENGINEERS CIVIL & STRUCTURAL	Barrett Mahony Consulti Engineers Ltd. 52-54 Lower Sandwith St Dublin, D02 WR26	treet D	le: Tank size etwork: Sto irk Kotze 5/11/2022			Page 6 21.344 M1 Retail		
Results fo	<u>r 100 year +20% CC Critic</u>	cal Storm D	uration. Lo	west mass	<u>balance</u>	<u>:: 99.99%</u>		
Node Event	US Pea Node (mir		-	Inflow (I/s)	Node Vol (m ³		Status	
960 minute summer	-	10 29.69			1520.775		ОК	
(Upstr	nk Event US eam Depth) Noc nute summer Attenuation	de on Tank	Link Hydro-Brake <mark>scharge (</mark>	/	Vo	charge I (m ³) 952.4		ç
				1.01	ino			
	minoper							
Q12								
outin								
	Flow+ v10.3 Copyright ©	1000 202		Technolog				\square

<text>

Liam McCarthy Sandwith House 52-54 Sandwith Street Lower Co. Dublin D02WR26

29 April 2022

Re: CDS22001877 pre-connection enquiry - Subject to contract | Contract denied

Connection for Business Connection of 6 unit(s) at Southern M1 Retail Park, Adjacent Barrack Lane, Louth

Dear Sir/Madam,

Irish Water has reviewed your pre-connection enquiry in relation to a Water & Wastewater connection at Southern M1 Retail Park, Adjacent Barrack Lane, Louth (the **Premises**). Based upon the details you have provided with your pre-connection enquiry and on our desk top analysis of the capacity currently available in the Irish Water network(s) as assessed by Irish Water, we wish to advise you that your proposed connection to the Irish Water network(s) can be facilitated at this moment in time.

SERVICE	OUTCOME OF PRE-CONNECTION ENQUIRY <u>THIS IS NOT A CONNECTION OFFER. YOU MUST APPLY FOR A</u> <u>CONNECTION(S) TO THE IRISH WATER NETWORK(S) IF YOU WISH TO</u> <u>PROCEED.</u>				
Water Connection	Feasible Subject to upgrades				
Wastewater Connection	Feasible without infrastructure upgrade by Irish Water				
SITE SPECIFIC COMMENTS					
Water Connection	In order to accommodate the proposed connection to Irish Water water network at the Premises, upgrade works are required to extend the length of the network by approximately 240m of new 100mm diameter main (See red dashed line in drawing below) to be laid to link up connection main and existing 150mmuPVC main. Should you wish to progress with the connection you will be required to fund this network extension.				

Stlürthóirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Yvonne Harris, Brendan Murphy, Dawn O'Driscoll, Maria O'Dwyer Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1 D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhír Chláraithe in Éirinn / Registered in Ireland No.: 530363

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

	Car Park
	The applicant shall note the water connection can not take place until the trunk main upgrade works are complete (Phase 1; 450mm dia. x 850m). Expected completion date is Q4 2022. Ref; SNDP Drogheda Project 2021. The Phase 1 upgrade has a limited capacity of 1200 units for new developments, and so once this limit has been reached developers will have to wait for phase 2 to be complete.
Wastewater Connection	N/A

The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this development shall comply with the Irish Water Connections and Developer Services Standard Details and Codes of Practice that are available on the Irish Water website. Irish Water reserves the right to supplement these requirements with Codes of Practice and these will be issued with the connection agreement.

The map included below outlines the current Irish Water infrastructure adjacent to your site:

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Whilst every care has been taken in its compilation Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided and does not accept any liability whatsoever arising from any errors or omissions. This information should not be relied upon in the event of excavations or any other works being carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

General Notes:

1) The initial assessment referred to above is carried out taking into account water demand and wastewater discharge volumes and infrastructure details on the date of the assessment. The availability of capacity may change at any date after this assessment.

- 2) This feedback does not constitute a contract in whole or in part to provide a connection to any Irish Water infrastructure. All feasibility assessments are subject to the constraints of the Irish Water Capital Investment Plan.
- The feedback provided is subject to a Connection Agreement/contract being signed at a later date.
- 4) A Connection Agreement will be required to commencing the connection works associated with the enquiry this can be applied for at https://www.water.ie/connections/get-connected/
- 5) A Connection Agreement cannot be issued until all statutory approvals are successfully in place.
- Irish Water Connection Policy/ Charges can be found at <u>https://www.water.ie/connections/information/connection-charges/</u>
- 7) Please note the Confirmation of Feasibility does not extend to your fire flow requirements.
- 8) Irish Water is not responsible for the management or disposal of storm water or ground waters. You are advised to contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges
- 9) To access Irish Water Maps email <u>datarequests@water.ie</u>
- 10) All works to the Irish Water infrastructure, including works in the Public Space, shall have to be carried out by Irish Water.

If you have any further questions, please contact Dario Gozalo Alvarez from the design team on + 353 2254621 or email dalvarez@water.ie For further information, visit www.water.ie/connections.

Yours sincerely,

onne Alaceis

Yvonne Harris Head of Customer Operations

Appendix 3

Confirmation Letter of Taken in Charge Roadways

Comhairle Contae **Lú Louth** County Council

3rd October 2022

Marlet Property Group O'Connell Bridge House 27/28 D'Olier Street Dublin 2 D02 RR99

Roads: Barrack Lane & Slane Road, Drogheda, Co Louth Your Ref: Karen Jankech

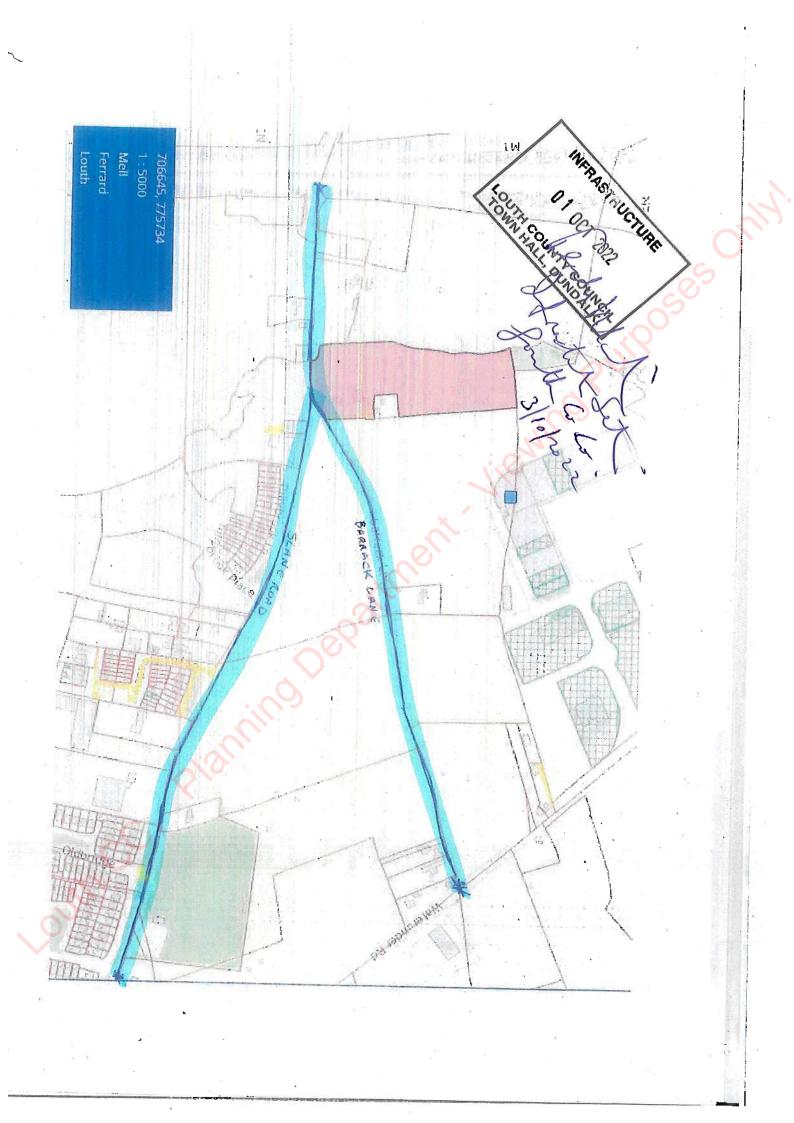
Dear Sirs,

I refer to your email dated 20th September 2022 in relation to the above.

I can confirm that the roads, marked in blue on the attached map, at Barrack Lane and Slane Road, Drogheda, Co. Louth are in the charge of the local authority.

Please contact Irish Water in relation to water supply and foul sewer queries at 1850 278278.

Yours faithfully,


Peadar Mackin Assistant Staff Officer Infrastructure Section Phone 042 9392992 Email peadar.mackin@louthcoco.ie

> Comhairle Contae Lú Halla an Bhaile Sráid Crowe Dún Dealgan Contae Lú A91 W20C

Louth County Council Town Hall Crowe Street Dundalk County Louth A91 W20C

T + 353 42 9335457
 F + 353 42 9334549
 E info@kouthcoco.ie
 W www.kouthcoco.ie

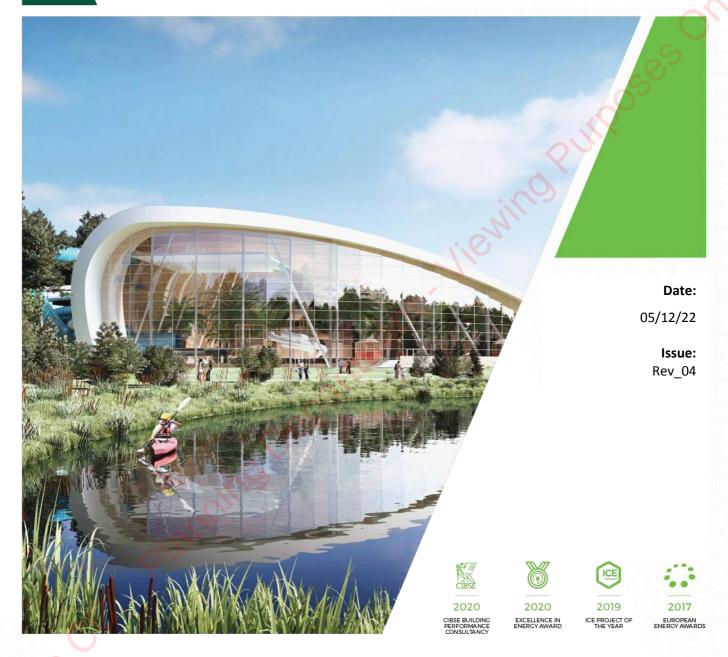
Cuirfear fáilte roimh chomhfhreagras Gaeilge - Correspondence in Irish is welcome Féach foláirimh faoi Lú ón gComhairle ag www.mapalerter.ie/Louth View Council alerts for Louth at www.mapalerter.ie/Louth

Barrett Mahony Consulting Engineers

Dublin:

Sandwith House, 52-54 Lower Sandwith Street, Dublin 2, D02 WR26, Ireland. Tel: +353 1 677 3200

London:


12 Mill Street, London, SE1 2AY, United Kingdom Tel: +44 203 750 3530.

Sofia: 19 Yakubitsa Street, Lozenets, Sofia 1164, Bulgaria Tel: +359 2 494 9772

WWW.BMCE.IE

Planning Part L & NZEB Compliance Report For a Proposed Retail/Commercial Development on Lands To the South of the Existing M1 Retail Park, Mell, Drogheda, Co. Louth.

A Future Built on Sustainable Design

t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.com

w. www.LawlerConsulting.com

Contents

1.	Executiv	e Summary	1
2.	Introduc	tion	2
3.	Part L 20	21 Requirements	3
4.	Part L (N	ZEB) Compliance and Renewable Energy Strategy	5
5.	Building	Fabric Performance	6
	5.1.1.	Opaque Elements	6
	5.1.2.	Glazed Elements	
	5.1.3.	Building Air Permeability	
6.	Mechani	cal and Electrical Performance Specification	7
6	.1. Me	chanical Plant Performance	7
	6.1.1.	Air Conditioning Units - Split Systems	7
	6.1.2.	Ventilation - Supply	7
	6.1.3.	Ventilation - Extract	8
	6.1.4.	HVAC Controls	8
	6.1.5.	Hot Water System	9
6	.2. Eleo	trical Plant Performance	11
	6.2.1.	Lighting Efficacy	11
	6.2.2.	Lighting Controls	11
	6.2.3.	Electric Power Factor	11
7.	Electric V	/ehicle Charging Requirements	12
	7.1.1.	Electric Vehicle Recharging Points	12
	7.1.2.	Electric Vehicle Ducting Infrastructure	13
Арр	endix A: F	Provisional BER - Anchor Unit	14
Арр	endix B: F	art L Compliance Report - Anchor Unit	15
Арр	endix C: F	rovisional BER - Retail Unit	20
Арр	endix D: F	Part L Compliance Report - Retail Unit	21
App	endix E: A	rchitectural Plans, Sections Drawings	24
Abb	reviations	5	26

t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.com

w. www.LawlerConsulting.com

Figure 1: Site Plan2	1.
Table 1: Opaque Elements U-values	
Table 2: Glazed Elements Details 6	
Table 3: Air Permeability Specification	
Table 4. Split Systems	
Table 5. Heat Recovery Unit Supply Ventilation	
Table 6: Heat Recovery Unit Leakage Specification	
Table 7. Extract Fans	
Table 8. Minimum Controls for Heat Pumps	
Table 9. Minimum Controls for Heat Recovery Units	
Table 10. Hot Water System - Retail Units (excluding units with sale of food and drink for consumption) 9	
Table 11. Hot Water System - Heat Pump (Units that include sale of food and drink for consumption) 10	
Table 12. Lighting Efficacy	
Table 13. Lighting Controls	
Table 14. Electric Power Factor	

	X	
Document Issue Date	Revision	Notes
27/05/2022	Draft	-
23/06/2022	Rev_01	Mechanical, electrical and renewable energy strategy updated
02/09/2022	Rev_02	Proposed domestic hot water Strategy updated for premises with sale of food and drink for consumption.
12/10/2022	Rev_03	Minor descriptive revisions
21/11/2022	Rev_04	Minor descriptive revisions

Lawler Sustainability

Louit	Name	Role
	Shane Doyle	Sustainability Engineer
	Brian O'Hanrahan	Associate Director

t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.com

w. www.LawlerConsulting.com

1. Executive Summary

Lawler Sustainability have been appointed to carry out a preliminary Building Energy Rating (BER) & Part L NZEB (Nearly Zero Energy Building) analysis for the Proposed retail/commercial development on lands to the immediate south of the existing M1 Retail Park, Mell, Drogheda, Co. Louth

This analysis is informed by the Architect's most current and up-to-date drawings, and the mechanical and electrical specifications from the mechanical engineer and the sustainability team.

The NZEB NEAP model has been completed using SBEMie v5.5.h.2 within the IES Virtual Environment 2021 VE Compliance software. This software has been validated and approved by the SEAI www.seai.ie/grants/supports-for-contractors/neap/sbemie-software/.

- The proposed Part L compliance strategy (see section 4) for each unit in the development is to achieve at least a 10% improvement in energy (EPC ≤0.9) and carbon performance (CPC ≤1.04) compared to the Part L minimum standards. This will be achieved by installing building fabric elements that meet the Part L U-value and air tightness requirements in adherence with the fabric first design approach, in addition to energy efficient HVAC, lighting and associated controls. Energy efficient split air conditioning heat pump units will be used to meet the renewable energy requirements for each unit. Heat pumps for the production of hot water are proposed where there is a large demand for hot water e.g. Restaurants, Snack Bars, Drive Thru Restaurant and Café's. This is due to the increased hot water consumption associated with these establishments
- The buildings will be completed to a shell and core standard in compliance with Technical Guidance Document L 2021 of the building regulations. Section 5 of this report outlines the building fabric specifications required for Part L and NZEB compliance.
- Section 6 details the proposed mechanical and electrical strategy and NEAP specifications for the development. The purpose of this specification is to give future tenants a pathway to TGD Part L 2021 and NZEB compliance for their subsequent fitout. The tenant is at liberty if they so wish to implement an alternative strategy for their BCAR compliance and completion process, noting that it is the responsibility of the tenant to ensure that their fitout achieves compliance with TGD Part L 2021.

• Section 7 details the electric vehicle car parking strategy for the development

Based on the fabric, mechanical and electrical design parameters contained within this report the preliminary BER for each unit is an A2. Please see appendices of this report for the results of the Part L and BER calculations completed.

t. Kilkenny Office +353 (0)56 772 1115
t. Dublin Office +353 (0)1 567 5668
e. info@LawlerConsulting.com
w. www.LawlerConsulting.com

2. Introduction

This Part L NZEB energy statement report has been drafted by Lawler Sustainability for inclusion in the planning application for the proposed retail/commercial development on lands to the immediate south of the existing M1 Retail Park, Mell, Drogheda, Co. Louth. Lawler Sustainability have been appointed to investigate the architectural, mechanical and electrical requirements necessary to achieve the NZEB standard for the proposed development. The new structures will be designed to meet the building regulation standards in terms of the thermal performance. The proposed mechanical, electrical and renewable energy strategy outlined in the report details a pathway to Part L compliance for the development.

This analysis is informed by the Architect's most current and up-to-date plan drawings (31/05/2022), and the mechanical and electrical specifications from the mechanical engineer and the sustainability team.

The proposed development consists of 10 Retail Units and a Drive Thru unit as shown in Figure 1 below that will be completed to a shell and core standard.

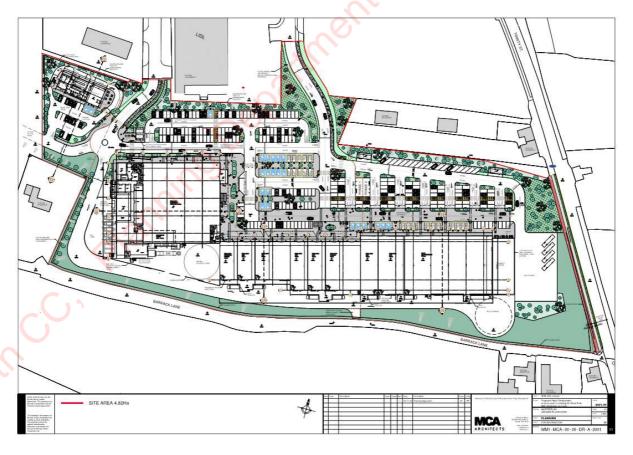


Figure 1: Site Plan

t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.com

w. www.LawlerConsulting.com

3. Part L 2021 Requirements

The requirements regarding conservation of fuel and energy are laid out in Part L of the Second Schedule to the Building Regulations 1997 (S.I. No. 497 of 1997) as amended and the European Union (Energy Performance of Buildings) Regulations 2021 (S.I. No. 393 of 2021).

For *new buildings other than dwellings,* compliance with Part L of the Second Schedule to the Building Regulations is achieved as follows:

- L1. A building shall be designed and constructed so as to ensure that the energy performance of the building is such as to limit the amount of energy required for the operation of the building and the amount of Carbon Dioxide (CO₂) emissions associated with this energy use insofar as is reasonably practicable.
- L5. For new buildings other than dwellings, the requirements of L1 shall be met by:
 - a. Providing that the energy performance of the building is such as to limit the calculated primary energy consumption and related CO₂ emissions to a Nearly Zero Energy Building level insofar as is reasonably practicable, when both energy consumption and CO₂ emissions are calculated using the Non-domestic Energy Assessment Procedure (NEAP) published by Sustainable Energy Authority of Ireland;
 - b. Providing that, the nearly zero or very low amount of energy required is covered to a very significant extent by energy from renewable sources produced on-site or nearby;
 - c. Limiting the heat loss and, where appropriate, availing of the heat gains through the fabric of the building;
 - d. Providing and commissioning energy efficient space heating and cooling systems, heating and cooling equipment, water heating systems, and ventilation systems, with effective controls;
 - e. Ensuring that the building is appropriately designed to limit need for cooling and, where air-conditioning or mechanical ventilation is installed, that installed systems are energy efficient, appropriately sized and adequately controlled;
 - f. Limiting the heat loss from pipes, ducts and vessels used for the transport or storage of heated water or air;
 - g. Limiting the heat gains by chilled water and refrigerant vessels, and by pipes and ducts that serve air-conditioning systems;
 - h. Providing energy efficient artificial lighting systems and adequate control of these systems; and
 - i. Providing to the building owner sufficient information about the building, the fixed building services, controls and their maintenance requirements so that the building can be operated in such a manner as to use no more fuel and energy than is reasonable.

The European Union (Energy Performance of Buildings) Regulations 2021 (S.I. No. 393 of 2021), insofar as it relates to works related to new buildings other than dwellings, provides as follows: Regulation 5

t. Kilkenny Office +353 (0)56 772 1115
t. Dublin Office +353 (0)1 567 5668
e. info@LawlerConsulting.com
w. www.LawlerConsulting.com

- (a) A new building shall, where technically and economically feasible, be equipped with selfregulating devices for the separate regulation of the temperature in each room or, where justified, in a designated heated zone of the building unit.
- (e) A new building, which has more than 10 car parking spaces, shall have installed at least one chargin cetargin when the second seco recharging point and ducting infrastructure (consisting of conduits for electric cables) for at least one in every 5 car parking spaces to enable the subsequent installation of recharging

- t. Dublin Office +353 (0)1 567 5668
- e. info@LawlerConsulting.com
- w. www.LawlerConsulting.com

4. Part L (NZEB) Compliance and Renewable Energy Strategy

To meet the NZEB standard a building must comply with the following parameters that are calculated in accordance with the NEAP methodology:

- Maximum Permitted Energy Performance Coefficient (MPEPC) = 1.0.
- Maximum Permitted Carbon Performance Coefficient (MPCPC) = 1.15.
- Renewable Energy Ratio (RER) of at least 0.20 (20%) where a MPEPC of 1.0 and MPCPC of 1.15 is achieved.
- Renewable Energy Ratio (RER) of at least 0.10 (10%) where a MPEPC of 0.9 and MPCPC of 1.04 is achieved.

The proposed strategy for the development is to achieve at least a 10% improvement in energy (EPC \leq 0.9) and carbon performance (CPC \leq 1.04) compared to the Part L minimum standards. This will be achieved by installing building fabric elements that meet the Part L U-value and air tightness requirements in adherence with the fabric first design approach, in addition to energy efficient HVAC, lighting and associated controls. Energy efficient split air conditioning heat pump units will be used to meet the renewable energy requirements for the development. Heat pumps for the production of hot water are proposed where there is a large demand for hot water e.g. Restaurants, Snack Bars, Drive Thru Restaurant and Café's. This is due to the increased hot water consumption associated with these establishments.

Section 5 and 6 of this report outline the proposed NEAP specifications for the development. The purpose of this specification is to give future tenants a pathway to TGD Part L 2021 and NZEB compliance for their subsequent fitout. The tenant is at liberty if they so wish to implement an alternative strategy for their BCAR compliance and completion process, noting that it is the responsibility of the tenant to ensure that their fitout achieves compliance with TGD Part L 2021.

Based on the fabric, mechanical and electrical design parameters contained within this report the preliminary BER for each unit is an A2. Please see appendices of this report for the results of the Part L and BER calculations completed.

t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.com

w. www.LawlerConsulting.com

5. Building Fabric Performance

5.1.1. Opaque Elements

The following tables outlines the targeted building fabric thermal performance specifications required for Part L compliance.

Table 1: Opaque Elements U-values

Element	Target Value (U-value W/m²K)
External Walls	≤ 0.21
Ground Floor	≤ 0.21
Vehicle Doors (or Similar Large Doors)	≤ 1.50
Personnel Doors	≤ 1.60
Roof	≤ 0.16

5.1.2. Glazed Elements

Table 2: Glazed Elements Details

Element	Target Value (U-value W/m ² K)	Required g-value (W/m ² K)	Target Visible Light Transmittance (VLT)	Notes
Glazing / Windows	≤ 1.6 (Frame + Glazing)	≤ 0.50	0.71	Required g-value to be confirmed at detailed design stage once the glazing ratios have been finalised.

Window and glazing U-value refers to the combined frame and glazing U-value calculation which is required for Part-L compliance.

5.1.3. Building Air Permeability

Table 3: Air Permeability Specification

Element	Target Value Air Permeability (m³/hr/m² @ 50 Pa)	Notes
Air Permeability	≤ 5	Air Tightness Test Required at Project Completion

t. Dublin Office +353 (0)1 567 5668

South

- e. info@LawlerConsulting.com
- w. www.LawlerConsulting.com

6. Mechanical and Electrical Performance Specification

6.1. Mechanical Plant Performance

6.1.1. Air Conditioning Units - Split Systems

Table 4. Split Systems

	Inputs	Notes	
Heat source	Heat Pump	Certified heat pump in	
Fuel Type	Grid Electricity	accordance with EN14825/EN14511 and Eurovent	
Target SCOP	≥ 4.0	Certification	
Target SEER	≥ 6.0	Refrigerant based air conditioning system (i.e., heat pump (electric): air source (E.g., DX / Split / VRV / VRF / HVRF)	

6.1.2. Ventilation - Supply

Table 5. Heat Recovery Unit Supply Ventilation

	SFP	Heat Recovery	Notes
Heat Recovery Units	≤ 1.9 W/(I/s)	≥ 75 %	Heat Recovery Ventilation for the Retail Area. Back of House Areas e.g., Offices, Canteen, and Circulation Areas.

Table 6: Heat Recovery Unit Leakage Specification

System	Leakage Test / Standard CEN classification	Notes
AHU	Class L1	-

t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.com

w. www.LawlerConsulting.com

6.1.3. Ventilation - Extract

Table 7. Extract Fans

Fan Type	Required Specific Fan Power (SFP)	Notes
In-line extract fan remote from the zone	≤ 0.5 W(I/s)	Maximum Allowable Extract Fan SFP's for Toilets,
Wall mounted Extract Fans	≤ 0.3 W(I/s)	Warehouse / Storage Areas.
Kitchen Extract Fan with Grease Filter	\leq 1.0 W(I/s)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

6.1.4. HVAC Controls

For compliance with Part L 2021 the following HVAC controls are controls are required for the proposed strategy.

Table 8. Minimum Controls for Heat Pumps

Heat Pump Type	Minimum Controls Package			
All Types	 On/off zone controls. If the unit serves a single zone, the minimum requirements is achieved by default. Time control. 			
(Air-to-air) Split Systems	 Heat pump unit controls for Control of room air temperature Control of outdoor fan operation Defrost control of external airside heat exchanger Control for secondary heating (if fitted) External room thermostat (if not provided in the heat pump unit) to regulate the space temperature and interlocked with heat pump unit operation. 			

t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.com

w. www.LawlerConsulting.com

Table 9. Minimum Controls for Heat Recovery Units

System Type	Minimum Controls Package
Central mechanical ventilation with heating or heat recovery	 Heat exchanger defrosting control: Defrost control so that during cold periods ice does not form on the heat exchanger Heat exchanger-overheating control: Overheating control so that when the system is cooling and heat recovery is undesirable, the heat exchanger is stopped modulated or bypassed Supply temperature control: Demand control Air flow control at room level: On/ off time control
Zonal	Air flow control at room level: On / Off

6.1.5. Hot Water System

Table 10. Hot Water System - Retail Units (excluding units with sale of food and drink for consumption)

Hot Water System (HWS)	Inputs	Notes
HWS Generator Type	Standalone water heater	-
HWS Generator Seasonal Efficiency	100%	-
HWS Fuel Type	Grid supplied electricity	-
HWS Storage Volume	10 Litres	-
HWS Storage Losses	≤ 0.071 kWh/(l*day)	-
Secondary Circulation Losses	None	-
Dead Legs per space	< 3m Required	-

t. Kilkenny Office +353 (0)56 772 1115
t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.com

w. www.LawlerConsulting.com

Please note, a heat pump (as per the specifications in Table 11) for hot water generation will be required for Part L compliance if it is intended that the retail unit will be occupied by a premises with sale of food and drink for consumption, e.g. Restaurants, Snack Bars, Drive Thru Restaurant and Café's. This is due to the increased hot water consumption associated with these establishments.

 Table 11. Hot Water System - Heat Pump (Units that include sale of food and drink for consumption)

Hot Water System (HWS)InputsNotesHWS Generator TypeHeat Pump-HWS Generator Seasonal EfficiencyHot Water SCOP of ≥ 3.0-HWS Fuel TypeGrid supplied electricity-HWS Storage Volume200 Litres-HWS Storage LossesFactory Insulated-Secondary Circulation Losses≤ 10 W/m-Circulation Loop LengthNEAP default-Time SwitchCirculation / Return Pump Time Switch Required-Dead Legs per space< 3m Required-			
HWS Generator Seasonal EfficiencyHot Water SCOP of ≥ 3.0-HWS Fuel TypeGrid supplied electricity-HWS Storage Volume200 Litres-HWS Storage LossesFactory Insulated-Secondary Circulation Losses≤ 10 W/m-Circulation Loop LengthNEAP default-Time SwitchCirculation / Return Pump Time Switch Required-Dead Legs per space< 3m Required-	Hot Water System (HWS)	Inputs	Notes
EfficiencyHot Water SLOP of ≥ 3.0-HWS Fuel TypeGrid supplied electricity-HWS Storage Volume200 Litres-HWS Storage LossesFactory Insulated-Secondary Circulation Losses≤ 10 W/m-Circulation Loop LengthNEAP default-Time SwitchCirculation / Return Pump Time Switch Required-Dead Legs per space< 3m Required	HWS Generator Type	Heat Pump	
HWS Storage Volume200 Litres-HWS Storage LossesFactory Insulated-Secondary Circulation Losses< 10 W/m		Hot Water SCOP of \ge 3.0	- PUR
HWS Storage Losses Factory Insulated Secondary Circulation Losses ≤ 10 W/m Circulation Loop Length NEAP default Time Switch Circulation / Return Pump Time Switch Required Circulation Pump Power ≤ 0.15 kW Dead Legs per space < 3m Required	HWS Fuel Type	Grid supplied electricity	- 0
Secondary Circulation Losses ≤ 10 W/m - Circulation Loop Length NEAP default - Time Switch Circulation / Return Pump Time Switch Required - Circulation Pump Power ≤ 0.15 kW - Dead Legs per space < 3m Required	HWS Storage Volume	200 Litres	NI
Circulation Loop LengthNEAP default-Time SwitchCirculation / Return Pump Time Switch Required-Circulation Pump Power< 0.15 kW	HWS Storage Losses	Factory Insulated	¢,
Time SwitchCirculation / Return Pump Time Switch Required-Circulation Pump Power≤ 0.15 kWDead Legs per space< 3m Required	Secondary Circulation Losses	≤ 10 W/m	-
Time Switch Time Switch Required Circulation Pump Power ≤ 0.15 kW Dead Legs per space < 3m Required	Circulation Loop Length	NEAP default	-
Dead Legs per space < 3m Required	Time Switch		-
Planning	Circulation Pump Power	0.15 kW	
Planning	Dead Legs per space	< 3m Required	-
	Planning		

t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.com

w. www.LawlerConsulting.com

6.2. Electrical Plant Performance

6.2.1. Lighting Efficacy

Table 12. Lighting Efficacy

	Туре	Lighting Efficacy (lumens/Watt)	Notes
Required Lighting Efficacy for Interior Lighting and Display Lighting.	LED	≥ 110	Minimum Average Lighting Efficacy

6.2.2. Lighting Controls

		Efficacy
6.2.2. Lighting Controls <i>Table 13. Lighting Controls</i>		ingen
Lighting Controls	Inputs	Notes
Occupancy Controls	Auto-On / Auto-Off	Offices and Back of House Areas Only
PIR Lighting Control Parasitic Power	≤ 0.3 W/m ²	-
6.2.3. Electric Power Factor		
Table 14. Electric Power Factor		

6.2.3. Electric Power Factor

Electric Power Factor	Inputs	Notes
Electric Power Factor	>0.95	Power Factor Correction Required
6131		

- t. Dublin Office +353 (0)1 567 5668
- e. info@LawlerConsulting.com
- w. www.LawlerConsulting.com

7. Electric Vehicle Charging Requirements

Under the new Part L 2021 the following Electric Vehicle Charging requirements apply to the project:

"A new building which has more than 10 car parking spaces shall have installed at least one recharging point and ducting infrastructure (consisting of conduits for electric cables) for at least one in every 5 car parking spaces to enable the subsequent installation of recharging points for electric vehicles."

"at least 1 accessible recharging point; or 5% of the total recharging point provision, whichever is the greater, in accordance with similar provision for accessible car parking spaces as outlined in TGD M 2010 Sub-section 1.1.5. Where only 1 recharging point is provided this should be located so that it can be used either from a standard car parking bay or from an accessible car parking bay, and where this is not possible then 2 recharging points should be provided."

The proposed EV charging space locations are indicated on the proposed site plan. It is proposed to provide 39 no. EV charging spaces

7.1.1. Electric Vehicle Recharging Points

Where electric vehicle recharging points are installed the guidance below should be followed in line with Section 1.4.7.3 of the TGD L 2021:

- 1. All recharging points should be installed in accordance with the general wiring rules and safety requirements as outlined in the National Rules for Electrical Installations I.S. 10101:2020, e.g., guidance for isolation, earthing, etc.
- 2. Where recharging points are installed, they should be commissioned by competent persons so that at completion, they are left in the intended working order.
- 3. Where recharging points are provided the associated parking bay should be clearly marked and consist of the words 'Electric Vehicle Charging' or 'EV Charging' written on the roadway in letters at least 350mm in height. Where this is an accessible parking bay the access symbol as outlined in Diagram 8 and Diagram 9 of TGD M 2010 (available at https://www.gov.ie/en/publication/78e67-technical-guidance-document-m-access-and-use/) should also be marked on the parking bay.
- Where accessible recharging points are provided the guidance outlined in Section 1.1.5(k) of TGD M 2010 should be followed to allow similar space provisions for accessible recharging points.
- 5. Where accessible recharging parking bays are provided refer to the guidance for accessible on-site car parking as outlined in Paragraph 1.1.5 of TGD M 2010. The following additional space should be provided where electric vehicle recharging infrastructure is installed:
 - a. Provision of an additional 1200mm access zone to the front of the perpendicular parking bay illustrated in Diagram 8 of TGD M 2010
 - b. Provision of an additional 1200mm access zone to the kerbside of the parallel parking bay illustrated in Diagram 9 of TGD M 2010.
- 6. Consideration should be given to the location of recharging points and associated recharging cables, to be outside of access routes and the recharging point clear space, to avoid hazards associated with tripping and obstruction of these routes and spaces.

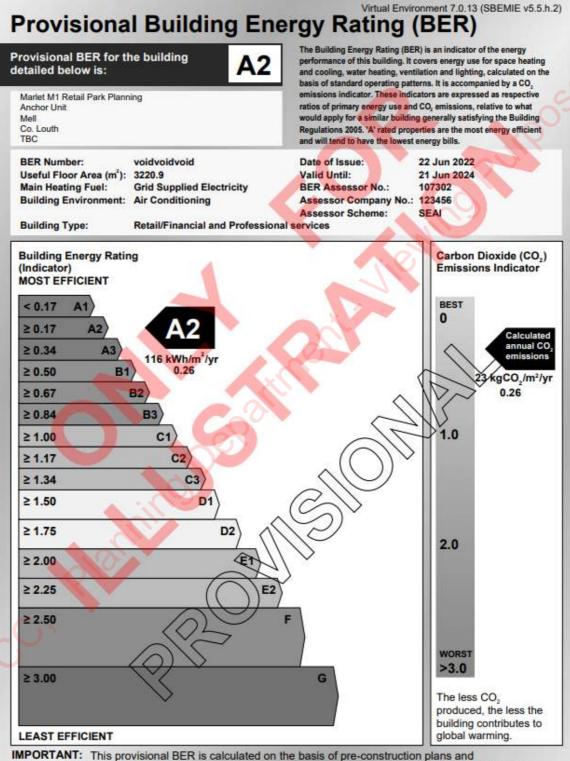
t. Kilkenny Office +353 (0)56 772 1115
t. Dublin Office +353 (0)1 567 5668
e. info@LawlerConsulting.com
w. www.LawlerConsulting.com

7. Where ducting infrastructure is provided for future installation of recharging points, consideration should be given to the accessible space requirements needed if recharging points were installed at these locations.

7.1.2. Electric Vehicle Ducting Infrastructure

Where ducting infrastructure is to be provided, the guidance below should be followed in line with Section 1.4.7.4 of the TGD L 2021:

- 1. Ducting infrastructure should be adequately designed to meet the full capacity of all recharging points when installed
- 2. Ducting infrastructure should be appropriately sized for electric vehicle recharging point capacity
- 3. Ducting infrastructure should be fit for purpose, capped as appropriate and clearly identified
- 4. Ducting infrastructure should be routed back to a suitable location with electrical supply access and adequate space provided to accommodate all recharging point ducting connections and electrical supply equipment.
- 5. Ducting infrastructure and associated electrical equipment, etc. should be adequately designed for maintenance access
- 6. Ducting infrastructure, including associated electrical equipment, etc. should be installed in accordance with the general wiring rules and safety requirements as outlined in the National Rules for Electrical Installations I.S. 10101:2020



t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.com

w. www.LawlerConsulting.com

Appendix A: Provisional BER - Anchor Unit

specifications provided to the BER assessor, and using the version of the assessment software quoted above. The BER assigned to this building on completion may be different, in the event of changes to those plans or specifications, or to the assessment software.

t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.com

w. www.LawlerConsulting.com

Appendix B: Part L Compliance Report - Anchor Unit

BRIRL Output Document

Compliance Assessment with the Building Regulations (Ireland) TGD-Part L 2017 This report demonstrates compliance with specific aspects of Part L of the Building Regulations. Compliance with all aspects of Part L is a legal requirement. Demonstration of how compliance with every aspect is achieved may be sought from the Building Control Authority.

Marlet M1 Retail Park Pla

Date: Wed Jun 22 22:02:40 2022

Administrative information

Building Details

Address: Marlet M1 Retail Park Planning, Anchor Unit, Mell, Empty, Co. Louth, TBC

NEAP

Calculation engine: SBEMIE

Calculation engine version: v5.5.h.2

Interface to calculation engine: Virtual Environment Interface to calculation engine version: 7.0.13

BRIRL compliance check version: v5.5.h.2

Client Details

Name: Marlet M1 Retail Park Telephone number: Phone Address: Mell, Co. Louth, TBC

Energy Assessor Details

Name: Shane Doyle Telephone number: 056 771115 Email: shanedoyle@lawlersustainability.com Address: 7 Patrick Street, Co. Kilkenny, R95 HT9T

Primary Energy Consumption, CO2 Emissions, and Renewable Energy Ratio

The compliance criteria in the TGD-L have been met.	
Calculated CO2 emission rate from Reference building	27.1 kgCO2/m2.annum
Calculated CO2 emission rate from Actual building	22.9 kgCO2/m2.annum
Carbon Performance Coefficient (CPC)	0.84
Maximum Permitted Carbon Performance Coefficient (MPCPC)	1.15
Calculated primary energy consumption rate from Reference building	140.6 kWh/m2.annum
Calculated primary energy consumption rate from Actual building	116.3 kWh/m2.annum
Energy Performance Coefficient (EPC)	0.83
Maximum Permitted Energy Performance Coefficient (MPEPC)	1
Renewable Energy Ratio (RER)	0.12
Minimum Renewable Energy Ratio	0.1

Heat Transmission through Building Fabric

Element	Ua-Limit	Ua-Calc	Ui-Limit	UI-Calc	Surface with maximum U-value*
Walls**	0.21	0.21	0.6	0.21	WR000000_W1
Floors (ground and exposed)	0.21	0.21	0.6	0.21	WR000000_F
Pitched roofs	0.16	÷	0.3	-	"No heat loss pitched roofs"
Flat roofs	0.2	0.16	0.3	0.16	WR000000_C
Windows, roof windows, and rooflights	1.6	1.6	3	1.6	0000000F_W0_O0
Personnel doors	1.6	-	3	÷	"No ext. personnel doors"
Vehicle access & similar large doors	1.5	÷	3	-	"No ext. vehicle access doors"
High usage entrance doors	3	÷.	3	-	"No ext. high usage entrance doors"
U _{scient} Limiting area-weighted average U-values [V U _{scar} = Calculated area-weighted average U-values * There might be more than one surface with the ma whose area-weighted average and individual limiting	s [W/(m2K)] aximum U-va		U _{HCalc} =	Calculater	
Air Permeability	Upper	Limit			This Building's Value
m3/(h.m2) at 50 Pa	5		13/(h.m2) at 50 Pa 5 5		5

t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.com

w. www.LawlerConsulting.com

Building Services

The standard values listed below are minimum values for efficiencies and maximum values for SFPs. Refer to the Building Regulations documents for details.

Whole building lighting automatic monitoring & targeting with alarms for out-of-range values	NO
Whole building electric power factor achieved by power factor correction	>0.95

Whole building	lighting automatic n	nonitoring & targetin	g with alarms for ou	t-of-range valu	es NO
Whole building	electric power facto	r achieved by power	factor correction		>0.95
1- Split System	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(l/s)]	HR efficience
	ricating enterency	econing enterency	readiant enterency	our fundaoll	The enterence
This system	4	6		-	-

1- SYST0002-DHW

	Water heating efficiency	Storage loss factor [kWh/litre per day] 0		
This building	1			
Standard value	1	N/A		

Local mechanical ventilation, exhaust, and terminal units

ID	System type in Building Regulations documents
Α	Local supply or extract ventilation units serving a single area
В	Zonal supply system where the fan is remote from the zone
С	Zonal extract system where the fan is remote from the zone
D	Zonal supply and extract ventilation units serving a single room or zone with heating and heat recovery
Е	Local supply and extract ventilation system serving a single area with heating and heat recovery
F	Other local ventilation units
G	Fan-assisted terminal VAV unit
н	Fan coil units
1	Zanal autrast suptom where the fan is sense from the zana with grades filter

Zonal extract system where the fan is remote from the zone with grease filter Ľ

Zone name	SFP [W/(l/s)]										110 - 41-1	
ID of system type	A	в	C	D	E	F	G	н	1		fficiency	
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard	
Unit 1 Deliveries	0.3	-	-	-	-	-	-	-	-	-	N/A	
00_Unit_1_Warehouse	0.3	-	-	-	-	-	-	-	-	-	N/A	
00_Unit_1_Staff_Welfare_Corridor	-	-	-	1.9	-	-	-	-	-	0.75	N/A	
00_Unit_1_Managers_Office	-	-	-	1.9	-	-	-	-	-	0.75	N/A	
00_Unit_1_Meeting	-	-	-	1.9	-	-	-	-	-	0.75	N/A	
00_Unit_1_Admin	-	-	-	1.9	-	-	-	-	-	0.75	N/A	
00_Unit_1_Canteen	-	-	-	1.9	-	-	-	-	-	0.75	N/A	
00_Unit_1_Toilet	-	-	0.5	-	-	-	-	-	-	-	N/A	
00_Unit_1_Male_Changing	-	-	0.5	-	-	-	-	-	-	-	N/A	
00_Unit_1_Female_Changing		-	0.5	-	-	-	-	-	-	-	N/A	
00_Unit_1_Corridor	-	-	-	1.9	-	-	-	-	-	0.75	N/A	
00_Unit_1_Female_WC	-	-	0.5	-	-	-	-	-	-	-	N/A	
00_Unit_1_Male_WC	-	-	0.5	-	-	-	-	-	-	-	N/A	
00 Unit 1 Retail	-	-	-	1.9	-	-	-	-	-	0.75	N/A	

t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.com

w. www.LawlerConsulting.com

Zone name	1			SI	FP [W	//(l/s)]				110	
ID of system type	A	В	С	D	Е	F	G	н	1	HRE	officiency
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
00_Unit_1_Customer_WC			0.5		(e)	-	-	-	-		N/A
00_Unit_1_Store			0.5		(¥	-	-	-	-		N/A
00 Unit 1 Disabled WC			0.5	-	92	-		<u>.</u>	-		N/A
			33							3	
General lighting and display lighti	ng		Г	Lur	nino	us effic	acy [l	m/W]			
General lighting and display lighti Zone name	ng			Lur		us effic Lamp		-	mp	General	ighting [W
Zone name		rd valu	L	umina				-	mp	General	
Zone name		'd valu	L	umina		Lamp	Disp	-	mp	General I	
Zone name St		d valu	e 60	umina		Lamp 60	Disp 22	-	mp		
Zone name St 00_Unit_1_Entrance		'd valu	e 60	umina 0		Lamp 60 110	Disp 22 -	-	mp	78	

General lighting and display lighting	Lumino	ous effic		
Zone name	Luminaire	Lamp	Display lamp	General lighting [W
Standard value	60	60	22	
00_Unit_1_Entrance	-	110		78
Unit 1 Deliveries	110	-	()	639
00_Unit_1_Warehouse	110	-	(*.)	1589
00_Unit_1_Staff_Welfare_Corridor		110	(*.)	204
00_Unit_1_Managers_Office	110	-		197
00_Unit_1_Meeting	110	-		223
00_Unit_1_Admin	110	-		540
00_Unit_1_Canteen		110	110	165
00_Unit_1_Toilet		110		60
00_Unit_1_Male_Changing	110	-		135
00_Unit_1_Female_Changing	110	-	(**)	154
00_Unit_1_Corridor		110		57
00_Unit_1_Female_WC		110	(- 2)	141
00_Unit_1_Male_WC		110	(- 2)	131
00_Unit_1_Retail		110	110	19728
00_Unit_1_Customer_WC	R.	110		85
00_Unit_1_Customer_Lobby		110	-	36
00_Unit_1_Store	110	-	-	17
00_Unit_1_Disabled_WC		110		37

Solar Gain in Summer

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
00_Unit_1_Entrance	N/A	N/A
Unit 1 Deliveries	N/A	N/A
00_Unit_1_Warehouse	N/A	N/A
00_Unit_1_Staff_Welfare_Corridor	N/A	N/A
00_Unit_1_Managers_Office	N/A	N/A
00_Unit_1_Meeting	N/A	N/A
00_Unit_1_Admin	N/A	N/A
00_Unit_1_Canteen	N/A	N/A
00_Unit_1_Toilet	N/A	N/A
00_Unit_1_Male_Changing	N/A	N/A
00_Unit_1_Female_Changing	N/A	N/A
00_Unit_1_Corridor	N/A	N/A
00_Unit_1_Female_WC	N/A	N/A
00_Unit_1_Male_WC	N/A	N/A

esonity

t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.com w. www.LawlerConsulting.com

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
00_Unit_1_Retail	NO (-68.1%)	NO
00_Unit_1_Customer_WC	N/A	N/A
00_Unit_1_Customer_Lobby	N/A	N/A
00_Unit_1_Store	N/A	N/A
00_Unit_1_Disabled_WC	N/A	N/A

Overheating

Zone	Risk of overheating
00_Unit_1_Entrance	High risk
Unit 1 Deliveries	N/A
00_Unit_1_Warehouse	N/A
00_Unit_1_Staff_Welfare_Corridor	N/A
00_Unit_1_Managers_Office	N/A
00_Unit_1_Meeting	N/A
00_Unit_1_Admin	N/A
00_Unit_1_Canteen	N/A
00_Unit_1_Toilet	N/A
00_Unit_1_Male_Changing	N/A
00_Unit_1_Female_Changing	N/A
00_Unit_1_Corridor	N/A
00_Unit_1_Female_WC	N/A
00_Unit_1_Male_WC	N/A
00_Unit_1_Retail	N/A
00_Unit_1_Customer_WC	N/A
00_Unit_1_Customer_Lobby	N/A
00_Unit_1_Store	N/A
00 Unit 1 Disabled WC	N/A

Primary Energy Contributions to RER

Technology	kWh/annun
Photovoltaic systems	0
Wind turbines	0
Solar thermal for water heating	0
Biomass for space and/or water heating	0
Biogas for space and/or water heating	0
Heat pumps for space and/or water heating	45414.3
CHP generators for space and/or water heating	0
District heating for space and/or water heating	0
Process energy	0
Total for renewables	45414.3
Total for renewables & non-renewables	379617.1

t. Kilkenny Office +353 (0)56 772 1115

t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.com

w. www.LawlerConsulting.com

Technical Data Sheet (Actual vs. Reference Building)

	Actual	Reference	SW	stem Type	Heat dem	Cool dem	Heat con	Cool con		Heat	Cool	Heat gen	Cool gen
Area (m2)	3221	3221	-		MJ/m2	MJ/m2	kWh/m2	kWh/m2	kWh/m2	SSEEF	SSEER	SEFF	SEER
External area (m2)	8454	8454	[\$1] No Heatin	1	ng		-		-	_		
Weather	DUB	DUB		Actual	552.1	509.1	0	0	0	0	0	0	0
Infiltration (m3/hm2 @ 50Pa)	5	3		Reference		137.6	0	0	0	0	0		
Average conductance (W/K)	2086.41	2245.65	[51] Split or m	ulti-split sy	stem, [HS]	Heat pump	(electric):	air source,	[HFT] Elec	tricity, [CF]	Electricity	
Average U-value (W/m2K)	0.25	0.27		Actual	63.7	92.8	4.8	6.1	13	3.73	4.26	4	6
Alpha value* (%)	14.71	25.3		Reference	100.9	138.9	34.2	10.7	14.8	0.82	3.6		
Proventige of the taking's service heat tend Building Use % area Building Type 85 Retail/Financial and General Industrial and Cafe Offices and Workshop General Industrial Inst. Hos Residential Inst. Hos Residential Inst. Hos Residential Inst. Hos Residential Inst. Hos Residential Inst. Non-residential Inst. Non-residential Inst. Non-residential Inst. Non-residential Inst. Non-residential Inst. Non-residential Inst. Non-residential Inst. Non-residential Inst. Non-residential Inst. Research Inst. Non-residential Inst. Research Inst. Non-residential Inst. Research Inst. Research Inst. Non-residential Inst. Research Inst. Research Inst. Research Inst. Research Inst. Research Inst. Residential Inst. Residen	Professional s swomking Est. is businesses is businesses is businesses is businesses plats and Care idential Primary reratiles and col at. Community/Day Libraries, Muse Primary Health Libraries, Muse Primary Health Libraries, Muse revices s 24hr activities thy full busick Post-primary Education participation of the source of the plats of the source o	ervices Trakeaways rial Groups Homes schools leges / Centre uma, and Galleries ton Care Building 1. Clubs and Theatres sucation	Alpl Hes Coc Hes Coc Aux Hes Coc Hes) = Heat) = Cool 2) = Heat 2) = Cool 3 = Heat 4 = Cool 5 = Syst 4 = Heat 5 =	ting energy de ling energy de ting energy co ling energy co liary energy co ting system se ling system se ting generator	mand mand nsumption nsumption	cy efficiency ratio		which is due	to thermal brid	lging	

t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.com

w. www.LawlerConsulting.com

Appendix C: Provisional BER - Retail Unit

IMPORTANT: This provisional BER is calculated on the basis of pre-construction plans and specifications provided to the BER assessor, and using the version of the assessment software quoted above. The BER assigned to this building on completion may be different, in the event of changes to those plans or specifications, or to the assessment software.

t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.com

w. www.LawlerConsulting.com

Appendix D: Part L Compliance Report - Retail Unit

BRIRL Output Document

Compliance Assessment with the Building Regulations (Ireland) TGD-Part L 2017 This report demonstrates compliance with specific aspects of Part L of the Building Regulations. Compliance with all aspects of Part L is a legal requirement. Demonstration of how compliance with every aspect is achieved may be sought from the Building Control Authority.

Marlet M1 Retail Park Pla

Date: Wed Jun 22 21:49:59 2022

Administrative information

Building Details

Address: Marlet M1 Retail Park Planning, Retail Unit, Mell, Empty, Co. Louth, TBC

NEAP

Calculation engine: SBEMIE

Calculation engine version: v5.5.h.2

Interface to calculation engine: Virtual Environment

Interface to calculation engine version: 7.0.13

BRIRL compliance check version: v5.5.h.2

Client Details Name: Marlet M1 Retail Park

Telephone number: Phone Address: Mell, Co. Louth, TBC

Energy Assessor Details

Name: Shane Doyle Telephone number: 056 771115 Email: shanedoyle@lawlersustainability.com Address: 7 Patrick Street, Co. Kilkenny, R95 HT9T

Primary Energy Consumption, CO2 Emissions, and Renewable Energy Ratio

The compliance criteria in the TGD-L have been met.	
Calculated CO2 emission rate from Reference building	26.6 kgCO2/m2.annum
Calculated CO2 emission rate from Actual building	22.1 kgCO2/m2.annum
Carbon Performance Coefficient (CPC)	0.83
Maximum Permitted Carbon Performance Coefficient (MPCPC)	1.15
Calculated primary energy consumption rate from Reference building	137.7 kWh/m2.annum
Calculated primary energy consumption rate from Actual building	112.2 kWh/m2.annum
Energy Performance Coefficient (EPC)	0.82
Maximum Permitted Energy Performance Coefficient (MPEPC)	1
Renewable Energy Ratio (RER)	0.12
Minimum Renewable Energy Ratio	0.1

Heat Transmission through Building Fabric

Element	Us-Limit	Us-Cale	Ui-Limit	U.cate	Surface with maximum U-value*
Walls**	0.21	0.21	0.6	0.21	NT000000_W1
Floors (ground and exposed)	0.21	0.21	0.6	0.21	NT000000_F
Pitched roofs	0.16	-	0.3	× .	"No heat loss pitched roofs"
Flat roofs	0.2	0.16	0.3	0.16	NT000000_C
Windows, roof windows, and rooflights	1.6	1.6	3	1.6	NT000000_W2_00
Personnel doors	1.6	-	3	-	"No ext. personnel doors"
Vehicle access & similar large doors	1.5	22	3	-	"No ext. vehicle access doors"
High usage entrance doors	3	2	3	-	"No ext. high usage entrance doors
U _{a-Linit} = Limiting area-weighted average U-values [V U _{a-Linit} = Calculated area-weighted average U-values					dividual element U-values [W/(m2K)] d individual element U-values [W/(m2K)]
* There might be more than one surface with the ma whose area-weighted average and individual limitin					
Air Permeability	Upper	Limit			This Building's Value
m3/(h.m2) at 50 Pa	5				5

-

t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.com

w. www.LawlerConsulting.com

Building Services

Whole building lighting automatic monitoring & targeting with alarms for out-of-range values	NO
Whole building electric power factor achieved by power factor correction	>0.95

	les listed below are min		ancies and maximum v	alues for SFPs. Re	efer to the	
	ons documents for deta	12010				
Whole building	lighting automatic m	ionitoring & targetin	g with alarms for ou	it-of-range value	s NO	
Whole building	electric power factor	r achieved by power	factor correction		>0.95	
This sustam	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(l/s)]	HR efficiency	
This system	4	6		-		5
Standard value	2.75	4.14**	N/A	N/A	N/A	10
Automatic mon	itoring & targeting w	ith alarms for out-of	-range values for thi	is HVAC system	NO	
** Standard shown is	for split and multi-split air c	conditioners <6 kW. For sys	stems 6-12 kW, limiting effi	ciency is 3.87.		K
Control of Control						↓ ▼

1- SYST0002-DHW

	Water heating efficiency	Storage loss factor [kWh/litre per day			
This building	1	0.003			
Standard value	1	N/A			

Local mechanical ventilation, exhaust, and terminal units

System type in Building Regulations documents
Local supply or extract ventilation units serving a single area
Zonal supply system where the fan is remote from the zone
Zonal extract system where the fan is remote from the zone
Zonal supply and extract ventilation units serving a single room or zone with heating and heat recovery
Local supply and extract ventilation system serving a single area with heating and heat recovery
Other local ventilation units
Fan-assisted terminal VAV unit
Fan coil units
Zonal extract system where the fan is remote from the zone with grease filter

Zone name				S	P [W	(l/s)]				110	
ID of system type	A	В	C	D	E	F	G	н	1	HR efficiency	
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
Retail Unit	-	-	-	1.9		-	-	-	-	0.75	N/A
Retail Unit Toilet	-	-	0.5	-	-	-	-	-	-	-	N/A

General lighting and display lighting	Lumine]		
Zone name	Luminaire	Lamp	Display lamp	General li

Zone name		Luminaire	Lamp	Display lamp	General lighting [W]
	Standard value	60	60	22	
Retail Unit	100		110	110	6457
Retail Unit Toilet		-	110	-	67

Solar Gain in Summer

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
Retail Unit	NO (-59.3%)	NO
Retail Unit Toilet	N/A	N/A

t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.com

w. www.LawlerConsulting.com

Overheating

Primary Energy Contributions to RER

Dverheating	
No zones in project where overheating risk check is applicable.	
	·
Primary Energy Contributions to RER	5
Technology	kWb/annum
Photovoltaic systems	0
Wind turbines	0
Solar thermal for water heating	0
Biomass for space and/or water heating	0
Biogas for space and/or water heating	0
Heat pumps for space and/or water heating	10374.8
CHP generators for space and/or water heating	0
District heating for space and/or water heating	0
Process energy	0
Total for renewables	10374.8
Total for renewables & non-renewables	84269.2

Technical Data Sheet (Actual vs. Reference Building)

Building Global Parameters

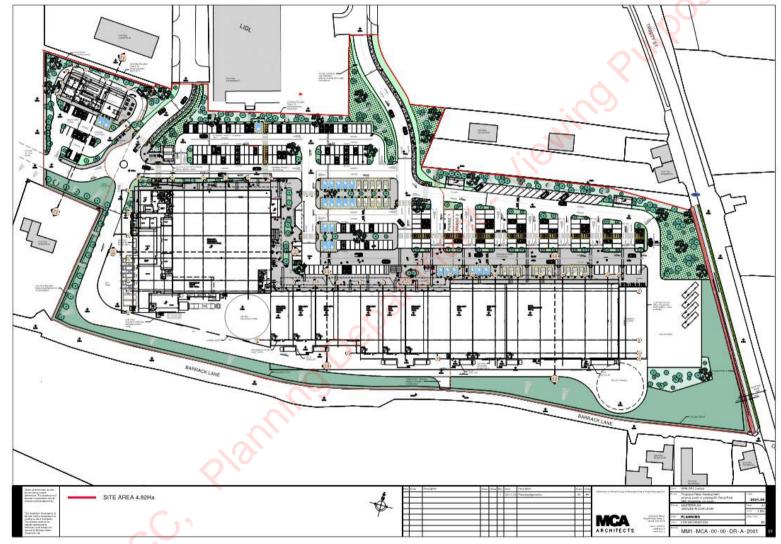
	Actual	Reference
Area (m2)	777	777
External area (m2)	2010	2010
Weather	DUB	DUB
Infiltration (m3/hm2 @ 50Pa)	5	3
Average conductance (W/K)	531.87	539.79
Average U-value (W/m2K)	0.26	0.27
Alpha value* (%)	9.55	26.47

H	VAC S	ystems	s Perto	rmanc	e					
Syst	em Type	Heat dem MJ/m2	Cool dem MJ/m2		Cool con kWh/m2		Heat SSEEF	Cool SSEER	Heat gen SEFF	Cool ger SEER
[ST]	Split or m	ulti-split sy	stem, [HS]	Heat pump	(electric): a	ir source,	[HFT] Elec	tricity, [CF1] Electricity	8
	Actual	59.7	114.5	4.4	7.5	9.4	3.73	4.26	4	6
- 6	Reference	93 1	152.2	31.6	11.7	8	0.82	3.6		

Building Use %

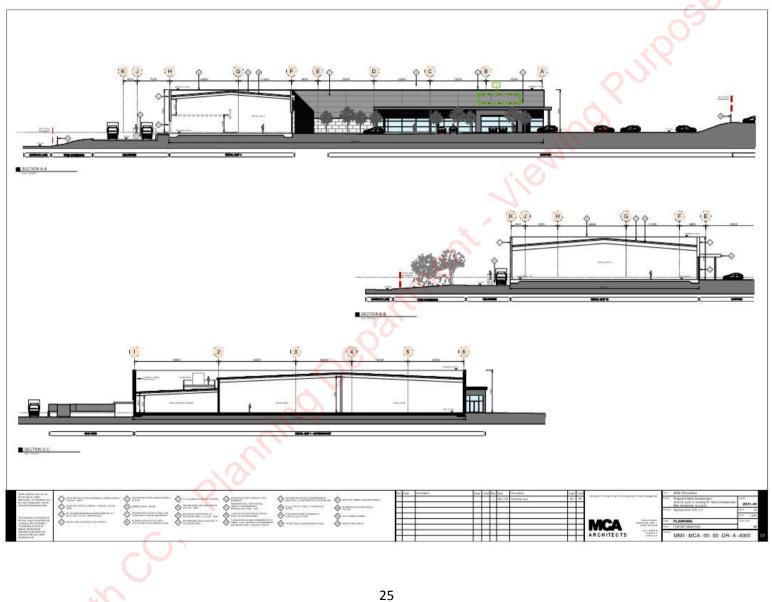
area	Building Type
0	Retail/Financial and Professional services
	Restaurants and Cafes/Drinking Est./Takeaways
	Offices and Workshop businesses
	General Industrial and Special Industrial Groups
	Storage or Distribution
	Hotels
	Residential Inst.: Hospitals and Care Homes
	Residential Inst.: Residential Ptimary schools
	Residential Inst.: Universities and colleges
	Secure Residential Inst.
	Residential spaces
	Non-residential Inst.: Community/Day Centre
	Non-residential Inst. Libraries, Museums, and Galleries
	Non-residential Inst.: Primary Education
	Non-residential Inst.: Primary Health Care Building
	Non-residential Inst.: Law Courts
	General Assembly and Leisure, Night Clubs and Theatres
	Others: Passenger terminals
	Others: Emergency services
	Others: Miscellaneous 24hr activities
	Others: Car Parks 24 hrs
	Others - Stand alone utility block
	Non-residential Inst.: Post-primary Education
	Residential Inst.: Residential Post-primary schools

rcentage of the building's aver cient which is due to thermal bridging


Machine Arenic (36)	_
Heat dem (MJ/m2)	=
Cool dem (MJ/m2)	=
Heat con (kWh/m2)	=
Cool con (kWh/m2)	=
Aux can (kWh/m2)	=
Heat SSEFF	=
Cool SSEER	-
Heat gen SSEFF	=
Cool gen SSEER	=
ST	=
HS	=
HFT	-
CFT	=

Key to terr

= Cooling energy demand
= Heating energy consumptiv
= Cooling energy consumption
= Auxiliary energy consumpt
= Heating system seasonal e
= Cooling system seasonal e
= Heating generator seasona
= Cooling generator seasons



t. Kilkenny Office +353 (0)56 772 1115 t. Dublin Office +353 (0)1 567 5668 e. info@LawlerConsulting.com w. www.LawlerConsulting.com

t. Kilkenny Office +353 (0)56 772 1115 t. Dublin Office +353 (0)1 567 5668 e. info@LawlerConsulting.com w. www.LawlerConsulting.com

t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.com

w. www.LawlerConsulting.com

Abbreviations

- AHU Air Handling Unit
- BER Building Energy Rating
- CIBSE Chartered Institute of Building Services Engineers
- CO₂ Carbon Dioxide
- **CPC** Carbon Performance Coefficient
- DGP Daylight Glare Probability
- EPC Energy Performance Coefficient
- HRU Heat Recovery Unit
- HVAC Heating, Ventilation, and Air Conditioning
- HWS Hot Water System
- IES Integrated Environmental Solutions
- LED Light Emitting Diode
- M&E Mechanical and Electrical systems
- **MPCPC** Maximum Permitted Carbon Performance Coefficient
- MPEPC Maximum Permitted Energy Performance Coefficient
- **NEAP** Non-domestic Energy Assessment Procedure
- NZEB Nearly Zero Energy Building
- Part L Part L 2021 Conservation of Fuel & Energy Buildings Other than Dwellings
- **RER** Renewable Energy Ratio
- **SCOP** Seasonal Coefficient of Performance

Daylight and Sunlight Overshadowing Assessment For a Proposed Retail/Commercial Development on Lands To the South of the Existing M1 Retail Park, Mell, Drogheda, Co. Louth.

A Future Built on Sustainable Design

t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.comw. www.LawlerConsulting.com

Table of Contents

1. E>	kecutive Summary	1
	troduction	
	uidance, Standards and National Policy	
	1.1. National Policy and Regulations	
	1.1. National Policy and Regulations	
	ssessment Criteria	
	nalysis Inputs	
5. A	Properties Assessed Details	
5.2.	Simulation Inputs	
	esults Daylight - Vertical Sky Component	
6.1.		
6.2. 6.3.	Sunlight - Annual Probable Sunlight Hours: Windows	
6.4.	Sunlight to Proposed Development Public Amenity Areas	
7.1.	Vertical Sky Component (VSC) Results	
7.2.	APSH Neighbouring Properties Windows	
7.3.	Sunlight to Proposed Development Public Amenity Areas	
	dix A: Architectural Plan and Section Drawings	
Abbrev	viations	43

Table 1: Assessment Criteria	.4
Table 2: Calculation Inputs	.7
Table 3: Neighbouring Property Site Levels Applied to the IESVE Model	.8
Table 4: BR209 Environmental Impact Assessment Criteria	35
Table 5: APSH Neighbouring Properties Summary of Results	6
Figure 1: Proposed Development Site Plan	.2
Figure 2: VSC Decision Chart (Source: BR 209)	.5
Figure 3. IES Model Birds-eye View - 21 st of March @12:00	.6
Figure 4: Site Location & Neighbouring Properties Assessed	.6
Figure 5: Neighbouring Property Site Levels Applied to the IESVE Model	.8
Figure 6: Site Plan - Private Garden Spaces Neighbouring Properties	3

Current Revision			
Issue No.:	Rev_06	Issue Date:	05/12/22
	Orig	inator:	Reason for Issue
	Shan	e Doyle	
Role:	Senior Sustainability Engineer		For Planning
Date:	05/12/2022		

l	Revisions		S.	
	Issue No.:	Date:	Originator	Comments
	Rev_00	13/06/2022	Shane Doyle	-
	Rev_01	23/06/2022	Shane Doyle	Report and results updated as per the latest site plan
	Rev_02	02/09/2022	Shane Doyle	The report and results updated to reflect the latest site plan and building forms.
	Rev_03	09/09/2022	Shane Doyle	The report and results updated to reflect the latest site plan
	Rev_04	12/10/2022	Shane Doyle	The report and results updated to reflect the latest site plan
	Rev_05	21/11/2022	Shane Doyle	The report and results updated to reflect the latest site plan
	Rev_05	05/12/2022	Shane Doyle	The report and results updated to reflect the latest site plan

t. Kilkenny Office +353 (0)56 772 1115
t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.com

w. www.LawlerConsulting.com

1. Executive Summary

Lawler Sustainability have been appointed to complete a daylight and sunlight overshadowing analysis for a proposed retail/commercial development on lands to the immediate south of the existing M1 Retail Park, Mell, Drogheda, Co. Louth

This report analyses the impact of the proposed development on the surrounding existing dwellings in terms of daylight and sunlight. It has been completed using the ModelIT, Radiance and Suncast applications within the IES Virtual Environment 2021 software.

The impact of the proposed development on 8 No. surrounding existing properties has been analysed in accordance with the guidelines described in BR209 (2022) Site Layout Planning for Daylight and Sunlight, A Guide to Good Practice. The existing gardens and a total of 48 no. windows associated with the existing dwellings have been assessed. The results are within the BR209 guidelines, and the proposed development has a negligible adverse impact on the surrounding properties.

- Section 3 and 4 of this report list the standards and assessment criteria that this analysis adheres to.
- Detailed in section 5 of the report are the analysis inputs. The impact of the proposed development on 8 No. surrounding existing residential properties has been assessed. This analysis has been completed based on the latest drawings provided by MCA Architects and Marlet Property Group.
- Section 6 of this report details the following results in accordance with recommended metrics outlined in BR209:
 - Vertical Sky Component (VSC)
 - Annual Probable Sunlight Hours (APSH) for Neighbouring Property Windows
 - Sunlight to Neighbouring Back Gardens
 - Sunlight to Proposed Development Public Amenity Areas
- A discussion of the results has been completed in section 7 of this report. The results show that proposed development is within the guidelines laid out in BR 209 Site Layout Planning for Daylight and Sunlight, A Guide to Good Practice (3rd Edition).

t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.comw. www.LawlerConsulting.com

2. Introduction

Lawler Sustainability have been appointed to complete a daylight and sunlight overshadowing analysis for a proposed retail/commercial development on lands to the immediate south of the existing M1 Retail Park, Mell, Drogheda, Co. Louth

The proposed development shown in Figure 1 below consists of 10 retail units and a drive thru unit to be completed to a shell and core standard. This analysis is based on the latest architectural drawings provided MCA Architects.

The impact of the proposed development on the surrounding properties is assessed in terms of daylight and sunlight. 8 no. of the surrounding properties have been assessed. The analysis inputs are detailed in section 5 of this report.

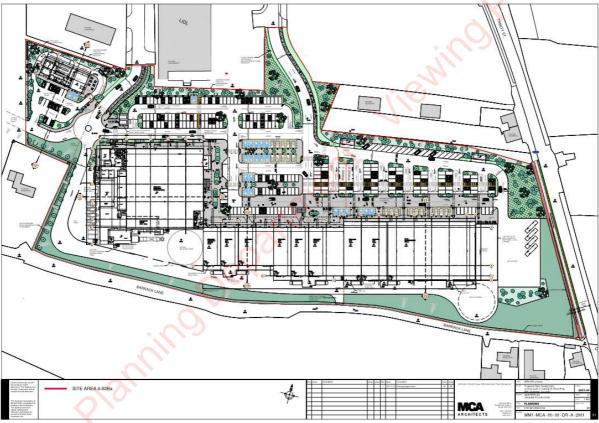


Figure 1: Proposed Development Site Plan

LAWLER

t. Kilkenny Office +353 (0)56 772 1115

t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.com

3. Guidance, Standards and National Policy

3.1.1. National Policy and Regulations

The Urban Development and Building Heights Guidelines 2018 states the following in relation to daylighting:

- The form, massing and height of proposed developments should be carefully modulated so as to maximise access to natural daylight, ventilation and views and minimise overshadowing and loss of light.
- Appropriate and reasonable regard should be taken of quantitative performance approaches to daylight provision outlined in guides like the Building Research Establishment's 'Site Layout Planning for Daylight and Sunlight' (2nd edition) or BS 8206-2: 2008 – 'Lighting for Buildings – Part 2: Code of Practice for Daylighting'.
- Where a proposal may not be able to fully meet all the requirements of the daylight provisions above, this must be clearly identified and a rationale for any alternative, compensatory design solutions must be set out, in respect of which the planning authority or An Bord Pleanála should apply their discretion, having regard to local factors including specific site constraints and the balancing of that assessment against the desirability of achieving wider planning objectives. Such objectives might include securing comprehensive urban regeneration and or an effective urban design and streetscape solution.

Technical Guidance Document Part L 2021 for Dwellings states the following:

• The area of openings should not be reduced below that required for the provision of adequate daylight. BS 8206-2:2008 Code of Practice for daylighting and CIBSE Lighting Guide LG 10 gives advice on adequate daylight provision.

Technical Guidance Document Part L 2021 for Buildings other than Dwellings states the following:

• The area of openings provided should take account of the level of daylight provision appropriate to the building. BS8206-2:2008 and CIBSE Lighting Guide (LG10), give advice on adequate daylight provision. Natural daylight should be optimised where practical, taking into account the advice of LG10 and BS8206.

3.1.2. Key Guidance and Standards

- **BR 209 (2022)** Site Layout Planning for Daylight and Sunlight, A Guide to Good Practice (3rd Edition). The 2011 2nd edition has recently been superseded in June 2022 by the 3rd edition.
- **BS 8206-2:2008** Lighting for Buildings, Part 2: Code of Practice for Daylighting.
- **BS EN 17037:2018** and **IS EN 17037:2018** Daylight in Buildings. Note: EN 17037 does not offer any guidance on how new developments will impact on existing surrounding developments.

t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.com

w. www.LawlerConsulting.com

4. Assessment Criteria

The assessment of the impact of the proposed development on surrounding properties is completed in accordance with BS-8206-2:2008 and BRE 209 "Site Layout for Daylight and Sunlight Guide: A Guide to Good Practice". Table 1 below outlines the recommended metrics to assess impact on the surrounding properties.

Table 1: Assessment Criteria

Criteria No.	Criteria Name	Description	Criteria Pass / Fail Threshold
Existing / N	leighbouring Prop	perties	97.
1	Vertical Sky Component (VSC)	 VSC need not be analysed if the distance of each part of the new development from the existing window is three or more times its height above the centre of the existing window. or If any part of a new building or extension, measured in a vertical section perpendicular to a main window wall of an existing building, from the centre of the lowest window, subtends an angle of <25° to the horizontal. VSC on windows of neighbouring properties: If any part of a new building or extension, measured in a vertical section perpendicular to a main window wall of an existing building, from the centre of the lowest window, subtends an angle of <25° to the horizontal. VSC on windows of neighbouring properties: If any part of a new building or extension, measured in a vertical section perpendicular to a main window wall of an existing building, from the centre of the lowest window, subtends an angle of more than 25° to the horizontal, then the diffuse daylighting of the existing building may be adversely affected. This will be the case if the VSC measured at the centre of an existing main window is less than 27%, and less than 0.8 times its former value. 	Pass = if VSC ≥ 27% Fail = If the VSC is < 27% and less than 0.8 times its former value
2	Annual Probable Sunlight Hours (APSH)	 If a living room of an existing dwelling has a main window facing within 90° of due south, and any part of a new development subtends an angle of more than 25° to horizontal measured from the centre of the window, then the sun lighting of the existing dwelling may be adversely affected. This will be the case if the centre of the window: receives less than 25% of annual probable sunlight hours and less than 0.80 times its former annual value; or less than 5% of annual probable sunlight hours between 21 September and 21 March and less than 0.80 times its former value during that period; and also has a reduction in sunlight received over the whole year greater than 4% of annual probable sunlight hours. Note: In this analysis it was not possible to determine the layout and location of the living rooms in each of the existing dwellings. Therefore, the VSC was calculated for all windows of neighbouring properties with a line of sight to the development as a worst case scenario. 	 Fail = if the APSH's for the year is <25% or if the APSH's is <5% between 21 September and 21 March. and received less than 0.8 times its former sunlight hours during either period. and if there is a reduction of APSH for the year of greater than 4%.

- t. Dublin Office +353 (0)1 567 5668
- e. info@LawlerConsulting.com
- w. www.LawlerConsulting.com

Direct Sunlight -Garden and Amenity Spaces

3

It is recommended that for it to appear adequately sunlit throughout the year, at least half of a garden or amenity area should receive at least two hours of sunlight on the 21st of March. If as a result of a new development an existing garden or amenity area does not meet the above, and the area which can receive two hours of sun on the 21st of March is less than 0.8 times its former value, then the loss of sunlight is likely to be noticeable. Fail = if less than 50% of the garden or amenity area receives at least 2 hours of sunlight on the 21^{st of} March.

and

if the sunlight received is less than 0.8 times its former value.

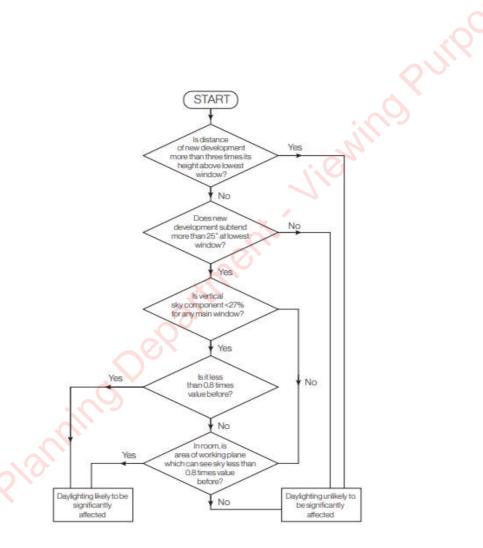


Figure 2: VSC Decision Chart (Source: BR 209)

LAWLER SUSTAINABILITY t. Kilkenny Office +353 (0)56 772 1115

t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.comw. www.LawlerConsulting.com

5. Analysis Inputs

5.1. Properties Assessed Details

The proposed development building geometry has been built based on the latest architectural drawings provided by MCA Architect. Please see appendix A for the plan and section drawings which informed this analysis.

Figure 4 illustrates the 8 No. surrounding neighbouring residential properties that have been assessed.

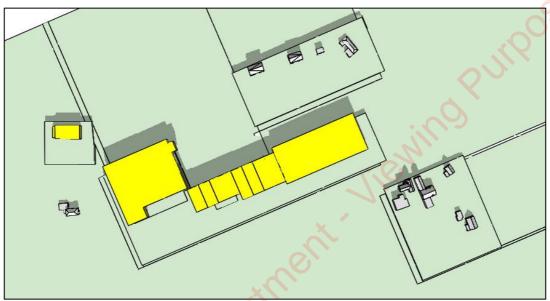


Figure 3. IES Model Birds-eye View - 21st of March @12:00

Figure 4: Site Location & Neighbouring Properties Assessed

t. Kilkenny Office +353 (0)56 772 1115 t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.com

w. www.LawlerConsulting.com

5.2. Simulation Inputs

Table 2: Calculation Inputs

Input	Comment
	IES Virtual Environment Version 2021.4.0.0
Software	Vertical Sky Component: Radiance Application
	Annual Sunlight Probable Hours: Suncast Application
	Drawings provided by MCA Architects on the 31/08/2022: • 'MM1 MCA 00 00 DR A 3000' - Site Plan
Building Layout, Plan, Elevation, and Section Drawings	Drawings provided by MCA Architects on the 06/09/2022: • 'MM1 MCA 00 00 DR A 5000' - Elevations
	Building heights included as per Elevation drawings provided b MCA on the 06/09/2022:
	Neighbouring property building ground floor levels were taken from the site survey drawing 'JEG2185_M1_RETAIL_FINAL' dated 19/01/2022 completed by Jones Engineering Group. See Table 3
Building Ground Levels	The ground levels for the proposed development were taken from the latest site plan provided by MCA Architects on the 31/08/2022. Drive Thru finish floor level (31m) confirmed MCA Architects on the 14/06/2022.
Weather Data File	DublinIWEC.fwt
	Site Plan MM1 MCA 00 00 DR A 3000.dwg (31/08/2022)
	Google Earth, Geohive, Louth County Council Website.
Existing Neighbouring Dwellings -	Estimated Dwelling Floor to Ceiling Height: 3m
Building Geometry	Window sizes and locations estimated from Google Earth Windows for all selected neighbouring property building facade facing (with a line of sight to the development) were included in the model.
Landscape Features	The BRE Guidelines paragraph G1.2 states: 'Where the effect of a new building on existing buildings nearby is being analysed it is usual to ignore the effect of existing trees'.
Site Orientation	As Per Site Plan.

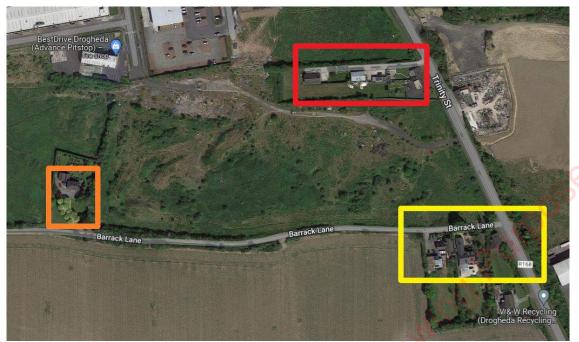
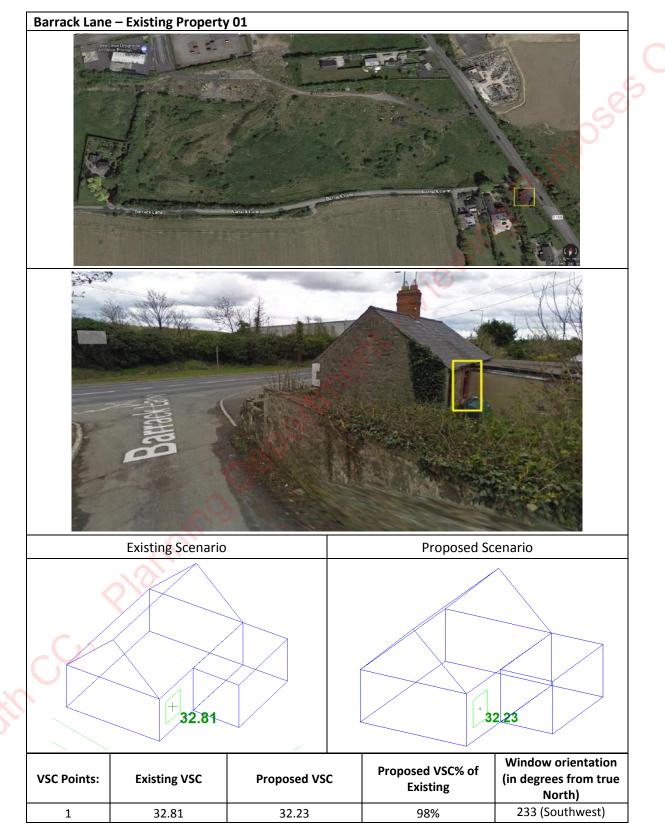


Figure 5: Neighbouring Property Site Levels Applied to the IESVE Model

Colour	Location	Floor Level starts from in the 3D model geometry
	Residential Properties located at the entrance of the Barrack Lane	29.5m
	Residential Properties located at the end of the Barrack Lane	26.0m
	Residential Properties located just off the Trinity Road	32.0m
Louin C.		


t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.com

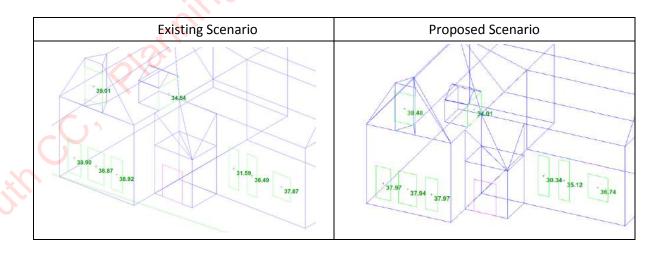
w. www.LawlerConsulting.com

6. Results

6.1. Daylight - Vertical Sky Component

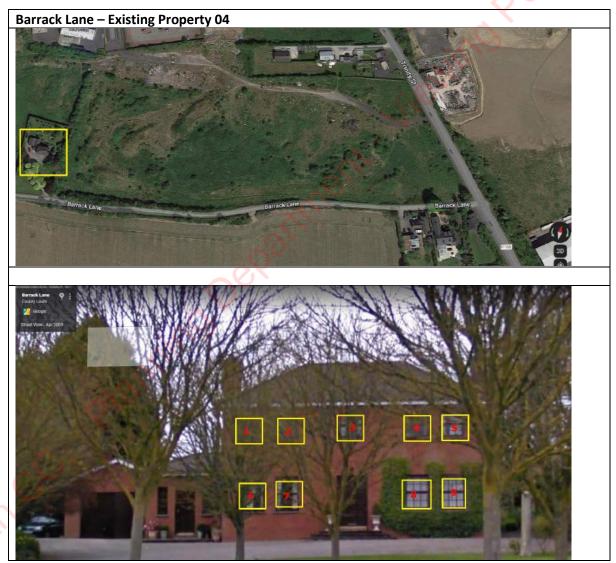
t. Kilkenny Office +353 (0)56 772 1115
t. Dublin Office +353 (0)1 567 5668
e. info@LawlerConsulting.com

w. www.LawlerConsulting.com



VSC Points:	Existing VSC	Proposed VSC	Proposed VSC% of Existing	Window orientation (in degrees from true North)
	38.1	38	100%	336- Northwest
2	36.75	36.87	100%	336- Northwest
3	33.31	33.58	100%	336- Northwest
4	28.35	28.12	99%	336- Northwest
5	38.63	37.82	98%	336- Northwest

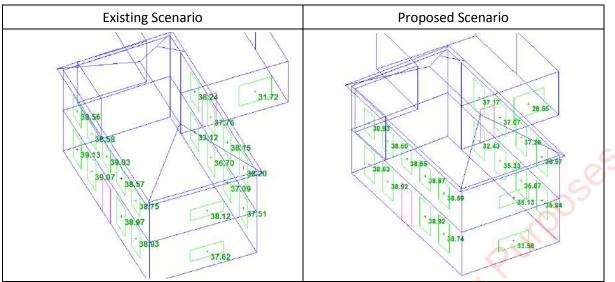
Barrack Lane – Existing Property 03



t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.com

w. www.LawlerConsulting.com


VSC Points:	Existing VSC	Proposed VSC	Proposed VSC% of Existing	Window orientation (in degrees from true North)
1	39.01	38.48	99%	340- Northwest
2	38.9	37.97	98%	340- Northwest
3	38.87	37.94	98%	340- Northwest
4	38.92	37.97	98%	340- Northwest
5	34.54	34.01	98%	250- Southwest
6	31.59	30.34	96%	340- Northwest
7	36.49	35.12	96%	340- Northwest
8	37.87	36.74	97%	340- Northwest

Note: The windows on the front of the building are visible, but the rear and side windows are not visible from google maps. The window openings below have been assumed on both the rear (north) and east facing facades.

- t. Dublin Office +353 (0)1 567 5668
- e. info@LawlerConsulting.com
- w. www.LawlerConsulting.com

Note: Window positions are not visible from the rear of the building via google maps. Therefore, front facade windows are copied on to rear side of the building.

1				North)
	38.56	38.55	/ 100%	173.42- South
2	38.58	38.94	100%	173.42- South
3	39.03	38.45	99%	173.42- South
4	38.57	38.57	100%	173.42- South
5	38.75	38.81	100%	173.42- South
6	39.13	39	100%	173.42- South
7	39.07	38.87	99%	173.42- South
8	38.97	38.81	100%	173.42- South
9	38.93	38.88	100%	173.42- South
10	38.12	35.27	93%	83.79 (East)
11	37.62	34.03	90%	83.79 (East)
12	38.2	37.03	97%	353.88 (North)
13	38.15	37.27	98%	353.88 (North)
14	37.76	37.68	100%	353.88 (North)
15	38.24	36.74	96%	353.88 (North)
16	37.51	36.31	97%	353.88 (North)
17	37.09	36.27	98%	353.88 (North)
18	36.7	35.35	96%	353.88 (North)
19	33.12	32.35	98%	353.88 (North)
20	31.72	28.69	90%	83.01 (East)

Trinity Street – Existing Property 05 Proposed Scenario Existing Scenario 38.56 ⁺38.64 38.53 39.17 39.11 38.98 ^{*}/37.46 38.62 38.92 ÷38.97 38.94 39.03 * 37.53 38.24

Note: Window positions are not available from google maps. Therefore, the window locations have been assumed for each façade facing the development.

VSC Points:	Existing VSC	Proposed VSC	Proposed VSC% of Existing	Window orientation (in degrees from true North)
1	38.94	38.92	100%	319.18 (NW)
2	39.03	38.97	100%	319.18 (NW)
3	38.24	37.53	98%	230.84 (SW)
4	38.62	37.46	97%	236.54 (SW)
5	38.98	38.53	99%	139.10 (SE)
6	39.11	38.64	99%	139.10 (SE)
7	39.17	38.56	98%	139.10 (SE)

Trinity Street– Existing Property 06

Note: Window positions are not available from google maps. Therefore, the window locations have been assumed for each façade facing the development.

VSC Points:	Existing VSC	Proposed VSC	Proposed VSC% of Existing	Window orientation (in degrees from true North)
1	38.97	38.14	98%	160.25 (South)

Trinity Street – Existing Property 07

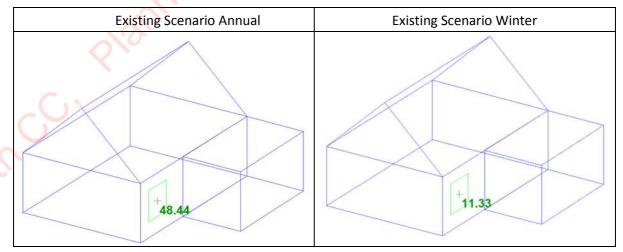

Note: Window positions are not available from google maps. Therefore, the window locations have been assumed for each façade facing the development.

VSC Points:	Existing VSC	Proposed VSC	Proposed VSC% of Existing	Window orientation (in degrees from true North)
1	37.94	37.94 37.54		251.84 (W)
2	39.1	37.65	96%	160.25 (S)
3	39.05	37.75	97%	160.25 (S)

- t. Dublin Office +353 (0)1 567 5668
- e. info@LawlerConsulting.com
- w. www.LawlerConsulting.com

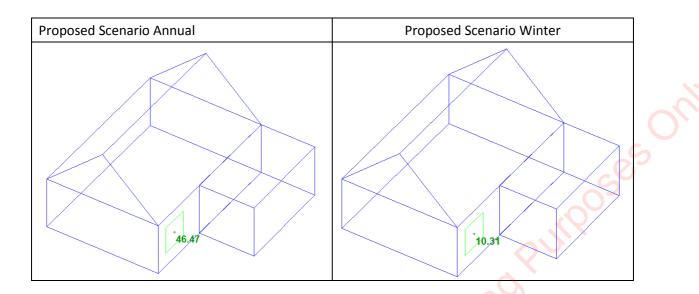
Trinity Street– Existing Property 08

Note: Window positions are not available from google maps. Therefore, the window locations have been assumed for each façade facing the development.


VSC Points:	Existing VSC	Proposed VSC	Proposed VSC% of Existing	Window orientation (in degrees from true North)
1	39.07	39.07 38.61		250.54 (W)
2	38.99	37.3	96%	160.82 (S)
3	38.29	37.6	98%	160.82 (S)

- t. Dublin Office +353 (0)1 567 5668
- e. info@LawlerConsulting.com
- w. www.LawlerConsulting.com

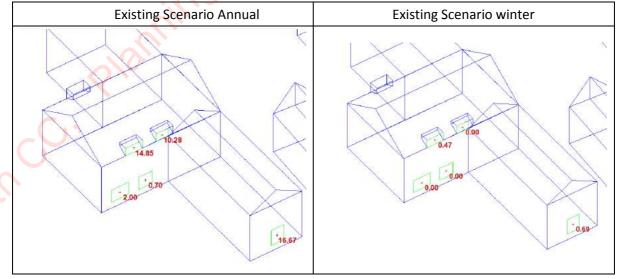
6.2. Sunlight - Annual Probable Sunlight Hours: Windows



18

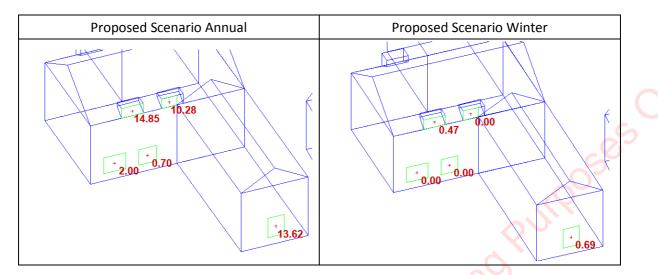
- t. Dublin Office +353 (0)1 567 5668
- e. info@LawlerConsulting.com

w. www.LawlerConsulting.com


	Ref:	Existing APSH (Annual)	Proposed APSH (Annual)	Proposed APSH % of Existing	% Reduction of APSH (Annual)	Existing APSH (Winter)	Proposed APSH (Winter)	Proposed APSH % of Existing	Window orientation (in degrees from true North)
	W1	48.44	46.47	96%	4.52%	11.33	10.31	91%	233 SW
	Resul	t: Pass			4.52%				
			anni						
Louit									

t. Dublin Office +353 (0)1 567 5668

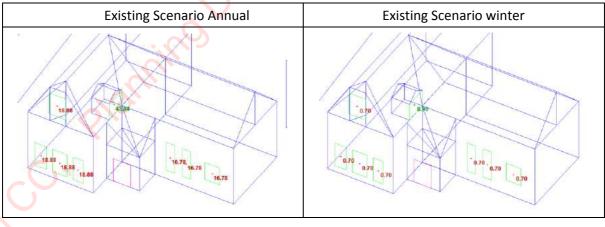
e. info@LawlerConsulting.comw. www.LawlerConsulting.com



t. Dublin Office +353 (0)1 567 5668

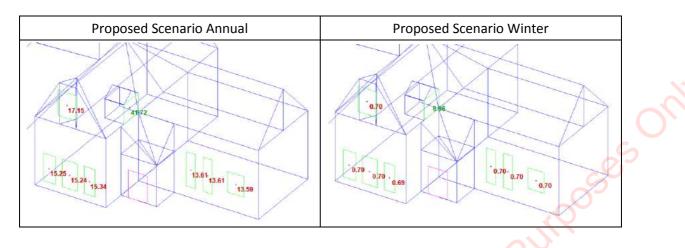
e. info@LawlerConsulting.com

w. www.LawlerConsulting.com

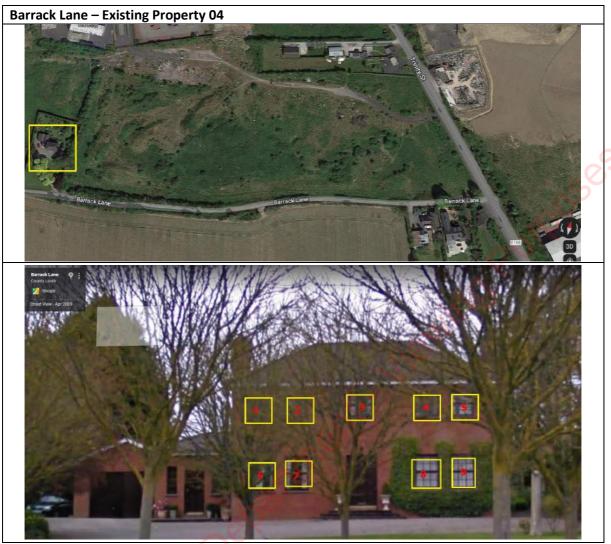

	Ref:	Existing APSH (Annual)	Proposed APSH (Annual)	Proposed APSH % of Existing	% Reduction of APSH (Annual)	Existing APSH (Winter)	Proposed APSH (Winter)	Proposed APSH % of Existing	Window orientation (in degrees from true North)
	W1	14.85	14.85	100%	0.00%	0.47	0.47	100%	336- NW
	W2	10.28	10.28	100%	0.00%	0	0	0%	336- NW
	W3	2	2	100%	0.00%	0	0	0%	336- NW
	W4	0.7	0.7	100%	0.00%	0	0	0%	336- NW
	W5	16.67	13.62	82%	18.30%	0.69	0.69	100%	336- NW
	Result:	Pass	ann		18.30%				
Louth									

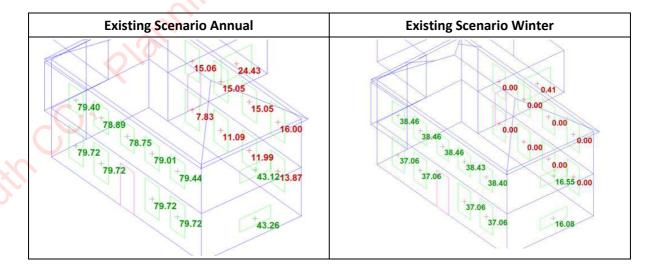
t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.com w. www.LawlerConsulting.com



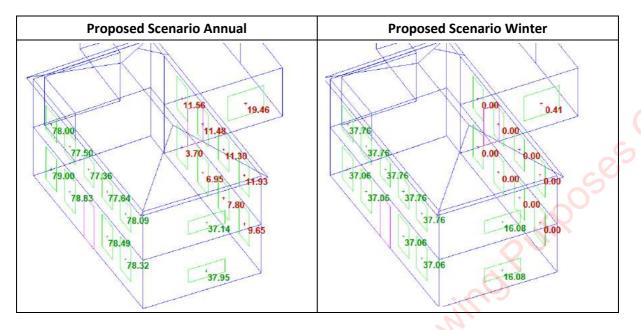
22


- t. Dublin Office +353 (0)1 567 5668
- e. info@LawlerConsulting.com
- w. www.LawlerConsulting.com


Ref:	Existing APSH (Annual)	Proposed APSH (Annual)	Proposed APSH % of Existing	% Reduction of APSH (Annual)	Existing APSH (Winter)	Proposed APSH (Winter)	Proposed APSH % of Existing	Window orientation (in degrees from true North)
W1	18.88	17.15	91%	9%	0.7	0.7	100%	340- NW
W2	18.88	15.25	81%	20%	0.7	0.7	100%	340- NW
W3	18.88	15.24	81%	20%	0.7	0.7	100%	340- NW
W4	18.88	15.34	81%	19%	0.7	0.7	100%	340- NW
W5	43.84	41.72	95%	6%	8.96 🏑	8.96	100%	250- SW
W6	16.78	13.61	81%	20%	0.7	0.7	100%	340- NW
W7	16.78	13 61	81%	20%	0.7	0.7	100%	340- NW
W8	16.78	13.59	81%	20%	0.7	0.7	100%	340- NW
	t: Pass	٠						
		ani		20%				

- t. Dublin Office +353 (0)1 567 5668
- e. info@LawlerConsulting.com w. www.LawlerConsulting.com

Note: The windows on the front of the building are visible, but the rear and side windows are not visible from google maps. The window openings below have been assumed on both the rear (north) and east facing facades.

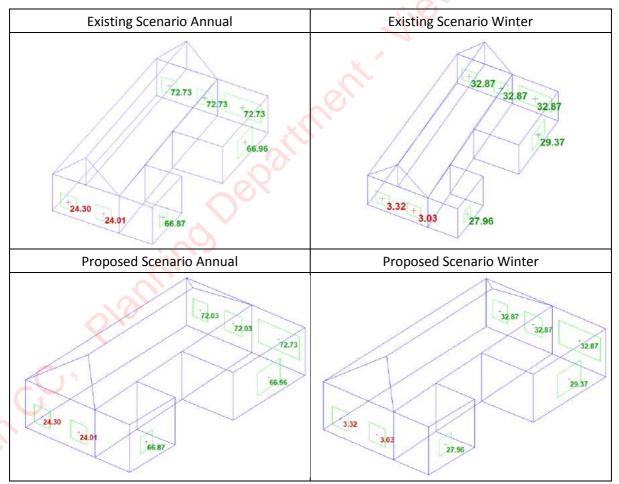


24

- t. Dublin Office +353 (0)1 567 5668
- e. info@LawlerConsulting.com

w. www.LawlerConsulting.com

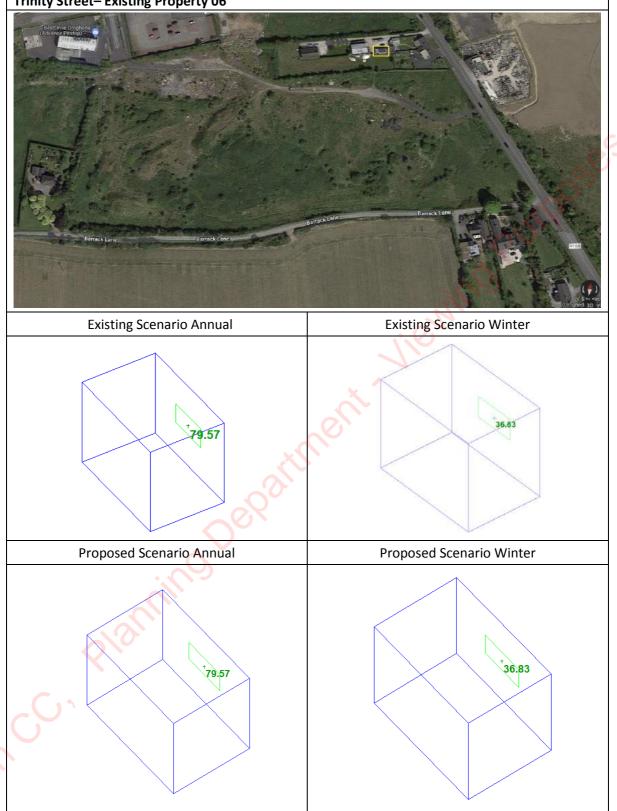
Ref:	Existing APSH (Annual)	Proposed APSH (Annual)	Proposed APSH % of Existing	% Reduction of APSH (Annual)	Existing APSH (Winter)	Proposed APSH (Winter)	Proposed APSH % of Existing	Window orientation (in degrees from true North)
W1	79.4	78	98%	2%	38.46	37.76	98%	173.42- South
W2	78.89	77.5	98%	2%	38.46	37.76	98%	173.42- South
W3	78.75	77.36	98%	2%	38.46	37.76	98%	173.42- South
W4	79.01	77.64	98%	2%	38.43	37.76	98%	173.42- South
W5	79.44	78.09	98%	2%	38.4	37.76	98%	173.42- South
W6	79.72	79	99%	1%	37.06	37.06	100%	173.42- South
W7	79.72	78.83	99%	1%	37.06	37.06	100%	173.42- South
W8	79.72	78.49	98%	2%	37.06	37.06	100%	173.42- South
W9	79.72	78.32	98%	2%	37.06	37.06	100%	173.42- South
W10	43.12	37.14	86%	14%	16.55	16.08	97%	83.79 (East)
W11	43.26	37.95	88%	12%	16.08	16.08	100%	83.79 (East)
W12	16	11.93	75%	25%	0	0	100%	353.88 (North)
W13	15.05	11.3	75%	25%	0	0	100%	353.88 (North)
W14	15.05	11.48	76%	24%	0	0	100%	353.88 (North)
W15	15.06	11.56	77%	23%	0	0	100%	353.88 (North)
W16	13.87	9.65	70%	30%	0	0	100%	353.88 (North)
W17	11.99	7.8	65%	35%	0	0	100%	353.88 (North)
W18	11.09	6.95	63%	37%	0	0	100%	353.88 (North)
W19	7.83	3.7	47%	53%	0	0	100%	353.88 (North)
W20	24.43	19.46	80%	20%	0.41	0.41	100%	83.01 (East)


Result: Pass

- t. Dublin Office +353 (0)1 567 5668
- e. info@LawlerConsulting.com w. www.LawlerConsulting.com

Trinity Street– Existing Property 05

Note: Window positions are not available from google maps. Therefore, the window locations have been assumed for each façade facing the development.


t. Dublin Office +353 (0)1 567 5668

Ref	Existing APSH (Annual)	Proposed APSH (Annual)	Proposed APSH % of Existing	% Reduction of APSH (Annual)	Existing APSH (Winter)	Proposed APSH (Winter)	Proposed APSH % of Existing	Window orientation (in degrees from true North)		
W1	24.3	24.3	100%	0.00%	3.32	3.32	100%	319.18 (NW)		
W2	24.01	24.01	100%	0.00%	3.03	2.86	94%	319.18 (NW)		
W3	66.87	66.87	100%	0.00%	27.96	27.96	100%	230.84 (SW)		
W4		66.96	100%	0.00%	29.37	29.23	100%	236.54 (SW)	0	
W5 W6		72.73 72.03	100% 99%	0.00%	32.87 32.87	32.87 32.87	100% 100%	139.10 (SE) 139.10 (SE)	S	
W7		72.03	99%	0.96%	32.87	32.87	100%	139.10 (SE)	$\mathbf{O}^{\mathbf{v}}$	
		ann								

- t. Dublin Office +353 (0)1 567 5668
- e. info@LawlerConsulting.com
- w. www.LawlerConsulting.com

Trinity Street– Existing Property 06

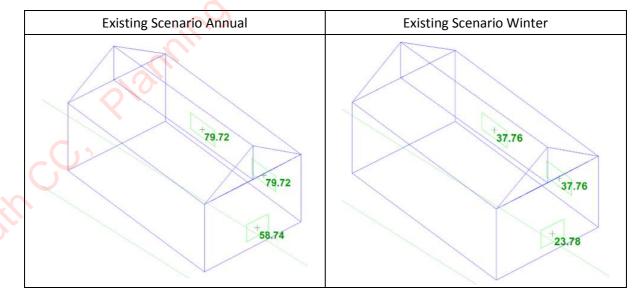

S U	STAIN	ABILI	R				t. Dublin O e. info@La	Office +353 (0)1 awlerConsulting.co	567 5668 om	
Ref:	Existing APSH (Annual)	Proposed APSH (Annual)	Proposed APSH % of Existing	% Reduction of APSH (Annual)	Existing APSH (Winter)	Proposed APSH (Winter)	Proposed APSH % of Existing	Window orientation (in degrees from true North)		
W1	79.57	79.57	100%	0.00%	36.83	36.83	100%	160.25 (South)		Ą,
Result:		anni		eParti			enin			
					29					

- t. Dublin Office +353 (0)1 567 5668
- e. info@LawlerConsulting.com
- w. www.LawlerConsulting.com

.

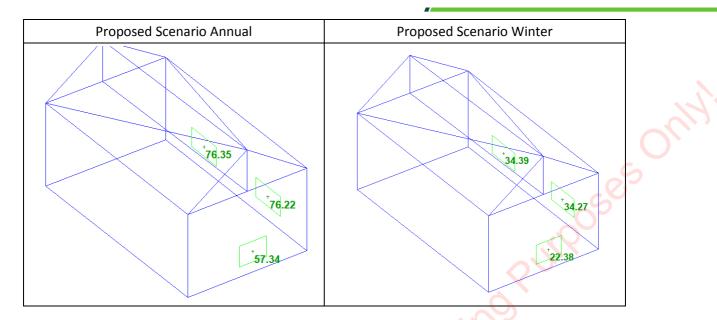
Off the Trinity Street– Existing Property 07

t. Dublin Office +353 (0)1 567 5668


e. info@LawlerConsulting.com

w. www.LawlerConsulting.com

Ref:	Existing APSH (Annual)	Proposed APSH (Annual)	Proposed APSH % of Existing	% Reduction of APSH (Annual)	Existing APSH (Winter)	Proposed APSH (Winter)	Proposed APSH % of Existing	Window orientation (in degrees from true North)
W1	56.55	55.85	99%	1.24%	22.13	21.44	97%	251.84 (W)
W2	79.72	78.32	98%	1.76%	37.06	34.97	94%	160.25 (S)
W3	79.72	78.93	99%	0.99%	37.06	35.78	97%	160.25 (S)


Result: Pass

- t. Dublin Office +353 (0)1 567 5668
- e. info@LawlerConsulting.com
- w. www.LawlerConsulting.com

	Ref:	Existing APSH (Annual)	Proposed APSH (Annual)	Proposed APSH % of Existing	% Reduction of APSH (Annual)	Existing APSH (Winter)	Proposed APSH (Winter)	Proposed APSH % of Existing	Window orientation (in degrees from true North)
	W1	58.74	57.34	98%	2.38%	23.78	22.38	94%	250.54 (W)
	W2	79.72	76.22	96%	4.39%	37.76	34.27	91%	160.82 (S)
	W3	79.72	76.35	96%	4.23%	37.76	34.39	91%	160.82 (S)
	Result:	Pass			4.23%				
			ann	n0					
Louth									

- t. Dublin Office +353 (0)1 567 5668
- e. info@LawlerConsulting.com
- w. www.LawlerConsulting.com

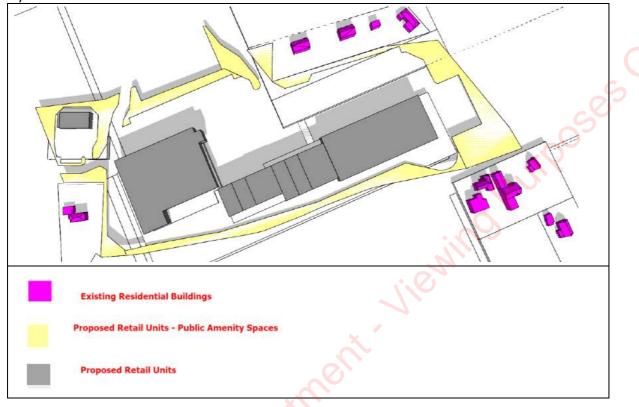
6.3. Sunlight to Neighbouring Back Gardens

For a space to appear adequately sunlit throughout the year, at least half of the garden or amenity area should receive at least 2 hours of sunlight on the 21st of March.

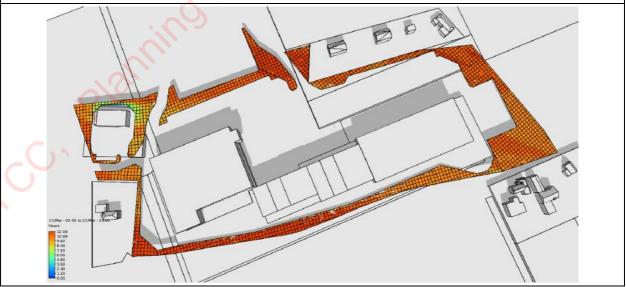
The results below demonstrate that in excess of 50% of the existing neighbouring private garden areas will receive at least 2 hours of sunlight on the 21st of March when the proposed development is complete.

Figure 6: Site Plan - Private Garden Spaces Neighbouring Properties

Annual Sunlight Probable Hours: The coloured areas receive > 2 hours of sunlight on the 21st of March


From the above results it is evident that well in excess of 50% of the area of each of the neighbouring private garden spaces will achieve a minimum of 2 hours of sun light on the 21st of March.

- t. Dublin Office +353 (0)1 567 5668
 e. info@LawlerConsulting.com
- w. www.LawlerConsulting.com


6.4. Sunlight to Proposed Development Public Amenity Areas

The image below illustrates the public amenity spaces identified from the proposed retail unit plan layouts.

The following images illustrate the annual sunlight probable hour simulation results for the proposed development amenity areas on the 21st of March.

Annual Sunlight Probable Hours: The coloured areas receive > 2 hours of sunlight on the 21st of March.

The results above illustrate that well in excess of 50% of the proposed development amenity space will achieve a minimum of 2 hours of direct sun light on the 21st of March.

t. Dublin Office +353 (0)1 567 5668
e. info@LawlerConsulting.com

w. www.LawlerConsulting.com

7. Discussion of Results

Table 4 details the recommended nomenclature and definitions from the BR209 Environmental Impact Assessment Appendix H that are used to analyse skylight and sunlight results. The results are described in terms of negligible, minor and major adverse impacts.

Table 4: BR209 Environmental Impact Assessment Criteria

Impact	Description
Negligible Adverse Impact (Within the BR209 Guidelines)	Where the loss of light is well within the guidelines of BR209, OR only a small number of windows or limited area of open space lose light (within the guidelines), a classification of negligible impact is more appropriate.
Minor Adverse Impact (Within the BR209 Guidelines)	Where the loss of light is only just within the guidelines, and a larger number of windows or open space area are affected, a minor adverse impact would be more appropriate, especially if there is a particularly strong requirement for daylight and sunlight in the affected building or open space.
Minor Adverse Impact (Does not meet the guidelines of BR209)	 Where the loss of skylight or sunlight does not meet the guidelines of BR209 and; only a small number of windows or limited area of open space are affected the loss of light is only marginally outside the guidelines an affected room has other sources of skylight or sunlight the affected building or open space only has a low level requirement for skylight or sunlight there are particular reasons why an alternative, less stringent, guideline should be applied, for example an overhang above the window or a window standing unusually close to the boundary.
Major Adverse Impact (Does not meet the guidelines of BR209)	 Where the loss of skylight or sunlight does not meet the guidelines of BR209 and; a large number of windows or large area of open space are affected the loss of light is substantially outside the guidelines all the windows in a particular property are affected the affected indoor or outdoor spaces have a particularly strong requirement for skylight or sunlight, e.g., a living room in a dwelling or a children's playground.

The impact of the proposed development in terms of daylight and sunlight on 8 No. surrounding existing properties has been analysed in accordance with the guidelines described in BR209 (2022) Site Layout Planning for Daylight and Sunlight, A Guide to Good Practice. The existing gardens and a total of 48 no. windows associated with the existing dwellings have been assessed. The results are within the BR209 guidelines, and the proposed development has a negligible adverse impact on the surrounding properties.

t. Kilkenny Office +353 (0)56 772 1115

- t. Dublin Office +353 (0)1 567 5668
- e. info@LawlerConsulting.com
- w. www.LawlerConsulting.com

7.1. Vertical Sky Component (VSC) Results

The vertical sky component results are detailed in section 6.1 of this report. The VSC results are >27% for all the windows tested both before and after the proposed development in place. Therefore, in terms of VSC the development has a negligible adverse impact and is within the BR209 guidelines.

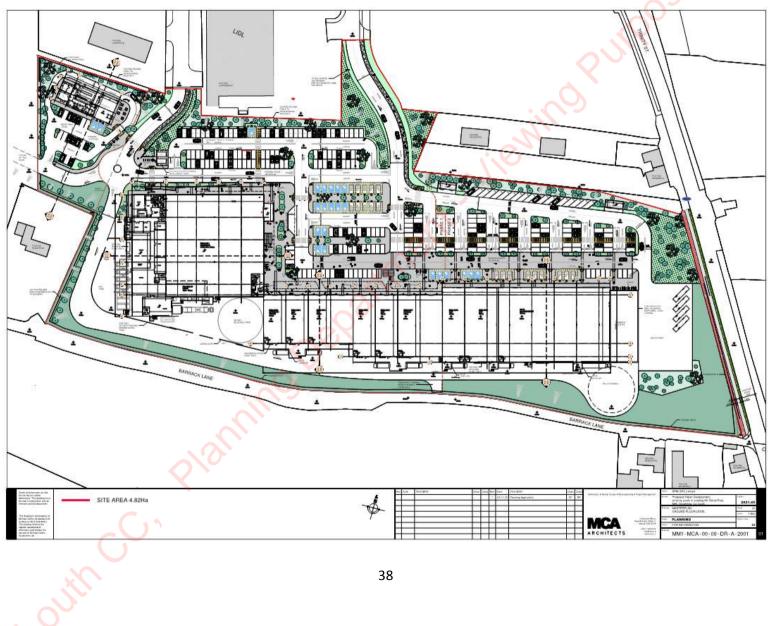
7.2. APSH Neighbouring Properties Windows

The results of the APSH simulations in Section 6.2 show that the impact of the proposed development on the neighbouring properties are within the BR209 guidelines.

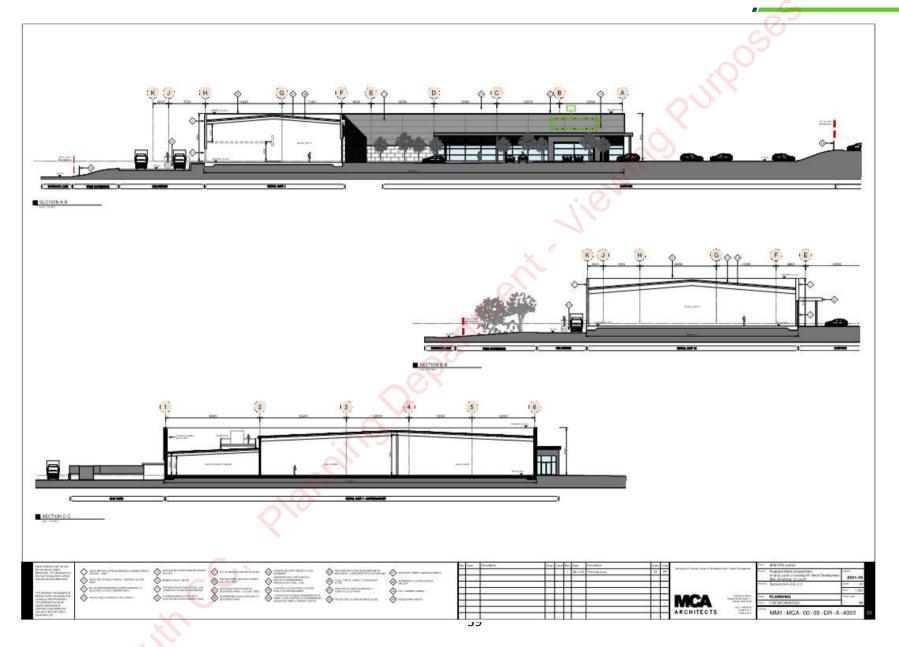
Table 5: APSH Neighbouring Properties Summary of Results

Neighbouring Property	Result
Existing Property No. 1 - Barrack Lane	Negligible Adverse Impact
Existing Property No. 2 - Barrack Lane	 Negligible Adverse Impact: The windows facing the development are northwest facing and therefore not within 90° of due south
Existing Property No. 3 - Barrack Lane	 Negligible Adverse Impact: The majority of windows facing the development are northwest facing and therefore not within 90° of due south 1 x southwest facing first floor window meets the sunlight requirements
Existing Property No. 4 - Barrack Lane	 Negligible Adverse Impact: South facing windows comply. Windows on the rear of the building are north facing and not within 90° of due south. Assumed window locations on the east facing 2 storey wall comply. The ground floor east facing window will receive 20% of its former APSH's after the proposed development is built. The window does not face within 90° (83°) of due south nor does the development subtend at an angle of >25°.
Existing Property No. 5 - Trinity Street	 Negligible Adverse Impact: W1 and W2 are not within 90° of due south. All windows within 90° of due south comply.
Existing Property No. 6 - Trinity Street	Negligible Adverse Impact
Existing Property No. 7 - Trinity Street	Negligible Adverse Impact
Existing Property No. 8 - Trinity Street	Negligible Adverse Impact

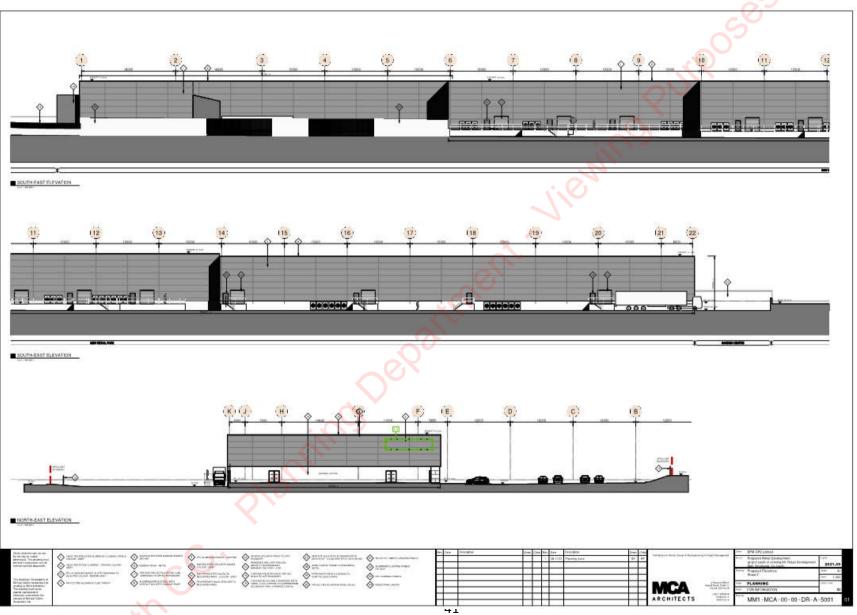
t. Kilkenny Office +353 (0)56 772 1115

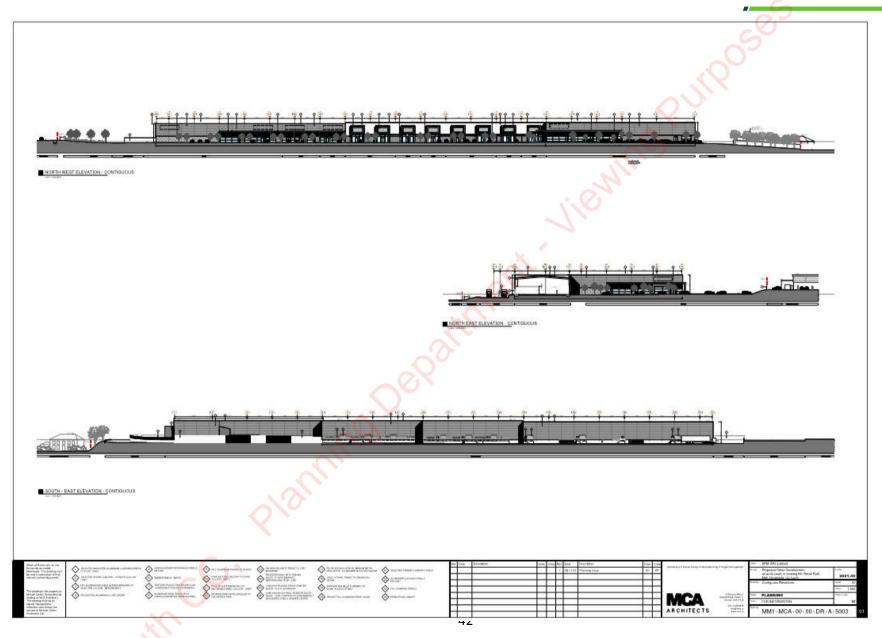

- t. Dublin Office +353 (0)1 567 5668
- e. info@LawlerConsulting.com w. www.LawlerConsulting.com

7.3. Sunlight to Proposed Development Public Amenity Areas


Repairing begannent. Viewing purposes on Section 6.3 and 6.4 of this report contains results of the APSH simulations for back gardens and amenity spaces. The results show that at least 50% of each of the neighbouring gardens and at least 50% of proposed development amenity space receives at least two hours of sunlight on the 21st of

Appendix A: Architectural Plan and Section Drawings





t. Kilkenny Office +353 (0)56 772 1115 t. Dublin Office +353 (0)1 567 5668

e. info@LawlerConsulting.com w. www.LawlerConsulting.com

Abbreviations

- Louting Planning Department. Viewing Purposes Only

	y metadata (Anal	ysis carried out using	Elekon Ba	tExplorer 2.0	Software).						
Recording	Timestamp	Species Text	Calls [#]	Mean Peak Frequency [kHz]	Mean Max Frequency [kHz]	Mean Min Frequency [kHz]	Mean Call Length [ms]	Mean Call Distance [ms]	Latitude [WGS84]	Longitude [WGS84]	Longitude [WGS84]
2180125	20/07/2022 22:40	Pipistrellus pygmaeus	19	51.5	67.3	50.7	6	90	53.72555	-6.38538	-6.38538
2180127	20/07/2022 22:43	Pipistrellus pygmaeus	24	51.5	58	50.6	6	86	53.72557	-6.38539	-6.38539
2180134	20/07/2022 22:50	Nyctalus leisleri	6	23.6	24.9	22.4	12.9	474	53.72567	-6.38645	-6.38645
2180139	20/07/2022 22:53	Pipistrellus pipistrellus	25	49.7	57.8	48.8	7	90	53.7257	-6.38729	-6.38729
2180141	20/07/2022 22:58	Pipistrellus pipistrellus	78	46.8	63.3	45.5	4	50	53.7256	-6.38795	-6.38795
2180145	20/07/2022 23:03	Pipistrellus pipistrellus	13	45.6	62.2	44.8	5	180	53.72565	-6.38777	-6.38777
2180146	20/07/2022 23:04	Pipistrellus pygmaeus	33	54.3	81.3	53.5	5	86	53.72566	-6.38775	-6.38775
2180147	20/07/2022 23:04	Pipistrellus pygmaeus	57	54.7	78	53.9	5	80	53.72566	-6.38774	-6.38774
2180150	20/07/2022 23:06	Pipistrellus pipistrellus	27	45.5	62	44.2	4	94	53.72573	-6.38706	-6.38706
2180155	20/07/2022 23:09	Nyctalus leisleri	6	24.3	24.6	23.1	10.4	592	53.72585	-6.38524	-6.38524
2180156	20/07/2022 23:09	Nyctalus leisleri	6	23.6	24.5	22.8	6	260	53.72585	-6.38519	-6.38519
2180157	20/07/2022 23:09	Nyctalus leisleri	6	22.1	22.8	21.2	12	375	53.72585	-6.38519	-6.38519
)2180158_1	20/07/2022 23:10	Pipistrellus pipistrellus	40	46.5	80.5	45.5	4	80	53.72584	-6.38518	-6.38518
2180159	20/07/2022 23:10	Pipistrellus pipistrellus	20	45.5	72.8	44.7	4	83	53.72583	-6.38519	-6.38519
2180166	20/07/2022 23:17	Pipistrellus pipistrellus	24	45.9	87.6	45	4	85	53.72594	-6.38397	-6.38397
2180167	20/07/2022 23:17	Pipistrellus pipistrellus	9	46.5	53.8	45.3	3	80	53.72594	-6.38399	-6.38399
2180168	20/07/2022 23:17	Pipistrellus pipistrellus	15	46.8	52.3	46	7	200	53.72593	-6.38403	-6.38403
2180173	20/07/2022 23:24	Pipistrellus pipistrellus	9	48	52.7	47.1	4	100	53.7259	-6.38562	-6.38562

Ound.

	_ .	• ·	Calls	Mean Peak	Mean Max	Mean Min	Mean Call	Mean Call	Latitude	Longitude	Longitude
Recording	Timestamp	Species Text	[#]	Frequency [kHz]	Frequency [kHz]	Frequency [kHz]	Length [ms]	Distance [ms]	[WGS84]	[WGS84]	[WGS84]
2180158_2	20/07/2022 23:10	Nyctalus leisleri	2	22.3	23.1	21.4	10.4	219	53.72584	-6.38518	-6.38518
						Jievi					

M1 Retail Park

Verified Photomontages & Computer-generated imagery (CGIs)

NOTES AND METHODOLOGY

PROJECT DETAILS

Title:

M1 Retail Park

Development Description:

Design team:

MCA

Prepared by Digital Dimensions

Issue Date	23/06/22	27/06/22	11/07/22	12/08/22	13/09/22	22/09/22
Revision	А	В	С	D	E	E
Status	FOR REVIEW					

PROFILE

Digital Dimensions are specialists in computer generated visualisations for all forms of planning applications. The company was established in 2000 by John Healy and Jim Manning in Dublin, Ireland. Digital Dimensions is one of Ireland's leading architectural visualisation companies with 20+ years of experience covering a wide range of solutions in the areas of architectural visualisation, environmental design and digital media.

Method Statement - Photo-montage production using guidance in The Landscape Institute TGN-06-19 Visual Representation of Development Proposals.

1. Photographs are taken from locations as advised by the planning consultant with a full frame SLR digital camera and prime lens. Photographs are taken using the most appropriate combination of lens focal lengths to ensure that the field of view covers the proposed scheme environment or landscape context. The photographs are taken horizontally with a survey level attached to the camera. The photographic positions are marked (for later surveying), the height of the camera and the focal length of the image recorded.

2. In each photograph, a minimum of 3no. visible fixed points are marked for surveying. These are control points for model alignment within the photograph. All surveying is carried out by a qualified topographical surveyor using Total Station / GPS devices.

3. The photographic positions and the control points are geographically surveyed and this survey is tied in to the site topographical survey supplied by the Architect / client.

4. The buildings are accurately modelled in 3D cad software from cad drawings or BIM model supplied by the Architect. Material finishes are applied to the 3D model and scene element are place like trees and planting to represent the proposed landscaping.

5. Virtual 3D cameras are positioned according to the survey co-ordinates and the focal length is set to match the photograph. Pitch and rotation are adjusted using the survey control points to align the virtual camera to the photograph. Lighting is set to match the time of day the photograph is taken.

6. The proposed development is output from the 3D software using this camera and the image is then blended with the original photograph to give an accurate image of what the proposed development will look like in its proposed setting.

7. In the event of the development not being visible, the roof line of the development will be outlined in red if re-quested.

8. The document contains:

a. Site location map with view locations plotted.

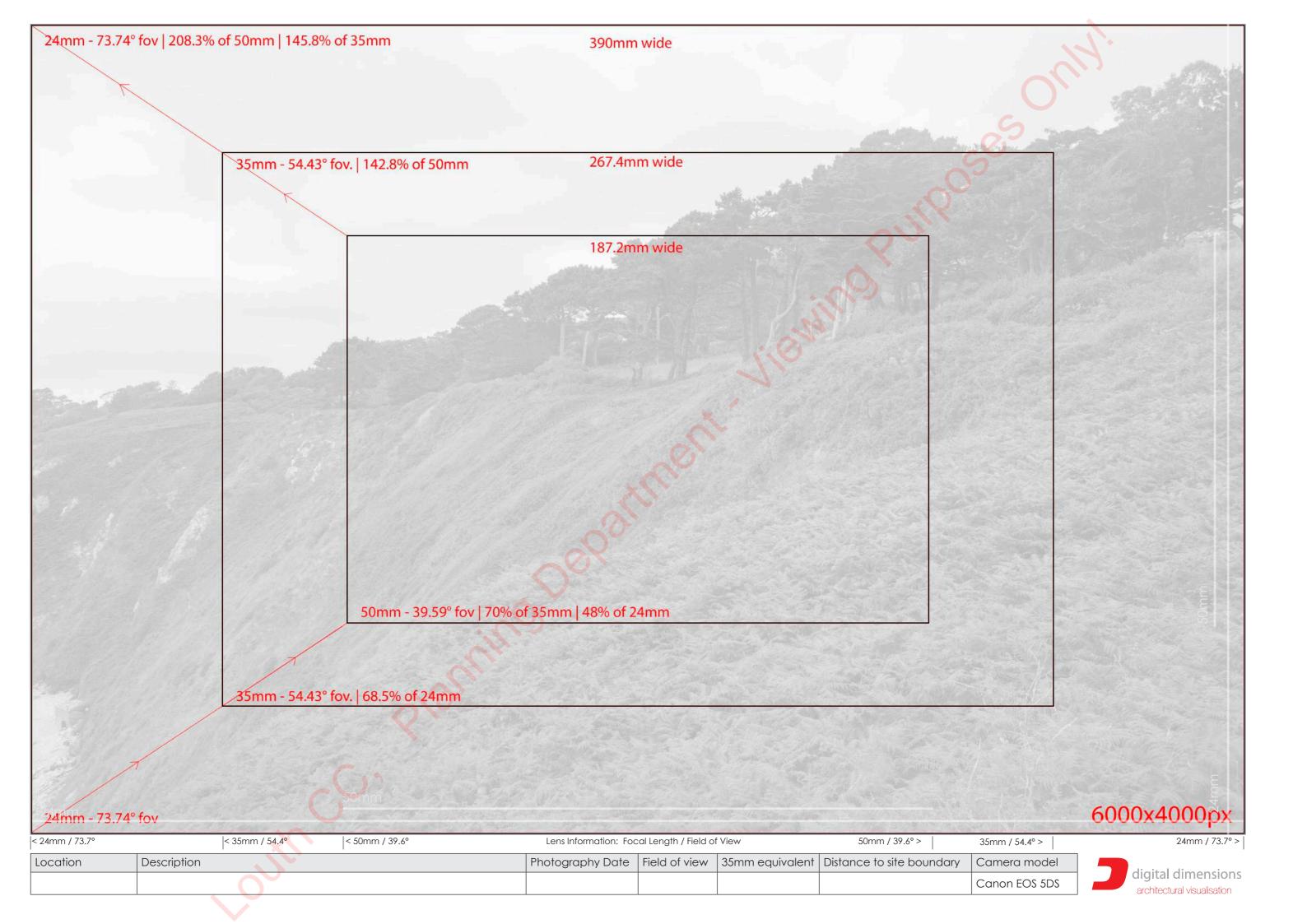
b. Photomontage sheet with existing or proposed conditions.c. Reference information including field of view/focal length, range to site /

c. Reference information including field of view/focal len development, date of photograph.

9. For the views, we provide four images:

a. The existing view (on 11 June 2022);

b. The proposed photomontage (or scheme outline as appropriate)



View Location Map

outh Con

This map is for view location purposes only. Please refer to Architects drawings for site layout and redline boundary.

Location	Description	Photography Date	Field of view	35mm equivalent	Distance to site boundary	Can
View B Proposed	At roundabout junction of N51 & R168 looking South	11/06/22	73.7°	24mm	335m	Can

Location	Description	Photography Date	Field of view	35mm equivalent	Distance to site boundary	Car
View D Existing	On Trinity Street (R168) looking South West	11/06/22	73.7°	24mm	83.5m	Car

Location	Description		Photography Date	Field of view	35mm equivalent	Distance to site boundary	Cai
View D Proposed	On Trinity Street (R168)	looking South West	11/06/22	73.7°	24mm	83.5m	Car

Location	Description	Photography Date	Field of view	35mm equivalent	Distance to site boundary	Ca
View G Existing	On Trinity Street (R168) looking West	11/06/22	73.7°	24mm	24.5m	Cai

Location	Description	Photography Date	Field of view	35mm equivalent	Distance to site boundary	Car
View G Proposed	On Trinity Street (R168) looking West	11/06/22	73.7°	24mm	24.5m	Can

architectural visualisation

Location	Description	Photography Date	Field of view	35mm equivalent	Distance to site boundary	Camera model
View H Proposed	On Trinity Street (R168) at slip rd to V&W Recycling looking North West	11/06/22	73.7°	24mm	179.4m	Canon EOS 5DS

Location	Description	Photography Date	Field of view	35mm equivalent	Distance to site boundary	Can
View I Existing	On Trinity Street (R168) looking North West	11/06/22	73.7°	24mm	553m	Can

anon EOS 5DS

digital dimensions architectural visualisation

	Distance to site boundary	Can
View I ProposedOn Trinity Street (R168) looking North West11/06/2273.7°24mm	553m	Can

anon EOS 5DS

digital dimensions architectural visualisation

Location	Description	Photography Date	Field of view	35mm equivalent	Distance to site boundary	Car
View L Existing	On Barrack Lane looking East	11/06/22	73.7°	24mm	6.6m	Car

Location	Description	Photography Date	Field of view	35mm equivalent	Distance to site boundary	Ca
View L Proposed	On Barrack Lane looking East	11/06/22	73.7°	24mm	6.6m	Ca

CG1

CG2

CG3

Tree Survey Report

Site to the South of the M1 Retail Park, Mell, Drogheda

Co. Louth

December 2022

Contents

Instruction	
Introduction	
Limitations	
Methodology	
Survey Key	
Category	
Site Overview	5
Tree Overview	
Survey Overview	
Conclusions	
Recommendations	
Arboricultural Method Statement	
Glossary of Arboricultural terms	
Appendices Appendix A - Tree Survey Schedule	- Vien.
Prepared by	

Appendices

Prepared by

Jereh (Ta

Derek Gault BSc Arboriculture& Amenity Forestry

Monday 20th June 2022

Instruction

To carry out a Tree Survey according to the standards as laid out in BS5837:2012 "Trees in relation to design, demolition and construction – Recommendations." on land proposed for development at the M1 Retail Park, Drogheda

Introduction

The lands south of the existing M1 Retail Park have been identified as having the potential for development of further retail commercial and a drive-thru unit. This survey has been commissioned to provide opinion upon the condition of existing trees around the site and to use this insight to inform the design of the new development, and to ensure measures are employed to protect those trees suitable for retention.

Limitations

- The survey was carried out from ground level and only those features significant at the time of survey are recorded
- No samples of wood, roots or soils were taken for analysis.
- There is no guarantee either expressed or implied of the internal condition of the wood or rooting system, or that problems or deficiencies may arise in the future.
- The survey is no guarantee that where trees have been identified as suitable for retention, the whole tree, or parts of it will not fail – trees are living organisms whose health and condition can change rapidly and are obviously affected hugely by unquantifiable high winds. Trees should be checked regularly and especially after storm events.

Methodology

- The significant trees inside the site (as illustrated in Photo 2) were assessed from ground level using Visual Tree Assessment techniques, and relevant observations and measurements taken in accordance with those specified in the industry standard document BS5837:2012 "Trees in relation to design, demolition and construction – Recommendations"
- Where trees are sufficiently homogenous, they have been assessed collectively and recorded as a group (prefix G- on the Schedule).
- An audible investigation of the tree using the Thor 710 nylon mallet is used when decay or cavities are suspected in the trees' boles.
- Survey forms are contained electronically on Ipad Mini which is contained within an all-weather case.
- A Clinometer is used to measure tree heights.
- Where access to trees is restricted by undergrowth/ obstructions/ site boundaries etc estimations are made of required measurements for health and safety reasons.

Survey Key

Tree Numbers

Trees have been affixed with orange plastic tags and numbered, with the numbers pertaining to those in the Schedule. The numbers are also plotted on the plan drawing.

Age Class – recorded as;

JUV= Juvenile(in first 1/3 of life expectancy).SM= semi-mature(in middle 1/3 of life expectancy).M = Mature (in final 1/3 of life expectancy).OM = Over Mature (becoming decrepit)Dead

Dia-

Diameter in metres measured at 1.5 metres above ground level

RPA Radius -

Root Protection Area Radius is the minimum area around trees to be protected from disturbance during construction, calculated as an area equivalent to a circle with a radius 12 times the stem diameter.

Existing Height above Ground Level of (in metres)-First significant branch, and, Canopy

Observations –

The results of the Visual Tree Assessment, combining experience and knowledge of tree biology and structure to draw conclusions about the tree's condition. Only significant details are recorded on the schedule.

Preliminary Recommendations –

Proposed remedial tree works irrespective of site plans to ensure safety of users and neighbours

ERC – Estimated Remaining Contibution

- in years e.g <10, 10+,20+, 30+, 40+

Category

The tree retention category system according to BS5837:2012 which grades a tree's suitability for retension

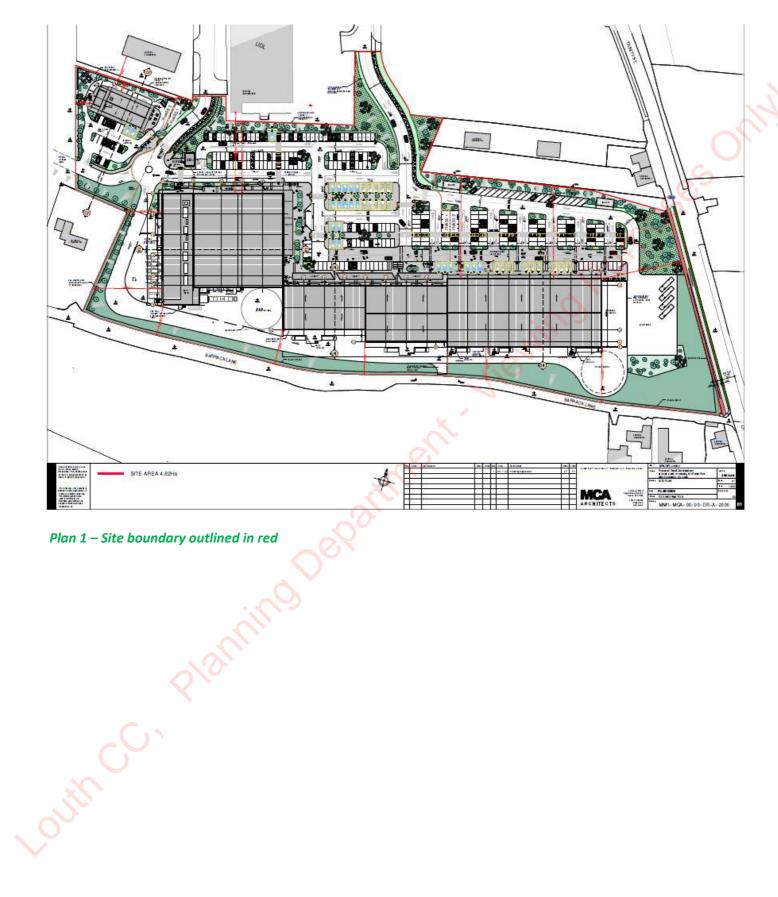
U – Trees in such a condition that they cannot be realistically be retained in the context of the current land use for longer than 10 years

A - Trees of a high quality with an estimated remaining life expectancy of at least 40yrs

B – Trees of moderate quality with an estimated remaining life expectancy of at least 20 yrs

C - Trees of low quality with an estimated life expectancy of at least 10 yrs, or young trees with a stem diameter below 150mm

Subcategory -


1. - Trees with mainly Arboricultural qualities. 2 – Trees with mainly Landscape qualities. 3. Trees with mainly cultural values , including conservation

Site Overview

The site occupies 4.82 Ha of land south of the existing M1 Retail Park off Junction 10 of the M1 Motorway at Drogheda.

Trinity Street runs to the East, Barrack Lane to the South with agricultural land to a portion of the western boundary. There are private dwelling houses at the North-Eastern & South-Western corners.

There is a disused black-top road running east-west through the site, with evidence of abandoned ground works throughout the northern half.

Tree Overview

inter The only significant trees are found at the South-eastern corner at the junction of Trinity Street and Barrack Lane. These are largely of average amenity, being festooned with ivy and growing too closely together to make good specimens.

The remaining vegetation found on site are mainly self-seeded Sally and Buddlea bushes that have pioneered the area after it was abandoned. It is estimated this vegetation is 15 years old.

Photo 1 – View to the Northwest toward Lidl

Photo 2 – View Southeast to the corner of the site and trees 1-4. Note Tree 4 on the RHS is the very decrepit Ash tree

CIT

Photo 3 – View South to Tree 5 – a well-formed Sycamore

Survey Overview

A total of 5 no. individual trees were assessed as part of the Survey fieldwork.

e) and 1 Of these, 1 no. tree was classed as Category A (high value), 3 no. were classed as Category B (moderate value) and 1 no. was classed as Category U (unsuitable for retention).

Conclusions

The trees found on site can be easily protected during the construction of the proposed development as there is more than enough room to accommodate their root protection zones between the closest part of the development (the lorry turning circle and the coach park) and their stems. In fact, there seems to have been some previous attempt at tree protection as a stretch of site fencing is already in place around trees 1-4.

Recommendations

Preliminary remedial recommendations for individual trees can be found in the Survey Schedule in the appendix.

Arboricultural Method Statement

The Arboricultural Method Statement (AMS) lays down the methodology for any demolition and/or construction works that may have an effect upon trees on and adjacent to this site. It is essential within the scope of any contracts related to this development, that this AMS is observed and adhered to. It is recommended that this document forms part of the work schedule and that specifications are issued to the building contractor(s) and these must be used to form part of their contract.

SEQUENCE OF WORKS (AS PER RECOMMENDATIONS OF BS5837: 2012)

From commencement of the above development, the following methodology shall be implemented in the manner and sequence described:

1. Pre-contract site meeting

2. Arboricultural pruning and/or removal works: with written Council permission for protected trees

3. Erect *temporary* staked or (where there maybe a risk of root damage) stabilised Tree Protection Barriers (TPB) to establish a fenced-off Construction Exclusion Zone (CEZ): *before* any demolition and/or construction works begin on-site

4. Install *temporary* ground protection (TGP): *before* any demolition and/or construction works begin on-site

- 5. Route underground services: not within the RPAs of any retained trees
- 6. Demolition followed by main construction phase
- 7. Installation of Cellular Confinement Systems (if deemed necessary by the Arboriculturalist)
- 8. Remove TGP and TPBs
- 9. Landscape works.

1.0 PRE-CONTRACT SITE MEETING

To outline on-site working methods in relation to trees prior to any demolition/construction activity, a site meeting of the following shall take place:

- Client
- Architect/Planning Consultant/Structural Engineer
- Main Contractor and his site agent
- Arboriculturist

2.0 ARBORICULTURAL PRUNING AND/OR FELLING WORKS

1. Before the erection of the temporary protective barrier, all tree removal shall be implemented in accordance with the Tree Survey Schedules.

2. All possible efforts must be made to prevent damage to retained trees including potential root incursion or compaction caused by vehicle access. Temporary ground protection should be used to achieve the latter.

3. All arboricultural works should conform to the recommendations of BS 3998; 2010 'Tree Work - Recommendations'

4. All operatives shall be equipped with and use personal protective equipment (PPE) in accordance with Health & Safety Executive current directives and industry codes of practice.

5. Wound sealants shall not be used on any tree.

6. Performance of all arboricultural operations and use of equipment shall be in accordance with current Health & Safety Executive current directives and industry codes of practice.

3.0 ERECT TEMPORARY PROTECTIVE BARRIERS (TPB)

1. Following completion of the tree felling and prior to demolition and construction, the main contractor shall erect the temporary protective barriers as detailed in the 'Tree Protection Specification'.

2. Prior to commencement of any site demolition, construction, preparation, excavation or material deliveries, the Arboriculturist shall inspect the installation of the temporary barriers. Any damage occurring to protective barriers during the demolition or construction phase shall be made good by the main contractor.

3. Excavation shall not occur at a distance of less than 300mm from the temporary protective barriers.

4.0 INSTALL TEMPORARY (ANTI SOIL-COMPACTION) GROUND PROTECTION (TGP)

1. For wheeled or track construction traffic within retention tree Root Protection Areas (RPA's), ideally the TGP shall be specified by an engineer to accommodate the likely vehicular loading.

2. We recommend the use of Durabase (http://terrafirma.gb.com/), Ground Guards (www.greentek.org.uk) or Eve-Trackway (http://www.evetrakway.co.uk/) due to their recognised anti-soil compaction properties (i.e. to protect underlying tree roots). **NB.** It is vital that the TGP is in place before any demolition/construction works begin on site.

3. To prevent leakage into the soil area under the TGP, fuels, oils, chemicals and cement must be carried in a portable bunded bowser and petrol must be stored in a ventilated tool box. There must be no mixing/preparation of noxious substances (e.g. cement) on the ground protection surface.

4. The areas designated for ground protection shall be clearly marked on the Architects plan drawing and/or Tree Protection Plan (TPP).

5.0 DEMOLITION OF EXISTING STRUCTURES

1. Where trees stand adjacent to structures to be removed, the demolition should be undertaken inwards within the footprint of the existing building (often referred to as "top down, pull back"). Where there is a significant build-up of dust on the foliage, it might be necessary to hose down the tree(s).

6.0 MAIN CONSTRUCTION PHASE

1. There shall be no storage of construction material, site parking, site accommodation or equipment in any area designated as the Root Protection Area (RPA) and Construction Exclusion Zone (CEZ) and enclosed by Temporary Protective Barrier.

2. No fires shall be lit within 15m of any tree.

3. The site agent shall supervise deliveries by self-loading crane, with vehicles positioned in such a manner that retained trees are not at risk of damage.

7.0 NO-DIG HARD SURFACING - THREE-DIMENSIONAL CELLULAR CONFINEMENT SYSTEMS (CCS)

1. Designed to be installed without the need for soil excavation, therefore eliminating the need for tree root severance and to sustain the vascular function of the woody roots that may extend outwards from beyond the CCS system.

2. Comprised of an expandable cellular mattress that is then in-filled with a clean stone sub-base above a geotextile membrane. The honeycomb-like structure is made of robust high density polythene that is stretched out and filled with clean angular material. The strength of the structure comes from the binding together of the infill, but with a CCS system this is achieved without compaction or a reduction in (rainwater and oxygen) permeability.

3. Perforated cell walls allow the infill to bind with the contents of adjacent cells, but with sufficient space for movement of water and air to nearby underlying tree roots. As the infill contains no fines and the geotextile layers prevent clogging from particles washing into the system, the structure remains permeable and protects tree roots.

4. The *required* permeable surface finish over the CCS ensures aqueous and gaseous exchanges can still occur in the underlying soil.

5. Edging options: Where edging is required for light structures (e.g. footpaths) above-ground pegs and treated timber edging may be acceptable. Where more substantial hard surface areas are required (e.g. access road and driveways) the use of pinned sleepers, gabions or non-invasive haunch kerbing can provide appropriate solutions.

6. Installing a CCS will assist in achieving part of SUDs (Sustainable Urban Drainage) solutions for on-site hard surfacing.

7. Resin Bonded Surface Care and Maintenance: In general, resin bonded surfaces should be regularly swept clean using a hard bristle yard brush, removing leaves and detritus material - this will prevent moss growth and help to maintain the surface's permeability. Periodic Cleaning General: Cleaning of the surface can be carried out by cold pressure washing up to a maximum 150 bar rating to remove dirt and grime. The water should be applied using a fan type lance which should be kept 200mm above the installed resin bonded surface. Care should be taken to prevent damage to the surface with excessive water pressure. Light coloured resin bonded surface blends may show tyre marks and removal by pressure washing as detailed above may be required.

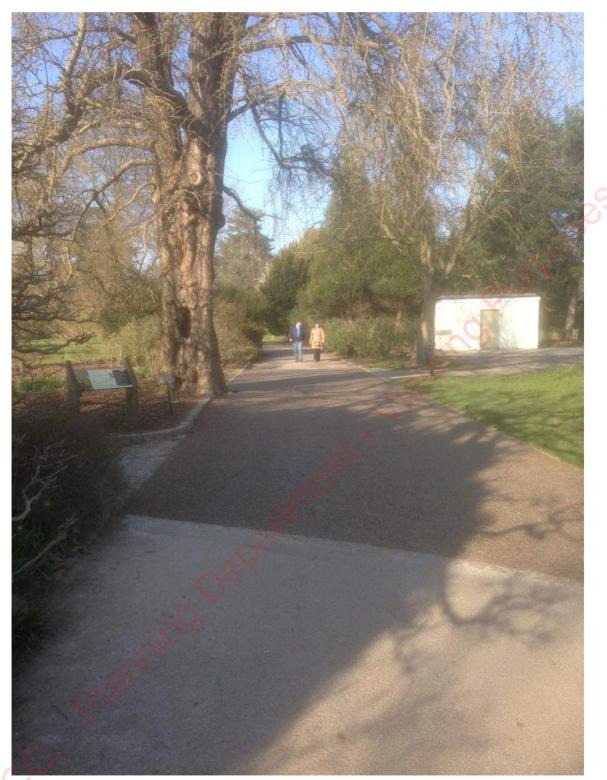


Photo 11 -Resin Bonded Gravel used across a root-plate of the TROBI Champion Ginkgo at Kew Gardens (London)

8.0 REMOVAL OF TEMPORARY GROUND PROTECTION AND BARRIERS

Temporary ground protection and protective barriers shall be removed only upon completion of the no-dig hard surface installation works and following written approval of the Council.

9.0 LANDSCAPE WORKS

1. Landscaping works will be implemented in accordance with a scheme approved by the Council.

2. There shall be no rotovation of ground within any area designated as a Root Protection Area (RPA) and Construction Exclusion Zone (CEZ) and enclosed by Temporary Protective Barrier unless agreed with the Council.

3. Sandy topsoil may be spread within the Root Protection Area (RPA) and Construction Exclusion Zone (CEZ) to a depth of no more than 150mm to facilitate the establishment of new vegetation. No other addition of soil or other material shall be carried out within any area designated as a Root Protection Area (RPA) and Construction Exclusion Zone (CEZ) without consultation with the Council.

4. No hard landscaping works or excavation for cables or any other service should be installed within the Root Protection Area (RPA) and Construction Exclusion Zone (CEZ) without the written consent of the Council.

Glossary of Arboricultural terms

Abscission. The shedding of a leaf or other short-lived part of a woody plant, involving the formation of a corky layer across its base; in some tree species twigs can be shed in this way

Abiotic. Pertaining to non-living agents; e.g. environmental factors

Absorptive roots. Non-woody, short-lived roots, generally having a diameter of less than one millimetre, the primary function of which is uptake of water and nutrients

Adaptive growth. In tree biomechanics, the process whereby the rate of wood formation in the cambial zone, as well as wood quality, responds to gravity and other forces acting on the cambium. This helps to maintain a uniform distribution of mechanical stress

Adaptive roots. The adaptive growth of existing roots; or the production of new roots in response to damage, decay or altered mechanical loading

Adventitious shoots. Shoots that develop other than from apical, axillary or dormant buds; see also 'epicormic'

Aerial Inspection. A procedure for further inspection carried out by a climbing Arborist

Anchorage. The system whereby a tree is fixed within the soil, involving cohesion between roots and soil and the development of a branched system of roots which withstands wind and gravitational forces transmitted from the aerial parts of the tree

Architecture. In a tree, a term describing the pattern of branching of the crown or root system

Attenuated (slender). Low height/diameter ratio. Fracture-safety may be compromised

Axil. The place where a bud is borne between a leaf and its parent shoot

Bacteria. Microscopic single-celled organisms, many species of which break down dead organic matter, and some of which cause diseases in other organisms Bark. A term usually applied to all the tissues of a woody plant lying outside the vascular cambium, thus including the phloem, cortex and periderm; occasionally

applied only to the periderm or the phellem Basidiomycotina (Basidiomycetes). One of the major taxonomic groups of fungi; their spores are borne on microscopic peg-like structures (basidia), which in many

types are in turn borne on or within conspicuous fruit bodies, such as brackets or toadstools. Most of the principal decay fungi in standing trees are basidiomycetes **Bolling.** A term sometimes used to describe pollard heads

Bottle-butt. A broadening of the stem base and buttresses of a tree, in excess of normal and sometimes denoting a growth response to weakening in that region, especially due to decay involving selective delignification

Bracing. The use of rods, cables or synthetic fibres to restrain the movement between parts of a tree

Branch:

• Primary. A first order branch arising from a stem

• Lateral. A second order branch, subordinate to a primary branch or stem and bearing sub-lateral branches. Can be used to describe a suppressed branch growing from a stem

• Sub-lateral. A third order branch, subordinate to a lateral branch, or stem and usually bearing only either small shoots or twigs

Branch bark ridge. The raised arc of bark tissues that forms within the acute angle between a branch and its parent stem

Branch collar. A visible swelling formed at the base of a branch whose diameter growth has been disproportionately slow compared to that of the parent stem; a term sometimes applied also to the pattern of growth of the cells of the parent stem around the branch base

Brown-rot. A type of wood decay in which cellulose is degraded, while lignin is only modified

Buckling. An irreversible deformation of a structure subjected to a bending load Buttress zone. The region at the base of a tree where the major lateral roots join the stem, with buttress-like formations on the upper side of the junctions Cambium. Layer of dividing cells producing xylem (woody) tissue internally and phloem (bark) tissue externally

Canker. A persistent lesion formed by the death of bark and cambium due to colonisation by fungi or bacteria

Canopy species. Tree species that mature to form a closed woodland canopy **Cleaning out.** The removal of dead, crossing, weak, and damaged branches, where this will not damage or spoil the overall appearance of the tree

Compartmentalisation. The confinement of disease, decay or other dysfunction within an anatomically discrete region of plant tissue, due to passive and/or active defences operating at the boundaries of the affected region

Compression strength. The ability of a material or structure to resist failure when subjected to compressive loading; measurable in trees with special drilling devices Compressive loading. Mechanical loading which exerts a positive pressure; the opposite to tensile loading

Condition. An indication of the physiological vitality of the tree. Where the term 'condition' is used in a report, it should not be taken as an indication of the stability of the tree

Crown/Canopy. The main foliage bearing section of the tree

Crown lifting. The removal of limbs and small branches to a specified height above ground level

Crown thinning. The removal of a proportion of secondary branch growth throughout the crown to produce an even density of foliage around a wellbalanced

branch structure

Crown reduction/shaping. A specified reduction in crown size whilst preserving, as far as possible, the natural tree shape

Crown reduction/thinning. Reduction of the canopy volume by thinning to remove dominant branches whilst preserving, as far as possible the natural tree shape

Deadwood. Dead branch wood

Decurrent In trees, a system of branching in which the crown is borne on a number of major widely-spreading and secondarily branched limbs (cf. excurrent). In fungi with toadstools as fruit bodies, the description of gills which run some distance down the stem, rather than terminating abruptly

Defect. In relation to tree hazards, any feature of a tree which detracts from the uniform distribution of mechanical stress, or which makes the tree mechanically unsuited to its environment

Delamination. The separation of wood layers along their length, visible as longitudinal splitting

Dieback. The death of parts of a woody plant, starting at shoot-tips or root-tips Disease. A malfunction in or destruction of tissues within a living organism, usually excluding mechanical damage; in trees, usually caused by pathogenic microorganisms

Distal. In the direction away from the main body of a tree or other living organism (cf. proximal)

Dominance. In trees, the tendency for a leading shoot to grow faster or more vigorously than the lateral shoots; also the tendency of a tree to maintain a taller crown than its neighbours

Dormant bud. An axial bud which does not develop into a shoot until after the formation of two or more annual wood increments; many such buds persist through the life of a tree and develop only if stimulated to do so

Dysfunction. In woody tissues, the loss of physiological function, especially water conduction, in sapwood

DBH (Diameter at Breast Height). Stem diameter measured at a height of 1.5m or the nearest measurable point. Where measurement at a height of 1.5 metres is not possible, another height may be specified

Deadwood. Branch or stem wood bearing no live tissues. Retention of deadwood provides valuable habitat for a wide range of species and seldom represents a threat to the health of the tree. Removal of deadwood can result in the ingress of decay to otherwise sound tissues and climbing operations to access deadwood can cause significant damage to a tree. Removal of deadwood is generally recommended only where it represents an unacceptable level of hazard

Endophytes. Micro-organisms which live inside plant tissues without causing overt disease, but in some cases capable of causing disease if the tissues become physiologically stressed, for example by lack of moisture

Epicormic shoot. A shoot having developed from a dormant or adventitious bud and not having developed from a first year shoot

Excrescence. Any abnormal outgrowth on the surface of tree or other organism Excurrent. In trees, a system of branching in which there is a well defined central main stem, bearing branches which are limited in their length, diameter and secondary branching (cf. Excurrent)

Flush-cut. A pruning cut which removes part of the branch bark ridge and/or branch-collar

Formative Prune. Removal of weak, crossing, rubbing, dead, diseased branches to create a structured framework for inhibited growth development

Girdling root. A root, which circles and constricts the stem or roots possibly causing death of phloem and/or cambial tissue

Guying a form of artificial support with cables for trees with a temporarily inadequate anchorage

Habit. The overall growth characteristics, shape of the tree and branch structure Hazard beam. An upwardly curved part of a tree in which strong internal stresses may occur without being reduced by adaptive growth; prone to longitudinal splitting

Heartwood/false-heartwood/ripewood. Sapwood that has become dysfunctional as part of the natural aging processes

Heave. A term mainly applicable to a shrinkable clay soil which expands due to rewetting

after the felling of a tree which was previously extracting moisture from the deeper layers; also the lifting of pavements and other structures by root diameter expansion; also the lifting of one side of a wind-rocked root-plate **High canopy tree species.** Tree species having potential to contribute to the closed canopy of a mature woodland or forest

Incipient failure. In wood tissues, a mechanical failure which results only in deformation or cracking and not in the fall or detachment of the affected part **Included bark (ingrown bark).** Bark of adjacent parts of a tree (usually forks, acutely joined branches or basal flutes), which is in face-to-face contact

Increment borer. A hollow auger, which can be used for the extraction of wood cores for counting or measuring wood increments or for inspecting the condition of the wood

Infection. The establishment of a parasitic micro-organism in the tissues of a tree or other organism

Internode. The part of a stem between two nodes; not to be confused with a length of stem which bear nodes but no branches

Lever arm. A mechanical term denoting the length of the lever represented by a structure that is free to move at one end, such as a tree or an individual branch Lignin. The hard, cement-like constituent of wood cells; deposition of lignin within the matrix of cellulose microfibrils in the cell wall is termed Lignification Lions tailing. A term applied to a branch of a tree that has few if any side-branches except at its end, and is thus liable to snap due to end loading Loading. A mechanical term describing the force acting on a structure from a particular source; e.g. the weight of the structure itself or wind pressure Longitudinal. Along the length (of a stem, root or branch)

Lopping. A term often used to describe the removal of large branches from a tree, but also used to describe other forms of cutting

Major deadwood. Deadwood of a diameter likely

to cause significant harm or damage upon impact with a target beneath the tree **Mature Heights** (approximate):

• Low maturing - less than 8 metres high

• Moderately high maturing - 8 - 12 metres high

• High maturing - greater than 12 metres high

Mass Damping. The independent movements of leaves, branches and trunk which absorb and dissipate energy delivered in a strong gust of wind, greatly reducing stress on the overall tree canopy

Microdrill. An electronic rotating steel probe, which when inserted into woody tissue provides a measure of tissue density

Minor deadwood. Deadwood of a diameter less than 25mm and or unlikely to cause significant harm or damage upon impact with a target beneath the tree Mulch. Material laid down over the rooting area of a tree or other plant to help conserve moisture; mulch may consist of organic matter or a sheet of plastic or other artificial material

Mycelium. The body of a fungus, consisting of branched filaments (hyphae) Occluding tissues. A general term for the roll of wood, cambium and bark that forms around a wound on a woody plant (cf. woundwood)

Occlusion. The process whereby a wound is progressively closed by the formation of new wood and bark around it

Pathogen. A micro-organism, which causes disease in another organism Photosynthesis. The process whereby plants use light energy to split hydrogen from water molecules, and combine it with carbon dioxide to form the molecular building blocks for synthesizing carbohydrates and other biochemical products. Phytotoxic. Toxic to plants

Pollarding. The removal of the tree canopy, back to the stem or primary branches. Pollarding may involve the removal of the entire canopy in one operation, or may be phased over several years. The period of safe retention of trees having been pollarded varies with species and individuals. It is usually necessary to re-pollard on a regular basis, annually in the case of some species. **Primary branch.** A major branch, generally having a basal diameter greater than

0.25 x stem diameter **Priority.** Works may be prioritised, 1. = High, 5. = Low

Probability. A statistical measure of the likelihood that a particular event might occur

Proximal. In the direction towards from the main body of a tree or other living organism (cf. distal)

Pruning. The removal or cutting back of twigs or branches, sometimes applied to twigs or small branches only, but often used to describe most activities involving the cutting of trees or shrubs

Radial. In the plane or direction of the radius of a circular object such as a tree stem

Rams-horn. In connection with wounds on trees, a roll of occluding tissues which has a spiral structure as seen in cross-section

Rays. strips of radially elongated parenchyma cells within wood and bark. The functions of rays include food storage, radial translocation and contributing to the strength of wood

Red-rot. A form of decay in which reddish pigments are present but which is biochemically a white-rot; not to be confused with brown-rots which sometimes also have a reddish-brown colour

Reactive Growth/Reaction Wood. Production of woody tissue in response to altered mechanical loading; often in response to internal defect or decay and associated strength loss (cf. adaptive growth)

Removal of dead wood. Unless otherwise specified, this refers to the removal of all accessible dead, dying and diseased branch wood and broken snags

Removal of large diameter dead wood. The removal of dead, dying and diseased branch wood above a specified size

Root-collar. The transitional area between the stem/s and roots

Root-collar examination. Excavation of surfacing and soils around the root-collar to assess the structural integrity of roots and/or stem

Sapwood. Living xylem tissues

Secondary branch. A branch, generally having a basal diameter of less than 0.25 x stem diameter

Selective delignification. A kind of wood decay (white-rot) in which lignin is degraded faster than cellulose

Shedding. In woody plants, the normal abscission, rotting off or sloughing of leaves, floral parts, twigs, fine roots and bark scales

Northern Tree Services

Horsepark House Magheragall Lisburn BT28 2QU Silvicultural thinning. Removal of selected trees to favour the development of retained specimens to achieve a management objective

Simultaneous white-rot. A kind of wood decay in which lignin and cellulose are degraded at about the same rate

Snag. In woody plants, a portion of a cut or broken stem, branch or root which extends beyond any growing-point or dormant bud; a snag usually tends to die back to the nearest growing point

Soft-rot. A kind of wood decay in which a fungus degrades cellulose within the cell walls, without any general degradation of the wall as a whole

Spores. Propagules of fungi and many other life forms; most spores are Shrub species. Woody perennial species forming the lowest level of woody plants in a woodland and not normally considered to be trees

Sporophore. The spore bearing structure of fungi

Sprouts. Adventitious shoot growth erupting from beneath the bark Stem. The main supporting structure, from ground level up to the first major division into branches. A stem can divide into two or more substantial elements that might be described as co-dominant stems

Stress. In plant physiology, a condition under which one or more physiological functions are not operating within their optimum range, for example due to lack of water, inadequate nutrition or extremes of temperature Stress. In mechanics, the application of a force to an object

Stringy white-rot. The kind of wood decay produced by selective delignification Storm. A layer of tissue, which supports the fruit bodies of some types of fungi, mainly ascomycetes

Structural roots. Roots, generally having a diameter greater than ten millimetres, and contributing significantly to the structural support and stability of the tree Subsidence. In relation to soil or structures resting in or on soil, a sinking due to shrinkage when certain types of clay soil dry out, sometimes due to extraction of moisture by tree roots

Subsidence. In relation to branches of trees, a term that can be used to describe a progressive downward bending due to increasing weight

Taper. In stems and branches, the degree of change in girth along a given length Target canker. A kind of perennial canker, containing concentric rings of dead occluding tissues

Targets. In tree risk assessment (with slight misuse of normal meaning) persons or property or other things of value which might be harmed by mechanical failure of the tree or by objects falling from it

Topping. In arboriculture, the removal of the crown of a tree, or of a major proportion of it

Torsional stress. Mechanical stress applied by a twisting force

Translocation. In plant physiology, the movement of water and dissolved materials through the body of the plant

Transpiration. The evaporation of moisture from the surface of a plant, especially via the stomata of leaves; it exerts a suction which draws water up from the roots and through the intervening xylem cells

Understorey. A layer of vegetation beneath the main canopy of woodland or forest or plants forming this

Understorey tree species. Tree species not having potential to attain a size at which they can contribute to the closed high canopy of a woodland Vascular wilt. A type of plant disease in which water-conducting cells become

dysfunctional Vessels. Water-conducting cells in plants, usually wide and long for hydraulic efficiency; generally not present in coniferous trees

Veteran tree. A loosely defined term for an old and interesting specimen, which has usually lived longer than the typical upper age range for the species concerned

Vigour. The expression of carbohydrate expenditure to growth (in trees) Vitality. A meaure of physiological condition expressed through the health and growth of foliage, shoots and adaptive woody tissues

White-rot. A range of kinds of wood decay in which lignin, usually together with cellulose and other wood constituents, is degraded

Wind exposure. The degree to which a tree or other object is exposed to wind, both in terms of duration and velocity

Wind pressure. The force exerted by a wind on a particular object

Windthrow. The blowing over of a tree at its roots

Wound dressing. A general term for sealants and other materials used to cover wounds in the hope of protecting them against desiccation and infection; only of proven value against fresh wound parasites

Woundwood. Wood with atypical anatomical features, formed in the vicinity of a wound

Incorporating extracts from Lonsdale, D. 1999 'Principles of Tree Hazard Assessment and Managem

Appendix A

Tree Survey Schedule

ClientMarletSiteSite at M1 Retail Pk, Drogheda

Surveyor	D. Gault
Date	15/6/22

Tree	Species	Age	Ht.	Dia.	RPA Radius	C	rown	Sprea	ad	Existi	ng Ht	Observations	Preliminary	ERC	Category
no.		Class	(m)	(cm)	(m)		(r	n)		Abv. G	. Level		Recommendations		
						<u> </u>	-	6		Act C:					
						N	E	S	W	1 st Sig.	Can				
	Horse														
1	Chestnut	Mature	15	48	5.76	8	4	2	6	4	0	Leaning to North and highway	None	20+	B1
2	Acer	Mature	15	38	4.56	2	3	5	3	4	3	Suppressed. Ivy clad	None	30+	B1
		Semi-										Multi stemmed from ground. Some dieback to			
3	Acer	mature	13	20	2.4	3	3	3	2	4	0	N&W. Ivy clad	None	30+	B1
												Multi stemmed from 1m, with stems to South			
		Over-										C decrepit. Advanced ADB. Massed ivy. Poor			
4	Ash	mature	14	45	5.4	4	3	3	2	3	0	specimen	Remove	<10	U
											X	Multi stemmed from ground. Healthy, well			
5	Acer	Mature	15	45	5.4	5	5	3	6	4	2	balanced crown. Ivy clad	None	40+	A1

IORTHERN

FREE SERVICES

Key to Survey

Tree No. - Reference number of tree surveyed - corresponds to number on tag and/or plan

Age Class - JUV= Juvenile (in first 1/3 of life expectancy). SM= semi-mature (in middle 1/3 of life expectancy). M = Mature (in final 1/3 of life expectancy). OM= Over Mature (becoming decrepit)

Dia- Diameter in cm measured at 1.5 meters above ground level

RPA Radius – Root Protection Area Radius is the minimum area around trees to be protected from disturbance during construction

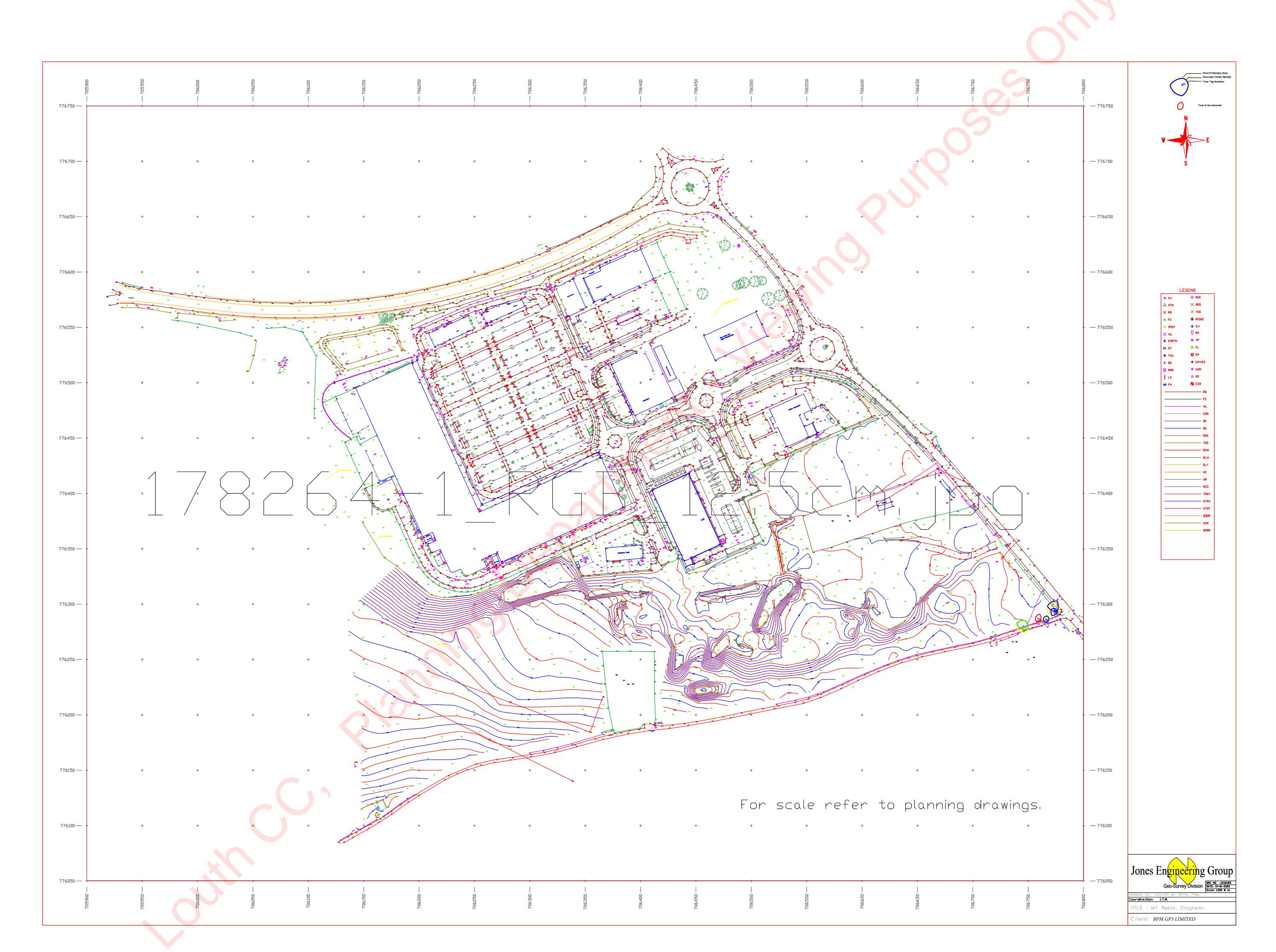
Crown Spread - Taken as a minimum at the four cardinal points to derive an accurate representation of the crown

Existing Height above ground level (in meters)- of first significant branch and direction of growth. And Can. - of the canopy

ERC – Estimated Remaining Contribution – in years e.g., <10, 10+,20+, 30+, 40+

Category –

U – Trees in such a condition that they cannot realistically be retained in the context of the current land use for longer than 10 years


A - Trees of a high quality with an estimated remaining life expectancy of at least 40yrs

B – Trees of moderate quality with an estimated remaining life expectancy of at least 20 years

C - Trees of low quality with an estimated life expectancy of at least 10 years, or young trees with a stem diameter below 15cm

Subcategory - 1. - Trees with mainly Arboricultural qualities. 2 - Trees with mainly Landscape qualities. 3. Trees with mainly cultural values, including conservation

M1 Retail Park Drogheda Tree constraints Plan

Appendix 9-A – Construction List

Construction Phase	Equipment	Duration of activity (hrs)	Duration of activity (%)		
	Digger	4	40		
Site Setup	Carpentry tools	2	20		
	Skill saw	2	20		
	Excavators x2	2	20		
	Articulated dump truck	2	20		
	Lorry / truck	2	20		
Earthworks	Wheeled loader (loading lorry)	2	20 🧭		
	Tracked excavator (loading dump truck)	2	20		
	Lorry Idling	5	50		
	Lorry / truck	5	50		
	Tracked Excavator	5	50		
Pavement Works	Grader	2	20		
Granular Fill	Vibratory roller	4	40		
	Water bowsers (discharging)	2	20		
	Diesel water pump	2	20		
	Diesel generator		10		
	Conveyor drive unit	5	50		
	Wheeled loader (loading hopper)	5	50		
Batching Plant	Feed hopper conveyor drive unit	5	50		
	Large concrete mixer	4	40		
	Wheeled loader	5	50		
		5	50		
Pavement Works -	Lorry / truck				
Laying Concrete	Concrete paver	5	50		
Pavement	Lorry / truck	5	50		
	Lorry / truck	5	50		
	Asphalt paver (+ tipper lorry)	3	30		
Pavement Works – Laying Bituminous	Vibratory roller	3	30		
Pavement	Road roller	3	30		
	Tack truck	3	30		
	Road sweeper	3	30		
	Diesel water pump (x4)	3	30		
	Diesel generator	1	10		
	Tracked excavator	5	50		
Drainage Works	Lorry / truck	5	50		
	Road sweeper	5	50		
	Wheeled loader (loading lorry)	5	50		
	Excavators	2	20		
	Concrete breaker	2	20		
	Con saws	2	20		
	Rail saw	2	20		
	Drills	2	20		
Substructure	Tower Crane	6	60		
	Dumper 7t	6	60		
	Cement Mixer	1	10		
	Lorry Idling	5	50		
	Telescopic Handler	8	80		
	Tower Crane Generator	1	10		

Image: Concrete Pump 1 10 Tower Crane 6 60 Power tools 2 20 Power tools 2 20 Impact steel 4 40 Hanmer 2 20 Concrete Pump 1 10 Superstructure Dumper 7t 6 60 Corneret Miker 1 10 Lorry Idling 5 50 Toelescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 Concrete Pump 1 10 Concrete Pump 1 10 Concrete Pump 1 10 Internal finishes Tools 5 N/a n/a n/a	Tower Crane 6 60 drills 2 20 Power tools 2 20 Impact steel 4 40 Hammer 2 20 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Tower Crane 6 60 drills 2 20 Power tools 2 20 Impact steel 4 40 Hammer 2 20 Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Tower Crane 6 60 drills 2 20 Power tools 2 20 Impact steel 4 40 Hammer 2 20 Dumper 7t 6 60 Cernent Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Tower Crane 6 60 drills 2 20 Power tools 2 20 Impact steel 4 40 Hammer 2 20 Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Tower Crane 6 60 drills 2 20 Power tools 2 20 Impact steel 4 40 Hammer 2 20 Superstructure Dumper 7t 6 60 Cement Mixer 1 10 10 Lorry Idling 5 50 10 Telescopic Handler 8 80 100 Concrete Pump 1 10 10 Concrete Pump 1 10 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Tower Crane 6 60 drils 2 20 Power tools 2 20 Impact steel 4 40 Hammer 2 20 Superstructure Dumper 7t 6 60 Cernent Mixer 1 10 10 Lorry Idling 5 50 10 Telescopic Handler 8 80 10 Tower Crane Generator 1 10 10 Concrete Pump 1 10 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Tower Crane 6 60 drills 2 20 Power tools 2 20 Impact steel 4 40 Hammer 2 20 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Tower Crane660drills220Power tools220Impact steel440Hammer220Dumper 7t660Cement Mixer110Lorry Idling550Telescopic Handler880Tower Crane Generator110Concrete Pump110External finishesTools5Tools550Internal finishesn/an/a	6 2 2 4 2 4 2 6 r 1 5 dler 8 erator 1 10 5 2 n/a	60 20 20 40 20 60 10 50 80 10 50 20 20 20 60 10 50 20	650
drils 2 20 Power tools 2 20 Impact steel 4 40 Hammer 2 20 Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	drills 2 20 Power tools 2 20 Impact steel 4 40 Hammer 2 20 Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	drills 2 20 Power tools 2 20 Impact steel 4 40 Hammer 2 20 Superstructure Dumper 7t 6 60 Cement Mixer 1 10 10 Lorry Idling 5 50 50 Telescopic Handler 8 80 6 Concrete Pump 1 10 10 External finishes Tools 5 50 Internal finishes N/a n/a n/a	drills 2 20 Power tools 2 20 Impact steel 4 40 Hammer 2 20 Superstructure Dumper 7t 6 60 Cement Mixer 1 10 10 Lorry Idling 5 50 50 Telescopic Handler 8 80 6 Concrete Pump 1 10 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	drills 2 20 Power tools 2 20 Impact steel 4 40 Hammer 2 20 Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	drils 2 20 Power tools 2 20 Impact steel 4 40 Hammer 2 20 Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	drills 2 20 Power tools 2 20 Impact steel 4 40 Hammer 2 20 Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	drills 2 20 Power tools 2 20 Impact steel 4 40 Hammer 2 20 Superstructure Dumper 7t 6 60 Cement Mixer 1 10 10 Lorry Idling 5 50 50 Telescopic Handler 8 80 6 Concrete Pump 1 10 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	drills 2 20 Power tools 2 20 Impact steel 4 40 Hammer 2 20 Superstructure Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	2 2 4 2 6 9 7 1 5 6 9 7 1 5 6 9 7 1 1 1 1 1 1 5 2 1 1 1 5 2 1 1 1 1 5 2 1 1 1 1	20 20 40 20 60 10 50 80 10 10 10 50 20	
Power tools 2 20 Impact steel 4 40 Hammer 2 20 Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 Con saw 2 20 Internal finishes n/a n/a	Power tools 2 20 Impact steel 4 40 Hammer 2 20 Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Power tools 2 20 Impact steel 4 40 Hammer 2 20 Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 Con saw 2 20 Internal finishes n/a n/a	Power tools 2 20 Impact steel 4 40 Hammer 2 20 Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Power tools 2 20 Impact steel 4 40 Hammer 2 20 Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Power tools 2 20 Impact steel 4 40 Hammer 2 20 Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 Con saw 2 20 Internal finishes n/a n/a	Power tools 2 20 Impact steel 4 40 Hammer 2 20 Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Power tools 2 20 Impact steel 4 40 Hammer 2 20 Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Power tools 2 20 Impact steel 4 40 Hammer 2 20 Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 Con saw 2 20 Internal finishes n/a n/a	2 4 2 6 9r 1 5 6 9r 1 5 6 9 9 9 1 1 9 1 5 2 1 2 1 2 1 2 1 7 4	20 40 20 60 10 50 80 10 10 50 20	850
Impact steel 4 40 Hammer 2 20 Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Impact steel 4 40 Hammer 2 20 Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Impact steel 4 40 Hammer 2 20 Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Impact steel 4 40 Hammer 2 20 Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Impact steel 4 40 Hammer 2 20 Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Impact steel 4 40 Hammer 2 20 Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Impact steel 4 40 Hammer 2 20 Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Impact steel 4 40 Hammer 2 20 Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Impact steel 4 40 Hammer 2 20 Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	4 2 6 r 1 5 dler 8 erator 1 np 1 5 2 n/a	40 20 60 10 50 80 10 10 50 20	35
Hammer 2 20 Superstructure Dumper 7t 6 60 Cement Mixer 1 10 10 Lorry Idling 5 50 50 Telescopic Handler 8 80 6 Tower Crane Generator 1 10 10 Concrete Pump 1 10 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Hammer 2 20 Superstructure Dumper 7t 6 60 Cement Mixer 1 10 10 Lorry Idling 5 50 50 Telescopic Handler 8 80 6 Tower Crane Generator 1 10 10 Concrete Pump 1 10 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Hammer 2 20 Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Hammer 2 20 Superstructure Dumper 7t 6 60 Cement Mixer 1 10 10 Lorry Idling 5 50 50 Telescopic Handler 8 80 6 Tower Crane Generator 1 10 10 Concrete Pump 1 10 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Hammer 2 20 Superstructure Dumper 7t 6 60 Cement Mixer 1 10 10 Lorry Idling 5 50 50 Telescopic Handler 8 80 6 Tower Crane Generator 1 10 10 Concrete Pump 1 10 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Hammer 2 20 Superstructure Dumper 7t 6 60 Cement Mixer 1 10 10 Lorry Idling 5 50 50 Telescopic Handler 8 80 6 Tower Crane Generator 1 10 10 Concrete Pump 1 10 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Hammer 2 20 Superstructure Dumper 7t 6 60 Cement Mixer 1 10 10 Lorry Idling 5 50 50 Telescopic Handler 8 80 6 Tower Crane Generator 1 10 10 Concrete Pump 1 10 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Hammer 2 20 Superstructure Dumper 7t 6 60 Cement Mixer 1 10 10 Lorry Idling 5 50 50 Telescopic Handler 8 80 6 Tower Crane Generator 1 10 10 Concrete Pump 1 10 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Superstructure Hammer 2 20 Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	2 6 r 1 5 dler 8 erator 1 np 1 5 2 n/a	20 60 10 50 80 10 10 10 50 20	
Superstructure Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Superstructure Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Superstructure Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes N/a n/a n/a	Superstructure Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Superstructure Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Superstructure Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Superstructure Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes N/a n/a n/a	Superstructure Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Superstructure Dumper 7t 6 60 Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes N/a n/a n/a	6 sr 1 5 dler 8 erator 1 np 1 5 2 n/a	60 10 50 80 10 10 50 20	
Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 Concrete Pump 1 10 External finishes Tools 5 Con saw 2 20 Internal finishes n/a n/a	Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 Con saw 2 20 Internal finishes n/a n/a	Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 Con saw 2 20 Internal finishes n/a n/a	Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 Con saw 2 20 Internal finishes n/a n/a	Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 Con saw 2 20 Internal finishes n/a n/a	Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 Concrete Pump 1 10 External finishes Tools 5 Con saw 2 20 Internal finishes n/a n/a	Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 Con saw 2 20 Internal finishes n/a n/a	Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 Con saw 2 20 Internal finishes n/a n/a	Cement Mixer 1 10 Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 Con saw 2 20 Internal finishes n/a n/a	rr 1 5 dler 8 erator 1 np 1 5 2 n/a	10 50 80 10 10 50 20	
Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 Con saw 2 20 Internal finishes n/a n/a	Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 Con saw 2 20 Internal finishes n/a n/a	Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes N/a n/a	Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes N/a n/a n/a	Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 Con saw 2 20 Internal finishes n/a n/a	Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 Con saw 2 20 Internal finishes n/a n/a	Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 Con saw 2 20 Internal finishes n/a n/a	Lorry Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes N/a n/a n/a	Lory Idling 5 50 Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	5 dler 8 erator 1 np 1 5 2 n/a	50 80 10 10 50 20	
Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Con saw 2 20 Internal finishes n/a n/a	Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Con saw 2 20 Internal finishes n/a n/a	Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Con saw 2 20 Internal finishes n/a n/a	Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Telescopic Handler 8 80 Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	dler 8 erator 1 np 1 5 2 n/a	80 10 10 50 20	
Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes N/a n/a n/a	Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes N/a n/a n/a	Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes N/a n/a n/a	Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes N/a n/a n/a	Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes N/a n/a n/a	Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes N/a n/a n/a	Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes N/a n/a n/a	Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes N/a n/a n/a	Tower Crane Generator 1 10 Concrete Pump 1 10 External finishes Tools 5 50 Con saw 2 20 1 Internal finishes n/a n/a n/a	erator 1 np 1 5 2 n/a	10 10 50 20	
Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a Internal finishes n/a n/a n/a	Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a Internal finishes n/a n/a n/a	Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	Concrete Pump 1 10 External finishes Tools 5 50 Internal finishes n/a n/a n/a	np 1 5 2 n/a	10 50 20	
External finishes Tools 5 50 Internal finishes n/a n/a n/a	External finishes Tools 5 50 Internal finishes n/a n/a n/a	External finishes Tools 5 50 Internal finishes n/a n/a n/a	External finishes Tools 5 50 Internal finishes n/a n/a n/a	External finishes Tools 5 50 Internal finishes n/a n/a n/a	External finishes Tools 5 50 Internal finishes n/a n/a n/a	External finishes Tools 5 50 Internal finishes n/a n/a n/a	External finishes Tools 5 50 Internal finishes n/a n/a n/a	External finishes Tools 5 50 Internal finishes n/a n/a n/a	5 2 n/a	20	
Internal finishes n/a n/a n/a	Internal finishes n/a n/a n/a	Internal finishes n/a n/a n/a n/a	Internal finishes n/a n/a n/a n/a	Internal finishes n/a n/a n/a	Internal finishes n/a n/a n/a	Internal finishes n/a n/a n/a n/a	Internal finishes n/a n/a n/a n/a	Internal finishes n/a n/a n/a	n/a		
viewing viewing	Jiewinos Jiewinos	viewing viewing	Jiewing Jiewing	Jiewinos Jiewinos	viewing viewing	Jiewing Jiewing	Jiewing Jiewing	tiewing iewing	i evit	n/a	
tinent	tinent	thening	Jiewines Jiewines	tinent	tinent	tient viewing	Jiewines Jiewines	tiening the transferred to the t	i evit	19	_

-S Markening begannen. Wening pundees on

	SONITUS SYSTEMS
--	--------------------

Statement of Calibration

Ca	libr	ation	Pot	erend
Ca	11121	ation	nei	cicili

2101323

Test Date: 04-06-2021

Equipment

Sound Level Monitor: E Microphone Assembly: 3

Test

EM2030 378B02 Serial Number: Serial Number:

PASS

PASS

PASS

PASS PASS

PASS

PASS

PASS

PASS

01323 317961

Calibration Procedure

The sound level meter was calibrated by carrying out the verification tests detailed in IEC 61672-3 (2006), Periodic tests, specification of sound level meters. Tolerances for verification procedures are specified in IEC 61672-1 (2003).

Measurement Results Result PASS

Self-generated noise Frequency and Time Weightings Frequency Weighting – A Frequency Weighting – C Level Linearity Toneburst Response Acoustical Tests of Frequency Weighting Peak C Response Overload Indication Sensitivity Calibration

Signed on behalf of Sonitus Systems:

Calibration Report

joses only

Equipment Description

Model:	EM2030	Microphone Model:	378B02
Serial Number:	01323	Microphone Serial Number:	317961
Microphone Type:	1/2" free field	Pre-amplifier Number:	062054
		Pre-amplifier Set:	143700

Ambient Conditions

Measurement conditions were within the tolerances defined in IEC 61672-1 and IEC 60942.

Barometric Pressure:	1020	hPa
Temperature:	22.2	°C
Relative Humidity:	38	%

Calibration Equipment

Description:	National Instruments PXI-4461		
Serial Number:	19C91D2	Certificate Number:	6284996-1
Calibrator:	CR511ES		
Serial Number:	60871	Calibrator Certificate:	16004

The standards used in this calibration are traceable to NIST and/or other National Measurement Institutes (NMI's) that are signatories of the International Committee of Weights and Measures (CIPM) mutual recognition agreement (MRA).

Results

Self-generated noise SLM Measuring mode: SPL

SLM Configuration	Freq. Weighting Network	SLM Reading
Microphone Installed	A	26.1
Microphone replaced	A	17.4
by electrical signal device	с	17.1
and fitted with short circuit	Z	

Test Result

PASS

Frequency and Time Weightings at 1 kHz SLM Measuring Mode: SPL (dB)

Time Weighting	Freq. Weighting	Expected Level	Deviation	Tol +/-
Fast	А	94.0	ref	
	С	94.0	0.0	0.2
Slow	A	94.0	0.0	0.2
LEQ	А	94.0	0.0	0.2

	l Time Weigh g Mode: SPL	ntings at 1 kHz (dB)					
Time We	ighting	Freq. Weighting	Expecte	ed Level	Deviation	Tol +/-	UTP0505
Fas		A		1.0	ref		
		С	94	1.0	0.0	0.2	
Slo	w	A	94	1.0	0.0	0.2	
LEC	Q	А	94	4.0	0.0	0.2	
	or frequency	u wolahting (A wolahti	ngl				
M Measuring	g Mode: SPL					0	20
Freq	Expecte	(dB) ed Level SLM	Reading	Deviation	Tol +	Tol -	2
Freq 63	Expecte 7	(dB) ed Level SLM 5	Reading 75.0	0.0	1.5	Tol - -1.5	2
Freq 63 125	Expecte 7 7	(dB) ed Level SLN 5 5	Reading 75.0 74.9	0.0 -0.1	1.5 1.5	Tol - -1.5 -1.5	
Freq 63 125 250	Expecte 7 7 7	(dB) 2d Level SLN 5 5 5 5	Reading 75.0 74.9 75.0	0.0 -0.1 0.0	1.5 1.5 1.4	Tol - -1.5 -1.5 -1.4	
Freq 63 125 250 500	Expecte 7 7 7 7 7	(dB) 555555555555555555555555555555555555	Reading 75.0 74.9 75.0 75.0 75.0	0.0 -0.1 0.0 0.0	1.5 1.5 1.4 1.4	Tol - -1.5 -1.5 -1.4 -1.4	
Freq 63 125 250 500 1000	Expecte 7 7 7 7 7 7	(dB) 555555555555555555555555555555555555	Reading 75.0 74.9 75.0 75.0 75.0 75.0	0.0 -0.1 0.0 0.0 0.0	1.5 1.5 1.4 1.4 1.1	Tol - -1.5 -1.5 -1.4 -1.4 -1.1	
Freq 63 125 250 500 1000 2000	Expecte 7 7 7 7 7 7 7 7 7	(dB) 555555555555555555555555555555555555	Reading 75.0 74.9 75.0 75.0 75.0 75.0 75.0 75.0	0.0 -0.1 0.0 0.0 0.0 0.0	1.5 1.5 1.4 1.4 1.1 1.6	Tol - -1.5 -1.5 -1.4 -1.4 -1.4 -1.1 -1.6	
Freq 63 125 250 500 1000 2000 4000	Expecte 7 7 7 7 7 7 7 7 7 7 7	(dB) 555555555555555555555555555555555555	Reading 75.0 74.9 75.0 75.0 75.0 75.0 75.0 75.0 75.0	0.0 -0.1 0.0 0.0 0.0 0.0 0.0	1.5 1.5 1.4 1.4 1.1 1.6 1.6	Tol - -1.5 -1.5 -1.4 -1.4 -1.4 -1.1 -1.6 -1.6	
Freq 63 125 250 500 1000 2000	Expecte 7 7 7 7 7 7 7 7 7	(dB) 555555555555555555555555555555555555	Reading 75.0 74.9 75.0 75.0 75.0 75.0 75.0 75.0	0.0 -0.1 0.0 0.0 0.0 0.0	1.5 1.5 1.4 1.4 1.1 1.6	Tol - -1.5 -1.5 -1.4 -1.4 -1.4 -1.1 -1.6	

Test Result

PASS

Electrical tests of frequency weighting (C-weighting) SLM Measuring Mode: SPL (dB)

Freq	Expected Level	SLM Reading	Deviation	Tol +	Tol -
63	75	74.9	-0.1	1.5	-1.5
125	75	75.0	0.0	1.5	-1.5
250	75	75.0	0.0	1.4	-1.4
500	75	75.1	0.1	1.4	-1.4
1000	75	75.0	0.0	1.1	-1.1
2000	75	75.1	0.1	1.6	-1.6
4000	75	75.0	0.0	1.6	-1.6
8000	75	74.9	-0.1	2.1	-3.1
16000	75	73.7	-1.3	3.5	-17.0

Test Result

PASS

Range	Expected Level	SLM Reading	Deviation	Tol +/-	RUIROSES ON
120 dB	94.0	94.0	0.0	1.1	
	99.0	99.0	0.0	1.1	
	104.0	104.0	0.0	1.1	
	109.0	109.0	0.0	1.1	
	114.0	114.0	0.0	1.1	
	115.0	115.0	0.0	1.1	
	116.0	116.0	0.0	1.1	
	117.0	117.0	0.0	1.1	
	118.0	118.0	0.0	1.1	
	89.0	89.0	0.0	1.1	
	84.0	84.0	0.0	1.1	
	79.0	79.0	0.0	1.1	
	74.0	74.0	0.0	1.1	
	69.0	69.0	0.0	1.1	
	64.0	64.0	0.0	1.1	
	59.0	59.0	0.0	1.1	
	54.0	54.0	0.0	1.1	
	49.0	49.1	0.1	1.1	
	44.0	44.1	0.1	1.1	
	39.0	39.2	0.2	1.1	
	34.0	34.4	0.4	1.1	
	33.0	33.5	0.5	1.1	
	32.0	32.5	0.5	1.1	
	31.0	31.6	0.6	1.1	
	30.0	30.7	0.7	1.1	

Test Result

PASS

Toneburst Response Input frequency: 4 kHz

Burst Type	Response	Expected Level	SLM Reading	Deviation	Tol +	Tol -
200 ms	LAFMAX	91.0	90.9	-0.1	0.8	-0.8
2.0 ms	LAFMAX	100.0	100.0	0.0	1.3	-1.3
0.25 ms	LAFMAX	117.0	117.0	0.0	1.3	-3.3
200 ms	LASMAX	91.0	91.0	0.0	0.8	-0.8
2.0 ms	LASMAX	110.6	110.6	0.0	1.3	-3.3

Test Result

PASS

Acoustical Tests of Frequency Weighting

Input Level	Freq	Expected Level	SLM Reading	Deviation	Tol +	Tol -	
94	1 kHz	94.1	94.1	0.0	1.1	1.1	
	125 Hz	93.9	93.9	0.0	1.5	1.5] ()`
	4 kHz	93.3	93.4	0.1	1.6	1.6	
Peak C Sound I	_evel						
Pulse Type	Freq	Expected Level	SLM Reading	Deviation	Tol +/-		
	0.1.1	115.4	115.2	-0.2	2.4		
1 cycle	8 kHz	115.4	113.2	0.2	2.7		
1 cycle Pos ½ cycle	500 Hz	115.4	115.2	-0.3	1.4		

Pulse Type	Freq	Expected Level	SLM Reading	Deviation	Tol +/-
1 cycle	8 kHz	115.4	115.2	-0.2	2.4
Pos ½ cycle	500 Hz	117.4	117.1	-0.3	1.4
Neg ½ cycle	500 Hz	117.4	117.1	-0.3	1.4

Test Result

PASS

Overload Indication

Test Description	Overload at	Meas. Diff. (Pos – Neg)	Tol +/-
Pos. ½ cycle at 4 kHz	122.7		
Neg. ½ cycle at 4 kHz	122.7		
Level difference		0.0	1.8

Test Result

PASS

The microphone sensitivity was tested with a 1 kHz sine tone

SLM Serial No.	Microphone No.	Signal Level	Sensitivity (dB re 1V/Pa)	
01323	317961	94 dB	-26.58	

Frequency response of the microphone across the range 20Hz – 20kHz was within the tolerance limits specified by the manufacturer.

Calibration Notes

esont

CALIBRATION CERTIFICATE

Manufacturer: Model: Serial No.: Description:	SVANTEK SVAN 971 77789		
Model: Serial No.:	SVAN 971		
Serial No.:			
	11100		
	Sound Level Meter		
Manufacturer:	ACO	SVANTEK	
Model:	7052E	SV 18	
Serial No .:	76513	72287	
Description:	Microphone	Preamplifier	
Amplitude Acous	stics		
G2 The Steelwo	rks, Foley Street, Dublin, Ire	eland D01 KP03	
Temperature:	21.0 - 21.4	°C	
Humidity:	44 – 47	%	
Pressure:	101.0 - 101.1	kPa	
18-05-2022			
B. Hunt			
٨	e C e ft		
Noise	Vibration & Alr Quality		
		k	
	a har a san a har a san		
w	ww.acsoft.co.uk		
This calibration w	vas performed by AcSoft Calibration.		
	Model: Serial No.: Description: Amplitude Acous G2 The Steelwo Temperature: Humidity: Pressure: 18-05-2022 B. Hunt AcSoft Calibratio Thurleigt +44 w	Model:7052ESerial No.:76513Description:MicrophoneAmplitude AcousticsG2 The Steelworks, Foley Street, Dublin, IreTemperature:21.0 – 21.4Humidity:44 – 47Pressure:101.0 – 101.118-05-2022B. HuntAcsoft Calibration Bedford Technology Par Thurleigh Bedford MK44 2YAL44 (0) 1234 639550www.acsoft.co.uk	Model: $7052E$ $SV18$ Serial No: 76513 72287 Description:MicrophonePreamplifierAmplitude Acoustics C C2 The Steelworks, Foley Street, Dublin, Ireland D01 KP03Temperature: $21.0 - 21.4$ C4 - 47 96 Pressure: $101.0 - 101.1$ KP65-2022B. HuntAcost Calibration Bedford Technology Park Lurleigh Bedford MK44 2YA L4 (0) 1234 639550 www.acoft.co.uk

AcSoft	SVANTEK		ON CERTIFICATE y AcSoft Calibration
Date of issue: 18-05-2022	Certificate No:	1502560-1	Page: 2/8
CALIBRATION METHOD	Method described in instruction II issue number 11 date 27.01.20 standard EN IEC 61672-3:2013 E	16, written on the ba	asis of international
CALIBRATION RESULTS	The sound level meter submitte completed the Class 1 periodic 61672-3:2013), for the environm were performed.	tests of IEC 61672-3	:2013 (BS EN
	The results are presented on presented on pressurement uncertainty).	pages 3 to 8 of this	certificate (including
CONFORMITY WITH REQUIREMENTS	On the basis of the calibration res level meter meets metrological re IEC 61672-1:2013 Electroacousti Specifications, for class 1.	quirements specified in	n the standard
UNCERTAINTY OF MEASUREMENTS	Uncertainty of measurement h EA-4/02:2013. The expanded coverage probability of 95 % and	uncertainty assigned	corresponds to a

NOTES

1. The information appearing on this certificate has been compiled specifically for this instrument. This calibration certificate is produced with traceable and advanced equipment which permit comprehensive quality assurance verification of all data supplied herein.

- 2. The measurements in this document are traceable to GUM (Central Office of Measures), Poland
- 3. This calibration certificate shall not be reproduced except in full, without written permission from AcSoft Ltd.

REFERENCE EQUIPMENT

Description	Manufacturer	Model	Serial Number	Last Calibrated
Signal Generator	Svantek	SV401	124	27.08.2021
Sound & Vibration Analyser	Svantek	SV912AE	15909	22.09.2021
Thermo-Barometer	LAB-EL	LB-706B	912	27.08.2021
Acoustical Calibrator	Svantek	SV30A	83782	17.09.2021

AcSo			, CAL	IBRATION	CENTIFICAT	
Noise, Vibration & Air C	uality		2	Issued by A	cSoft Calibratio	'n
Date of issue	: 18-05-2022	Certific	cate No: 1502560-1	<u>k.</u>	Page: 3/8	_
ALIBRATION	Calibration res	sults are as follows	s:			
1. Indication	at the calibration check	k frequency				5
the indication	level meter was calibra n of this SLM was adju 83782, from SVANTEK	usted to the soun	d pressure level of	f the sound le	vel calibrator typ	
type SV 30/	the acoustic pressure n A, No 83782, from SVAI ure 1003 hPa, for tempe	NTEK, was made	according to the st	andard referen		
	[0.0 ± 0.2	dB			
corrected by	on was determined as a to the free-field factor app the free field factor app ated noise with microp	propriate to mentio			nd the sound leve	el
corrected by	the free-field factor app	propriate to mentio			d the sound leve	el
corrected by	the free-field factor app	propriate to mention hone installed equency weighting	oned sound calibrato	pr.		el
corrected by	v the free-field factor app nted noise with microp	propriate to mention hone installed equency weighting	oned sound calibrato	pr.	A	el
2. Self-genera	v the free-field factor app nted noise with microp	hone installed equency weighting ated noise stated in Indication [dB] hone replaced by	the instruction manual	I [dB]	A 15.0 8.4	el
2. Self-genera The 3. Self-genera	v the free-field factor app ated noise with microp From highest level of self-generation ated noise with microp	hone installed equency weighting ated noise stated in Indication [dB] hone replaced by ighting enerated noise state	the instruction manual	I [dB]	A 15.0 8.4	el
2. Self-genera The 3. Self-genera	ted noise with microp Free highest level of self-generation free noise with microp Frequency weight frequency weight for the self-generation of se	hone installed equency weighting ated noise stated in Indication [dB] hone replaced by ighting enerated noise state ual [dB]	the instruction manual	I [dB]	A 15.0 8.4 Ce Z	el
2. Self-genera The 3. Self-genera The high	ted noise with microp Frank highest level of self-genera ted noise with microp Frequency we est expected level of self-g instruction man	hone installed equency weighting ated noise stated in Indication [dB] hone replaced by ighting enerated noise state ual [dB] ed noise [dB]	the instruction manual the instruction manual the electrical input A ad in the 12.0 4.8	I [dB] ut signal device C 12.0	A 15.0 8.4 Ce Z 17.0	el
2. Self-genera The 3. Self-genera The high	ted noise with microp Fre highest level of self-general ted noise with microp Frequency we est expected level of self-g instruction man Level of self-generate signal tests of a frequency-	hone installed equency weighting ated noise stated in Indication [dB] hone replaced by ighting enerated noise state ual [dB] ed noise [dB]	the instruction manual the instruction manual the electrical input A ad in the 12.0 4.8	I [dB] ut signal device C 12.0	A 15.0 8.4 Ce Z 17.0	el
2. Self-genera The 3. Self-genera The high 4. Acoustical	ted noise with microp Frequency weighted for self-generations requency weighted free-field	hone installed equency weighting ated noise stated in the Indication [dB] hone replaced by ighting enerated noise state ual [dB] ed noise [dB] ency weighting C Design-goal frequency	the instruction manual the instruction manual the electrical input A ad in the 12.0 4.8 The deviation of frequency	I [dB] ut signal devic C 12.0 4.3 Expanded	A 15.0 8.4 Ce Z 17.0 9.0	el
2. Self-genera The 3. Self-genera The high 4. Acoustical Frequenc	ted noise with microp Fre highest level of self-general red noise with microp Frequency weighted fee-field response	hone installed equency weighting ated noise stated in Indication [dB] hone replaced by ighting enerated noise state ual [dB] ed noise [dB] ency weighting C Design-goal frequency weighting	the instruction manual the instruction manual the electrical input A ad in the 12.0 4.8 The deviation of frequency weighting	I [dB] ut signal devia C 12.0 4.3 Expanded uncertainty	A 15.0 8.4 Ce Z 17.0 9.0 Acceptable limits	el
2. Self-genera The 3. Self-genera The high 4. Acoustical Frequence Hz	ted noise with microp Fre highest level of self-general ted noise with microp Frequency weighted free-field response Bignal tests of a frequency- weighted free-field response dB	hone installed equency weighting ated noise stated in Indication [dB] hone replaced by ighting enerated noise state ual [dB] ed noise [dB] ency weighting C Design-goal frequency weighting dB	the instruction manual the instruction manual the electrical input A ad in the 12.0 4.8 The deviation of frequency weighting dB	I [dB] ut signal devia C 12.0 4.3 Expanded uncertainty dB	A 15.0 8.4 Ce Z 17.0 9.0 Acceptable limits dB	el
2. Self-genera The 3. Self-genera The high 4. Acoustical Frequenc Hz	the free-field factor app ted noise with microp Fre highest level of self-generate ted noise with microp Frequency we est expected level of self-generate instruction man Level of self-generate signal tests of a frequency- weighted free-field response dB -0.33	bropriate to mention hone installed equency weighting ated noise stated in in- Indication [dB] hone replaced by ighting enerated noise state ual [dB] ed noise [dB] ency weighting C Design-goal frequency weighting dB -0,2	the instruction manual the instruction manual the instruction manual the electrical input A ad in the 12.0 4.8 The deviation of frequency weighting dB -0.1	I [dB] ut signal devia C 12.0 4.3 Expanded uncertainty dB 0.3	A 15.0 8.4 Ce Z 17.0 9.0 Acceptable limits dB ±1.5	el

Issued by AcSoft Calibration

Date of issue: 18-05-2022

Certificate No: 1502560-1

Page: 4/8

esonin

5. Electrical signal tests of frequency weightings

Frequency	Design-goal frequency weighting			The dev	The deviation of frequency weighting Expanded uncertainty Acceptable			Acceptable limits
	А	С	Z	A	С	z	uncertainty	
Hz	dB	dB	dB	dB	dB	dB	dB	dB 📢
63	-26,2	-0,8	0,0	0.1	0.0	0.1	0,3	±1,5
125	-16,1	-0,2	0,0	0.0	0.1	0.0	0,3	±1,5
250	-8,6	0,0	0,0	0.0	0.0	0.0	0,3	±1,4
500	-3,2	0,0	0,0	0.0	0.1	0.0	0,3	±1,4
1000	0,0	0,0	0,0	0.0	0.0	0.0	0,3	±1,1
2000	1,2	-0,2	0,0	0.1	0.1	0.0	0,3	±1,6
4000	1,0	-0,8	0,0	0.1	0.1	0.0	0,3	±1,6
8000	-1,1	-3,0	0,0	0.2	0.2	0.0	0,4	-3,1; +2,1
16000	-6,6	-8,5	0,0	-0.1	-0.2	0.1	0,6	-17,0; +3,5

6. Frequency and time weightings at 1 kHz

		Sou	nd level		Time-averaged sound level
Frequency weighting	A	А	С	Z	A
Time weighting	Fast	Slow	Fast	Fast	-
Indication [dB]	94.0	94.0	94.0	94.0	94.0
The deviation of indication from the indication of A-weighted sound level with Fast time weighting [dB]	X	0.0	0.0	0.0	0.0
Expanded uncertainty [dB]	\geq			0.1	i.
Acceptable limits[dB]	\geq	±0.3	±0.4	±0.4	±0.3

Issued by AcSoft Calibration

Date of issue: 18-05-2022

Certificate No: 1502560-1

Page: 5/8

esont

7. Level linearity

Reference level range: 25

Expected sound level	Indication	Level linearity error	Expanded uncertainty	Acceptable limits
dB	dB	dB	dB	dB
122.0	122.0	0.0		
121.0	121.0	0.0		
120.0	120.0	0.0		
119.0	119.0	0.0		2
118.0	118.0	0.0		
117.0	117.0	0.0		
116.0	116.0	0.0	. 0.	
115.0	115.0	0.0		
114.0	114.0	0.0		1 K
109.0	109.0	0.0		
104.0	104.0	0.0		
99.0	99.0	0.0		
94.0	94.0	0.0		
89.0	89.0	0.0		
84.0	84.0	0.0	0.2	±1.1
79.0	79.0	0.0		1
74.0	74.0	0.0		
69.0	69.0	0.0		
64.0	63.9	-0.1		
59.0	59.0	0.0		
54.0	54.0	0.0		
49.0	49.0	0.0		
44.0	44.0	0.0		
39.0	39.0	0.0		
34.0	34.0	0.0		
33.0	32.9	-0.1		
32.0	31.9	-0.1		
31.0	31.0	0.0		
30.0	30.0	0.0		

Issued by AcSoft Calibration

Date of issue: 18-05-2022

Certificate No: 1502560-1

Page: 6/8

esonit

Level range: 27

Expected sound level	Indication	Level linearity error	Expanded uncertainty	Acceptable limits
dB	dB	dB	dB	dB
136.0	136.0	0.0		
135.0	135.0	0.0		
134.0	134.0	0.0		
133.0	133.0	0.0		
132.0	132.0	0.0		
131.0	131.0	0.0		
130.0	130.0	0.0	5	
129.0	129.0	0.0		
124.0	124.0	0.0		
119.0	119.0	0.0		
114.0	114.0	0.0	0.2	
109.0	109.0	0.0	0.2	
104.0	104.0	0.0		
99.0	99.0	0.0		±1.1
94.0	94.0	0.0		±1.1
89.0	89.0	0.0		Contraction of the second
84.0	84.0	0.0		
79.0	79.0	0.0		
74.0	74.0	0.0		
69.0	69.0	0.0		
64.0	64.0	0.0		
59.0	59.0	0.0		
54.0	54.0	0.0		
49.0	49.0	0.0		1.
44.0	44.0	0.0	0.3	
39.0	39.0	0.0	0.5	
34.0	34.0	0.0		
33.0	33.0	0.0		

Issued by AcSoft Calibration

Date of issue: 18-05-2022

8. Level linearity including the level range control

ration & Air Quality		Issued	d by AcSoft Calibratio	on
of issue: 18-05-2022	Certificate No: 15	02560-1	Page: 7/8	-
vel linearity including the level range c	ontrol	25	27	es of
Indication for the reference sound pressure		94.0	93.9	
The deviation of indication [dB]		54.0	-0.1	O
Anticipated level that is 5 dB less than the upper lin instruction manual for level range at 1 k		118.0	132.0	
Indication [dB]		118.0	131.9	
The deviation of indication [dB]		0.0	-0.1	
Expanded uncertainty [dB]			0.2	

9. Toneburst response

Measurement quantity	Time weighting	Toneburst duration	The indications in response to toneburst relative to steady sound level	Reference toneburst response relative to steady sound level	Deviation of measured toneburst response from reference toneburst	Expanded uncertainty	Acceptable limits	
		ms	dB	dB	dB	dB	dB	
Time-	Time- veighted Fast und level	200	-1.0	-1.0	0.0		-1	±0.8
weighted		2	-18.0	-18.0	0.0			-1.8; +1.3
sound level		0.25	-27.1	-27.0	-0.1]	-3.3; +1.3	
Time- weighted	Slow	200	-7.5	-7.4	-0.1	0.2	±0.8	
sound level	3107	2	-27.1	-27.0	-0.1	0.2	-1.8; +1.3	
		200	-7.0	-7.0	0.0		±0.8	
Sound exposure level	-	2	-27.0	-27.0	0.0		-1.8; +1.3	
		0.25	-36.1	-36.0	-0.1		-3.3; +1.3	

Issued by AcSoft Calibration

Date of issue: 18-05-2022

Certificate No: 1502560-1

Page: 8/8

esonty

10. Peak C sound level

Numbers of cycles	Frequency of test signal	The deviation of indication	Expanded uncertainty	Acceptable limits
in test signal	Hz	dB	dB	dB
One	8000	-0.7		±2.4
Positive half-cycle	500	0.0	0.2	
Negative half-cycle	500	0.0		±1.4

11. Overload indication

Frequency weighting A

The difference between the levels of the positive and negative one-half- cycles input signals that first cause the displays of overload indication	Expanded uncertainty	Maximum value of the difference
dB	dB	dB
0.1	0.3	1.8

Certificate of Calibration

Glasnevin | Dublin 11 | Ireland T+ 353 1 808 2609 | F+353 1 808 2603 | NSALie

	Amplitude Acoustics G2 The Steelworks Foley Street Dublin 1
Attention of	Donal O'Driscoll
Certificate Number	220822
Item Calibrated	Larson Davis CAL200 Sound Level Calibrator
Serial Number	13592
ID Number	None
Order Number	P00016
Date Received	22 Feb 2022
NML Procedure Number	- AP-NM-13
Method	The above calibrator was allowed to stabilize for a suitable period in laboratory conditions. It was then calibrated by measuring the sound pressure level generated in its measuring cavity (half-inch configuration). The calibrator's operating frequency was also measured.
Calibration Standards	Norsonic 1504A Calibration System incorporating: Agilent 34401A Digital Multimeter, File No. 0736 [Cal due: 10 Jun 2022] B & K 4134 Measuring Microphone, File No. 0744 [Cal due: 03 Jun 2023] B & K 4228 Pistonphone, File No. 0740 [Cal due: 04 Jun 2023]
	0 Oex
Calibrated by	Approved by 7: Hemming David Eleming
8	David Fleming Paul Hetherington
Calibrated by Date of Calibration	V pool
Date of Calibration This ce Appen Weight Calibra	David Fleming Paul Hetherington
Date of Calibration This ce Appen Weight Calibrat	David Fleming 23 Feb 2022 Date of Issue 23 Feb 2022 ertificate is consistent with Calibration and Measurement Capabilities (CMC's) that are included in ndix C of the Mutual Recognition Arrangement (MRA) drawn up by the International Committee for its and Measures. Under the MRA, all participating institutes recognize the validity of each other's ation certificates and measurement reports for guantities, ranges and measurement uncertainties

Certificate No.: 220822

- Reports issued by the National Metrology Laboratory Division of NSAI are copyright to NSAI and shall not be used, either in whole or in part, for the purposes of advertising, publicity or litigation without the written consent of the Chief Executive or his nominee.
- 2. No action or legal proceeding shall be taken (except in the case of wilful neglect or default) against NSAI or the Board or any member of the Board or any committee appointed by the Board or any officer or servant of NSAI, by reason of or arising out of the carrying out of any research, investigation, test or analysis or the publication of the results thereof in the name of NSAI.
- NSAI will not release any information received from or provided to the client in relation to this report except as may be required by law, including the Freedom of Information Act 1997, or as specified by the client.
- This certificate relates only to the item(s) described on the front page and shall not be reproduced, except in full.
- This contract is governed by the laws of Ireland whose courts shall have exclusive jurisdiction.

Decision Rule and Compliance Statement

ISAI

National Metrology Laboratory

The rule that describes how measurement uncertainty is accounted for when stating conformity with a specified requirement is known as a decision rule. The rule used by NSAI NML follows the guidelines set out in the document ILAC-G8:09/2019 published by the International Laboratory Accreditation Co-operation. Further information on the decision rule is available on the NSAI website:

(https://www.nsai.ie/images/uploads/metrology/Decision Rule.pdf).

The symbols used to indicate the state of compliance of the instrument calibration and their meanings are given in the following table.

Statement of compliance and associated symbol	Description
PASS	The absence of a symbol indicates that the measurement result is inside the specification limit by a margin greater than its associated expanded uncertainty, the instrument meets its accuracy specification.
Conditional PASS Symbol: £	The measurement result is inside the specification limit by a margin less than or equal to its associated expanded measurement uncertainty; it is therefore not possible to state compliance. There is a risk that the instrument fails to meet its specification.
Conditional FAIL Symbol: &	The measurement result is on the specification limit or is outside the specification limit by a margin less than or equal to its associated expanded measurement uncertainty; it is therefore not possible to state non-compliance.
FAIL Symbol: \$	The measurement result is outside the specification limit by a margin greater than its associated measurement uncertainty; the instrument fails to meet its accuracy specification.
Unc. > Spec Symbol: #	The expanded measurement uncertainty is greater than the instrument's accuracy specification. It is not possible to determine compliance or otherwise with the specification. The user should expand the in-use accuracy specification to make allowance for the calibration uncertainty.
Outside CIPM MRA Symbol: ¢	Indicates that the calibration result is traceable to SI units but is not currently included in the table of NSAI NML's calibration and measurement capabilities approved under the CIPM MRA.

Where no specification exists, and none is prescribed by the client, the Decision Rule policy of the NSAI NML does not apply and results are provided without a statement of compliance.

Page 2 of 3

NSAI National Metrology Laboratory

Certificate No.: 220822

Measuring Conditions:

Ambient Pressure: Ambient Temperature: Ambient Rel. Humidity: 100.8 kPa ± 0.5 kPa 20.5 °C ± 1.0 °C 34 %RH ± 5 %RH

Results:

The measured sound pressure levels reported below refer to the ambient laboratory conditions at the time of calibration. These environmental conditions were within the ranges specified in IEC60942:2003 (Section 5.2.2).

Calibrator	Measured	Measured	Value (1), (2)	Tol. (3)	Meas. Uncertainty
Setting	Parameter	Before Adj.	After Adj.	(±)	(±)
94 dB	Sound Pressure Level	93.95 dB	*	0.40 dB	0.15 dB
	Frequency	1000.2 Hz	*	10 Hz	0.25 Hz
114 dB	Sound Pressure Level	113.95 dB	*	0.40 dB	0.15 dB
	Frequency	1000.2 Hz	*	10 Hz	0.25 Hz

Notes:

The measured levels refer to the reference conditions given above.

(2) * (3) To

(1)

indicates that no calibration adjustment was made.
 Tolerances set out in IEC 60942 (2003), Sound Level Calibrators, Class 1

Comments:

Where used in the results table, further information on the meaning of symbols is given in the table on page 2 of this certificate.

The instrument was found to comply with the requirements of IEC 60942 (2003), Class 1, for the sound pressure level and frequency outputs measured at the time of calibration.

When using the calibrator with a sound level meter any manufacturer's guidelines regarding free-field corrections should be observed.

The reported measurement results are traceable, via national standards maintained by NSAI National Metrology Laboratory (NML) or by other national metrology institutes, to internationally accepted realisations of the SI units.

The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k = 2 which, for a normal probability distribution, corresponds to a coverage probability of approximately 95%. It has been determined in accordance with the "Guide to the Expression of Uncertainty in Measurement (GUM)". These uncertainties apply only to the measured values and do not carry any implication regarding the long-term stability of the instrument.

Page 3 of 3

Appendix 9-C – Noise Wall Specifications

Treatment	Description	Location (Red and Green lines)
Noise Wall	Material: Products listed in Table that follows Height: 3 m Proximity: As shown by Green Line	Sm high noise barrier
	Material: Products listed in Table that follows	
Noise Wall	Height: 4 m Proximity:	
	As shown by Blue Line Height: 5 m	
	Proximity: As shown by Red Line	4m high noise barrier 5m high noise barrier

Noise wall The noise wall should be constructed of a material with a surface density of typically 15kg/m², unless otherwise noted with acoustic absorption on the inner face. Examples of suitable materials to construct the noise wall include: • Acoustically rated wooden noise barrier panels meeting the above specification • Accustinodul-80A with absorptive inner face • 100mm thick concrete block. • 100mm thick concrete block. • Multivario Transparent Noise Barrier • Continuous precasit concrete panel wall • Stratocell Whisper outdoor acoustic absorption (building wall cladding) There should be no cracks or gaps between individual barrier elements, between the barrier or ground, or where the ends of the barrier join another structure.	 density of typically 15kg/m², unless otherwise noted with acoustic absorption on the inner face. Examples of suitable materials to construct the noise wall include: Acoustically rated wooden noise barrier panels meeting the above specification Acustimodul-80A with absorptive inner face 100mm thick concrete block. 100mm thick RC concrete. Multivario Transparent Noise Barrier Continuous precast concrete panel wall Stratocell Whisper outdoor acoustic absorption (building wall cladding) 	Treatment	Details
the above specification Acustimodul-80A with absorptive inner face 100mm thick concrete block. 100mm thick RC concrete. Multivario Transparent Noise Barrier Continuous precast concrete panel wall Stratocell Whisper outdoor acoustic absorption (building wall cladding) There should be no cracks or gaps between individual barrier elements, between the barrier or ground, or where the ends of the barrier join another structure.	the above specification Acustimodul-80A with absorptive inner face 100mm thick concrete block. 100mm thick RC concrete. Multivario Transparent Noise Barrier Continuous precast concrete panel wall Stratocell Whisper outdoor acoustic absorption (building wall cladding) There should be no cracks or gaps between individual barrier elements, between the barrier or ground, or where the ends of the barrier join another structure.	Noise wall	density of typically 15kg/m ² , unless otherwise noted with acoustic absorption on the inner face. Examples of suitable materials to
elements, between the barrier or ground, or where the ends of the barrier join another structure.	elements, between the barrier or ground, or where the ends of the barrier join another structure.		 the above specification Acustimodul-80A with absorptive inner face 100mm thick concrete block. 100mm thick RC concrete. Multivario Transparent Noise Barrier Continuous precast concrete panel wall Stratocell Whisper outdoor acoustic absorption (building
artiment	artiment		elements, between the barrier or ground, or where the ends of the
		Plann	