ENVIRONMENTAL IMPACT ASSESSMENT REPORT VOLUME 2- APPENDICES

LARGE SCALE RESIDENTIAL DEVELOPMENT (LRD) AT DALGUISE HOUSE, MONKSTOWN ROAD, MONSKSTOWN, BLACKROCK, **COUNTY DUBLIN**

PREPARED FOR:

GEDV MONKSTOWN OWNER LIMITED

3rd Floor Kilmore House Spencer Dock Dublin 1

PREPARED BY:

TOM PHILLIPS + ASSOCIATES **80 Harcourt Street** Dublin 2 D02 F449

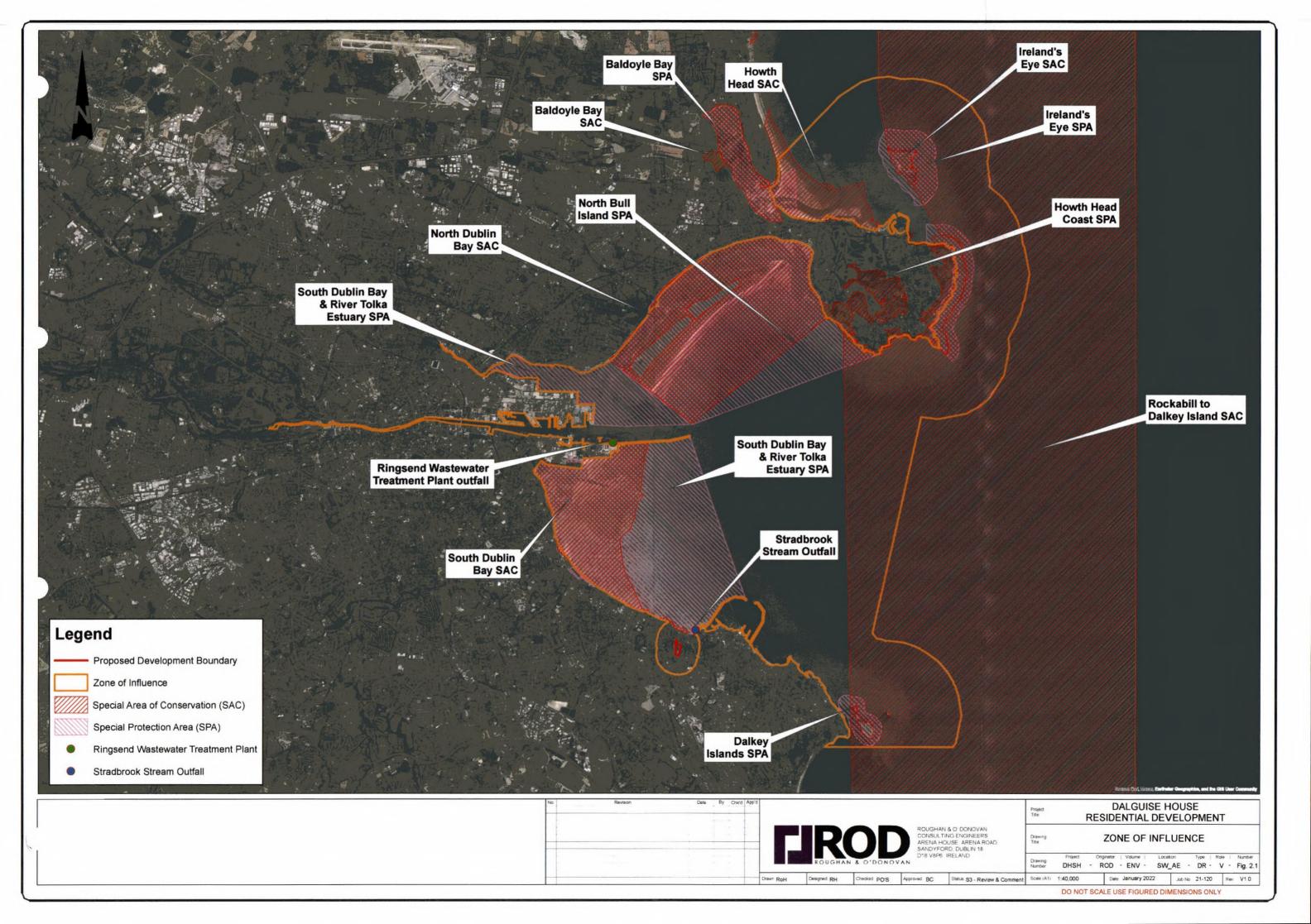
ENVIRONMENTAL IMPACT ASSESSMENT REPORT
VOLUME 2- APPENDICES

LARGE SCALE RESIDENTIAL DEVELOPMENT (LRD) AT
DALGUISE HOUSE, MONKSTOWN ROAD, MONEYOTE
COUNTY DURING DALGUISE HOUSE, MONKSTOWN ROAD, MONSKSTOWN, BLACKROCK, 1930 25 NOV 200 COUNTY DUBLIN

PREPARED FOR:

GEDV MONKSTOWN OWNER LIMITED

3rd Floor Kilmore House Spencer Dock Dublin 1


PREPARED BY:

TOM PHILLIPS + ASSOCIATES **80 Harcourt Street** Dublin 2 D02 F449

APPENDICES

Table of Contents

Appendix 8.1	Zone of Influence
Appendix 8.2	Dalguise House LRD Habitat Map
Appendix 8.3	Cat Low Trees Table
Appendix 8.4	Grey Heron Conservation Plan (Prepared by ROD, dated September 2022)
Appendix 8.5	Invasive Alien Species Control and Management Programme (Prepared by ROD, dated September 2022)
Appendix 8.6	Macroinvertebrate and Water Chemical Survey of the Stradbrook Stream
Appendix 9.1	Site Investigation Report (Ground Investigations Ireland, 2018).
Appendix 9.2	Ground Investigation Report (IGSL Ltd., 2022)
Appendix 9.3	Waste Characterisation Assessment (O'Callaghan Moran & Associates. (2022)
Appendix 9.4	EIA Screening Report in respect of Lands at Dalguise House, Monkstown Road, Monkstown (John Spain Associates, 2020).
Appendix 10.1	Hydrological & Hydrogeological Qualitative Risk Assessment for Proposed Residential Development Site at Dalguise House (Awn, 2020).
Appendix 10.2	Ground Water Monitoring
Appendix 11.1	Ambient Air Quality Standards (contained in Chapter 11)
Appendix 11.2	Dust Management Plan (contained in Chapter 11)
Appendix 16.1	Wind Microclimate Assessment
Appendix 17.1	Transport Impact Assessment Report (TIA) and Travel Plan/Mobility Management Plan
Appendix 18.1	Resource & Waste Management Plan for A Residential Development
Appendix 18.2	Operational Waste Management Plan for A Residential Development
Appendix 18.3	Asbestos Survey Report
Appendix 22.1	Schedule of Proposed Environmental Commitments/ Mitigation Measures
To be read in co	onjunction with the relevant chapters of this EIAR.

692	Beech	704	Copper Beech
753	Norway Maple	707	Sycamore
761	Eucalyptus	711	Sycamore
694	Holm Oak	714	Sycamore
695	Sycamore	478	Sycamore
696	Beech	479	Sycamore
453	Sycamore	490	Sycamore
455	Beech	483	Austrian Pine
456	Horse Chestnut	484	Austrian Pine
457	Horse Chestnut	489	Sycamore
458	Beech	500	Scot's Pine
742	Wallnut	563	Copper Beech
734	Horse Chestnut	565	Norway Maple
736	Horse Chestnut	566	Sycamore
739	Norway Maple	569	Sycamore
740	Lodgepole Pine	571	Hybrid Black Poplar
741	Eucalyptus	557	Monterey Cypress
772	Norway Maple	558	Monterey Pine
773	Eucalyptus	560	Sycamore
777	Eucalyptus	549	Sycamore
778	Lombardy Poplar	553	Silver Birch
763	Eucalyptus	542	Sycamore
764	Eucalyptus	544	Norway Maple
765	Eucalyptus	545	Monterey Pine
766	Eucalyptus	514	Scot's Pine
726	Sycamore	516	Silver Birch
715	Austrian Pine	500	Scot's Pine
717	Austrian Pine	510	Blue Gum
653	Beech	511	Blue Gum
633	Sycamore	513	Lawson Cypress
635	Austrian Pine	484	Austrian Pine
641	Monterey Pine	485	Sycamore
642	Beech	486	Norway Maple
588	Beech	490	Sycamore
579	Sycamore	460	Lime
574	Sycamore	461	Sycamore
575	Sycamore	465	Sycamore
578	Monterey Cypress	466	Sycamore

Dalguise House Large-Scale Residential Development, Monkstown, Co. Dublin

Grey Heron Conservation Plan

September 2022

<u>Client:</u>
GEDV Monkstown Owner Ltd 3rd Floor,
Kilmore House,
Park Lane,
Spencer Dock,
Dublin 1

Dalguise House Large-Scale Residential Development

Grey Heron Conservation Plan

TABLE OF CONTENTS

1.1 Background 1.2 Site Description 2. GREY HERON	1.	INTRODUCTION				
2. GREY HERON		1.1	Background	1		
2.1 Ecology and Distribution 2.2 Conservation Status and Legislative Protection 3. CURRENT PRESSURES AFFECTING GREY HERON 3.1 Habitat Degradation 3.2 Disturbance 4. POTENTIAL IMPACTS OF THE PROPOSED DEVELOPMENT 4.1 Habitat Loss and Degradation 4.2 Increased Disturbance 4.3 Direct Mortality 5. MITIGATION PROPOSED IN THE EIAR 5.1 General Mitigation Measures 5.2 Specific Mitigation Measures 6. TARGETS AND ACTIONS		1.2	Site Description	1		
2.2 Conservation Status and Legislative Protection 3. CURRENT PRESSURES AFFECTING GREY HERON 3.1 Habitat Degradation 3.2 Disturbance 4. POTENTIAL IMPACTS OF THE PROPOSED DEVELOPMENT 4.1 Habitat Loss and Degradation 4.2 Increased Disturbance 4.3 Direct Mortality 5. MITIGATION PROPOSED IN THE EIAR 5.1 General Mitigation Measures 5.2 Specific Mitigation Measures 6. TARGETS AND ACTIONS	2.	GRI	GREY HERON			
3. CURRENT PRESSURES AFFECTING GREY HERON 3.1 Habitat Degradation. 3.2 Disturbance. 4. POTENTIAL IMPACTS OF THE PROPOSED DEVELOPMENT. 4.1 Habitat Loss and Degradation. 4.2 Increased Disturbance. 4.3 Direct Mortality. 5. MITIGATION PROPOSED IN THE EIAR. 5.1 General Mitigation Measures. 5.2 Specific Mitigation Measures. 6. TARGETS AND ACTIONS.		2.1	Ecology and Distribution	3		
3.1 Habitat Degradation 3.2 Disturbance 4. POTENTIAL IMPACTS OF THE PROPOSED DEVELOPMENT		2.2	Conservation Status and Legislative Protection	4		
3.2 Disturbance 4. POTENTIAL IMPACTS OF THE PROPOSED DEVELOPMENT	3.	CUI	CURRENT PRESSURES AFFECTING GREY HERON			
4. POTENTIAL IMPACTS OF THE PROPOSED DEVELOPMENT		3.1	Habitat Degradation	5		
4.1 Habitat Loss and Degradation 4.2 Increased Disturbance 4.3 Direct Mortality 5. MITIGATION PROPOSED IN THE EIAR 5.1 General Mitigation Measures 5.2 Specific Mitigation Measures 6. TARGETS AND ACTIONS		3.2	Disturbance	5		
4.2 Increased Disturbance 4.3 Direct Mortality 5. MITIGATION PROPOSED IN THE EIAR 5.1 General Mitigation Measures 5.2 Specific Mitigation Measures 6. TARGETS AND ACTIONS	4.	POTENTIAL IMPACTS OF THE PROPOSED DEVELOPMENT				
4.3 Direct Mortality 5. MITIGATION PROPOSED IN THE EIAR		4.1	Habitat Loss and Degradation	6		
MITIGATION PROPOSED IN THE EIAR		4.2	Increased Disturbance	6		
5.1 General Mitigation Measures 5.2 Specific Mitigation Measures 6. TARGETS AND ACTIONS		4.3	Direct Mortality	6		
5.2 Specific Mitigation Measures	5.	MITIGATION PROPOSED IN THE EIAR				
6. TARGETS AND ACTIONS		5.1	General Mitigation Measures	7		
		5.2	Specific Mitigation Measures	8		
7. REFERENCES	6.	TAF	RGETS AND ACTIONS	9		
	7.	REFERENCES				

1. INTRODUCTION

1.1 Background

Roughan & O'Donovan (ROD) was commissioned by GEDV Monkstown Owner Ltd ("the Applicant") to prepare this Grey Heron Conservation Plan, as requested by the National Parks & Wildlife Service (NPWS) in their pre-planning consultation submission, to inform the planning application for the Dalguise House Large-Scale Residential Development (LRD) ("the proposed development") in Monkstown, Co. Dublin.

The proposed development site is located approximately 300 m to the west of Monkstown Village and 240 m south of Seapoint Beach. The site is 3.58 ha in area, predominantly rectangular in shape and currently in use as a private dwelling.

The overarching aim of this conservation plan is to maintain and enhance the conservation condition of the Grey Heron population at Dalguise House. In order to ensure that the approach to Grey Heron conservation management set out in this plan is evidenced-based, it describes in detail the current understanding of the Grey Heron population at Dalguise House and the wider South Dublin area and provides for adaptive implementation based on continued monitoring of this population.

The EIAR identified potential for short-term and permanent impacts on the heronry on the grounds of Dalguise Houseas a result of the proposed development. The impacts on Grey Heron include habitat loss and habitat degradation during the construction phase and habitat degradation, disturbance and direct mortality during the operational phase. Grey Heron is protected under the Section 40 of the Wildlife Act, 1976 (as amended) ("the Wildlife Act"). This conservation plan was prepared to ensure the long-term maintenance and enhancement of the heronry at Dalguise House.

The following guidance documents have been used for reference and guidance in the preparation of this conservation plan:

- Guidelines for Ecological Survey Techniques for Protected Flora and Fauna during the Planning of National Road Schemes (NRA, 2008)
- CBS Manual Guidelines for Countryside Bird Survey participants (Birdwatch Ireland 2012)
- Bird Atlas 2007-11 (British Trust of Ornithology, 2011)
- Birds of Conservation Concern in Ireland 2020-2026 (Gilbert, Stanbury, & Lewis, 2021).

Mitigation and monitoring described in this document are identical to those described in the EIAR for the proposed development. Therefore, this Grey Heron Conservation Plan may be treated as a standalone document.

1.2 Site Description

The proposed development site, currently in use as a private dwelling, is bordered and divided by a network of hedgerows and mature treelines and linear woodlands. It is bounded to the south, east and west by residential developments and to the north by the Stradbrook Stream, residential developments and Monkstown Road. The surrounding area is dominated by suburban residential development. It is within the catchment of the Stradbrook Stream, which flows east-west and eventually discharges

into Dublin Bay. The Stradbrook Stream is characterised by artificial embankments along most of its length. The stream is highly modified and is culverted until it reaches its outfall at the west pier in Dún Laoghaire. The EPA have no monitoring points and it is not assessed under the Water Framework Directive. The coastal waterbodies of Dublin Bay are monitored by the EPA. The site contains good quality habitat for bats and bird species. An established heronry exists in the mature trees along the western site boundary.

The following describes the habitats recorded during field surveys in 2021. A total of seven habitats were recorded within the study area. Table 1-1 lists the habitats recorded. Habitats were classified according to *A Guide to Habitats in Ireland* (Fossitt, 2000). No Annex I habitats were recorded.

Table 1-1 Habitats recorded within the study area

Habitat Name	Fossitt Code
Buildings and Artificial Surfaces	BL3
Eroding/Upland Rivers	FW1
Amenity Grassland (Improved)	GA2
Mixed Broadleaved/Conifer Woodland	WD2
Scattered Trees and Parkland	WD5
Ornamental/ Non-native Shrubs	WS3
Treelines	WL2

GREY HERON

2.1 Ecology and Distribution

Grey Heron (*Ardea cinerea*) is the only species of the *Ardea* genus in Ireland. The species is widespread throughout Ireland and are a common resident at wetlands, estuaries and along rivers and are easily identified by their large size, grey plumage and dagger-shaped yellow bill (Figure 1-1). They fly with slow, irregular beats and their loud, harsh croaking is often heard in flight.

Grey Heron breed either in colonies or solitary, in woodlands with tall trees adjacent to lakes and brackish sea-bays. Grey Heron feed along the edge of a wide range of wetland habitats from coastal waters and estuaries to loughs, streams, and marshy grounds. Their diet consists of fish, amphibians, small mammals, insects, and reptiles.

During the wintering season, Grey Heron are found in the same wetland habitats as in the breeding season. Individuals breeding in Ireland are thought to be sedentary and any migrants from Britain and Scandinavia join our resident population for the winter. The Irish Wetland Bird Survey (I-WeBS) which monitors overwintering waterbird populations, estimated the Grey Heron population size in the Republic of Ireland to be 1,943 between 2011 – 2016 (Lewis et al., 2019). According to I-WeBS, Grey Heron numbers have shown a gradually increasing trend between 1994 – 2016. The current breeding population of Grey Heron in Ireland are estimated to be 4,000 breeding pairs.

Booterstown Marsh is the only remaining area of saltmarsh in Dún Laoghaire-Rathdown. This area is an important roosting and feeding area for Grey Heron, who use the young fish taking refuge in the area as a food source. Between the East Pier and the old Dún Laoghaire baths, Grey Heron are often observed during bird watching activities, notably during the wintering season, when many different individuals can be found in one location. This area represents an important habitat for Grey Heron in Dublin.

Figure 1-1 Grey Heron - © BirdWatch Ireland

2.2 Conservation Status and Legislative Protection

Grey Heron are currently listed on the Green List of the fourth assessment of *Birds of Conservation Concem in Ireland* (BoCCI4) (Gilbert et al., 2021). Their Green List status has not changed from the third assessment of *Birds of Conservation Concern in Ireland* (BoCCI3) (Colhoun & Cummins 2013).

Grey Heron are protected under Section 40 of the Wildlife Act. As such, it is an offence to deliberately destroy vegetation on uncultivated land during the bird nesting season, which takes place annually from 1st March – 31st August.

The *Dún Laoghaire-Rathdown Biodiversity Action Plan 2009-2013* identified Grey Heron as a species which required further survey work to assess their current conservation status and proposed action to support/undertake survey work to prepare an inventory of heronries for the county.

The current Dún Laoghaire-Rathdown County Biodiversity Action Plan 2021-2025 continues to include survey work as an important action of Objective 1: "Strengthen the knowledge base for conservation, management and sustainable use of biodiversity". This action plan also sets outs goals for conserving important habitats for biodiversity, which are laid out under Objective 3: "Conserve and restore biodiversity and ecosystems, and support ecosystem services in DLR, including coastal and marine".

3. CURRENT PRESSURES AFFECTING GREY HERON

Grey Heron is a widespread, adaptable and globally abundant species. They are not listed as a conservation concern in Ireland or at the European level and populations are considered secure. The IUCN-SSC (International Union for the Conservation of Nature—Species Survival Commission) Heron Specialist Group has stated that the European populations are likely at carrying capacity and are now being influenced by winter conditions and the availability of habitat rather than human activity and habitat destruction.

The influence of winter conditions on Grey Heron is supported by *Review of the Derogation Process under Article* 9(1)(a) of the EU Birds Directive (Crowe et al., 2018) which reported a short-term decline in Grey Heron populations in Ireland during three cold winters between 2009/10 – 2011/12. Nonetheless, trends in wintering populations illustrate stable increases overall.

3.1 Habitat Degradation

Grey Heron are an important wetland bird and play a vital role in maintaining the balance of wetland ecosystems. Wetlands cover a significant proportion of Ireland, making up 5% of Ireland's total land cover. As of 2018, Ireland holds one the largest shares of total wetland cover in the EU Member States. In November 2021, Wetland Surveys Ireland mapped 182 wetlands in Dublin, although the inventory of wetlands in Dublin is incomplete. Despite the proportionally large area of wetlands in Ireland, there are several threats to Irish wetlands, and consequently, Grey Heron habitat. Threats to wetlands include peat extraction, drainage for water extraction, agriculture, private forestry and industrialisation. Development also poses a threat to wetland habitats due to the increased potential for flooding, biodiversity loss, pollution and industrial and agricultural run-off.

3.2 Disturbance

There is little research on the impact of human disturbance to Grey Heron in Ireland. A study by Jakubas & Manikowsha-Slepowronska (2012) examined the response of Grey Heron to frequent human disturbance in a large heron colony in Poland between 2009 and 2012. The study found evidence showing increases in egg losses and decreases in the density of occupied nests following increases in area of land covered by buildings within 200 m of the colony section perimeters. It is acknowledged that Grey Heron are known to breed regularly in proximity to human residences (Kushlan & Hafner, 2000) and responses to disturbance can vary among individuals.

4. POTENTIAL IMPACTS OF THE PROPOSED DEVELOPMENT

The EIAR that was prepared in respect of the proposed development identified several potential impacts of its construction and operation on the local Grey Heron population. These impacts are described below.

4.1 Habitat Loss and Degradation

The design of the proposed development has been undertaken in consultation with an Arborist with a view to retaining as many mature trees as possible. Nevertheless, the proposed development will lead to some habitat loss in order to facilitate the construction of the buildings, roads, paths and services.

4.2 Increased Disturbance

Construction of the proposed development will result in temporary noise, vibration, lighting and visual disturbance and will affect species both within outside the construction footprint. In addition to this, proposed boundary walls will create an exclusion barrier for species within and adjacent to the site.

Following the completion of the proposed development, the volume of pedestrian and vehicle traffic to the site is expected to increase. This, along with the introduction of artificial lighting will inevitably lead to increase instances of disturbance and thus an overall reduction in habitat quality.

4.3 Direct Mortality

Direct mortality is possible as a result of site clearance, tree felling and vegetation removal. Grey Heron are vulnerable during the nesting season (1st March – 31st August) when construction works could lead to the loss of nests.

During the operational phase of the proposed development, the windows of the buildings could lead to bird mortality through collision. The risk of this depends on a variety of factors including the local bird population density, the bird species present, landscape conditions and the building design.

5. MITIGATION PROPOSED IN THE EIAR

A range of measures were detailed in the EIAR to prevent, minimise and compensate for the impacts on Grey Heron arising from the proposed development, as described in Sections 3 and 4, of this report.

5.1 General Mitigation Measures

The relevant construction phase mitigation measures are reproduced below:

- B_1 The contractor will appoint a suitably qualified Ecological Clerk of Works (ECoW)
 for the duration of the construction contract to ensure that the mitigation and monitoring
 proposed in this chapter are implemented during the construction phase.
- B_2 Any lighting being used at night on site during construction should be considerate
 of the impacts it might have on nocturnal species in the area. The lights will not be left
 on overnight. If lighting is required during construction the lights will only be illuminating
 work areas when necessary and will avoid illuminating any woodland habitats and
 trees.
- B_3 Trees which are being retained will be protected by fencing in accordance with BS 5837:2012, as defined in the 'Tree Survey, Arboricultural Impact Assessment and Tree Protection Scheme to BS 5837:2012' report, which is included as part of the planning application. See Part 5 Tree Protection Scheme of the report for full descriptions of the tree protection measures that will be implemented during the construction phase of the proposed development. An Arborist be retained as required by the principal contractor to monitor and advise on any works within the Root Protection Area (RPA) of retained trees to ensure successful tree retention and planning compliance. All recommendations contained in the 'Tree Survey, Arboricultural Impact Assessment and Tree Protection Scheme to BS 5837:2012' will be followed.
- B_31 The public lighting has been designed will comply with the following:
 - Lux levels on roads and paths will be set to the minimum required by BS 5489-1:2013, P4.
 - Bollard lighting will be used in wooded areas which will avoid light spill above the horizontal.
 - Lighting outside the intended area of illumination will be minimised. Where light spill cannot be avoided, louvres, cowls or shields will be fitted to the columns.
 - Lighting will be LED and have no upward light spill (apart from intentional uplighting) and a sharp horizontal cut off.
 - Lighting will be a warm-white colour of 3000K or less.
 - There will be no lighting on the pond.
 - Up-lighting will be limited to discreet points of interest.

5.2 Specific Mitigation Measures

Mitigation measures specific to Grey Heron include the following:

- B_40 Site clearance during construction and tree and shrub maintenance during operation will take place outside the nesting bird season (1st March 31st August inclusive). If site clearance is required during the nesting bird season, the area will be checked by a suitably qualified ecologist. If nesting birds are found to be present, the site clearance works will cease until the chicks have fledged, or, until the NPWS have been consulted to determine the course of action.
- B_41 In order to protect the heronry from disturbance which could lead to nest abandonment, no site clearance works will commence during the pre-nesting and nesting season (February-July). The absence of active nests will be confirmed by the ECoW.
- B_43 Fencing will be erected around the trees containing the heronry within the site
 as part of the tree protection plan. These will also serve to reduce disturbance close
 to the trees. The tree protection fencing will be retained for the duration of the
 construction phase.
- B_49 The heronry will be surveyed during the breeding season for three consecutive
 years. The tree number of each tree containing a nest will be recorded (using the
 numbering convention in the tree report for this application), and any signs of activity
 will also be recorded. The results will be sent to the NPWS and Dún Laoghaire
 Rathdown County Council following each survey. Should a noticeable decline in the
 heronry be discovered, protective measures will be put in place, in consultation with
 the NPWS.

6. TARGETS AND ACTIONS

This Grey Heron Conservation Plan is important to ensure the long-term viability of the heronry. The following is a list of targets to protect and enhance the Grey Heron population:

- To reduce the impacts on Grey Heron during construction of the proposed development.
- 2. To maintain the existing habitats for Grey Heron.
- 3. To ensure habitat connectivity between the Dalguise House heronry and Booterstown Marsh by encouraging natural behaviour and not impeding flightlines.
- 4. To monitor the population of Grey Heron.

Table 1. Specific actions, corresponding targets and responsible parties.

Action	Target	Party Responsible
A suitably qualified Ecological Clerk of Works (ECoW) will be employed during the construction phase.	1, 2, 3, 4	GEDV Monkstown
Site clearance will take place outside the nesting bird season (1st March - 31st August inclusive). If site clearance is required during the nesting bird season, the area will be checked by a suitably qualified ecologist.	1, 2	ECoW
In order to protect the heronry from disturbance which could lead to nest abandonment, no site clearance works will commence during the pre-nesting and nesting season (February – July).	1, 2	ECoW
Fencing will be erected around the trees containing the heronry within the site as part of the tree protection plan. These will also serve to reduce disturbance close to the trees. The tree protection fencing will be retained for the duration of the construction phase.	1, 2, 3	Arborist, ECoW
Tree felling during site clearance and phased tree felling should be supervised by a suitably qualified ecologist to ensure herons have time to leave the areas being felled.	1, 2, 3	Arborist, ECoW
The Construction Environmental Management Plan should identify and protect selected tree features.	1, 2, 3	GEDV Monkstown, ECoW
Public signage should be used to deter members of the public from feeding Grey Heron.	3, 4	GEDV Monkstown, Public
The heronry will be monitored for three consecutive years following the completion of the proposed development.	4	GEDV Monkstown,
This conservation plan should be updated annually following monitoring of Grey Heron at the site.	4	GEDV Monkstown

7. REFERENCES

BirdWatch Ireland (2012). CBS Manual Guidelines for Countryside Bird Survey Participants.

BSI (2012) Trees in relation to design, demolition and construction – Recommendations. British Standards Institution.

BTO, (2011). Bird Atlas 2007-11. British Trust of Ornithology.

Colhoun, K., and Cummins, S. (2013). Birds of Conservation Concern in Ireland 2014-2019. Irish Birds 9:523-544.

Crowe, O., Goggins, G., McLoughlin, D., (2018) Review of the Derogation Process under Article 9(1)(a) of the EU Birds Directive.

DLRCC, (2021). Dún Laoghaire-Rathdown County Biodiversity Action Plan 2021-2025.

DLRCC, (2009). Dún Laoghaire-Rathdown Biodiversity Action Plan 2009-2013

Fossitt, J. (2000). A Guide to Habitats in Ireland. The Heritage Council, Kilkenny.

Gilbert, G., Stanbury, A. and Lewis, L. (2021). Birds of Conservation Concern in Ireland 2020-2026. Irish Birds 9:523-544.

Jakubas, D., Manikowsha-Slepowronska, B., (2013) Response of Grey Herons (Ardea cinerea) to human disturbance in a suburban village in Poland. Ornis Fennica, 90: 86-93.

Kushlan, J.A., Hafner, H., (2000). *Heron Conservation*. Academic Press, California, San Diego, USA.

NRA, 2008 Guidelines for Ecological Survey Techniques for Protected Flora and Fauna during the Planning of National Road Schemes. National Roads Authority, Dublin.

Wildlife Act, 1976, No. 39 of 1976.

Wildlife Act, 1976 (Protection of Wild Animals) Regulations, 1990, SI No. 112/1990.

Wildlife (Amendment) Act, 2000, No. 38 of 2000.

Wildlife (Amendment) Act, 2012, No 29 of 2012.

Dalguise House Large-Scale Residential Development, Monkstown, Co. Dublin

Invasive Alien Species Control and Management Programme

September 2022

<u>Client:</u>
GEDV Monkstown Owner Ltd 3rd Floor,
Kilmore House,
Park Lane,
Spencer Dock,
Dublin 1

Dalguise House Large-Scale Residential Development

Invasive Alien Species Control and Management Programme

TABLE OF CONTENTS

1.	INT	RODUCTION	1
	1.1	Background	1
	1.2	Location	2
	1.3	Evaluation of Risk	2
	1.4	Purpose of this Plan	2
2.	ME	THODOLOGY	3
	2.1	Desk Study	3
	2.2	Invasive Species Surveys	3
3.	RES	SULTS	4
	3.1	Desk Study	4
	3.2	Invasive Species Survey	4
4.	OVE	ERVIEW OF THREE-CORNERED GARLIC	6
	4.1	Ecology and Distribution	
	4.2	Identification	7
5.	CO	NTROL AND MANAGEMENT PROGRAM	8
	5.1	General Control and Management Procedures	
	5.2	Specific Control and Management Procedures	
6.	TRA	AINING AND OPERATIVE COMPETENCY	10
	6.1	Legislative Context	10
	6.2	Health and Safety	10
7.	REF	ERENCES	11

1. INTRODUCTION

1.1 Background

Roughan & O'Donovan (ROD) was commissioned by GEDV Monkstown Owner Ltd ("the Applicant") to prepare this Invasive Alien Species Control and Management Program to inform a planning application for the proposed Dalguise House Large-Scale Residential Development (LRD) ("the proposed development") in Monkstown, Co. Dublin.

During the initial ecological surveys of the site, which were carried out in 2021 and 2022, to inform the Biodiversity chapter of the Environmental Impact Assessment Report (EIAR) for the proposed development, invasive alien plant species (IAPS) were identified within the footprint of the proposed development. In the absence of appropriate management, there is a significant risk that IAPS will continue to spread, either independently of or assisted by construction or operational activities associated with the proposed development.

The continued presence of IAPS within the footprint of the proposed development or the spread of such species to, from or within the site poses a significant threat to I biodiversity. Furthermore, the introduction or spread of invasive species, particularly IAPS listed on the Third Schedule to the European Communities (Birds and Natural Habitats) Regulations, 2011 (as amended) ("the Habitats Regulations"), poses a risk to the proposed development itself, as, in the absence of appropriate preventative measures, any such introduction or spread would constitute an offence under Section 49 of the Habitats Regulations.

The Dún Laoghaire-Rathdown County Development Plan 2022-2028 (DLRCC, 2022) sets out the policy objectives and the overall strategy for the proper planning and sustainable development of the county over the plan period. The plan sets out an approach centred on the core principle of sustainability with a focus on creating vibrant, liveable, climate resilient communities. The following policy is relevant in relation to invasive species:

"GIB28: To prepare an 'Invasive Alien Species Action Plan' for the County which will include actions in relation to Invasive Alien Species (IAS) surveys, management and treatment and to also ensure that proposals for development do not lead to the spread or introduction of invasive species. If developments are proposed on sites where invasive species are or were previously present, the applicants will be required to submit a control and management program for the particular invasive species as part of the planning process and to comply with the provisions of the European Communities Birds and Habitats Regulations 2011 (S.I. 477/2011)."

Invasive species are also discussed under Objective 2 of the *Dún Laoghaire-Rathdown County Biodiversity Action Plan 2021 – 2025* (DLRCC, 2021) under Action 2.4:

"Action 2.4: Produce an Invasive Alien Species (IAS) Action Plan and ensure the implementation and monitoring of actions."

In order to address and manage the risks associated with IAPS, ROD have prepared an IAPS Control and Management Plan for the proposed development. This document comprises the IAPS Control and Management Plan for the proposed development and was prepared by ROD on behalf of GEDV Monkstown Owner Ltd. The intention is that

this will form the basis for the plan which will be adopted if consent for the proposed development is granted.

1.2 Location

The proposed development site is located approximately 300 m to the west of Monkstown Village and 240 m south of Seapoint Beach. The site is 3.58 ha in area, predominantly rectangular in shape and currently in use as a private dwelling.

The proposed development site is bordered and divided by a network of hedgerows, mature treelines and linear woodlands. It is bounded to the south, east and west by residential developments and to the north by the Stradbrook Stream, residential developments and Monkstown Road. The surrounding area is dominated by suburban residential development. It is within the catchment of the Stradbrook Stream, which flows east-west and eventually discharges into Dublin Bay. The Stradbrook Stream is characterised by artificial embankments along most of its length. The stream is highly modified and is culverted until it reaches its outfall at the west pier in Dún Laoghaire. The EPA have no monitoring points on this watercourse and it is not assessed under the Water Framework Directive. The coastal waterbodies of Dublin Bay are monitored by the EPA.

1.3 Evaluation of Risk

Prior to preparing this IAPS Management Plan, the risk of IAPS both within and in the surrounding area was assessed. This involved the following:

- A desk study to collect existing records of IAPS within 2 km of the development boundary.
- An IAPS survey of the site of the proposed development.
- An evaluation of the risk of IAPS to biodiversity.

1.4 Purpose of this Plan

The purpose of the IAPS Control and Management Plan is:

- To prevent the spread of IAPS within and outside the proposed development boundary during the construction phase.
- To provide clear instruction and a timeline for the monitoring and eradication of IAPS within the site.
- To evaluate the risk of re-infestation from surrounding properties.

2. METHODOLOGY

2.1 Desk Study

The purpose of the desk study was to review publicly available information and recent and historical records of IAPS within the footprint of the proposed development and the surrounding area. Records of IAPS within 2 km of the proposed development were obtained from the National Biodiversity Data Centre (NBDC).

As with all desk studies, the data considered was only as good as the data supplied by the recorders and recording schemes. The recording schemes provide disclaimers in relation to the quality and quantity of the data they provide, and these were considered when examining the outputs of the desk study.

2.2 Survey Methodology

Invasive species surveys of the site were carried out on the 20th June and 5th July 2021. The entire site was walked to determine the distribution and abundance of all invasive species. Invasive plants, including species listed on the Third Schedule to the Habitats Regulations, but also other species which can negatively impact biodiversity were recorded and their distributions sketched on field maps. Target notes were taken which detailed height, density, and any signs of previous management. The locations and extents of invasive species were mapped using ArcGIS.

Standard survey methods (TII, 2020) were followed. However, any biases or limitations associated with these methods could potentially affect the results collected. Whilst every effort was made to provide a full assessment and comprehensive description of the site, it is unlikely that one survey can achieve full characterisation due to temporal variation. It is recognised that whenever a survey is carried out (within the defined season), it is a compromise, suitable for the vast majority of species, but possibly too early or too late for some species. The surveys was carried out in the months of June and July which fall within the optimal time of year for botanical surveys (April to September).

RESULTS

3.1 Desk Study

Table 3.1 lists the invasive species recorded within 2km of the proposed development.

Table 3-1 Records of Invasive species. Source: NBDC (2021)

Common name	Scientific name	
Giant Hogweed	Heracleum mantegazzianum	
Grey Squirrel	Sciurus carolinensis	
Harlequin Ladybird	Harmonia axyridis	
Japanese Knotweed	Fallopia japonica	
Japanese Skeleton Shrimp	Caprella mutica	
Stalked Sea Squirt	Styela clava	
New Zealand Pigmyweed	Crassula helmsii	
Three-cornered Garlic	lium triquetrum	
Wakame	Undaria pinnatifida	

3.2 Field Survey

The field surveys confirmed the presence of Grey Squirrel (*Sciurus carolinensis*) and Three-cornered Garlic (*Allium triquetrum*) within the site. These species are listed on the Third Schedule to the Habitats Regulations and, as such, Section 49 of those regulations apply to this species. Grey Squirrel is highly mobile is common and widespread in Dublin and there is no effective mitigation for this species at the site level. Three-cornered Garlic is common in gardens, riverbanks, hedgerows and woodland. This species is located in the northeast corner of the site on the bank of the Stradbrook Stream (ITM 722851 728549) as shown in Figure 3.1. Two other species, Snowberry (*Symphoricarpos albus*) and Cherry Laurel (*Prunus laurocerasus*) were recorded on the site of the proposed development. These species are common in suburban environments and parks and can negatively affect native habitats and species, however they are not subject to restrictions.

Figure 3.1 Location of Three-cornered Garlic (*Allium triquetrum*) within the proposed development boundary.

4. OVERVIEW OF THREE-CORNERED GARLIC

4.1 Ecology and Distribution

Three-cornered Garlic, also known as Three-cornered Leek, is a member of the genus *Allium*, which includes the cultivated onion, garlic, scallion, shallot, leek and chives. This is a spring-flowering bulb with bell-like white flowers on three-sided stems up to 45 cm in height (Plate 4.1). Three-cornered Garlic is native to the Mediterranean basin (i.e. South-western Europe, North-western Africa, Madeira and the Canary Islands). While it is thought to have been introduced to Ireland approx. three-hundred years ago, and has naturalised in many countries, it is considered invasive in Ireland due to its ability to colonise rapidly and dominate waste ground, thus outcompeting native vegetation (Booy et al., 2015). This species has established itself throughout Ireland, particularly in the south and southeast. There is potential for this species to spread further under the influence of a warming climate (Dowen, 2011; O'Rourke & Flynn, 2014).

Plate 4.1 Three-cornered Garlic - © Down Garden Services

4.2 Identification

The following provides a brief summary of the defining characteristics of Three-cornered Garlic:

- The stems can grow up to 60 cm in height and each stem produces a one-sided drooping umbel of white flowers. The stem is concavely triangular in shape and along the centre of each flower petal is a narrow, green line.
- The leaves give a strong, distinct garlic aroma when crushed.

It is not easily confused with other wild plants found in Ireland.

5. CONTROL AND MANAGEMENT PROGRAM

The management measures described below are based on the following guidance documents:

- TII (2020a) The Management of Invasive Alien Plant Species on National Roads – Standard. Transport Infrastructure Ireland, Dublin.
- TII (2020b) The Management of Invasive Alien Plant Species on National Roads – Technical Guidance. Transport Infrastructure Ireland, Dublin.
- TII (2010). The Management of Noxious Weeds and Non-Native Invasive Plant Species on National Roads, Ireland: National Roads Authority.

5.1 General Control and Management Procedures

In order to minimise risk of introduction or spread of IAPS during construction, all works shall be executed in accordance with best practice for biosecurity in construction. In particular, prior to commencement, the Contractor shall prepare a detailed Bio security Protocol describing his/her proposed approach to ensuring that IAPS are not imported or spread during the construction of the proposed development. The Contractor's Biosecurity Protocol shall be in accordance with *The Management of Invasive Alien Plant Species on National Roads — Technical Guidance* (TII, 2020) and subject to approval by the Ecological Clerk of Works (ECoW) prior to its acceptance and implementation. The Biosecurity Protocol shall include, as a minimum, the following measures to prevent the spread of invasive species:

- B_51 All plant and equipment employed on the construction site (e.g. excavators) will be thoroughly cleaned down using a power washer unit prior to arrival on site to prevent the spread of IAPS.
- B_52 All washing must be undertaken in areas with no potential to result in the spread of IAPS, as detailed in the Construction Environmental Management Plan.
- B_53 Any soil and topsoil required on the site will be sourced from a stock that
 has been screened for the presence of any IAPS and where it is confirmed that
 none are present.

5.2 Specific Control and Management Procedures

The known infestation of Three-cornered Garlic should be eradicated prior to commencement of construction. The measures outlined below shall be followed to eradicate this species from the site:

- B_54 In advance of the works, the extent of Three-cornered Garlic established will be fenced off. Under the direction of the ECoW, the bulbs will be excavated by hand to avoid damaging the roots of nearby trees.
- B_55 The bulbs will be broken up using a spade and buried on site to a minimum depth of 1 m.
- B_56 The site will be resurveyed the following year to check if any plants have re-established. If Three-cornered Garlic is found, the process will be repeated until none re-appear.

 B_57 If the infestation of Three-cornered Garlic cannot be eradicated prior to construction, it should be fenced off at the outset and the access prohibited except for monitoring for treatment purposes. All site staff shall be made aware of the Contractor's Biosecurity Protocol and receive training in the importance of good site biosecurity.

6. TRAINING AND OPERATIVE COMPETENCY

6.1 Legislative Context

It is recommended that a suitably qualified person with sufficient training, experience, and knowledge in the control of IAPS should be employed to assist in the planning and execution of control measures in relation to Three-comered Garlic. While treating invasive species, operators must comply with all legislation regulating the treatment and management of invasive species. The relevant standards and legislation that will dictate how eradication is undertaken include:

- Waste Management Acts, 1996 to 2013, and related legislation;
- Safety, Health and Welfare at Work Act, 2005;
- Safety, Health and Welfare at Work (Construction) Regulations, 2013;
- Safety, Health and Welfare at Work (General Application) Regulations, 2007;
- European Communities (Birds and Natural Habitats) Regulations, 2011 to 2015;
 and.
- Wildlife Act, 1976 (as amended) ("the Wildlife Act").

6.2 Health and Safety

All works to be compliant with the Safety, Health and Welfare at Work Act, 2005 as well as the Safety, Health and Welfare at Work (General Application) Regulations, 2007. Supervision of operatives is required on site to answer any questions and visit treated areas on a regular basis to ensure that work continues to be carried out to a high standard.

7. REFERENCES

Booy, O., Wade, M. & Roy, H., (2015) A Field Guide to Invasive Plants & Animals in Britain. s.l.:Bloomsbury.

Council of Europe (1982) Bern Convention: Convention on the conservation of European Wildlife and Natural Habitats.

Dowen (2011). GB Non-native Organism Risk Assessment for *Allium triquetrum*. http://www.nonnativespecies.org/

European Communities (Birds and Natural Habitats) Regulations, 2011 to 2015. S.I. No. 477 of 2011.

HSA (2007). Guide to the Safety, Health and Welfare at Work (General Application) Regulations 2007; Part 4: work at heights, Ireland: Health and Safety Authority.

NBDC (2022) *Biodiversity Maps* https://maps.biodiversityireland.ie [Accessed 30/08/2022]. National Biodiversity Data Centre, Waterford.

NBDC (2022) Three-cornered Garlic (*Allium triquetrum*) < https://maps.biodiversityireland.ie/Species/28150> [accessed 30/08/2022]. National Biodiversity Data Centre, Waterford.

NRA (2008) Guidelines for Ecological Survey Techniques for Protected Flora and Fauna during the Planning of National Road Schemes. Transport Infrastructure Ireland, Dublin.

O'Rourke, E., O'Flynn, C., (2014) Risk Assessment of *Allium triquetrum*. Inland Fisheries Ireland and the National Biodiversity Data Centre.

TII (2010). The Management of Noxious Weeds and Non-Native Invasive Plant Species on National Roads, Ireland: National Roads Authority.

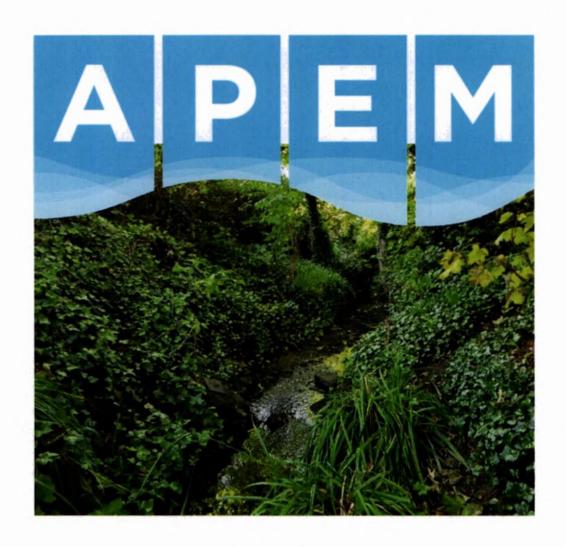
TII (2020a) The Management of Invasive Alien Plant Species on National Roads – Standard. Transport Infrastructure Ireland, Dublin.

TII (2020b) The Management of Invasive Alien Plant Species on National Roads – Technical Guidance. Transport Infrastructure Ireland, Dublin.

Safety, Health and Welfare at Work Act, 2005. No. 10 of 2005.

Safety, Health and Welfare at Work (Construction) Regulations, 2013. S.I. No. 291 of 2013.

Safety, Health and Welfare at Work (General Application) Regulations, 2007. S.I. No. 299 of 2007.


Waste Management Acts, 1996 to 2013. No. 10 if 1996.

Wildlife Act, 1976. No. 39 of 1976.

Wildlife Act, 1976 (Protection of Wild Animals) Regulations, 1990, SI No. 112/1990.

Wildlife (Amendment) Act, 2000. No. 38 of 2000.

Wildlife (Amendment) Act, 2012. No 29 of 2012

Data Summary: Macroinvertebrate and Water Chemical Survey of the Stradbrook Stream

Roughan & O'Donovan

P00007357

December 2021

Dr Bláithín Ní Ainín

Client: Roughan & O'Donovan

Address: Arena House, Arena Road, Sandyford, Dublin D18 V8P6

Project reference: P00007357

Date of issue: December 2021

Project Director: Eliot Taylor

Project Manager: Bláithín Ní Ainín

APEM Ireland Suite 218/219 C/o NSC Campus Mahon Cork T12 XY2N IRELAND

Tel: +353 (0)21 230 7100

Registered in Ireland No. 693910

Revision and Amendment Register

Version Number	Date	Section(s)	Page(s)	Summary of Changes	Approved by
1	09/12/21	All	All	First draft for client review	MKD
2	10/10/22			Finalisation and removal of watermark	BNA

Contents

1. Introduction	1
1.1 Background	1
2. Methods	1
1.1 Sampling Locations	1
1.2 Field Sampling	2
1.3 Laboratory Analysis	2
1.4 Metrics Calculation	2
3. Data Summary	3
3.1 Physico-chemical readings	3
3.2 Macroinvertebrates Survey Results and Indices	4
4. References	5
Appendix 1 Photos	6
Appendix 2 Macroinvertebrate Metrics	.10
List of Figures	
Figure 1 The two sampling sites surveyed on the Stradbrook Stream	1
List of Tables	
Table 1 Summary of physicochemical readings recorded in situ at each site	3
Table 2 Summary of physicochemical readings recorded in situ at each site	4
Table 3 Taxa list and % relative abundance of macroinvertebrate taxa recorded at each s	
Table 4 Summary of macroinvertebrate indices including Q value assigned and total number	
of taxa observed at each site	

1. Introduction

1.1 Background

APEM Ireland Ltd (APEM) was commissioned by Roughan and O'Donovan (ROD) to conduct freshwater macroinvertebrate surveys and chemical analysis on the Stradbrook Stream, Monkstown, Co. Dublin in advance of a Strategic Housing Development at Dalguise House. A single survey was conducted at each site, giving a general indication of baseline conditions of the stream prior to the construction phase of the project.

2. Methods

1.1 Sampling Locations

The Stradbrook stream runs from the west to the east of the development site, forming the northern edge of the site. Two locations were selected for the survey, upstream (Site 1 at Drayton Close) and downstream (Site 2 at Richmond Green) of the development area, so that data collected during the works can be used to determine if any impact from the works is occurring by comparing results to an upstream control site (Figure 1). Photos of both sites are provided in Appendix 1.

Figure 1 The two sampling sites surveyed on the Stradbrook Stream

December 2021

1.2 Field Sampling

Macroinvertebrate sampling was conducted on the 12th of October 2021 according to the standard methodology used by the EPA (Toner et al., 2005). Surveys were conducted in dry conditions and mild weather, with an air temperature of 13.5°C. Water levels were moderate, suitable for kick sampling. A two-minute macroinvertebrate kick sample was conducted at each site using a standard 1 mm mesh size long-handled net, from the faster flowing riffle habitats. A further one-minute hand search was carried out to locate macroinvertebrates that remained attached to the underside of the cobbles. Samples were sorted 'bankside' and taxa present were recorded to the lowest possible level possible under field conditions; their relative abundance was also estimated and recorded. Voucher specimens were kept for each of the major groups – these were preserved in alcohol on site to be returned to the lab for as detailed (genus and species where possible) an identification as possible. The remaining sample material was returned to the stream.

In addition to the macroinvertebrate sampling, measurements of dissolved oxygen concentration, temperature, conductivity and pH were measured on-site using an YSI Professional Plus handheld multiparameter probe. Water samples were collected at each site and subsequently analysed. Additional Qualifying Criteria, as specified for Q value assessment, were recorded (described in Appendix 2).

1.3 Laboratory Analysis

Macroinvertebrate voucher specimen samples were processed in the APEM laboratory in accordance with the methodology described in the Environment Agency's Operational Instruction 024_08 (issued 28/01/2014). The invertebrates identified, under a binocular microscope, to the lowest possible level using the standard range of identification keys published by the Freshwater Biological Association, AIDGAP and others. A list of the macroinvertebrate taxa recorded, as well as their percentage relative abundance, can be found in Table 3. This list informed the calculation of all macroinvertebrate indices, including the Q-value. Water bottles were delivered to City Analysts Ltd for chemical analyses and results returned to APEM subsequently.

1.4 Metrics Calculation

Several metrics were applied to the benthic invertebrates collected at each site (Table 4). An EPA Q-value classification was assigned to each site. The Q-values were assigned based on the presence and relative abundance of sensitive groups and the consideration of additional qualifying criteria, as described by Toner *et al.* (2005), outlined in more detail in Appendix 2. Ecological status of the macroinvertebrate biological quality element of each site (as required by the Water Framework Directive) is reported in Table 4, based on the Q values assigned.

Additional standard metrics (Biological Monitoring Working Party (BMWP) score, Average Score Per Taxon (ASPT), Whalley Hawkes Paisley Trigg (WHPT), WHPT-ASPT and WHPT-NTAXA (number of taxa)) scores were calculated for each site, described in more detail in Appendix 2.

APEM

The BMWP and ASPT scores are similar to the Q-value, in that they are based on the sensitivity and tolerance of macroinvertebrate taxa to organic pollution. Families with low tolerance to pollution score higher in the BMWP and pollution-tolerant taxa score lower. BMWP index may depend on numerous other factors as well, such as physical habitat structure and may be altered significantly depending on whether the sampling process captures species found in some habitats but not in others. Standardisation of the BMWP score is provided by the ASPT, allowing robust comparisons among sites.

The WHPT is an enhancement of the BMWP, and is used in the UK for monitoring, assessing and classifying rivers in accordance with the requirements of the Water Framework Directive (WFD). This classification is generated by calculating the number of abundance weighted WHPT scoring families found during sampling (WHPT NTAXA), and the WHPT-ASPT, which standardises the WHPT score to an average per taxa to allow a standardised comparison among sites and comparing these values to the values that might be expected under undisturbed or reference conditions for that site. More detail on all macroinvertebrate metrics are given in Appendix 2.

Data Summary

The following results have also been provided to ROD as excel files.

3.1 Physico-chemical readings

Table 1 Summary of physicochemical readings recorded in situ at each site

Parameter	Unit	Site 1	Site 2
Temperature	(°C)	11.4	10.9
Dissolved Oxygen	(mg/l)	123	100
Dissolved Oxygen (calculation)	(%)	13.6	11.1
Salinity	ppt	0.22	0.22
Specific conductivity	μS/cm	453	458
pH		9.05	9.45
Additional Information	Substrate	Predominantly pebble and sand (75%), remaining a mix of cobble, gravel, silt and woody debris (25%)	Predominantly pebble (75%), remaining a mix of gravel, sand, silt and woody debris
	Notes	Piped underground directly upstream; Sewage Fungus visible; litter present; moderately silted; storm drains present	Sewage Fungus visible; litter present; moderately silted; storm drain present above bridge

Table 2 Summary of water quality parameters analysed in the laboratory for each site

Parameter	Unit	Site 1	Site 2
Alkalinity	mg/l	101	176
Ammonia as N	mg/l	0.265	0.290
BOD (biochemical oxygen demand)	mg/l O ₂	3	2*
Calcium, Soluble	mg/l	121.314	75.311
COD (chemical oxygen demand)	mg/l O ₂	8.0*	8.0
Copper, Soluble	μg/l	2.19	2.00*
Dissolved Organic Carbon	mg/l	9.75	9.23
Hardness as CaCO3	mg/l	341	213
Nitrite as N02	mg/l	0.259	0.288
Nitrate as N03	mg/l	16.8	10.1
Iron - Total	ug/l	48.2	45.7
Cadmium, Soluble	ug/l	0.2*	0.2*
Iron, Soluble	ug/l •	7.2*	7.2*
Zinc, Soluble	ug/l	6.1	2.8*
Orthophosphate as P	mg/l	0.444	0.039
Phosphorus, Total as P	mg/l	0.599	0.158
Total Dissolved Solids	mg/l	508.000	235.000
Total Suspended Solids	mg/l	9	9
Arsenic - Dissolved	µg/l	5.0	1.3

^{*}Values in bold are lower than laboratory limit of detection, and are presented at face value

3.2 Macroinvertebrates Survey Results and Indices

Table 3 Taxa list and % relative abundance of macroinvertebrate taxa recorded at each site

Order/Group	Family	Species/genus	Site 1	Site 2
Tricladida	Planariidae	Polycelis nigra/tenuis	<5%	<5%
		Dugesia lugubris/polychroa	<1%	<1%
Gastropoda	Tateidae	Potamopyrgus antipodarum*	5-10%	5-10%
	Lymnaeidae			<5%
Oligochaeta			<1%	<5%
Hirudinea	Glossiphoniidae		<5%	<5%
		Glossiphonia complanata	Confirmed	
	Erpobdellidae		<5%	5-10%
		Trocheta pseudodina (bykowskii)	Confirmed	
Isopoda	Asellidae	Asellus aquaticus	<5%	<5%
Amphipoda	Gammaridae		>75%	>75%
		Gammarus duebeni	Confirmed	
Trichoptera	Limnephilidae			<1%

Order/Group	Family	Species/genus	Site 1	Site 2
		Micropterna sequax		Confirmed
Diptera	Ceratopogonidae			<1%
	Chironomidae		<5%	5-10%
Coleoptera	Elmidae			<1%

^{*}Invasive alien species (IAS)

Table 4 Summary of macroinvertebrate indices including Q value assigned and total number of taxa observed at each site

Site	Q Value	WFD Ecological Status	BMWP*	ASPT*	WHPT*	WHPT - ASPT*	WHPT- NTAXA
Site 1	Q3	Poor	26	3.25	31.8	3.53	9
Site 2	Q3	Poor	41	3.73	52	4	13

^{*}calculated based on presence/absence data as total abundance was not recorded.

4. References

Feeley, H.B., Bradley, C., Free, G., Kennedy, B., Little, R., McDonnell, N., Plant, C., Trodd, W., Wynne, C., and O'Boyle, S., 2020. A national macroinvertebrate dataset collected for the biomonitoring of Ireland's river network, 2007–2018. Sci Data 7, 280.

Toner, P., Bowman, J., Clabby, K., Lucey, J., McGarrigle, M., Concannon, C., Clenaghan, C., Cunningham, P., Delaney, J., O'Boyle, S., MacCarthaigh, M., Craig, M. and Quinn, R., 2005. Water Quality in Ireland: 2001–2003. Environmental Protection Agency, Johnstown Castle Estate, Wexford, Ireland.

Appendix 1 Photos

Figure A Site 1 - Facing Upstream

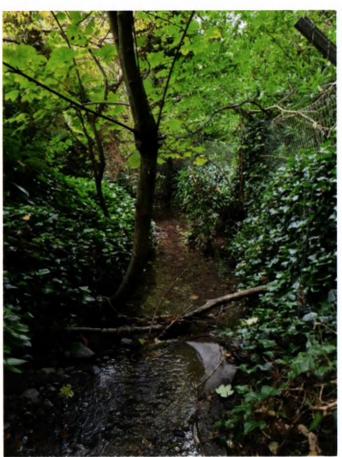


Figure B Site 1 - Facing Downstream

Figure C Site 1 - Sewage fungus

Figure D Site 1 - Storm drain

Figure E Site 2 - Facing upstream

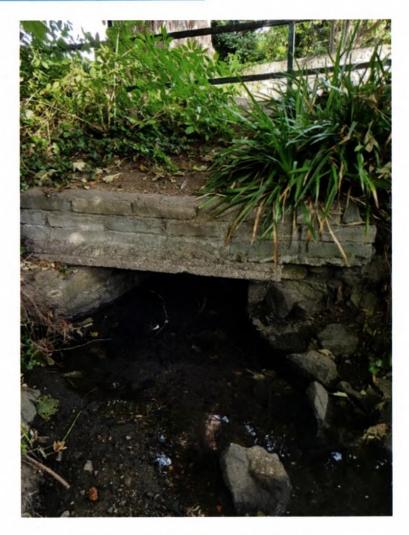


Figure F Site 2 - Facing downstream

Figure G Site 2 - Storm drain adjacent to bridge



Figure H Site 2 - Sewage fungus at base of drain

Appendix 2 Macroinvertebrate Metrics

Q-Value Assessment

The EPA Q-value classification is assigned based on the assessment of the macroinvertebrate sample, which involves recording the taxa present at a suitable and attainable taxonomic resolution (under field conditions) and their categorical relative abundance determined using approximate counts (as described in Feeley *et al.*, 2020). From this, the number of taxa present and categorical relative abundance of sensitive (Group A), less sensitive (Group B), tolerant (Group C), very tolerant (Group D) and most tolerant (Group E) taxa to organic pollution is examined. Additional Qualifying Criteria are also considered, consisting of recording the abundance of *Cladophora* spp, Macrophytes, and slime growths / sewage fungus, as well as the Dissolved Oxygen Saturation % and the level of substratum siltation. Then, based on the combination of number and relative abundance of the sensitive or tolerant groups present, a Q-value is assigned. Details on the assignment of the scores can be found in Toner *et al.*, (2005).

In Ireland, macroinvertebrates are the main Biological Quality Element (BQE) determining the ecological status in rivers (required by the Water Framework Directive; WFD) and are based on the Q-value. The WFD requires BQE scores to be expressed as an Ecological Quality Ratio (EQR) to standardize and provide a common scale of ecological quality across participatory Member States using differing national methods. Intercalibration of the Q-value with the EQR and the corresponding ecological status are described in Table A.

Table A: EPA water quality status summary, comparing the Q-value, ecological quality ratio (EQR), corresponding Water Framework Directive (WFD) status and pollution gradient resulting from anthropogenic pressures (Feeley et al., 2020).

Q value Score	EQR	Pollution Gradient	WFD Ecological Status
Q5	1.0	Unpolluted	High
Q4-5	0.9	Unpolluted	High
Q4	0.8	Unpolluted	Good
Q3-4	0.7	Slightly Polluted	Moderate
Q3	0.6	Moderately Polluted	Poor
Q2-3	0.5	Moderately Polluted	Poor
Q2	0.4	Seriously Polluted	Bad
Q1-2	0.3	Seriously Polluted	Bad
Q1	0.2	Seriously Polluted	Bad

BMWP and ASPT

The Biological Monitoring Working Party (BMWP) index was designed to identify the degree of organic pollution based on the natural sensitivity of taxon to the pollution. Aquatic organisms

APEM

December 2021 Page 10

respond to chemical changes in water, in particular to the changes in dissolved oxygen concentrations. As pollution levels increase, the microbial oxygen demand rises, resulting in a decline in available oxygen concentrations. Many stream organisms require high dissolved oxygen concentration and are therefore not found in water bodies with lower oxygen concentrations. Macroinvertebrate families which are sensitive to pollution are assigned high BMWP scores, while pollution-tolerant taxa score low. In the BMWP system, benthic invertebrate taxa are assigned a score between 1 (tolerant to organic pollution) and 10 (intolerant to organic pollution). The BMWP score is the sum of the values for all families present in the sample. The number of BMWP-scoring families is typically recorded alongside the BMWP score, as is the Average Score Per Taxon (ASPT), which can be determined by dividing the BMWP score by the number of scoring taxa present. The BMWP score may vary significantly depending on whether the sampling process captures species found in some habitats but not in others. Standardisation of the BMWP score is therefore provided by the ASPT, with the average BMWP score per taxon allowing robust comparisons among sites.

WHPT and WHPT-ASPT

The Whalley Hawkes Paisley Trigg (WHPT) metric is used in the UK for monitoring, assessing and classifying rivers in accordance with the requirements of WFD based on assessing the ecological quality of the macroinvertebrates present when sampled. It is a revised version of the original BMWP index. Empirical data was used in the development of the WHPT index to assign abundance related sensitivity weights to taxa. The taxa included in the index are modified from those used for the BMWP index and a number of taxa were removed due to insufficient data; some additional families were included where sufficient data were available, and some existing BMWP composite taxa were split into their constituent families. The WHPT-ASPT values typically range from 1 (indicative of sites with high organic pollution and degradation) to 13 (indicative of sites with very low organic pollution and degradation). The WHPT-ASPT score standardises the WHPT score to an average per taxa to allow a robust comparison among sites.

In the UK, a WFD macroinvertebrate classification for a river site is generated by calculating the number of abundance weighted WHPT scoring families found during sampling (WHPT NTAXA), and the WHPT-ASPT, and comparing these values to the values that might be expected under undisturbed or reference conditions for that site. These undisturbed or reference scores are predicted by statistical models produced by the River Invertebrate Classification Tool (RICT) – as RICT predicts invertebrate communities at reference conditions. The observed values of WHPT ASPT and WHPT NTAXA are compared to the predicted values to generate an Environmental Quality Ratio (EQR). EQRs close to 1.0 indicate that invertebrate communities are close to their natural state. However, the RICT is only appropriate for use in the UK and is not used in Ireland.

Report: Site Investigation Report

Project: Residential (Apartments & Housing) Development,

Dalguise, 71 Monkstown Road, Monkstown,

Co. Dublin.

Client: Lulani Dalguise Limited

Project No. 1012 SHD Application

© Benchmark Property March 2020

Contact Information: -

Benchmark Property Consultancy Limited

2 Lansdowne Terrace Shelbourne Road Ballsbridge Dublin 4 D04 TD90

Tel No. 01-2349600

Email: info@benchmarkproperty.ie

Document Information: -

Proposed Residential (Apartment & Housing)) Development Dalguise House Site Monkstown Road, Monkstown Co. Dublin

Project No: - 1012

Document Title: - Site Investigation Report

Document History: -

ISSUE	DATE	DESCRIPTION	ORIG	PM	ISSUE CHECK
P	Nov 2019	Issued for Pre-app submission	SD	JON	
PB	March 2020	SHD Application	SD	SCD	是一个世份的皇后

Contents

1.0	Ground Investigation Ireland Limited- Ground Investigation Report
2.0	Hydrocare Environmental Limited - Infiltration Rate Testing Report

1.0 Ground Investigation Ireland Limited- Ground Investigation Report

Sean Drudy

From:

Fergal McNamara < FMcnamara@gii.ie>

Sent:

16 August 2019 11:03

To:

Sean Drudy

Cc:

Steve McLaughlin; Conor Finnerty

Subject:

RE: 81A Monkstown Road

Sean,

There was a lot of FILL on the site with CLAY underneath, WRAP level 4.

Kind Regards, Fergal Mc Namara, Director, Ground Investigations Ireland Ltd. Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin

Tel: 01-601 5175 / 6 DD: 01-9015042 Mob: 087 0521950 Email: fmcnamara@gii.ie

----Original Message-----

From: Sean Drudy [mailto:Sean.Drudy@benchmarkproperty.ie]

Sent: 16 August 2019 07:39

To: Fergal McNamara <FMcnamara@gii.ie>

Cc: Steve McLaughlin <SMcLaughlin@gii.ie>; Conor Finnerty <CFinnerty@gii.ie>

Subject: 81A Monkstown Road

Gents

Can you revert with an indicative WRAP level for soils at above

Need value for Suds calculations and to satisfy query from Dun Laoghaire Rathdown County Council

Sean Drudy

Benchmark Property Consultancy

Sent from my iPhone

Ground Investigations Ireland Ltd
Catherinestown House,
Hazelhatch Road,
Newcastle, Co Dublin.
Tel: 01 601 5175 / 5176 | Fax: 01 601 5173
Email: info@gii.ie | Web: gii.ie

Ground Investigations Ireland

Dalguise, Monkstown

Ground Investigation Report

DOCUMENT CONTROL SHEET

Project Title	Dalguise, Monkstown
Client	Benchmark Properties
Project No	8005-08-18
Document Title	Ground Investigation Report

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
Α	Final	S. Connolly	A. McDonnell	A. McDonnell	Dublin	13 September 2018

Ground Investigations Ireland Ltd.,
Catherinestown House,
Hazelhatch Road,
Newcastle, Co Dublin.
Tel: 01 601 5175 / 5176 | Fax: 01 601 5173
Email: info@gii.ie | Web: gii.ie

GROUNDWATER MONITORING

Dalguise Development Monkstown

-
_

Ground Investigations Ireland Ltc´
Catherinestown House,
Hazelhatch Road,
Newcastle, Co Dublin.
Tel: 01 601 5175 / 5176 | Fax: 01 601 5173
Email: info@gii.ie | Web: gii.ie

CONTENTS

1.0	Preamble	3
2.0	Overview	3
2.1.	Background	3
2.2.	Purpose and Scope	3
3.0	Subsurface Exploration	3
3.1.	General	3
3.2.	Soakaway Testing	4
3.3.	Cable Percussion Boreholes	4
3.4.	Groundwater Monitoring Installations	4
4.0	Ground Conditions	5
4.1.	General	5
4.2.	Groundwater	5
5.0	Recommendations & Conclusions	6
5.1.	General	6
5.2.	Foundations	6
5.3.	Excavations	6
5.4.	Soakaway Design	6

APPENDICES

Appendix 1 Site Location Plan
Appendix 2 Soakaway Records

Appendix 3 Cable Percussion Borehole Records

1.0 Preamble

On the instructions of Benchmark Properties, a site investigation was carried out by Ground Investigations Ireland Ltd., between August and September 2018 at the site of the proposed residential development in Monkstown, Dublin 18.

2.0 Overview

2.1. Background

It is proposed to construct a new residential development with associated services, access roads and car parking at the proposed site. The site is currently occupied by a large residential building and is situated in on the Monkstown Road, Monkstown, Dublin 18. The proposed construction is envisaged to consist of conventional foundations and pavement make up with some local excavations for services and plant.

2.2. Purpose and Scope

The purpose of the site investigation was to investigate subsurface conditions utilising a variety of investigative methods in accordance with the project specification. The scope of the work undertaken for this project included the following:

- Visit project site to observe existing conditions
- Carry out 7 No. Soakaways to determine a soil infiltration value to BRE digest 365
- Carry out 4 No. Cable Percussion boreholes to a maximum depth of 6.00m BGL
- Installation of 1 No. Groundwater monitoring well
- · Report with recommendations

3.0 Subsurface Exploration

3.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling and insitu testing was undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation and drilling.

The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground Investigation and testing (ISEN 1997 – 2:2007) and B.S. 5930:2015.

3.2. Soakaway Testing

The soakaway testing was carried out in selected trial pits at the locations shown in the exploratory hole location plan in Appendix 1. These pits were carefully excavated and filled with water to assess the infiltration characteristics of the proposed site. The pits were allowed to drain and the drop in water level was recorded over time as required by BRE Digest 365. The pits were logged prior to completing the soakaway test and were backfilled with arising's upon completion. The soakaway test results are provided in Appendix 2 of this Report.

3.3. Cable Percussion Boreholes

The Cable Percussion Boreholes were drilled using a Dando 2000 drilling rig with regular in-situ testing and sampling undertaken to facilitate the production of geotechnical logs and laboratory testing.

The standard method of boring in soil for site investigation is known as the Cable Percussion method. It consists of using a Shell in non cohesive soils and a clay cutter in cohesive soils, both operated on a wire cable. Very hard soils, boulders and other hard obstructions are broken up by chiselling and the fragments removed with the Shell. Where ground conditions made it necessary, the borehole was lined with 200mm diameter steel casing. While the use of the Cable Percussion method of boring gives the maximum data on soil conditions, some mixing of laminated soil is inevitable. For this reason, thin lenses of granular material may not be noticed. Disturbed samples were taken from the boring tools at suitable depths, so that there is a representative sample at the top of each change in stratum and thereafter at regular intervals down the borehole until the next stratum was encountered. The disturbed samples were then sealed and sent to the laboratory where they were visually examined to confirm the description of the relevant strata. Standard Penetration Tests were carried out in the boreholes. The results of these tests, together with the depths at which the tests were taken are shown on the accompanying borehole records. The test consists of a thick wall sampler tube, 50mm external diameter, being driven into the soil by a monkey weighing 63.5kg and with a free drop of 760mm. For gravels and glacial till the driving shoe was replaced by a solid 60° cone. The Standard Penetration Test number referred to as the 'N' value is the number of blows required to drive the tube 300mm, after an initial penetration of 150mm. The number gives a guide to the consistency of the soil and can also be used to estimate the relative strength/density at the depth of the test and also to estimate the bearing capacity and compressibility of the soil. The cable percussion borehole logs are provided in Appendix 3 of this Report.

3.4. Groundwater Monitoring Installations

A Groundwater Monitoring Installation was installed upon the completion of a borehole to enable sampling and the determination of the equilibrium groundwater level. The typical groundwater monitoring installation consists of a 50mm HDPE slotted pipe with a pea gravel response zone and bentonite seal installed to the Engineers specification. Where required the standpipe is sealed with a gas tap and finished with a durable

steel cover fixed in place with a concrete surround. The installation details are provided on the exploratory hole logs in the appendices of this Report.

4.0 Ground Conditions

4.1. General

The ground conditions encountered during the investigation are summarised below with reference to insitu and laboratory test results. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report.

The sequence of strata encountered were consistent across the site and are generally comprised;

- Topsoil/Surfacing
- Made Ground
- Cohesive Deposits

TOPSOIL: Topsoil was encountered in all the exploratory holes and was present to a maximum depth of 0.30m BGL. Tarmac surfacing was present in BH03 only, to a depth of 0.10m BGL.

MADE GROUND: Made Ground deposits were encountered beneath the Surfacing in BH03, and was present to a depth of 0,30m BGL. These deposits were described generally as grey angular Gravel Fill.

COHESIVE DEPOSITS: Cohesive deposits were encountered beneath the Topsoil or Made Ground Deposits and were described typically as brown/light brown slightly sandy gravelly CLAY with occasional cobbles overlying a stiff brown/grey slightly sandy gravelly CLAY with many cobbles. The secondary sand and gravel constituents varied across the site and with depth, with granular lenses occasionally present in the glacial till matrix. The strength of the cohesive deposits typically increased with depth and was firm to stiff or stiff below 1.00m BGL in the majority of the exploratory holes. These deposits had occasional or many cobble and boulder content where noted on the exploratory hole logs.

4.2. Groundwater

Groundwater strikes are noted on the exploratory hole logs where they occurred and where possible drilling was suspended for twenty minutes to allow the subsequent rise in groundwater to be recorded. We would point out that these exploratory holes did not remain open for sufficiently long periods of time to establish the hydrogeological regime and groundwater levels would be expected to vary with the tide, time of year, rainfall, nearby construction and other factors. For this reason, a standpipe was installed in BH01 to allow the equilibrium groundwater level to be determined.

5.0 Recommendations & Conclusions

5.1. General

The recommendations given and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between exploratory hole locations, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for conditions which have not been revealed by the exploratory holes. Limited information has been provided at the ground investigation stage and any designs based on the recommendations or conclusions should be completed in accordance with the current design codes, taking into account the variation and the specific details contained within the exploratory hole logs.

5.2. Foundations

An allowable bearing capacity of 125 kN/m² is recommended for conventional strip or pad foundations on the firm to stiff or stiff cohesive deposits at a depth of 1.00m BGL. Where the cohesive deposits are deeper, such as at the location of BH01, lean mix trench fill to a depth of 2.80m BGL is recommended to achieve the recommended allowable bearing capacity. Given the shallow refusal at this location, it would be prudent to carry out rotary coring to fully identify the bearing stratum.

A ground bearing floor slab is recommended to be based on the firm to stiff or stiff cohesive deposits with an appropriate depth of compacted hardcore specified by the consulting engineer and in accordance with the limits and guidelines in SR21:2014+A1:2016 and/or NRA SRW CL808 Type E granular stone fill.

5.3. Excavations

Excavations in the Made Ground or soft Cohesive Deposits will require to be appropriately battered or the sides supported due to the low strength of these deposits.

Short term temporary excavations in the cohesive deposits will remain stable for a limited time only and will require to be appropriately battered or the sides supported if the excavation is below 1.25m BGL or is required to permit man entry.

Any material to be removed off site should be disposed of to a suitably licenced landfill.

5.4. Soakaway Design

Infiltration rates of 2.235×10^{-6} and 1.977×10^{-6} m/s respectively were calculated for the soakaway locations SA02 and SA03. At the locations of SA01, SA04, SA05, SA06 and SA07 the water level dropped too slowly to allow calculation of 'f' the soil infiltration rate. These locations are therefore not recommended as suitable for soakaway design and construction.

The recommendations provided in this report should be verified in the design of the proposed buildings, using the full details of the loading conditions and taking into consideration the allowable tolerable settlements/movements that the building can accommodate. The founding strata should be inspected and verified by a suitably qualified engineer prior to construction of the building foundations.

APPENDIX 1 - Site Location Plan

Site Location Plan - Dalguise, Monkstown

APPENDIX 2 - Soakaway Records

GROUND	Grou	nd Inve	estigations l	reland	Ltd	Site Dalguise, Monkstown		Trial Pit Number SA01
Machine : 3 Method : T	3,5T Tracked Excavaor	Dimension L x W x D 2.20 x 0.50	s	Ground	Level (mOD)	Client Benchmark Properties		Job Number 8005-08-18
method		Location	J X 1,00m	Dates 30	0/08/2018	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend s
					(0.20)	TOPSOIL with roots		
					0.20	Firm to stiff light brown/bro with occasional sub-angula	wn slightly sandy gravelly CLA\ ar to sub-rounded cobbles	\$ 50 \$
0.50	В				(0.70)			9 9 9 9 9 9
					0,90	Stiff brown/grey slightly sa sub-angular cobbles	ndy gravelly CLAY with many	\$ 50 0 \$ 50 0
					(0.70)			6 0 0 0 0 0 6 0 0
					1.60	Complete at 1.60m		6. nd.
					E			
							\$	
Plan .						Remarks		
						Trial pit stable No groundwater encountere Soakaway completed in trial Trial pit backfilled upon com	d pit pletion	
		٠						
					. ,			
						Scale (approx)		gure No.
						1:25	S. Connolly 80	005-08-18.SA01

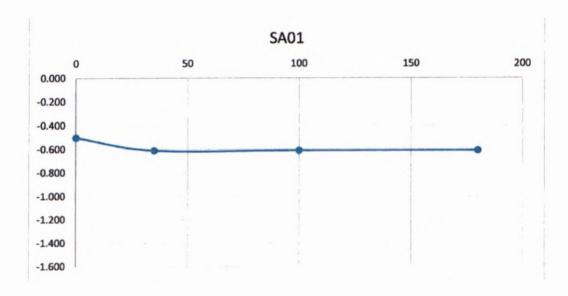
GROUND	Ground Investigations Ireland Ltd						Site Trial Pi Numbe SA02	
Machine :	3.5T Tracked Excavaor	Dimension L x W x D	s	Ground	Level (mOD)	Client Benchmark Properties		Job Number 8005-08-18
mediou .		1.50 x 0.50 Location	J X 1.90m	Dates 30	0/08/2018	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	c	escription	Legend Ste
0.50	В	4			(0.30) - (0.30) - (1.20) - (1.20) - (0.40) - (0.40)	Soft to firm brown slightly with occasional sub-angular sub-angular cobbles Complete at 1.90m	sandy slightly gravelly silty CLA ar to sub-rounded cobbles avelly CLAY with many	
Plan .						Trial nit stable	d lat	
						No groundwater encountere Soakaway completed in tria Trial pit backfilled upon com	pletion	
		•						
					. s	icale (approx)		gure No. 005-08-18.SA02

GROUND	Grou	nd Inve	estigations I	reland	Ltd	Site Dalguise, Monkstown		Trial Pit Number SA03
Machine: 3 Method: 7	55T Tracked Excavaor Frial Pit	Dimension LxWxD		Ground	Level (mOD)	Client Benchmark Properties		Job Number 8005-08-1
		Location		Dates 30	0/08/2018	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	C	escription	Legend
0.60	В				(0.30) - (0.70) - (0.70) - (0.80) - (0.80)		own slightly sandy slightly gravengular to sub-rounded cobbles	X 0
Plan .						Remarks Trial pit stable		
						Trial pit stable No groundwater encountere Soakaway completed in tria Trial pit backfilled upon com	d pit pletion	
		•				Scale (approx)		gure No. 005-08-18.SA03

GROUND	Ground Investigations Ireland Ltd					Site Dalguise, Monkstown		Trial Pit Number SA04
Machine :	3,5T Tracked Excavaor	Dimension L x W x D		Ground	Level (mOD)	Client Benchmark Properties		Job Number 8005-08-18
Method :	inai Pit	2.20 x 0.5 Location	0 x 1.50m	Dates 04	1/09/2018	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	: 1	Description	Legend k
0.50	В				(0.20)	TOPSOIL Firm light brown/brown succasional sub-angular of	andy slightly gravelly CLAY w obbles	ith &
					(0.70)	Stiff light brown/brown sa occasional sub-angular c	ndy slightly gravelly CLAY wi obbles	th
Plan					1.50	Complete at 1.50m		
Plan .						temarks Trial pit stable No groundwater encountere Soakaway completed in tria Trial pit backfilled upon com	ed I pit	
						Trial pit backfilled upon com	pletion	
					. s	cale (approx)		Figure No.
						1:25	S. Connolly	8005-08-18.SA04

GROUND	Grou	nd Inve	estigations I	reland	Ltd	Site Dalguise, Monkstown		Trial Pit Number SA05
E	.5T Tracked excavaor	Dimension L x W x D	ıs	Ground	Level (mOD)	Client Benchmark Properties		Job Number 8005-08-18
Method : T	rial Pit	2.30 x 0.5	0 x 1.50m	Dates		Fundament		
		Location		Dates 04	1/09/2018	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	C	Description	Legend by A
0.50	В				(0.20) - 0.20	TOPSOIL with roots Stiff brown sandy gravelly cobbles	CLAY with many sub-angule	ar 6 0 2 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
					(1.30)			
					1.50	Complete at 1.50m		
Plan .						Remarks Trial pit stable No groundwater encountere Soakaway completed in trial Trial pit backfilled upon com	ed I pit pletion	
					. s	icale (approx)	Logged By S. Connolly	Figure No. 8005-08-18.SA05

GROUND	Grou	ınd Inv	estigations I	reland	Ltd	Site Dalguise, Monkstown		Trial Pit Number SA06
Machine :	3.5T Tracked Excavaor	Dimension L x W x D	ns	Ground	Level (mOD)	Client Benchmark Properties		Job Number 8005-08-18
Metriou .	mar k	1.40 x 0.5 Location	0 x 1,90m	Dates 04	1/09/2018	Engineer		Sheet
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)		Description	Legend to the M
1.50	В				(0.20) 0.20 0.20 1.30 1.30		y gravelly CLAY with occasional	
Plan					R	emarks		
						rial pit stable lo groundwater encounter coakaway completed in tri rial pit backfilled upon cor	red	
					. 5	rial pit backfilled upon cor	al pit npletion	
					Sc	ale (approx)		jure No. 05-08-18.SA06

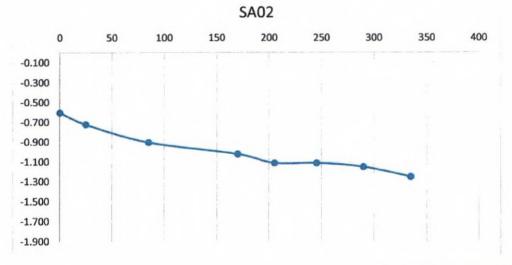

GROUND	Grou	ing investigations freland Ltd			Nun		Trial Pit Number SA07	r	
Machine : 3	8,5T Tracked Excavaor	Dimension L x W x D 2.10 x 0.50	s	Ground	Level (mOD)	Client Benchmark Properties		Job Number 8005-08-1	
		Location	7 X 1.30III	Dates ₀₄	4/09/2018	Engineer		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	r	Description (Legend	Water
1.50	В				(0.20)	TOPSOIL with fragments Stiff light brown/brown satisful and sub-angular cobbles Complete at 1.50m	of brick and glass		
Plan .					. F	Remarks			-
						Trial pit stable No groundwater encountere Soakaway completed in tria Trial pit backfilled upon com	d pit		
						Trial pit backfilled upon com	pletion		
					s	cale (approx)	Logged By	Figure No.	7
						1:25	S. Connolly	8005-08-18.SA07	

SA01 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.20m x 0.50m x 1.60m (L x W x D)

Date	Time	Water level (m bgl)
30/08/2018	0	-0.500
30/08/2018	35	-0.610
30/08/2018	100	-0.610
30/08/2018	180	-0.610

*Soakaway failed - Pit backfilled

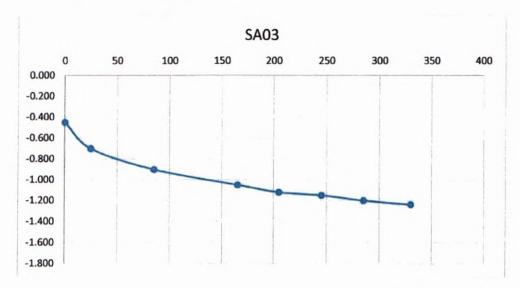
Start depth	Depth of Pit	Diff	75% full	25%full
0.50	1.600	1.100	0.775	1.325



SA02 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.50m x 0.50m x 1.90m (L x W x D)

Date	Time	Water level (m bgl)		
30/08/2018	0	-0.600		
30/08/2018	25	-0.720		
30/08/2018	85	-0.900		
30/08/2018	170	-1.020		
30/08/2018	205	-1.110		
30/08/2018	245	-1.110		
30/08/2018	290	-1.150		
30/08/2018	335	-1.250		

Start depth 0.60	Depth of Pit 1.900		Diff 1.300	75% full 0.925	25%full 1.575
Length of pit (m)) Width of pit (m) 0.500			75-25Ht (m) 0.650	Vp75-25 (m3) 0.49
Tp75-25 (from g	raph) (s)	65100		50% Eff Depth	ap50 (m2)
f =	2.235E-06	m/s		0.650	3.35

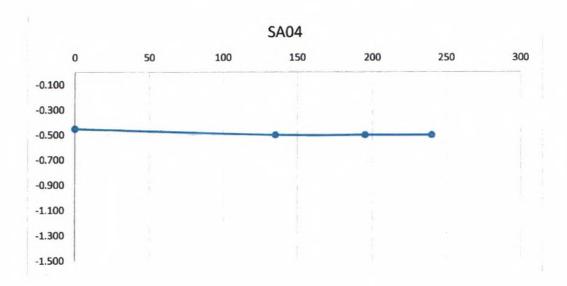


Ground Investigations Ireland

SA03 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.90m x 0.50m x 1.80m (L x W x D)

Date	Time	Water leve (m bgl)
30/08/2018	0	-0.450
30/08/2018	25	-0.700
30/08/2018	85	-0.900
30/08/2018	165	-1.050
30/08/2018	205	-1.120
30/08/2018	245	-1.150
30/08/2018	285	-1.200
30/08/2018	330	-1.240

Start depth 0.45	Depth of Pit 1.800		Diff 1.350	75% full 0.7875	25%full 1.4625
Length of pit (m) Width of pit (m)				75-25Ht (m)	Vp75-25 (m3)
1.900	0.500			0.675	0.64
Tp75-25 (from graph) (s)		77400		50% Eff Depth 0.675	ap50 (m2) 4.19
f =	1.977E-06	m/s			

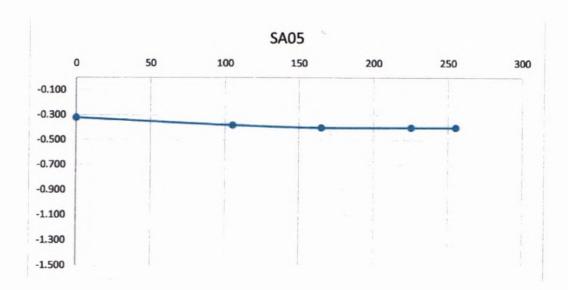


Ground Investigations Ireland

SA04 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.20m x 0.50m x 1.50m (L x W x D)

Date	Time	Water level (m bgl)			
04/09/2018	0	-0.450			
04/09/2018	135	-0.500			
04/09/2018	195	-0.500			
04/09/2018	240	-0.500			

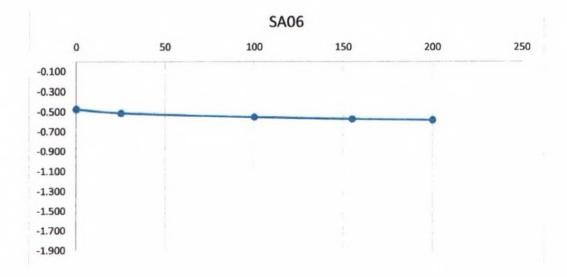
Start depth	Depth of Pit	Diff	75% full	25%full
0.50	1.500	1.000	0.75	1.25



SA05 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.30m x 0.50m x 1.50m (L x W x D)

Date	Time	Water level (m bgl)			
04/09/2018	0	-0.320			
04/09/2018	105	-0.380			
04/09/2018	165	-0.400			
04/09/2018	225	-0.400			
04/09/2018	255	-0.400			
04/09/2018 04/09/2018 04/09/2018	105 165 225	-0.380 -0.400 -0.400			

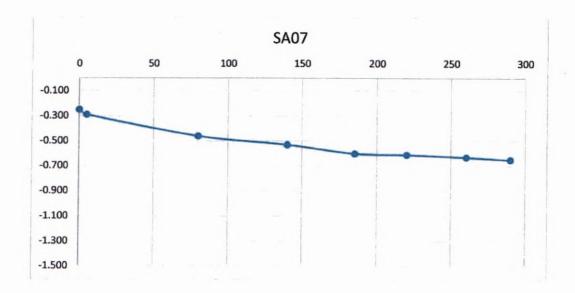
Start depth	Depth of Pit	Diff	75% full	25%full
0.32	1.500	1.180	0.615	1.205



SA06 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.40m x 0.50m x 1.90m (L x W x D)

Date	Time	Water level (m bgl)
04/09/2018	0	-0.470
04/09/2018	25	-0.510
04/09/2018	100	-0.550
04/09/2018	155	-0.570
04/09/2018	200	-0.580

Start depth	Depth of Pit	Diff	75% full	25%full
0.47	1.900	1.430	0.8275	1.5425



SA07 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.10m x 0.50m x 1.50m (L x W x D)

Date	Time	Water level (m bgl)			
04/09/2018	0	-0.250			
04/09/2018	5	-0.290			
04/09/2018	80	-0.460			
04/09/2018	140	-0.530			
04/09/2018	185	-0.600			
04/09/2018	220	-0.610			
04/09/2018	260	-0.630			
04/09/2018	290	-0.650			

Start depth	Depth of Pit	Diff	75% full	25%full
0.25	1.500	1.250	0.5625	1.1875

Dalguise Development, Monkstown - Soakaway Photos

SA01

SA01

SA02

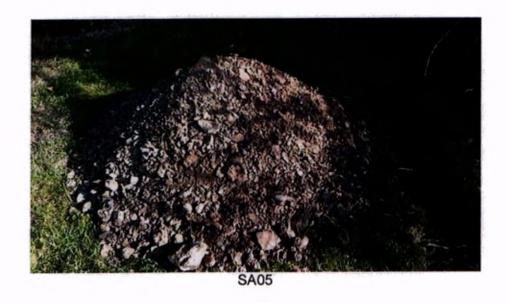
SA02

SA02

SA03

SA03

SA04


SA04

SA06

SA07

SA07

SA07

SA07

APPENDIX 3 - Cable Percussion Borehole Records

Location Dates Sheet 1/1	GROUND	Grou	nd In	vesti	gations Ire w.gii.ie	land	Ltd	Site Dalguise, Monkstown		N	orehole umber 3H01
Digital Digi			Casing	Diamete	r	Ground	Level (mOD)			N	
Remarks Sinched pipe Installed from 2.00-1.00mBGL with gravel surround. Plain pipe Installed from 2.00-1.00mBGL with proved surround. Plain pipe Installed from 2.00-1.00mBGL with proved surround. Plain pipe Installed from 2.00-1.00mBGL with gravel surround. Plain pipe Installed from 1.00mBGL to ground level with bentonite seat. Content of the con			Locatio	n		Dates 30	0/08/2018	Engineer		SI	
Soft to firm brown slightly sandy gravelly CLAV with nonzero stage of the stage of	Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
	1.00-1.45 1.00 1.50 2.00-2.45 2.00 2.90-3.09 2.90	SPT(C) N=8 B SPT(C) N=5 B SPT(C) 50/40 B	.00mBGL	with grav	2,2/2,1,1,1 Water strike(1) at 2,40m, rose to 2,10m in 20 mins. 25/50		1.40 (0.80) 2.20 (0.80) 2.90	Soft to firm brown slightly sandy gravelly CLAY with occasional sub-angular cobbles Soft brown slightly sandy gravelly CLAY with many angular cobbles Soft to firm brown slightly sandy gravelly silty CLAY with many angular cobbles and rare boulder OBSTRUCTION: Presumed rock or boulder Complete at 2.90m		▼1 ∇1	ogged ov
Figure No. 8005-08-18.BH01	Chiselling fro	m 2.80m to 2.90m fo	or 1 hour.	mu grav	or surround. Fram pip	o i i diano		g out to of this outlante deal.	1:50 Figure N	S. C	Connolly

Ground Investigations Irela						Ltd	Site Dalguise, Monkstown	Borehole Number BH02	
Machine : Dando 2000 Method : Cable Percussion		Casing Diameter			Ground	Level (mOD)	Client Benchmark Properties	Job Number 8005-08-18	
		Locatio	n		Dates 30	/08/2018	Engineer	Sheet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend h	
0.50 1.00-1.45 1.00 1.50 2.00-2.45 2.00 3.00-3.45 3.00 4.00-4.18	B SPT(C) N=22 B SPT(C) N=22 B SPT(C) N=30 B	(m)		2,2/4,5,5,8 2,4/4,4,7,7 1,3/6,5,8,11 Water strike(1) at 3,70m, rose to 2,70m in 20 mins. 25/50		(0.20)	TOPSOIL Stiff brown slightly sandy gravelly CLAY with occasional sub-angular cobbles Stiff dark grey/black slightly sandy gravelly CLAY with many angular cobbles and rare boulders OBSTRUCTION: Presumed rock or boulder Complete at 4.00m		
Remarks Borehole ba Chiselling fro	ckfilled upon comple om 3.70m to 4,00m fe	tion or 1 hour.					Scale (approx 1:50 Figure 8005-	S. Connolly	

GROUND	Grou	nd In	vesti	igations Ire	eland	Ltd	Site Dalguise, Monkstown	Borehole Number BH03
Machine : D Method : C	ando 2000 able Percussion	Casing	Diamete	r	Ground	Level (mOD)	Client Benchmark Properties	Job Number 8005-08-18
		Locatio	n		Dates 03	3/09/2018	Engineer	Sheet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend \$
0.50 1.00-1.45 1.00 1.50 2.00-2.45 2.00 3.00-3.29 3.00 4.00-4.20 4.00 5.00-5.19 5.00	B SPT(C) N=27 B SPT(C) N=40 SPT(C) 50/140 SPT(C) 50/50 B SPT(C) 50/40 B			2,4/5,5,6,11 1,5/8,8,10,14 3,7/18,32 25/50		0.10 (0.30) (2.90) 3.20 (2.80)	TARMACADAM MADE GROUND: Grey angular Gravel Fill Stiff brown slightly sandy gravelly CLAY with occasional sub-angular cobbles Stiff dark brown/purple slightly sandy slightly gravelly silty CLAY Complete at 6.00m	
Remarks Borehole back	kfilled upon complet	ion				'	Scale (approx) 1:50 Figure	S. Connolly

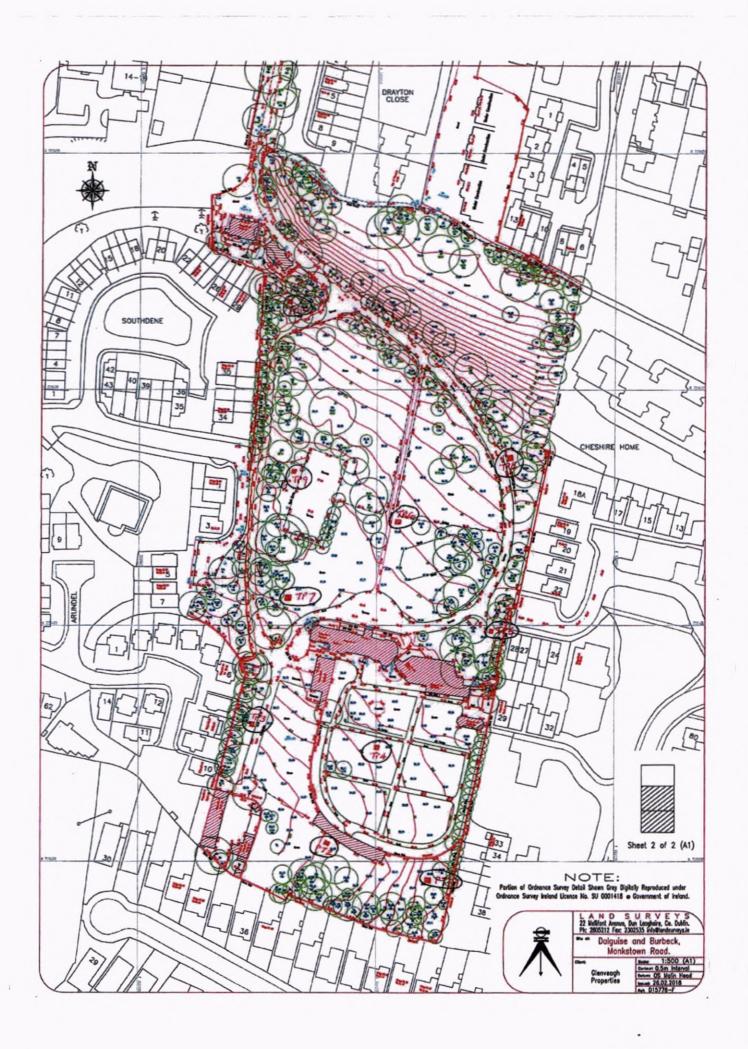
Ground Investigations Irel						Ltd	Site Dalguise, Monkstown		Borehole Number BH04
Machine : Dando 2000 Method : Cable Percussion					Ground	Level (mOD)	Client Benchmark Properties		Job Number 8005-08-18
		Locatio	n		Dates 0	3/09/2018	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend X
0.50 1.00-1.33 1.00 1.50 2.00-2.20 2.00	B SPT(C) 50/180 B SPT(C) 50/50 B ckfilled upon comple	ation		4,7/9,15,26		1.20 1.40 0.70 2.00	TOPSOIL Stiff brown slightly sandy gravelly CLAY with occasion sub-angular cobbles Stiff dark brown/purple sandy slightly gravelly silty CL OBSTRUCTION: Presumed rock or boulder Complete at 2.30m		
Chiselling fro	ckfilled upon comple om 2.10m to 2.30m f	or 1 hour.							S. Connolly
								Figure No 8005-08	o. -18.BH04

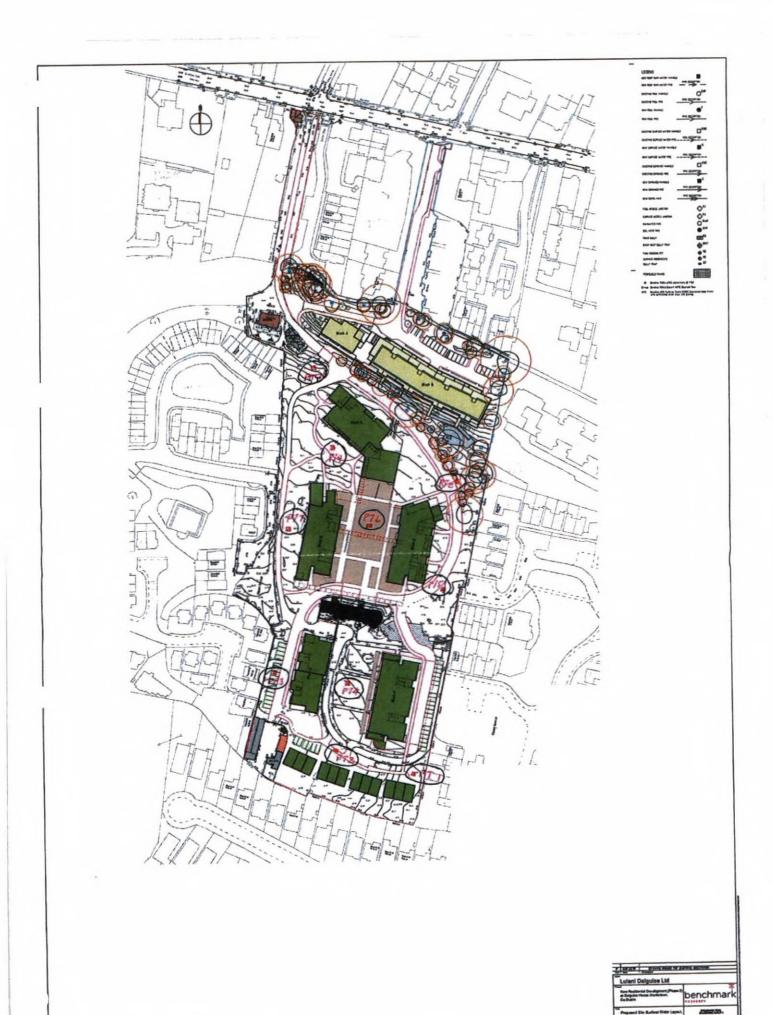
2.0 Hydrocare Environmental Limited - Infiltration Rate Testing Report

INFILTRATION RATE TESTING

Per

BRE Digest 365 TEST METHOD


Applicant: Lulani Dalguise Limited


Site Location: 71 Monkstown Rd, Monkstown, Co. Dublin

DATE OF REPORT: 29th May 2019

Prepared by

Environmental Consultants Cooperhill Rd., Beamore, Drogheda, Co. Meath

Tel: 0419842378

Email: info@hydrocareenvironmental.ie

HCE Ref: 19-221

Brenchmark Property 2 Lansdowne Terrace Shelbourne Road Ballsbridge Dublin 4

29th May 2019

FAO: Sean Drudy, Engineer

Applicant: Lulani Dalguise Limited

Site Location: 71 Monkstown Rd, Monkstown, Co. Dublin

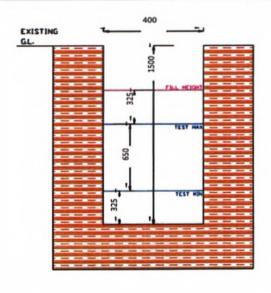
Infiltration testing was carried out on 23rd May 2019 at the above location per BRE digest 365 method. Results of testing are summarised below for your information.

Test Hole No.	Depth of Hole [mBGL]	Water Table Level [mBGL] (N/A if not encounterd)	Bedrock Level [mBGL] (N/A if not encounterd)	Infiltration Rate [m/s]
1	1.50	n/a	n/a	9.53E-06
2	1.45	n/a	n/a	2.38E-06
3	1.50	n/a	n/a	6.36E-06
5	1.40	n/a	n/a	3.32E-06
7	1.50	n/a	n/a	2.72E-06
8	1.50	n/a	n/a	5.45E-06
9	1.50	n/a	n/a	3.18E-06
10	1.40	n/a	n/a	2.93E-06

Further information relating to specific test details are appended herewith for your information.

Yours sincerely,

Daniel Nolan, BA BAI, Msc Environmental Engineering, FETAC Site Assessor, MIEI


CLIENT: Lulani Dalguise Limited

LOCATION: 71 Monkstown Rd, Monkstown, Co. Dublin

TEST HOLE NO.: 1

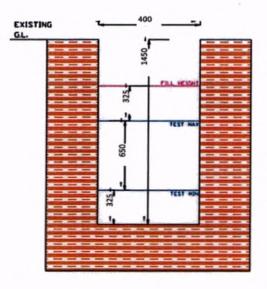
Infiltration Rate					
Test Hole Information:		V _{p75-25} =	1 x 0.4 x (0.975 - 0.325)	=	0.26 m ³
Length [m]	1.00	A _{pSO} =	(1x0.65x2)+ (0.4x0.65x2)+ (1x0.4)	=	2.22 m ²
Width [m]	0.40				
Depth of hole [m]	1.50		0.26	_ =	9.53E-06 m/
Water filled to [mBGL]	0.20	,	2.22 x 204.724409448819 x 60		3.332-00 1117
Water Table [mBGL]	n/a				
Base of Test [mBGL]	1.50				
Bedrock [mBGL]	n/a				
Drop Time [min]	205				
Note: Base of test is bottom of test hole unle	ess water table is en	countered			

BRE 365 TEST HOLE

Date:

23rd May 2019

Client:


Lulani Dalguise Limited

Location:

CLIENT:	Lulani Dalguise Limited	
LOCATION:	71 Monkstown Rd, Monkstown, Co. Dublin	
TEST HOLE NO.:	2	

						3
est Hole Information:		V _{p75-25} =	1 x 0.4 x (0.975 - 0.325)	=	0.26	m
Length [m]	1.00	A _{p50} =	(1×0.65×2)+ (0.4×0.65×2)+ (1×0.4)	=	2.22	m²
Width [m]	0.40					
Depth of hole [m]	1.45	f = -	0.26		2.38E-06	m/
Water filled to [mBGL]	0.15	, -	2.22 x 818.897637795276 x 60	_	2.301-00	****/
Water Table [mBGL]	n/a					
Base of Test [mBGL]	1.45					
Bedrock [mBGL]	n/a					
Drop Time [min]	819					

BRE 365 TEST HOLE

Date:

23rd May 2019

Client:

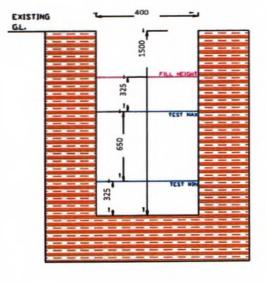
Lulani Dalguise Limited

Location:

CLIENT:

Lulani Dalguise Limited

LOCATION:


71 Monkstown Rd, Monkstown, Co. Dublin

TEST HOLE NO .:

3

Infiltration Rate						
est Hole Information:	30.3	V _{p75-25} =	1 x 0.4 x (0.975 - 0.325)	=	0.26	m³
Length [m]	1.00	A _{p50} =	(1 x 0.65 x 2) + (0.4 x 0.65 x 2) + (1 x 0.4)	=	2.22	m²
Width (m)	0.40		0.26			
Depth of hole [m]	1.50	f = -	2.22 x 307.086614173228 x 60	- =	6.36E-06	m
Water filled to [mBGL]	0.20		2.22 x 307.080014173228 x 00			
Water Table [mBGL]	n/a					
Base of Test [mBGL]	1.50					
Bedrock [mBGL]	n/a					
Drop Time [min]	307					

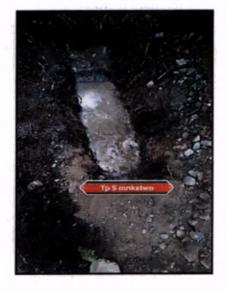
BRE 365 TEST HOLE

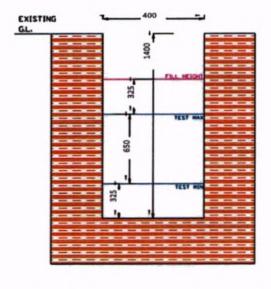
Date:

23rd May 2019

Client:

Lulani Dalguise Limited


Location:


CLIENT: Lulani Dalguise Limited

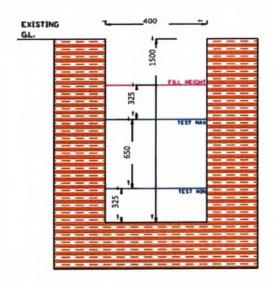
LOCATION: 71 Monkstown Rd, Monkstown, Co. Dublin

TEST HOLE NO.: 5

Infiltration Rate					
est Hole Information:		V _{p75-25} =	1 x 0.4 x (0.975 - 0.325)	=	0.26 m ³
Length [m]	1.00	A _{p50} =	(1x0.65x2)+ (0.4x0.65x2)+ (1x0.4)	=	2.22 m ²
Width (m) Depth of hole [m]	1.40	f = -	0.26	_ =	3.32E-06 m/
Water filled to [mBGL] Water Table [mBGL]	0.10 n/a	, -	2.22 x 588.582677165354 x 60		3.322.00
Base of Test [mBGL] Bedrock [mBGL]	1.40 n/a				
Drop Time [min]	589				

BRE 365 TEST HOLE

Date: 23rd May 2019


Client: Lulani Dalguise Limited

Location: 71 Monkstown Rd, Monkstown, Co. Dublin

CLIENT:	Lulani Dalguise Limited
LOCATION:	71 Monkstown Rd, Monkstown, Co. Dublin
TEST HOLE NO.:	7

Infiltration Rate					
est Hole Information:		V _{p75-25} =	1 x 0.4 x (0.975 - 0.325)	=	0.26 m ³
Length (m)	1.00	A _{p50} =	(1x0.65x2)+ (0.4x0.65x2)+ (1x0.4)	=	2.22 m ²
Width [m]	0.40				
Depth of hole [m]	1.50	f	0.26	_ =	2.72E-06 m/
Water filled to [mBGL]	0.20	, -	2.22 x 716.535433070866 x 60	_	2.722 00 111
Water Table [mBGL]	n/a				
Base of Test [mBGL]	1.50				
Bedrock [mBGL]	n/a				
Drop Time [min]	717				

BRE 365 TEST HOLE

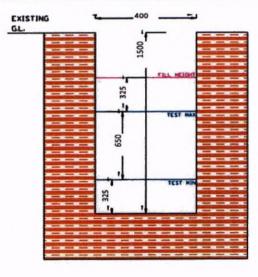
Date:

23rd May 2019

Client:

Lulani Dalguise Limited

Location:


CLIENT: Lulani Dalguise Limited

LOCATION: 71 Monkstown Rd, Monkstown, Co. Dublin

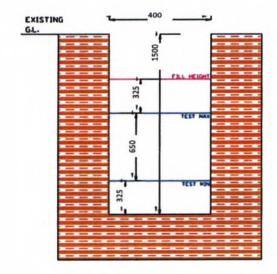
TEST HOLE NO.: 8

2.42					
st Hole Information:	1013	V _{p75-25} =	1 x 0.4 x (0.975 - 0.325)	=	0.26 m ³
Length [m]	1.00	A _{p50} =	(1×0.65×2)+ (0.4×0.65×2)+ (1×0.4)	=	2.22 m ²
Width [m]	0.40				
Depth of hole [m]	1.50	f	0.26	_ =	5.45E-06 m
Water filled to [mBGL]	0.20	, -	2.22 x 358.267716535433 x 60		5.452 00 111
Water Table [mBGL]	n/a				
Base of Test [mBGL]	1.50				
Bedrock [mBGL]	n/a				
Drop Time [min]	358				

BRE 365 TEST HOLE

Date:

23rd May 2019


Client:

Lulani Dalguise Limited

Location:

CLIENT:	Lulani Dalguise Limited
LOCATION:	71 Monkstown Rd, Monkstown, Co. Dublin
TEST HOLE NO.:	9

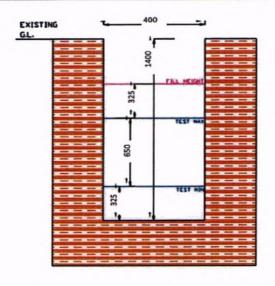
est Hole Information:	200	V _{p75-25} =	1 x 0.4 x (0.975 - 0.325)	=	0.26	m ³
	11.60	p/3-23				
Length (m)	1.00	$A_{p50} =$	(1×0.65×2)+ (0.4×0.65×2)+ (1×0.4)	=	2.22	m ²
Width [m]	0.40					
Depth of hole [m]	1.50	f	0.26	_ =	3.18E-06	m
Water filled to [mBGL]	0.20	,	2.22 x 614.173228346457 x 60	_	3.161-00	111,
Water Table (mBGL)	n/a					
Base of Test [mBGL]	1.50					
Bedrock [mBGL]	n/a					
Drop Time [min]	614					

BRE 365 TEST HOLE

Date:

23rd May 2019

Client:


Lulani Dalguise Limited

Location:

CLIENT:	Lulani Dalguise Limited
LOCATION:	71 Monkstown Rd, Monkstown, Co. Dublin
TEST HOLE NO.:	10

Infiltration Rate						
est Hole Information;		V _{p75-25} =	1 x 0.4 x (0.975 - 0.325)	=	0.26	m³
Length [m]	1.00	A _{p50} =	(1x0.65x2)+ (0.4x0.65x2)+ (1x0.4)	=	2.22	m²
Width [m] Depth of hole [m]	0.40 1.40		0.26			
Water filled to [mBGL]	0.10	f = -	2.22 x 665.354330708661 x 60	- =	2.93E-06	m/
Water Table [mBGL]	n/a					
Base of Test [mBGL] Bedrock [mBGL]	1.40 n/a					
Drop Time [min]	665					
te: Base of test is bottom of test hole unle	ess water table is en	countered				

BRE 365 TEST HOLE

Date:

23rd May 2019

Client:

Lulani Dalguise Limited

Location:

Benchmark Property 2 Lansdowne Terrace Shelbourne Road Ballsbridge Dublin 4

T +353 (0)1 234 9600
W benchmarkproperty.ie
E info@benchmarkproperty.ie

IGSL Limited

David Rehill Consulting

Dalguise Residential Development Monkstown, Co. Dublin

Ground Investigation Report

Report No. 23927

May 2022

Report

M7 Business Park Naas Co. Kildare Ireland

T: +353 (45) 846176 E: info @igsl.ie W: www.igsl.ie Project: Dalguise, Monkstown

Project No. 23927

25/05/2022	Ground Investigation	Report								
Copies	Document Format	Prepared By	Reviewed By							
	PDF	Brian Green	David Green							
		Chartered Engineer	Chartered Engineer							
То	David Rehill Consulting									
Date	Title									
			Ta : 12							
Copies	Document Format	Prepared By	Reviewed By							
То										
Date	Title									
Copies	Document Format	Prepared By	Reviewed By							
То										
Date	Title									
Copies	Document Format	Prepared By	Reviewed By							
То										
	Copies To Date Copies To Date Copies To Date	Copies Document Format PDF To Date Title Copies Document Format To Date Title Copies Document Format To Date Title Title To Date Title To To Date Title To To To To To To To To To T	Copies Document Format Prepared By PDF Brian Green Chartered Engineer							

TABLE OF CONTENTS

Foreword

1.0 Introduction and Objectives

2.0 Scope of Works

- 2.1 Cable Percussive Boreholes
- 2.2 Rotary Coreholes
- 2.3 Trial Pits
- 2.4 Window Samples
- 2.5 Plate Bearing Tests
- 2.6 Foundation Inspection Pits
- 2.7 Infiltration Tests

3.0 Ground Conditions

- 3.1 Boreholes
- 3.2 Rotary Coreholes
- 3.3 Trial Pits
- 3.4 Foundation Inspection Pits
- 3.5 Groundwater

4.0 Laboratory Testing

- 4.1 Soil Classification
- 4.2 Sulphate and pH
- 4.3 Point Load Strength Index Tests (Rock)
- 4.4 Environmental Laboratory Testing

5.0 Discussion

- 5.1 General
- 5.2 Structural Foundations
- 5.3 Groundwater
- 5.4 Ground Retention
- 5.5 Pavements and Hard Standings
- 5.6 Chemical Attack on Buried Concrete
- 5.7 Soakaway Construction
- 5.8 Landfill Disposal of Excavated Soils (OCM)

6.0 References

Appendices

Appendix 1	Cable Percussive Boreholes
Appendix 2	Rotary Core hole Records
Appendix 3	Trial Pit Records
Appendix 4	Window Sample Records
Appendix 5	Plate Bearing Test Results
Appendix 6	Foundation Inspection Pits
Appendix 7	Infiltration Test Results
Appendix 8	Geotechnical Laboratory Testing
Appendix 9	Chemical and Environmental Laboratory Testing
Appendix 10	Site Plan

Separate Cover

Waste Characterisation Assessment (O'Callaghan Moran)

FOREWORD

The following conditions and notes on the geotechnical site investigation procedures should be read in conjunction with this report.

Standards

The ground investigation works for this project (Dalguise Residential) have been carried out by IGSL in accordance with Eurocode 7 - Part 2: Ground Investigation & Testing (EN 1997-2:2007). This has been used together with complementary documents such as BS 5930 (1999), BS 1377 (Parts 1 to 9) and Engineers Ireland Specification & Related Documents for Ground Investigation in Ireland (2006). A new National Annex for use in the Republic of Ireland is currently in circulation for comment and will be adopted in the near future. In the mean time, the following Irish (IS) and European Standards or Norms are referenced:

- IS EN 1997-2 Eurocode 7: 2007 Geotechnical Design Part 2: Ground Investigation & Testing
- IS EN ISO 22475-1:2006 Geotechnical Investigation and Sampling Sampling Methods & Groundwater Measurements
- IS EN ISO 14688-1:2002 Geotechnical Investigation and Testing Identification and Classification of Soil, Part 1: Identification and Description
- IS EN ISO 14688-2:2004 Geotechnical Investigation and Testing Identification and Classification of Soil, Part 2: Classification Principles
- IS EN ISO 14689-1:2004 Geotechnical Investigation and Testing Identification & Classification of Rock, Part 1: Identification & Description

Reporting

Recommendations made and opinions expressed in this report are based on the strata observed in the exploratory holes, together with the results of in-situ and laboratory tests. No responsibility can be held by IGSL Ltd for ground conditions between exploratory hole locations.

The engineering logs provide ground profiles and configuration of strata relevant to the investigation depths achieved and caution should be taken when extrapolating between exploratory points. No liability is accepted for ground conditions extraneous to the investigation points.

This report has been prepared for David Rehill Consulting and the information should not be used without prior written permission. The recommendations developed in this report specifically relate to the proposed development. IGSL Ltd accepts no responsibility or liability for this document being used other than for the purposes for which it was intended.

Boring Procedures

Unless otherwise stated, 'shell and auger' or cable percussive boring technique has been employed as defined by Section 6.3 of IS EN ISO 22475-1:2006. The boring operations, sampling and in-situ testing complies with the recommendations of IS EN 1997-2:2007 and BS 1377:1990 and EN ISO 22476-3:2005. The shell and auger boring technique allows for continuous sampling in clay and silt above the water table and sand and gravel below the water table (Table 2 of IS EN ISO 22475-1:2006).

It is highlighted that some disturbance and variations is unavoidable in particular ground (e.g. blowing sands, gravel / cobble dominant glacial deposits etc). Attention is drawn to this condition, whenever it is suspected. Where cobbles and boulders are recorded, no conclusion should be drawn concerning the size, presence, lithological nature, or numbers per unit volume of ground.

Rotary Drilling Procedures

Rotary drilling methods have been used to recover bedrock samples in line with Section 3.5 of IS EN 1997-2:2007 and IS EN ISO 22475-1. Where cable percussive boreholes terminated prematurely on an obstruction within overburden, open hole drilling methods (odex or symmetrix) were utilized to advance the drillholes through the superficial deposits with coring in bedrock. The key objectives of the rock sampling were to obtain high core recovery (TCR), minimize sample disturbance and facilitate accurate identification of strength, weathering and discontinuity characteristics.

In-Situ Testing

Standard penetration tests were conducted strictly in accordance with Section 4.6 of IS EN 1997-2:2007. The SPT equipment (hammer energy test) has been calibrated in accordance with EN ISO 22476-3:2005 and the Energy Ratio (E_r). A calibration certificate is available upon request. The E_r is defined as the ratio of the actual energy E_{meas} (measured energy during calibration) delivered to the drive weight assembly into the drive rod below the anvil, to the theoretical energy (E_{theor}) as calculated from the drive weight assembly. The measured number of blows (N) reported on the engineering logs are uncorrected. In sands, the energy losses due to rod length and the effect of the overburden pressure should be taken into account (see IS EN ISO 22476-3:2005).

Groundwater

The depth of entry of any influx of groundwater is recorded during the course of boring operations. However, the normal rate of boring does not usually permit the recording of an equilibrium level for any one water strike. Where possible drilling is suspended for a period of twenty minutes to monitor the subsequent rise in water level. Groundwater conditions observed in the borings or pits are those appertaining to the period of investigation. It should be noted however, that groundwater levels are subject to diurnal, seasonal and climatic variations and can also be affected by drainage conditions, tidal variations etc.

Engineering Logging

Soil and rock identification has been based on the examination of the samples recovered and conforms with IS EN ISO 14688-1:2002 and IS EN ISO 14689-1:2004. Rock weathering classification conforms to IS EN ISO 14689-1:2003 while discontinuities (bedding planes, joints, cleavages, faults etc) are classified in accordance with 4.3.3 of IS EN ISO 14689-1:2003. Rock mechanical indices (TCR, SCR, RQD) are defined in accordance with IS EN ISO 22475-1:2006.

Retention of Samples

Samples shall be retained for a period of 60 days following approval of the final factual report, as detailed in the Scope of Works.

1.0 Introduction and Objectives

IGSL Limited were appointed by David Rehill Consulting to conduct a ground investigation at the site of a proposed residential development in the lands of Dalguise House, Monkstown, Co. Dublin. It is understood that the development will comprise apartments constructed over basements.

The approximate area of investigation is shown on Figure 1.

Figure 1 - Site Location

The objectives of the investigation were as follows:

- Ascertain the ground conditions at the site
- Identify suitable bearing strata for structural foundations
- · Ascertain soil parameters for use in the design of roads and paved areas
- Determine the geometry of existing boundary wall foundations in selected locations
- Investigate for the presence of subsoil contamination with respect to landfill disposal of soils arising from future basement excavations
- Investigate the potential for sulphate attack on buried concrete

This report presents the findings of the ground investigation and discusses these findings with respect to future development of this site. The environmental elements of the investigation were interpreted by O'Callaghan Moran and discussed in their Waste Characterisation Assessment, which is presented under separate cover.

2.0 Scope of Works

The fieldworks entailed the following elements.

- 6 no. cable percussive boreholes
- Rotary coreholes at selected borehole locations (RC02, RC03, RC04, RC05, RC06), and at additional locations RC07, RC08, RC09.
- Trial pits were excavated in six locations, numbered TP21 to TP26 (continuing the nomenclature from trial pits of a previous phase of investigation)
- Window sampling techniques were used in five locations to obtain relatively undisturbed samples for environmental testing purposes.
- Plate Bearing Tests were performed in three locations to provide equivalent CBR values for road pavement design purposes.
- Foundation inspection pits were excavated along the existing perimeter wall in locations shown on the site plan as FP01 to FP05, FP08, FP09, FP12 and FP13.
- Infiltration tests were performed in six locations to assess the suitability of the sub-soils for soakaway purposes.

2.1 Cable Percussive Boreholes

Boreholes were constructed in 6 locations (BH01 to BH06) using a Dando 2000 rig equipped with 200 mm casing. A hand dug inspection pit was excavated at each location prior to commencing drilling works and the locations were scanned for services using a CAT detection tool.

During the course of boring, in-situ Standard Penetration Tests (SPT) were undertaken at regular intervals. Samples were also recovered to assist in the visual assessment of recovered soils and to provide specimens for laboratory testing.

Instances of groundwater ingress were also recorded and monitored for a further 20 minutes to permit the water to rise.

Borehole records are presented in Appendix 1 of this report.

2.2 Rotary Coreholes

Rotary techniques were employed to ascertain the presence, composition and condition of bedrock to the scheduled depths. Symmetrix open hole techniques were used to advance through the overburden deposits, reverting to rotary coring where core recovery was possible.

Standard Penetration Tests (SPTs) were undertaken within overburden to obtain an indication of soil strength.

Rotary coring was carried out using an air/mist flush to maximise recovery. Cores of 78 mm diameter were recovered and placed securely in wooden storage boxes.

The recovered core was inspected by a qualified engineering geologist and logged in detail at IGSL's laboratory. Records detailing the Total Core Recovery (TCR), Solid Core Recovery (SCR) and Rock Quality Designation (RQD) were produced.

All cores were labelled and photographed for inclusion in the report. Photographs are presented digitally for ease of browsing and to permit close examination at high resolution. Corehole records and photographs are included in Appendix 2 of this report.

2.3 Trial Pits

Trial pitting was performed using a 16T tracked excavator. The trial pits were logged and sampled by an IGSL geotechnical engineer in accordance with BS 5930 (2015).

Pit sidewalls were assessed in terms of their short-term stability and any instances of groundwater ingress were recorded. Soil samples were also recovered to provide specimens for laboratory testing.

The samples were placed in heavy duty polyethene bags and sealed before being transported to Naas for laboratory testing. Environmental sub-samples were placed in appropriate containers (amber glass jars and vials).

The trial pits were backfilled with the as-dug arisings and reinstated to the satisfaction of IGSL's site geotechnical engineer. The trial pit logs in Appendix 3 include descriptions of the soils encountered, groundwater conditions and stability of the pit sidewalls.

2.4 Window Samples

Window samples WS01 and WS02 were undertaken at each corehole and trial pit location. The prime purpose of the window samples was to recover undisturbed samples of the overburden soils from which environmental test specimens could be extracted.

Window samples are advanced by driving a steel sampling tube under constant percussive effort. The soils enter the tube within a protective plastic liner, which is withdrawn after every metre of progress. The liners are then placed in wooden channel boxes and transported to the IGSL offices where they are logged and sub-sampled as required.

Environmental sub-samples were extracted from the window sample recovery and placed in appropriate containers (amber glass jars and vials).

The window sample records are presented in Appendix 4 of this report.

2.5 Plate Bearing Tests.

Plate bearing tests were performed in three locations to obtain a measure of the CBR values. A 450 mm diameter plate was used, and tests were performed at a depth of 0.45 metres below existing ground level. Tests were performed in accordance with BS 1377 Part 9: 1990. "In-situ Tests". The incremental loading test (4.1.6.4.2) was used.

The maximum applied load was estimated on the basis of obtaining an accumulative displacement of at least 1.25 mm. The load was then applied in five approximately equal

increments to the design load. To measure recovery the load was removed in three increments. A second phase of loading and unloading was performed to assess the benefits of further compaction.

The settlement under each increment was measured against time until movement had effectively ceased and the results are presented as graphs of applied pressure against settlement. Calculation of Modulus of Sub-grade Reaction (k) and CBR values are in accordance with NRA HD25-26/10 Volume7: Pavement Design and Maintenance.

The test records from the initial and reload stages are enclosed in Appendix 5, while the calculated CBR values are shown in Table 1.

Depth	C	BR%
(m bgl)	Cycle 1	Cycle 2
0.45	1.1	2.7
0.45	2.9	4.3
0.45	4.8	7.1
	0.45 0.45	(m bgl) Cycle 1 0.45 1.1 0.45 2.9

Table 1

2.6 Foundation Inspection Pits

Nine hand-excavated pits were undertaken adjacent to existing perimeter wall. These pits were undertaken primarily to determine the geometry of the wall foundations and to ascertain the composition of the founding strata. For this reason, the pits were extended below the depths of the encountered foundations.

The foundation inspection pit records contain photographs of the exposed foundations and dimensioned sketches. Also shown are any instances of water ingress and a geological description of the soils encountered.

The inspection pit records are included in Appendix 6 of this report.

2.7 Infiltration Tests

The infiltration tests were performed in accordance with BRE Digest 365 'Soakaway Design'.

To obtain a measure of the infiltration rate of the sub-soils, water is poured into the test pit, and records taken of the fall in water level against time. This procedure is repeated twice more to ensure saturation of the sub-soils. Normally the results for the final stage of testing, following the saturation periods, are used for soakaway design purposes. The infiltration rate is the volume of water dispersed per unit exposed area per unit of time, and is generally expressed as metres/minute or metres/second.

The infiltration test results are presented in Appendix 7. With the exception of SA06 there was no measurable fall in water level over the test periods. SA06 recorded a very low infiltration rate.

3.0 Ground Conditions

3.1 Cable Percussive Boreholes

The boreholes revealed soft to firm dark brown sandy clay (subsoil) extending to depths ranging from 0.7 metres to 2.9 metres. This material was underlain by stiff (high strength) light brown sandy clay which was generally underlain by very stiff (very high strength) dark grey/brown sandy gravelly clay containing cobbles and boulders.

At BH06, large roots were observed within the high strength clay soils at approximately 1.3 m BGL, most likely originating from the adjacent mature trees.

All of the boreholes were terminated on obstructions, at depths ranging from 5.2 metres to 9.8 metres. The borehole findings are summarised in Table 2.

Location	Made Ground	Soft/Firm dark brown sandy clay	Stiff light brown sandy clay	Stiff to very stiff dark grey/brown sandy clay	Very stiff dark grey/brown sandy gravelly clay
BH01	1.60	1.60 to 2.90			2.90 to 5.30
BH02/2A	0.40	0.40 to 1.30	1.30 to 3.80	3.80 to 6.50	6.50 to 9.80
BH03		0.00 to 2.30	2.30 to 3.60		3.60 to 6.50
BH04		0.00 to 0.90	0.90 to 2.10		2.10 to 6.30
BH05		0.00 to 0.70	0.70 to 3.90		3.90 to 5.20
BH06		0.00 to 0.90	0.90 to 1.30	1.30 to 2.60	2.60 to 5.50

Table 2

No groundwater ingress was observed to the bored depths.

3.2 Rotary Coreholes

Coreholes were advanced below the depths achieved in the boreholes using Symmetrix "open hole" techniques. Where possible, rotary coring was undertaken to recover high quality cores of the overburden soils.

Examination of flush returns indicate that the soils below the borehole refusal depths are composed largely of gravelly clay, while the results of in-situ Standard Penetration Tests reflect a stiff to very stiff condition.

The rock was identified as medium strong to strong fine to medium grained Granite, fresh to moderately weathered. Standpipes were installed in RC03, RC05, RC07, and RC09 to facilitate long term monitoring of water levels

The rotary findings are summarised in Table 3. The levels to "intact" rock mostly range between 11 and 13 mOD, dipping to 9.5 m OD at the most northern point of the investigation (RC09).

Location	Ground Level mOD	Weathered rock (Symmetrix) m bgl	Intact Rock (Cored) m bgl	Cored Depth	Rock Level (intact) m OD
RC02	22.76	10.50	11.70	15.00	11.06
RC03	27.94	15.40	16.00	17.00	11.94
RC04	27.23		15.00	16.00	12.23
RC05	25.92		13.75	15.00	12.17
RC06	24.05		11.00	12.00	13.05
RC07	22.38		11.20	12.30	11.18
RC08	18.36	5.30	6.00	9.00	12.36
RC09	14.00	4.20	4.50	7.50	9.50

Table 3

Photo 1 shows recovery of the upper bedrock (10.5 - 14.0 m BGL) at RC02. The zone of moderately highly weathered Granite between 10.5 and 11.7 m BGL is clearly evident.

Photo 1 - Core recovery at RC02 (10.5 - 14.0 m BGL)

Photo 2 shows the core recovery at RC07. In this location, recovery of the overburden was possible between 7.5 and 10.5 m BGL. In comparison to RC02, the upper Granite bedrock was significantly fresher (less fractured).

Photo 2 - Core recovery at RC07 (7.5 - 12.5 m BGL)

3.3 Trial Pits

The trial pits revealed brown sandy clay in a soft to firm condition, underlain by firm to stiff deposits, becoming very stiff with depth. In three locations the pits were terminated in very stiff black gravelly clay.

Groundwater ingress was limited to a small seepage at a depth of 3.0 m BGL in TP22.

All trial pits remained stable during the period of excavation and logging (typically 45 minutes).

The ground conditions are summarised in Table 4

ocation	Made ground	Soft/firm sandy	Firm/stiff grey /brown sandy clay with gravel	Stiff/very stiff brown gravelly clay	Very stiff black	Excavated Depth (m bgl)
	ELECTRIC SERVICES	A STATE OF THE PARTY OF THE PAR		C Calle Disk (Manuscher Corp.)	as the same of the same of the	ALC: NO HOLD
TP21	0.00 to 0.20	0.0 to 0.4	0.40 to 0.90	0.90 - 2.70	2.70 to 3.40	3.40
TP22	0.0 to 0.20	02.0 to 0.80	0.80 to 1.20	1.20 to 3.30		3.30
TP23	0.00 to 1.40		1.40 to 2.20	2.20 to 2.80	2.80 to 3.50	3.50
TP24	0.00 to 0.25		0.25 to 0.90	0.90 to 3.00	3.00 to 3.10	3.10
TP25	0.00 to 0.20	0.00 to 0.50	0.50 to 1.20	1.20 to 3.00		3.00
TP26	0.00 to 0.20	0.20 to 1.00	1.00 to 2.70			2.70

Table 4

3.4 Foundation Inspection Pits

The inspection pits indicate that the rising walls have generally been placed at shallow depth on the sub-soil which has been described as brown sandy gravelly clay. Only at FP12 and FP13 did the foundation project beyond the face of the rising wall. The pit records are enclosed in Appendix 6, while the findings are summarised in Table 4.

Inspection Pit	Founding Depth (m bgl)	Projection (m)	Remarks	Founding medium
FP01	0.95	None	Direct Construction	Gravelly clay
FP02	0.80	None	Direct Construction	Gravelly clay
FP03	0.80	None	Direct Construction	Gravelly clay
FP04	0.50	None	Direct Construction	Gravelly clay
FP05	1.35	None	Direct Construction	Made ground
FP08	0.80	None	Direct Construction	Gravelly clay
FP09	0.00	None	Direct Construction	Gravelly clay
FP12	0.16	0.20		Gravelly clay
FP13	undetermined	0.25	Tree roots	

Table 5

3.5 Groundwater

While no water ingress was observed in the boreholes and trial pits, water was present in the coreholes at the end of drilling. While this was mostly at depths greater than 10 m BGL, RC08 and RC09 recorded standing water at depths of 3.1 and 3.2 m BGL respectively at the end of drilling.

Since the period of drilling is insufficient to determine the true groundwater level at the site, standpipes were installed in selected coreholes in order to permit long term groundwater monitoring.

4.0 Laboratory Testing

Laboratory testing was undertaken on selected samples in order to assist in the classification of the subsoils encountered. The results of geotechnical testing are included in Appendix 8, while the chemical and environmental test results are presented in Appendix 9.

4.1 Soil Classification

The results of Atterberg Limits tests classified the fine-grained Glacial Till as clay of low and intermediate plasticity (CL and Cl). Moisture contents were mostly in the range 12 to 16%. Notable exceptions were the clay samples from BH02A, which were significantly "wetter" at 23 and 27%.

Particle Size Distribution (PSD) graphs show that the sub-soils are generally well graded, demonstrating "straight-line" grading curves that are typical of glacial till soils. The fines (SILT/CLAY) contents typically ranged between 23 and 47%. Notably, a ample from the aforementioned BH02A was more finely graded, demonstrating a fines content of 68%.

4.2 Sulphate and pH

Determination of pH values and Sulphate content were conducted by a nominated accredited environmental laboratory (Eurofins). Results are presented in reports prepared by the laboratory.

The results of water-soluble (water/soil extract) Sulphate and pH analyses of soils revealed very low SO₄ levels (<0.02 g/l) and near-neutral pH levels of 8.5 to 8.6.

4.3 Point Load and Uniaxial Compressive Strength Tests (Rock Core Samples)

Point Load Index tests were undertaken on selected rock core samples.

The Point Load Index Test provides a rapid strength assessment from rock fragments or cores. The test specimen is compressed between two cones loaded from a hydraulic hand pump. The core fails due to the tensile forces over the diametral area between the points. The strength at failure is expressed as the point load index Is.

For purposes of comparison the Is values are corrected to give the equivalent strength for a 50 mm diameter specimen. The compressive strength of the rock (qc) can be established using a correlation suggested by Goodman where UCS \approx 18 to 24 x Is50.

The results of rock strength testing showed Is50 values mostly in the range 1 to 5 MPa, with an average of 3 MPa. These values correlated to equivalent UCS values in the range 20 to 100 MPa.

In accordance with Table 5 of EN ISO 14869-1, these strengths would confirm the rock to be predominately Medium Strong to Strong.

4.4 Environmental Laboratory Testing

Environmental testing was scheduled on selected soil samples. Samples underwent a Waste Acceptance Criteria (WAC) analyses in accordance with the RILTA Suite, which can be used to fully assess the waste disposal requirements of soils destined for landfill.

Included in the test suite are Heavy Metals, Speciated TPH, Mineral Oil, BTEX, PCB and Total Organic Carbon (TOC) carried out on dry soil samples. Also included are leachate analyses, whereby leachate is generated in accordance with CEN 10:1 specification and this is tested for the presence of recognised contaminants including Heavy Metals, Dissolved Organic Carbon (DOC) and Total Dissolved Solids (TDS). An Asbestos screen is also included in the RILTA suite.

The testing was undertaken by Eurofins Laboratory and the results are included in Appendix 9.

5.0 Discussion

5.1 General

The site lies within the grounds of Dalguise House and is largely grassed. Notably the topography varies considerably, commencing at approximately 37 mOD near the south-eastern boundary and falling to 23 mOD at the south-western corner of the site. The levels rise to between 24 and 28 m OD within the central portion of the site, before falling dramatically within the northern portion from approximately 22 to 14 mOD.

The pits and boreholes revealed layers of brown and grey sandy clay with varying proportions of gravel and cobbles. The upper layers are in a soft to firm condition, becoming stiff to very stiff with depth.

Symmetrix "open hole" drilling indicates that the deeper gravelly clay is in a very stiff condition, extending to the bedrock, which was identified as medium strong to strong, fine to medium grained, slightly weathered Granite.

The high and very high strength gravelly clay sub-soils are Glacial Till (known locally as Dublin Boulder Clay), which is the product of glacial deposition. The various colorations and reduced strength of the upper tills are related to weathering. The presence of roots within this material in one location (BH06) has been attributed to root spread of the adjacent mature trees.

Groundwater was observed in one trial pit, and this occurred as seepage at a depth of 3 m BGL. Standing water was recorded at similar depth in two coreholes at the end of drilling.

5.2 Structural Foundations

It is understood that basements will feature within the proposed development. However, if shallow foundations are being considered, these should be placed below the soft to firm upper deposits.

The boreholes and trial pits indicate that excavations of the order of 1 metre should be sufficient in most locations to reach stiff (high strength) soils. Assuming an undrained shear strength (Cu) of the order of 75 to 100 kPa, a bearing pressure of approximately 125 to 150 kPa should be achievable. However, since soft / firm upper soils have been shown to persist to depths of up to 2.9 m BGL in places (BH01), it will be important to monitor the foundation excavations to ensure that the underlying stiff soils have been reached. It must also be ensured that any organics or roots (such as those observed at BH06) are removed from the base of foundation pits.

For single-level basement construction, and assuming a typical excavation depth of c.4m, this would imply that foundations could be constructed directly on stiff to very stiff (high and very high strength) glacial till soils.

The results of SPT's in conjunction with visual assessment of the recovered samples indicate that allowable bearing pressures of the order of 275 to 300 kPa may be readily assumed for the glacial till soils at typical basement dig level. Due to their state of over-consolidation, settlements under these pressures would be expected to be low (c.5 to 10mm).

5.3 Groundwater

Groundwater was observed at a shallowest depth of c. 3m BGL in one trial pit and at similar depth at the end of drilling in two coreholes. However, these observations were made during the fieldwork period and should be regarded as representative of the "temporary condition" with the potential to rise further over time. It is not uncommon for the groundwater levels to rise significantly post-fieldwork, particularly when the overburden soils comprise low permeability cohesive glacial till.

Future monitoring of standpipes will therefore be critical in order to better understand the true groundwater levels and their response to factors such as seasonal variation and prolonged periods of heavy rainfall. Periodic monitoring should ideally continue up to the construction period. Continuous monitoring of water levels can be achieved using data loggers if required.

If encountered, groundwater flow through the firm/stiff and very stiff gravelly clay soils would be expected to be very slow, and most likely in the form of seepage. However, groundwater flow through granular (gravel) zones, if present within the glacial till, could be rapid. Evidence of this was observed at RC08, where the drill returns were distinctly granular below 3.0 m BGL. Where weathered and fractured bedrock is exposed in deeper excavations, water flow through this medium could also be rapid.

It is strongly recommended that monitoring of standpipes is undertaken at regular intervals until construction commences. Readings should also be taken after periods of heavy rainfall to determine the effect of prolonged precipitation on the groundwater table.

A key consideration if adopting trench / fill techniques for pad foundations will be the stability of open excavations. Since the trial pits remained stable during excavation, it would be expected that temporary excavations within the glacial till soils will also remain stable in the short term. However, no short-term stability should be presumed of Made Ground soils, which are typically in an uncompact state and prone to collapse.

Where excavations are left open for extended periods (e.g. drainage trenches), instability may occur as the sidewalls relax, in which case trench control measures will be required. Care will also be required where sand or gravel lenses are encountered within glacial till soils, as these are likely to become unstable after short periods of time.

The long-term effects of groundwater on constructed basements should also be considered. Since the groundwater table is expected to be <u>above</u> the proposed basement level, this will result in the generation of upward pressures due to buoyancy. The magnitude of the long-term uplift pressure can be calculated once the shallowest groundwater levels have been established by future monitoring of standpipes.

While multi-storey structure will counteract the hydrostatic uplift of foundations in the long term, uplift of other elements such as the basement slab should be considered. If it is deemed that the basement slab will be subject to a net uplift in the permanent condition, preventative measures such as ground anchors may be required. In some instances, it may be sufficient to thicken the basement slab in order to increase the dead weight resistance.

5.4 Ground Retention

Basement construction will require temporary ground retention measures. Due to presence of adjacent properties, it is envisaged that an embedded retaining wall will be utilised.

Typically, an embedded retaining wall would consist of a contiguous, secant or king post wall. While all systems could be designed to retain the anticipated active earth pressures, it should be noted that only the secant piled wall will provide a water-tight solution. It is also noted that a king post wall uses a "top down" construction sequence, whereby the supporting panels are installed as the excavation progresses. This provides an opportunity for groundwater ingress (and soil destabilisation) to occur during construction of the wall itself.

Pending future monitoring of standpipes, reference is made to the shallowest observed water level of 3 m BGL during the fieldwork period. Since this is above the expected dig depth for a single-level basement, groundwater retention should be seen as a critical factor when selecting the wall type. It is therefore envisaged that a secant piled retaining wall will be the preferred solution.

It is noted that the depth to bedrock was greater than 10 metres in most coreholes, implying that the retaining wall could achieve fixity within very high strength glacial till. However, within the northern portion of the site, rock was encountered at a much shallower depth of 4.5 m BGL (RC09), implying that a rock socket will be necessary. It is expected that heavy duty "Odex" drilling will required in order to advance through the strong and very strong intact Granite.

The advice of a specialist piling contractor should be sought with regard to the appropriate combination of pile diameter and length. If tolerances on lateral deflection are both stringent and critical, propping or anchoring may be required.

5.5 Pavements and Hard Standings

The results of in-situ plate bearing tests indicated variable CBR values for the initial load cycles, ranging between 1.1 and 4.8%. However, when the plate was reloaded (Cycle 2), significant improvements in CBR values were recorded, with Cycle 2 CBR values ranging between 2.7 and 7.1%. The results therefore indicate that the subgrade soils, once stripped to formation level, would benefit from proof rolling.

Where the subgrade has been subjected to proof rolling in a bid to increase CBR values, additional plate bearing tests should then be conducted on the prepared formation in order to verify the design CBR value.

Where proof rolling fails to increase the CBR values to acceptable levels (i.e. > 2.5%), the capping thicknesses should be designed in accordance with NRA HD 25-26/10 with reference to Section 3.23 ("Soft Subgrades").

In accordance with the aforementioned design manual, soft subgrades can either be improved (e.g. using lime) or removed and replaced with a more suitable material such as 6F capping or starter layer material (Class 6A / 6B). The thickness removed will typically be between 0.5 and 1.0 m. Although the new material may be of good quality, the new subgrade should be assumed to be equivalent to one of a CBR of 2.5%.

A geotextile separator at subgrade level and geogrid reinforcement within the capping layer would be recommended to accommodate any variabilities within the subgrade.

Made Ground (where present) should be treated with caution, particularly reworked clay fill, such as that encountered at BH01. Where practical, the Made Ground should be removed to create a natural subgrade on which to construct the capping layer.

It is important that argillaceous sedimentary rocks (i.e. muddy limestone, calcareous mudstone, shale, etc.) are not used in sub-base, capping or as a starter layer. These have high potential to give rise to degradation (i.e. poor durability and soundness) and slaking and therefore would not be suitable. All granular fills (particularly Series 600 and 800 material) should be thoroughly examined, tested and approved in advance of being used in the pavement construction.

5.6 Chemical Attack on Buried Concrete

The results of Sulphate and pH testing showed very low water-soluble sulphate (WSS) levels in the range <0.01 to 0.02 g/l SO₄.with associated pH levels in the range 8.5 to 8.6.

With reference to Table C1 of BRE Special Digest 1: 2005, the levels of Sulphate suggest a design Sulphate Class of DS-1.

Assuming a static groundwater table, an ACEC (Aggressive Chemical Environment for Concrete) Classification of AC-1s is applicable, since the pH levels are greater than 2.5.

5.7 Soakaway Construction

The infiltration tests recorded little or no fall in water level, which is not unexpected given the predominately fine-grained composition of the subsoils. The sub-soils are, therefore, considered unsuitable for soakaway purposes, which is unsurprising since conventional soakaway systems typically do not function within "boulder clay".

It is therefore expected that storm water will be discharged to an existing surface water system, using attenuation techniques to regulate the flow.

5.8 Landfill Disposal of Excavated Soils

The environmental results have been assessed by environmental specialists O'Callaghan Moran and their Waste Characterisation Assessment Report is presented under separate cover.

6.0 References

- BS 5930:1999 +A2:2010 Code of Practice for Site Investigations; British Standards Institute
- 2. Manual of Contract Documents for Highway Works, Volume 5, Section 3, Ground Investigation, Part 4: Specification
- 3. BRE Special Digest 1: 2005 Concrete in aggressive ground
- EN 1997-3; Eurocode 7: Geotechnical Design Part 3: Design assisted by field testing; 1997
- BS1377; British Standard Methods of Test for Soils for Civil Engineering Purposes; British Standards Institute; 1990.
- 6. BRE Digest 365, September 1991, British Research Establishment
- Manual of Contract Documents for Road Works, Volume 1: Specification for Road Works (March 2007)
- 8. Manual of Soil Laboratory Testing, Volume 3; K.H. Head
- 9. ISRM Suggested Methods for Determining Point Load Strength
- ISRM Suggested Methods for Determining the Uniaxial Compressive Strength and Deformability of Rock Materials
- 11. TRL Report 447- Sulphate specification for structural backfills

Appendix 1

Cable Percussive Boreholes

REPORT NUMBER

CON	TRAC	T Da	lguise F	louse [Developm	ent , Mor	nkstown ,	Co.Dublin	n			- 1	BOREH	OLE NO	D. BH01 Sheet 1 of 1	
		NATES	72	2,813.2 8,293.0 3	23 E 00 N 37.30	1		E DLE DIAME DLE DEPT		mm)	Dando 20 200 5.30	000	DATE O		NCED 05/03/2022	
LIE			eystar L			1		MER REF				- 1	BORED		W.Cahill	
NG	INEE	R Da	vid Rehi	II Consu	ulting		ENERGY	RATIO (9	6)				PROCE	SSED B	Y F.C	
Copul (III)			i	Descrip	otion			Legend	Flevation	Depth (m)	Ref. Number	Sample	nples Label (m)	Recovery	Field Test Results	Standoine
MADE GROUND (Comprised of dark brown sandy SILT/CLAY with metal pieces) Firm dark brown sandy SILT/CLAY with occasional gravel						-X0	35.70	1.60	AA165493	В	1.00		N = 11 (2, 2, 3, 3, 2, 3)			
		ery stiff dark brown sandy silty gravelly CLAY						×	34.40	2.90	AA165494	В	2.00		N = 11 (3, 3, 3, 2, 3, 3)	
	Very	ery stiff dark brown sandy silty gravelly CLAY						XO			AA165495	Б	3.00		N = 27 (10, 10, 7, 7, 6, 7)	
							×			AA165496		4.00 5.00		N = 37 (8, 5, 9, 9, 8, 11) N = 41		
	CIIG	of Boreh	ore at o	50 m												
_	RD ST	TRATA B	ORING/o		LLING			Wate		asing Depth	Sealed At	Ris		Time	VATER STRIKE DETA	AIL
3. 5.		3.4 5.4	0.75					58.10				.,			No water strike	
10-		TION	TA 11 0					-	_	Hole	Casing	De	epth to		ROUNDWATER PRO	GR
	ate	Tip De	pth RZ	Top R	RZ Base	Тур	e	Dat	ie	Depth	Depth	V	epth to Vater	Comme	ents	
EM	ARK	S 1hr En	ecting C	ovid 19	9 Safe Wo	orking Are	ea . CAT	scanned		I B - Bu	nple Legen nall Disturbed (tub lik Disturbed arge Bulk Disturbe Environmental Sai			Sam	Undisturbed 100mm Diameter ple Indisturbed Piston Sample	

REPORT NUMBER

0	33L												23921	
0	NTRACT	Dalg	uise Hous	e Development,	Monkstown	, Co.Dublin	1				REHOL	E NO.	BH02	
	ORDINA	ATES EVEL (m	728,33	13.01 E 35.36 N 22.76		PE OLE DIAME OLE DEPTH		nm) :	Dando 20 200 0.30	000 DA	SHEET Sheet 1 c DATE COMMENCED 05/03/200 DATE COMPLETED 05/03/200			
LI	ENT	Grey	star Ltd		SPT HA	MMER REF	NO.		0.30	ВС	RED BY	1	W.Cahill F.C	
N	SINEER	David	d Rehill Co	nsulting	ENERG	Y RATIO (%)			Sample		EDBI	F.C	
Capul (III)			Des	cription		Legend	Elevation	Depth (m)	Ref. Number	Sample	Depth (m)	Recovery	Field Test Results	Standpipe
0	MADE	GROUN	D (Compr	ised of fine grave	I)		22.46	0.30						
1			eel plate r e at 0.30 n											
1														
2														
3														
,														
1														
5														
6														
7														
8														
9														
_	ADD ST	DATA BO	RING/CHI	RELLING								WA	TER STRIKE DI	TAII S
_		To (m)	Time (Comments		Wate		asing	Sealed	Rise	Tin	ne C	omments	IAILO
_	0.3		(h) 1			Strike	e De	epth	At	То	(mi		No water strike	
								Hole	Casing	Don't	h to		OUNDWATER PR	ROGRE
NS	Date Date	Tip Dep		RZ Base	Туре	Dat	e	Hole Depth	Depth		ter C	ommen	ts	
RE	MARKS	Safe We	orking Are	to noise restrictions a . CAT scanned ied out . Obstruct	location and	hand dug		D - Sma B - Bulk	ple Leger all Disturbed (tut c Disturbed rge Bulk Disturb	b)		Sample	disturbed 100mm Diamete	r

REPORT NUMBER

:01	ITRA	T Da	algui	se House	Developme	nt , Monkstov	vn , Co.Dubli	in					Boreh Sheet		O.	Sheet 1 of 1		
0-	ORDII	NATES		722,74	3.01 E	RIG T	YPE			-	Dando 20	00						
		LEVEL (m A	728,33			HOLE DIAM				200 9.80	- 1	DATE (
LIE	ENT	G	eyst	ar Ltd		SPTH	SPT HAMMER REF. NO.							BY		W.Cahill		
NG	INEE	R Da	ivid I	Rehill Cor	sulting	ENER	GY RATIO (%)				_	PROCE	SSED	BY	F.C		
(m) indo				Desc	ription		Puegend		Elevation	Depth (m)	Ref. Number	Sample Sample Type	Depth Depth		Kecovery	Field Test Results	Ctandaina	
+	MAD	E GROU	IND	(Compris	sed of fine gr	avel)	××××		_					+				
	Firm dark brown sandy SILT/CLAY with occasional gravel Stiff light brown sandy SILT/CLAY					-X	21.		1.30	AA161951	В	1.00			N = 11 (2, 3, 3, 2, 3, 3)			
											AA161952	В	2.00			N = 27 (4, 5, 5, 6, 8, 8)		
								40	06	3.80	AA161953	В	3.00			N = 28 (5, 6, 6, 7, 7, 8)		
	Stiff	Stiff dark grey sandy SILT/CLAY									4.00			N = 28 (4, 6, 6, 7, 7, 8)				
								AA161955	В	5.00			N = 28 (5, 5, 6, 7, 7, 8)					
								16.	26	6.50	AA161956	В	6.00			N = 29 (6, 6, 7, 7, 8, 7)		
	very	oun dan	tiff dark grey sandy gravelly SILT/CLA			OLN!		14 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			AA161957	В	7.00			N = 30 (6, 7, 7, 8, 8, 7)		
						× (AA161958	В	8.00			N = 33 (7, 8, 8, 8, 9, 8)			
							\$ - \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	12.	96	9.80	AA161959	В	9.00			N = 40 (8, 8, 9, 10, 10, 11) N = 50/75 mm		
10				at 9.80 m											10/07	(7, 21, 50) TER STRIKE DET	A !!	
	n (m)	To (m)	Т	ime C	omments		Wat		Casi		Sealed	Ris		Time	T	mments	-uiL	
	.5	9.8	$\overline{}$	(h) 0.1			Strik	(e	Dep	om	At	To		(min)		lo water strike		
														(GRO	UNDWATER PRO	GF	
INSTALLATION DETAILS						Da	te		lole epth	Casing Depth	De	pth to ater	Comr	ment	s			
[Date	Tip De	pth	RZ Top	RZ Base	Туре				opul	Depui	1	atol					
ΕN	MARK	S 1hr Er location	ectir on ar	ng Covid nd hand o	19 Safe Wor dug inspectio	king Area . C n pit carried o	AT scanned out			B - Bulk LB - Lar	Die Legen I Disturbed (tub) Disturbed ge Bulk Disturbe vironmental Sam	d	+ Vial + Tub	S	ample - Undis	isturbed 100mm Diameter turbed Piston Sample ir Sample		

REPORT NUMBER

IGSL													20021	
ONTRACT	Dalguise	House	e Development ,	Monkstown	, Co.Dubli	n				BOREH	OLE N		BH03	
O-ORDINATE	7	28,41	7.52 E 7.94 N 27.94		PE OLE DIAM OLE DEPT		mm)	Dando 20 200 6.50	00	DATE O		NCED (Sheet 1 of 1 03/03/2022 03/03/2022	
LIENT NGINEER	Greystar David Rei	Ltd		SPT HA	MMER REI	F. NO.		0.50		BORED	BY	,	W.Cahill F.C	
NGINEER	David Re	IIII COI	isularig	LINERO	T RATIO (0)	1		Sar	mples	SOLD		.0	
		Desc	ription		Puegend	Flevation	Depth (m)	Ref. Number	Sample	·	Recovery	Fie	eld Test sesults	Standpipe
Soft to fin occasiona		wn sar	ndy SILT/CLAY w	rith	X0 X X X X			AA161709	В	1.00		(2.	N = 9 3, 2, 2, 3, 2)	
Stiff light	brown san	dy SIL	T/CLAY with som	ne gravel	× ×	25.64	2.30	AA161710	В	2.00		(2,	N = 14 3, 3, 4, 3, 4)	
and occa	sional cobb	oles				24.34	3.60	AA161711	В	3.00		(3,	N = 18 4, 4, 4, 5, 5)	
			silty gravelly CLA onal boulders	Y with				AA161712	В	4.00		(6.	N = 34 , 6, 7, 9, 9, 9)	
					×0 =			AA161713	В	5.00		(7.8	N = 48 . 10, 10, 13, 15)	
					* A	21.44	6.50	AA161714	В	6.00		N	= 50/150 mm	
Obstructi End of Bo	on orehole at 6	3.50 m										(1)	8, 12, 15, 35)	
IARD STRA	TA BORING	S/CHIS	ELLING									WATER	STRIKE DET	AILS
om (m) To	(m) Tim		omments		Wate		asing Depth	Sealed At			Time (min)	Comme	ents	
5.2 5.					Our		усрит	71	·		(11111)	No wa	ater strike	
ISTALLATIO	N DETAILS				Da	te	Hole	Casing	D	epth to	Comm		WATER PRO	GRE
	p Depth R		RZ Base	Туре		-	Depth	Depth	+	vvater	20/11/1			
			19 Safe Working				B - Bu	nple Leger nall Disturbed (tut lik Disturbed ange Bulk Disturb Environmental Sa	ed	ar+Vipal+T⊪	Sa P	ample	d 100mm Diameter Piston Sample	

REPORT NUMBER

	ORDIN		722,8	se Development ,	RIG TY	PE			Dando 20	00	SHEET			BH04 Sheet 1 of 1 ED 03/03/2022	
GRO	DUND	LEVEL (m		30.96 N 27.23		OLE DIAM		nm)	200 6.30		DATE				
LIE	ENT	Gre	star Ltd	onsulting	SPT HA	MMER RE	F. NO.			- 1	BORE		BY	W.Cahill F.C	
E)								Ê			ples		Ž.	Field Test	gui
Deptin (m)			Des	scription	,	Legend	Elevation	Depth (m)	Ref. Number	Sample	Depth		Recovery	Results	Standnine
0	Dark	ark brown sandy SILT/CLAY with occasional gravel													
1	Stiff li	ght brown	sandy SI	LT/CLAY with son	ne gravel	-X0 X 0	20.50	0.50	AA161715	В	1.00			N = 23 (4, 4, 5, 5, 6, 7)	
	Very :	stiff brown	gravelly	CLAY with some of	cobbles	0 0	25.13	2.10	AA161716	В	2.00			N = 40 (6, 7, 7, 8, 10, 15)	
						0 0			AA165493	В	3.00			N = 32 (5, 7, 9, 9, 7, 7)	
						0 0 0			AA161717	В	4.00			N = 34 (6, 9, 8, 10, 7, 9)	
						0 0 0			AA161718	В	5.00			N = 37 (4, 5, 8, 9, 12, 8)	
-		uction				0 0	20.93	6.30	AA161719	В	6.00			N = 50/85 mm (10, 15, 36, 14)	
	End o	of Borehol	e at 6.30	m											
IA	RD ST	RATA BO		SELLING									WAT	TER STRIKE DET	AIL
_	.2	To (m) 2.5 6.3	Time (h) 0.75 1.5	Comments		Wate Strik		epth	Sealed At	Ris To		Time (min)		o water strike	_
										1 -		(GROU	UNDWATER PRO	GF
		TION DET		laze '		Dat	te	Hole Depth	Casing Depth	De	oth to ater	Comr	ment	S	
	Date	Tip Dep	n RZ Top	RZ Base	Туре										
EN	MARKS	1hr Erec	ting Covi	d 19 Safe Working I dug inspection pi	g Area . CA it carried out	scanned		D - Sma B - Bulk	ple Legeno all Disturbed (tub) Disturbed rge Bulk Disturbed			S	ample	sturbed 100mm Diameter	

REPORT NUMBER

CON	NTRAC	T Dal	guise Hou	se Development	Monkstown	, Co.Dubli	n				BOREH	OLE NO	D. BH05	
	000			•	RIG TY				Dande 22		SHEET		Sheet 1 of 1	
	ORDIN OUND I	ATES LEVEL (n	728,4	93.25 E 88.29 N 25.92	BOREH	PE IOLE DIAMI IOLE DEPT		nm)	Dando 20 200 5.20	00	DATE C			
	ENT		eystar Ltd	onsulting	SPT HA	MMER REI	F. NO.				BORED		W.Cahill BY F.C	
	J	Du	via recinii o	onsuring	LITER		,			_	mples		1.0	I
nden (III)			Des	scription		Legend	Elevation	Depth (m)	Ref. Number	Sample	Depth (m)	Recovery	Field Test Results	Standpipe
)	Dark I	orown sa	ndy SILT/0	CLAY with occasion	onal gravel	XOX	25.22	0.70						
1	Firm I and o	ight brow ccasiona	n sandy S I cobbles	ILT/CLAY with so	me gravel		24.42		AA162661	В	1.00		N = 12 (3, 3, 2, 3, 3, 4)	
2			n sandy SI Il cobbles	LT/CLAY with sor	ne gravel	8			AA162662	В	2.00		N = 20 (3, 4, 4, 5, 5, 6)	
,									AA162663	В	3.00		N = 24 (4, 4, 5, 6, 6, 7)	
1		stiff brow ional cob		avelly silty CLAY	with		22.02	3.90	AA162664	В	4.00		N = 50/150 mm (16, 9, 33, 17)	
5	Obstr	uction				8	20.72	5.20	AA162665	В	5.00		N = 50/75 mm (25, 50)	
7 8														
НА		RATA BO	ORING/CHI	ISELLING Comments		Wate		asing	Sealed	Ris		Time	WATER STRIKE DET	[AIL
2	2.6	2.9 4.2 5.2	(h) 1 0.75 1.5			Strik	e D	epth	At	T	0 (min)	No water strike	
												G	ROUNDWATER PRO	OGRI
		TION DE	AND PROPERTY.			Da	te	Hole Depth	Casing Depth	De	epth to Nater	Comm	ents	
	Date	Tip De	pth RZ To	p RZ Base	Туре									
-	MARKS	1hr Ere	ecting Cov	id 19 Safe Workin	g Area . CA	T scanned		Sam	ple Legen	d			- Undisturbed 100mm Diameter	

REPORT NUMBER

CON	ITRA	CT Dal	guise Hou	se Development	, Monkstown	, Co.Dubl	in				BOREH SHEET		VO.	BH06 Sheet 1 of 1	
		NATES LEVEL (m	728,5	87.53 E 17.56 N 24.05		PE IOLE DIAM IOLE DEPT			Dando 20 200 5.50	00		OMME		ED 08/03/2022	
LIE	ENT	Gre	ystar Ltd			MMER RE					BORED	BY		W.Cahill	
NG	INEE	R Dav	id Rehill Co	onsulting	ENERG	Y RATIO (%)				PROCE	SSED	BY	F.C	
Ceptin (iii)			Des	scription		Legend	Elevation	Depth (m)	Ref. Number	Sample Sample Type	Depth (m)		Kecovery	Field Test Results	Chandain
	Stiff		n sandy SI	LT/CLAY with or	ccasional	X	23.15	0.90							
-	Stiff	light brown	sandy gra	avelly CLAY with	cobbles	*	22.75	1.30	AA165498	В	1.00			N = 25 (3, 3, 4, 6, 6, 9)	
	Stiff becoming very stiff mottled light brown SILT/CLAY with some gravel and large root			vn sandy oots		22.13	1.50	AA165499	В	2.00			N = 27 (4, 4, 5, 6, 6, 10)		
		stiff dark t sional cob		ey sandy gravelly	y CLAY with		21.45	2.60	AA165500	В	3.00			N = 36	
						0 0 0								(6, 7, 8, 9, 10, 9) N = 43	
							ō		AA165501	В	4.00			(9, 8, 11, 11, 11, 10)	
	Ohst	ruction				0 0	18.55 18.55	5.50 5.50		В	5.00			N = 50/225 mm (18, 16, 10, 14, 26)	
,	Liid	of Borehol	e at 3.30 i	"											
		Ta (m)	Time			Wat	er Ca	sing	Sealed	Rise	e 1	Γime	1	TER STRIKE DETA	VIL
2.	1 (m) 4	2.7	(h)	Comments		Strik		epth	At	То		min)		o water strike	
								Hole	Casina	De	oth to			JNDWATER PRO	GF
	TALLA Date	Tip Dep		RZ Base	Туре	Da		Depth	Casing Depth	W	pth to ater	Comn	nents	S	
		S 1hr Erec	cting Covid	d 19 Safe Workii	ng Area . CA	T scanned		Sam	ple Legend	d					
KEN	IARK	location	and hand	d 19 Safe Workii dug inspection	ng Area . CA pit carried ou	t scanned		D - Sma B - Bulk LB - Lar	ple Legen (Ill Disturbed (tub) Disturbed ge Bulk Disturbed invironmental Sam	ı	+ Vial + Tub)	Sa	ample - Undist	sturbed 100mm Diameter turbed Piston Sample r Sample	

Appendix 2

Rotary Corehole Records

REPORT NUMBER

ONTE	RACT		Dalgu	ise House	e Develo	pmer	t , Mo	Monkstown , Co.Dublin					LHOLE	ENO RC02 Sheet 1 of 2					
O-OF				722,74 728,33	3.01 E 5.36 N 22.76			RIG TYPE			BT-44		DRILLI	LED 08/03/2022					
LIEN				star Ltd	EE.IO			FLUSH INCLINATI	ON (deg)		Air/Mist -90	DRIL	LED BY						
NGIN	EER		David	Rehill Cor	nsulting			CORE DIA	METER (mi	m)	78	LOG	GED BY	_	D.	O'She	а		
Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Spa Lo (m	cture cing og m)	Non-intact Zone	Legend			Descrip	tion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)		
								as returns	RIX DRILLI	ING: NO FEC	covery, obs	erved by d	riller						
EMA	RKS						=							WΔ	TER ST	RIKE	DETAIL		
_		0.00-	9.00	m. Erect (Covid-19	Safe	Zone	- 1hr.	Water Strike	Casing Depth	Sealed At	Rise To	Time (min)	T	mmen				
									Guine	Бери	At	10	(111111)	N	lo wate	er strike	erecord		
										11-1-	10					WATER	DETA		
		ION [Date	Hole Depth	Casing Depth	Depth to Water	_	ment					
Dat	e	Tip D	epth	RZ Top	RZ Base	9	Ту	oe	09-03-22	15.00	9.00	11.20	Water		corded 5	mins afte	er end of		
													drilling).					

REPORT NUMBER

	ORD			alguis	722,743.	.01 E	men	t , Mc	nkstown , C	o.Dublin			SHEE	LHOLE ET DRILL			12 et 2 of 2 3/2022		
R	OUNI	D LE	VEL (mOD)	728,335.	.36 N 22.76			RIG TYPE FLUSH			BT-44 Air/Mist		LOGG		09/03/2022			
LII	ENT		G	reysta					INCLINATION CORE DIAI			-90 78		DRILLED BY LOGGED BY			SL - Jk O'Shea	-	
Downnole Deptin (m)	Core Run Depth (m)	Core Run Depth (m) T.C.R.% S.C.R.% S.C.R.% R.O.D.% R.O.D.% Non-intact Zone Legend						OUNEDIN		Descripti				Depth (m)	Elevation	Standpipe Details	SPT (N Value)		
0				- 1	mmudn.		2		OVAMET		10. No				10.30 10.50	12.46	0)		
1	10.50	67	0	0				- + + + + + + + + + + + + + + + + + + +	as returns	nighly weath		•		fine	11.70				
2		100	48	15				+++++	white/blac GRANITE Discontinu	trong, medit k/grey mottl , fresh to sli uities are me gh, planar t ally modera	ed, fine to ghtly weath edium to clo o undulose	medium gra nered. osely space to stepped	ed, smootl	h to					
	13.20 14.00	100	82	65	Ļ			+++++	slight iron irregular.	oxide staini	ng. Dips a	e 30-40° &	locally 70	, local)° &					
5	15.00	100	++				End o	of Borehole	at 15.00 m	ı			15.00	7.76					
6																			
7																			
18																			
9																			
F	MAR	Ke													WA	TER ST	RIKE	DETAILS	
			0.00-9	9.00m	. Erect C	ovid-19	Safe	Zone	e - 1hr.	Water Strike	Casing Depth	Sealed At	Rise To	Time (min)	Co	mmen	ts	e recorde	
															GP	יחאווט	NATE	DETAIL	
15	STAL	LATI	ON D	ETAII	LS					Date	Hole Depth	Casing Depth	Depth t Water	O Cor	nment				
						RZ Base			ре		Debut	Deput							

REPORT NUMBER

ONTRAC	TRACT Dalguise House Development , M							lonkstown , Co.Dublin					HOLE	NO	RC	03 et 1 of	2	
O-ORDII			nOD	722,777 728,417				RIG TYPE FLUSH			BT-44	DATE	DRILLI		11/03/2022 11/03/2022			
JENT		Gre	ysta	ar Ltd				INCLINATI	ON (deg)		Air/Mist -90	DRILL	ED BY		IG	SL - J	K	
IGINEE	R	Dav	rid F	Rehill Con	sulting			CORE DIA	METER (mr	n)	78	LOGO	SED BY		D	.O'She	a	
Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spac Lo (mi	cing og m)	Non-intact Zone	Legend			Descript	tion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)	
5.60	100							SYMMET as returns COBBLE Returns o occasions	RIX DRILLI s of brown of s of brown of of granite of dark brown al cobbles RIX DRILLI s of brown of	ING: No rec gravelly CL/ yn slightly s	covery, obs AY andy grave	erved by di	riller	5.00 5.30 6.30	23.14 22.94 22.64 21.64			
								SYMMET as returns	RIX DRILLI	ING: No rec	covery, obs	erved by d	riller				N = 39 (9, 8, 7, 11, 10) N = 35 (3, 4, 6, 7, 12)	
MARK		00-15	00	m. Erect	Covid-1	9 Sat	fe Zon	e - 1hr	Water	Casing	Sealed	Rise	Time				DETAILS	
one case	ou U	.50-15		m. LIGOL	Sovia-1	Joan	2011	0 - mi.	Strike	Depth	At	To	(min)		lo wate		e recorde	
														GP	OI IND	NATE	RDETAIL	
STALL	ATIC	ON DE	TAII	LS					Date	Hole	Casing	Depth to Water	Com	ment		MIE	DETAIL	
Date				RZ Top	RZ Base	9	Ty	pe	10-03-22	Depth 17.00	Depth 15.00	Water 12.40	_			mins aft	er end of	
1-03-22		14.50		1.50	14.50		50mn						drilling					

REPORT NUMBER

COI	NTR/	ACT	D	algui	se House Deve	lopme	nt , Mo	nkstown , C	o.Dublin			DRILL	HOLE	NO	RC	03 et 2 of 2	,
		INAT			722,777.52 E 728,417.94 N			RIG TYPE			BT-44	DATE	DRILLI		11/0	3/2022	
		DLE				4		FLUSH	ON (-1)		Air/Mist		ED BY			SL - J	
	ENT	ER			ar Ltd Rehill Consulting			CORE DIA	ON (deg) METER (mn	n)	-90 78		ED BY			O'She	
=	_								,	,							
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fracture Spacing Log (mm)	Non-intact Zone	Legend			Descripti	on			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
10							-=-	SYMMETI	RIX DRILLI	NG: No rec	overy, obse	rved by dri	iller			° H°	
11		0	0	0				as returns	s of brown C	LAY (contir	nued)						N = 42 (5, 7, 8, 10, 11, 13)
12																	N = 40 (4, 7, 7, 9, 13, 11)
14																	N = 46 (2. 9, 9, 12, 10, 15)
15							-	SYMMET	RIX DRILLI	NG: No rec	overy, obse	erved by dr		15.00	12.94		N = 46
							+++	as returns SYMMET	RIX DRILLI of ROCK	ravelly CLA	Y			15.40	12.54		(7, 11, 7, 12, 13, 14)
16	16.00					7. 4.	+++	Medium s	strong to stro					16.00	11.94		
		100	80	61			+++++	GRANITE	E, fresh to sl uities are m	ightly weath	nered.			17.00	10.04		
17	17.00							planar to moderate oxide stai	undulose. A ly open, loc ning. Dips a	spertures ar ally clay-sm are subhoriz	e tight to lo neared, loca contal to 20	cally al slight iron	1	17.00	10.54	(////	
18								End	of Borehole	at 17.00 m							
19																	
RF	MAR	KS												WA:	TER S	TRIKE	DETAILS
			0.00-	15.00	Om. Erect Covid	-19 S	afe Zor	ne - 1hr.	Water Strike	Casing Depth	Sealed At	Rise To	Time (min)	Co	mmer		
									2.7.113				,		lo wat	er strike	e recorded
														GR	OUND	WATER	RDETAILS
INS	STAL	LATI	ON E	ETA	ILS	-			Date	Hole Depth	Casing Depth	Depth to Water	Con	nment			
	Date			epth	RZ Top RZ B 1.50 14.5			rpe m SP	10-03-22	17.00	15.00	12.40	_		ecorded	5 mins aff	er end of

REPORT NUMBER

CONTRACT Dalguise House Development , Mo						nt , Mo	Monkstown , Co.Dublin				DRILL	LHOLE	ENO RC04 Sheet 1 of 2						
		INAT		/OF	722,808 728,430	0.96 N			RIG TYPE			BT-44	DATE	DRILLE		14/0	3/2022	2	
	ENT	D LE		(mOD	ar Ltd	27.23			FLUSH	ON (dea)		Air/Mist -90		LED BY	_	IGSL - JK			
	SINE	ER		-	Rehill Con	sulting			CORE DIA		m)	78		LOGGED BY			D.O'Shea		
Downlole Deput (III)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spac Lo (mi	cing og m)	Non-intact Zone	Legend	4		Descript	iion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)	
2									as returns	of brown C	CLAY	covery, obse			1.50	25.73		N = 37 (2, 7, 7, 9, 12)	
7								- C										N = 44 (3, 5, 9, 11 11, 13) N = 45 (3, 3, 11, 1(9, 15)	
9	MAR	KS						0 0							WA*	TER ST	RIKE	N = 49 (15, 7, 9, 12 13, 15)	
ole	e cas	sed 0	0.00-1	15.00	m. Erect	Covid-1	9 Sat	fe Zon	e - 1hr.	Water Strike	Casing	Sealed	Rise To	Time (min)	T	mmen			
										Suike	Depth	At	10	(min)				e recorded	
															GP/	OI INDA	VATE	RDETAILS	
NS.	TALI	ATIO	ח אם	ETAI	LS		-			Date	Hole	Casing	Depth to Water	Com			MIE	DETAILS	
	Date				RZ Top	RZ Base	е	Ту	ре	15-03-22	Depth 16.00	Depth 15.00	13.20		level re		mins aft	er end of	

REPORT NUMBER

COI	NTR	ACT	D	algui	se House	Develo	pmer	nt , Mo	nkstown , C	o.Dublin				LHOLE	NO	RCO		
co-	ORE	INA	TES		722,808								SHEE	DRILL	FD		t 2 of	
GR	OUN	DLE	VEL	(mOl	728,430 D)	0.96 N 27.23			RIG TYPE FLUSH			BT-44 Air/Mist		LOGG			3/2022	
	ENT				tar Ltd				INCLINATION	ON (deg)		-90		LED BY		IG	SL - J	K
ENC	SINE	ER	D	avid I	Rehill Con	sulting			CORE DIA	METER (mr	n)	78	LOGO	GED BY	1	D.	O'She	а
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fract Spac Lo (mr	eing g n)	Non-intact Zone	Legend			Descript	ion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
11									SYMMETI as returns	RIX DRILLI	NG: No rec ravelly CLA	overy, obse Y (continue	erved by di	riller	,			N = 44/225 mm (12,10,11, 17,16) N = 46 (5,7,9,12, 11,14)
14	15.00							0 0							15.00	12.23		N = 54 (7, 15, 10, 17, 16, 11)
16	15.00 — — — — — — — — — — — — — — — — — —			white/blace GRANITE Discontinu planar. Ap locally cla are subho	ck/grey mott f, fresh to sl uities are w pertures are	led, fine to ightly weat idely to close tight to loo local slight 20-30°.	sely spaced ally modera iron oxide	, smooth,		16.00	11.23		N = 50/27 mm (25, 50)					
18																		
Ē																		
	MAR									\A/=t	Cesire	Cocled	Rise	Time		TER ST	RIKE	DETAILS
Hol	le ca	sed (J.00-	15.00	0m. Erect	Covid-1	9 Sa	te Zor	ne - 1hr.	Water Strike	Casing Depth	Sealed At	To To	(min)		ommen lo wate		e recorded
											1	10			GR	OUND	NATE	RDETAILS
INS	TAL		ON D							Date	Hole Depth	Casing Depth	Depth to Water	Cor	mment	s		
	Date	9	Tip D	epth	RZ Top	RZ Bas	е	Ту	ре	15-03-22	16.00	15.00	13.20	Wate		ecorded 5	mins af	ter end of

REPORT NUMBER

-	NIK	ACT	D	algui	ise Hous	e Develo	pmer	it , Mo	nkstown , C	o.Dublin			SHEE	ET	NO	She	et 1 of	2
		DINA			728,48	3.25 E 8.29 N			RIG TYPE			BT-44	DATE	DRILLE		21/0	3/2022	2
			VEL			25.92			FLUSH			Air/Mist			_			
	ENT				tar Ltd Rehill Co	nsultina			CORE DIA	ON (deg) METER (m	m)	-90 78		LED BY GED BY			SL - J O'She	
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Spa Lo (m	cture acing og nm)	Non-intact Zone	Legend			Descript	ion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
0 1 2 3 4 4 5 6 6						500			as returns	s of brown (ING: No rec	covery, obs		riller		24.42		N = 56 (6, 11, 10, 13, 15) N = 55 (7, 10, 10, 14, 16)
8								000000000000000000000000000000000000000	SYMMET as returns	RIX DRILL s of brown o	ING: No rec clayey sand	covery, obs y GRAVEL	erved by d					N = 58/22 mm (9, 15, 17, 24) N = 55/22 mm (7, 11, 13, 25)
	MAR								45	10/-4	0.5-1	Casta	Di	T:	WAT	TER ST	RIKE	DETAILS
1016	e cas	sed (J.UU-	12.00	ım. Ereci	t Covid-19	e Sat	e Zon	e - 1nr.	Water Strike	Casing Depth	Sealed At	Rise To	Time (min)		mmen o wate		e recorde
											Liele	Casina	D- # -		GRO	DUND	VATER	DETAIL
			ON D			T== -				Date	Hole Depth	Casing Depth	Depth to Water	_	ments			
	Date	1	Tin D	enth	RZ Top	RZ Base	9	Typ)e	22-03-22	15.00	12.00	11.20	144-1	level re			

REPORT NUMBER

000	_		>0 + > U									2001	1101.5	NO.	-		
CONTRA	ACT	D	algui	se House	Develop	pmer	it , Mo	nkstown , C	o.Dublin			SHEE	.HOLE	NO	RC(05 et 2 of 2	2
CO-ORD			(mOE	722,793 728,488 D)				RIG TYPE FLUSH			BT-44 Air/Mist		DRILLI			3/2022 3/2022	
CLIENT	FR			ar Ltd Rehill Cons	sultina			INCLINATI	ON (deg) METER (mn	n)	-90 78		ED BY			SL - Jk	
Downhole Depth (m) Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fract Spac Log (mn	ure ing g n)	Non-intact Zone	Legend			Descript	ion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
10							000	SYMMET	RIX DRILLII	NG: No rec	overy, obse	erved by dr				0 0	
11 12.00							0-6	SYMMET	RIX DRILLII	NG: No rec			iller	12.00	15.42		N = 45 (4, 7, 7, 11, 12, 15)
13 13.50	60	0	0				× × × × × × × × × × × × × × × × × × ×	Stiff dark	brown CLA	Y with silt la	minations						N = 64/225 mm (11, 17, 19, 19, 26)
	#							Weak to s	strong, medi	ium to think	y flowbande	ed,		13.75	12.17		
15.00	100	43	36				+++++++	white/blace GRANITE Discontinu planar. Ap locally cla Dips are s	ck/grey mott f, fresh to sli uities are mo pertures are ny-smeared, subvertical & of Borehole	led, fine to ightly weath edium to clude tight to loc commonly subhorized.	medium gra nered. osely space ally modera slight iron o ontal.	ained, ed, smooth ately open,		15.00	10.92		
16																	
18																	
19																	
REMAR									NA/-4	0	Cocled	Dies	T:	WA	TER S	TRIKE	DETAILS
Hole ca	sed (0.00-	12.00	om. Erect	Covid-1	9 Sat	fe Zon	e - 1hr.	Water Strike	Casing Depth	Sealed At	Rise To	Time (min)	-	mmer lo wate		recorded
														GR	OUND	WATER	DETAILS
Date Date		Tip D	epth	RZ Top		е		pe	Date 22-03-22	Hole Depth 15.00	Depth 12.00	Depth to Water	Con			5 mins afte	er end of
22-03-2	22	11.0	00	1.00	11.00		50mr	n SP					Granny	a.			

REPORT NUMBER

Un	NTR/	ACT	D	alguis	se House	e Develop	men	nt , Mo	nkstown, C	o.Dublin			DRIL	LHOLE	NO	RCO	6 t 1 of :	2
			TES VEL	mOF	722,78 728,51	7.53 E 7.56 N 24.05			RIG TYPE			BT-44	DATE	DRILLE		15/03	3/2022	2
	ENT				ar Ltd	24.00			FLUSH INCLINATI	ON (deg)		Air/Mist -90	DRIL	LED BY		IG	SL - JI	K
NG	INE	ER	D	avid F	Rehill Cor	nsulting				METER (mr	m)	78	LOGO	GED BY		D.	O'She	а
DOWINION DEPUN (III)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spa Lo (m	cing og m)	Non-intact Zone	Legend			Descrip	tion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
									SYMMET as returns	RIX DRILLI	ING: No regravelly CL	covery, obs	erved by d	riller		22.55		N = 52 (6, 9, 11, 1)
;								000000000000000000000000000000000000000		s of brown o			and by d	rillor	7.50	16.55		N = 51 (7.9, 11, 1 13, 15)
1	SYM as re						as returns	s of brown (CLAY	covery, obsi covery, obsi AY			9.00	15.05		N = 43 (5, 7, 8, 10, 12, 13)		
	IAR										0 1	0-7	5	-	WA	TER ST	RIKE	DETAILS
ole	e cas	sed	0.00-1	0.50	m. Erect	Covid-19	Saf	e Zone	e - 1hr.	Water Strike	Casing Depth	Sealed At	Rise To	Time (min)		mment o wate		e recorded
															GR	DUNDV	VATER	DETAILS
IST	TALI	LATI	ON D	ETAII	LS					Date	Hole Depth	Casing Depth	Depth to Water	Com	ment	s		
0	Date	1	Tip De	epth	RZ Top	RZ Base		Тур	е	21-03-22	12.00	10.50	10.20	_	level re	corded 5	mins aft	er end of

REPORT NUMBER

co	NTR	ACT	D	algui	se House	Develo	pmer	nt , Mo	nkstown , C	o.Dublin			DRILL	HOLE	NO	RCO	6 t 2 of 1	2
		INA		/OI	722,787 728,517				RIG TYPE			BT-44	DATE	DRILLE		15/03	3/2022	
CLI	ENT			reys	tar Ltd Rehill Con:				FLUSH INCLINATION CORE DIAL	ON (deg) METER (mn	n)	Air/Mist -90 78	DRILL	ED BY		IG	SL - JI O'She	K
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fract Spac Lo (mr	ure ing g n)	Non-intact Zone	Legend			Descript				Depth (m)	Elevation	Standpipe Details	SPT (N Value)
10	10.50								as returns	RIX DRILLII	ravelly CLA	Y (continue	ed)		10.50	13.55		11 - 101005
- 11								000	GRAVEL	f subangula of limestone trong to stro	Э				11.00	13.05		N = 48/225 mm (12, 10, 13, 17, 18)
13 14 15 16	12.00	80	63	61			740	- + + + + + + + + + + + + + + + + + + +	Discontinu planar. Ap locally clar are subho	k/grey mott , fresh to sli uities are wi pertures are y-smeared, rizontal & 2 of Borehole	dely to close tight to local local slight 0-30°.	nered. sely spaced ally modera iron oxide	, smooth,	A	12.00	12.05		
19																		
	MAR		000	10.54	0m. Erect	Covid-1	9 50	fe Zon	e - 1hr	Water	Casing	Sealed	Rise	Time				DETAILS
110	ie Cd	aeu (7.00-	10.01	oni. E1 6 0t	OUVIU-1	Joa	IG 2011	ę - mi.	Strike	Depth	At	То	(min)		ommen lo wate		e recorded
											11-1-	C!			GR	OUND	VATE	RDETAILS
INS	Date		ON E		RZ Top	RZ Bas	e	Ту	ре	Date 21-03-22	Hole Depth 12.00	Casing Depth 10.50	Depth to Water 10.20	_			mins af	ter end of

REPORT NUMBER

ON	TRA	CT	D	algui	se House	Develo	pmer	nt , Mo	nkstown , C	o.Dublin			DRILL	HOLE	NO	RC	07 et 1 of :	2
		INAT	ES VEL (ΙOm	722,85 728,50	1.49 E 7.00 N 22.38			RIG TYPE			BT-44	DATE	DRILLE		22/0	3/2022	2
	NT				ar Ltd	22.30			FLUSH	ON (deg)		Air/Mist -90	DRILL	ED BY		IG	SL - J	K
NGI	INE	ER	D	avid I	Rehill Con	sulting			CORE DIA	METER (mr	m)	78	LOGG	SED BY		D.	O'She	а
in independent	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spac Lo (mi	cing og m)	Non-intact Zone	Legend			Descript	ion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
									as returns	s of brown C	CLAY	covery, obse			3.00	19.38		N = 24 (3, 4, 6, 5, 6 7) N = 39
									SYMMET as returns	RIX DRILLI	ING: No rec	covery, obse	erved by di	riller				N = 39 (5, 7, 7, 9, 1 12) N = 41 (6, 7, 9, 11 11, 10)
										RIX DRILLI s of brown (covery, obse	erved by d	riller		16.38		N = 37 (4, 7, 7, 9, 1 11)
	9.00	80	0	0				X X X X X X X X X X X X X X X X X X X		brown CLA al coarse gr		aminations	(very		1.00	14.88		N = 47 (7, 8, 9, 15, 11, 12)
	IA C	33	0	0				× × ×							14/4	TED C		DETAILS
	cas	-	0.00-	11.00	m. Erect	Covid-1	9 Sa	fe Zon	e - 1hr.	Water	Casing	Sealed	Rise	Time	T	mmer		DETAILS
										Strike	Depth	At	То	(min)				e recorded
															GRO	OUND	WATER	RDETAILS
ST	ALI	ATIO	ON D	ETA	LS					Date	Hole Depth	Casing Depth	Depth to Water	Com	ment			
)ate		ip Do		2.00	RZ Base 12.30	е	Ty 50mm		24-03-22	12.30	11.00	11.70			ecorded 5	mins aft	er end of

REPORT NUMBER

100	9															
ONTR	ACT	Da	algui	se House De	evelopr	nent , N	Monkstown , C	Co.Dublin			DRILL	HOLE I	NO	RC0 Shee)7 et 2 of 2	2
O-ORI			mΩt	722,851.49 728,507.00			RIG TYPE			BT-44	DATE	DRILLE LOGGE		22/0	3/2022 3/2022	
LIENT				tar Ltd	2.00		FLUSH INCLINATI	ION (deg)		Air/Mist -90	DRILL	ED BY		IG	SL - Jh	(
NGINE	ER	Da	avid l	Rehill Consulti	ing			METER (mn	n)	78	LOGG	ED BY		D.	O'Shea	а
Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fracture Spacing Log (mm)	500	Non-intact Zone			Descripti	on			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
10.50						× -	→ occasiona	brown CLAY	with silt la	minations (very					
10.50			•			×	=									
1 11.20	43	0	0			× 5	COBBLE	of limestone	•				11.00 11.20	11.38 11.18		
	100 68 38							strong, medi ck/grey mottl	um to thinly	flowbande	ed,					
	100	68	38			=[+]	GRANITE	, fresh to sli	ghtly weath	ered.						
12.30						-	+ Discontin	uities are me pertures are					12.30	10.08	° 🖺°	
3	liocall							subvertical 8 of Borehole	subhorizo	ntal.						
6																
7																
8																
9																
EMAF	RKS												WA	TER S	TRIKE	DETAILS
		0.00-	11.00	0m. Erect Co	vid-19	Safe Z	one - 1hr.	Water Strike	Casing Depth	Sealed At	Rise To	Time (min)	Co	mmen	its	
								3.7.7.0				,	N	lo wate	er strike	e recorde
													GR	DUND	WATER	RDETAIL
NSTAL								Date	Hole Depth	Casing Depth	Depth to Water	_	ment			
Date 24-03-		Tip D 12.3		RZ Top RZ 2.00 1:	Base 2.30		Type nm SP	24-03-22	12.30	11.00	11.70	Water		corded 5	5 mins aft	er end of
	22	12.0		2.00		301										

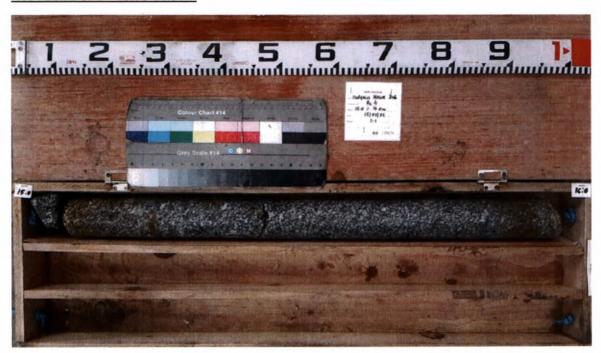
REPORT NUMBER

	ORD	ACT		alguis	722,842.58 E	pmer	nt , Mo	nkstown , C	o.Dublin			SHEE	.HOLE T DRILL)8 et 1 of 3/202:	
SR	DUNI	DLE	VEL	(mOD	728,528.63 N 18.36			RIG TYPE FLUSH			BT-44		LOGG			3/202	
CLI	ENT		G	reyst	ar Ltd Rehill Consulting			INCLINATION CORE DIA		m)	Air/Mist -90 78		ED BY			SL - J O'She	
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fracture Spacing Log (mm)	Non-intact Zone	Legend			Descrip	tion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
1								SYMMETI as returns	RIX DRILL s of brown (ING: No red CLAY	covery, obse	erved by dr	iller	1.50	16.86		
2							0_0	SYMMETI as returns	SYMMETRIX DRILLING: No recovery, observed by drill as returns of brown gravelly CLAY SYMMETRIX DRILLING: No recovery, observed by drill as returns of brown clayey sandy GRAVEL								N = 31 (2, 5, 6, 8, 9)
3							000000000000000000000000000000000000000	as returns	RIX DRILL s of brown o	ING: No rec clayey sand	covery, obse y GRAVEL	erved by dr	iller	3.00	15.36		N = 39 (5, 5, 8, 9, 11) N = 42 (4, 4, 7, 9, 15)
5	6.00					X.1.	++++	SYMMET as returns	of ROCK	ING: No rec			iller		13.06		N = 50/67
7	7.50	100	88	54		590.000	+++++++++++++++++++++++++++++++++++++++	white/blace GRANITE Discontinution planar. Application in the control of the cont	ck/grey mot i, fresh to s uities are w pertures are y-smeared ined (up to	titled, fine to slightly weat videly to close tight to loo l, local sligh 180mm thi	medium gr hered. sely spaced cally modera t iron oxide	d, smooth, ately open, staining, lo	cally				(25, 50)
	9.00	100	97	97		750	+++++++++++	& 30-40°.	201-20-0					9.00	9.36		
9 REI	MARI	KS						End	of Borehole	e at 9.00 m				WA	TER ST	BIKE	DETAILS
_			.00-6	6.00m	n. Erect Covid-19	Safe	Zone	- 1hr.	Water	Casing	Sealed	Rise	Time		mment		JE I AILO
									Strike	Depth	At	То	(min)				e recorde
										Liele	Casina	Davit		GR	DUNDV	VATE	R DETAILS
	Date			ETAII epth	RZ Top RZ Base	9	Ту	oe .	Date 28-03-22	Hole Depth 9.00	Casing Depth 6.00	Depth to Water 3.10				mins af	ter end of

REPORT NUMBER

	NTRA			algui			pmer	nt , Mo	nkstown , C	o.Dublin			DRIL	LHOLE	NO	RC	09 et 1 of	1
	ORD OUN			(mOl	722,806 728,552 D)				RIG TYPE FLUSH			BT-44 Air/Mist		DRILL			3/2022 3/2022	
	ENT	ER			tar Ltd Rehill Con	sulting			INCLINATION CORE DIA		m)	-90 78		LED BY			SL - J O'She	
Commission Copini (mi)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fract Spac Lo (mr	cing eg m)	Non-intact Zone	Legend			Descript	tion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
									as returns	of brown C	CLAY	covery, obse			3.00	11.00		N = 23 (2, 4, 5, 6, 6)
	4.50							0 0	as returns	of brown g	ravelly CL/	covery, obse			4.20 4.50	9.80 9.50		N = 31 (3, 7, 7, 6, 10)
	6.00	93	79	67			819.999 (++++++++++++++++++++++++++++++++++++++	Strong to white/blace GRANITE at 5.71-5.9 Discontinu planar. Ap	very strong kk/grey mott i, fresh to m 92m & 6.46 uities are w pertures are	tled, fine to noderately v i-6.57m) idely to close tight to loc	thinly flowbar medium grayeathered (sely spaced cally moderation oxide	ained, to a sandy I, smooth, ately open	,				N = 50/28 i (25, 50)
	7.50	100	86	75			530	- ' + + + + - + + - + + - + +	are subho	orizontal & 3	30-40°.	t iion oxide	Stalling.	Sipo -	7.50			
									End	of Borehole	e at 7.50 m							
E	MAR	KS													WA.	TER S	TRIKE	DETAILS
_			0.00-4	4.50r	m. Erect C	Covid-19	Safe	Zone	- 1hr.	Water Strike	Casing Depth	Sealed At	Rise To	Time (min)	Co	mmen	its	e recorde
															GR	OUND	WATER	RDETAIL
	Date	1		epth	RZ Top 1.00	RZ Base 7.50	9	Ty 50mr		Date 25-03-22	Hole Depth 7.50	Casing Depth 4.50	Depth to Water 3.20				5 mins aff	er end of

RC02 Box 1 of 2 - 10.50-14.00m


RC02 Box 2 of 2 - 14.00-15.00m

RC03 Box 1 of 1 - 5.00-17.00m

RC04 Box 1 of 1 - 15.00-16.00m

RC05 Box 1 of 1 - 12.00-15.00m

RC06 Box 1 of 1 - 10.50-12.00m

RC07 Box 1 of 1 - 7.50-12.50m

RC08 Box 1 of 1 - 6.00-9.00m

RC09 Box 1 of 1 - 4.50-7.50m

Appendix 3

Trial Pit Records

REPORT NUMBER

ogo	GED BY	S.Hannon	CO-ORDINAT	ES		90.09 E 26.07 N		DATE STA		25/02	et 1 of 1 2/2022 2/2022	
	_	• • • • • • • • • • • • • • • • • • • •	GROUND LE	VEL (m)	27.87			EXCAVAT			Tracked	1
NGI	NEER	Greystar Ltd David Rehill Consulting						METHOD			vator	
								s	amples		(e	neter
		Geotechnical Descript	ion	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer
.0	TOPSO	IL		71/								
+	Subsoil	soft to firm brown slightly sand	v gravelly CLAY.	0_0_	0.20	27.67						
-				0	0.40	27.47						
	CLAY w	stiff greyish brown slightly sand ith medium cobble content.	y very gravelly									
	OLAT W	ar mediam coopie comon.		- 6-								
					0.00	20.03		AA141843	В	0.75		
. 1	Stiff gre	yish brown slightly sandy very of cobble content and low boulder	gravelly CLAY with	0	0.90	26.97						
)	medium	cobble content and low boulde	er content.									
				0								
				0 -				AA141844	В	1.50		
									-			
				0								
1					2.00	25.87						
)	Stiff to v	very stiff brown very gravelly CL	AY with medium	-0								
	coppie	content.										
-					2.70	25.17						
	Very stit	ff black gravelly CLAY with med	lium cobble	-°								
	Content			-0								1
1				-0	-			AA141845	В	3.00		
				0	3.40	24.47						
0	End of	Frial Pit at 3.50m										
/		Conditions										
abi	lity e											
_	ral Rema	rks							-			

REPORT NUMBER

100	336											
CONT	TRACT	Dalguise House Development	, Monkstown , Co.	Dublin				TRIAL PIT	NO.	TP22		
			CO-ORDINAT	TES	722.81	16.49 E		DATE STA	ADTER	25/02/		
.OG	GED BY	S.Hannon			728,4	13.39 N		DATE CO				
LIE	NT NEER	Greystar Ltd David Rehill Consulting	GROUND LE	VEL (m)	27.47			EXCAVAT METHOD	TION	16T T excav	racked ator	
	NLLIN	David Normal Consulting						s	amples	3	_	eter
		Geotechnical Descriptio	n	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer
0.0	TOPSO	IL		71 1/2 1/2	0.20	27.27						
	Soft to f	firm brown slightly sandy very gra	velly CLAY.	0	0.20	21.21		AA141846	В	0.60		
1.0	Firm gre	ey slightly sandy very gravelly CL content and low boulder content.	AY with low	- 0	0.80	26.67						
1.0	Stiff gre	eyish brown slightly sandy very gr ble content and low boulder cont	avelly CLAY with	0	1.20	26.27						
	low cob	ble content and low bounder cont	ent.	- 0. - 0.				AA141847	В	1.50-1.60		
2.0				- 0 - 0 - 0 - 0 - 0 - 0								
3.0				- <u>0</u> -	2.20	24.17						
	End of	Trial Pit at 3.30m			3.30	24.17		AA141848	В	3.30		
4.0												
Grou Seep	indwater page at 3	Conditions m.										
Stab Stab	ility le											
Gene CAT	eral Rema	arks I location for services										

REPORT NUMBER

	TRACT		co-ordina		722,84	13.55 E		TRIAL PIT			et 1 of 1 2/2022	
LOG	GED BY	S.Hannon			728,45	55.72 N		DATE CO			2/2022	
CLIE	NT NEER	Greystar Ltd David Rehill Consulting	GROUND L	EVEL (m)	25.44			EXCAVAT METHOD	TION		Tracked vator	
								s	amples		a)	neter
		Geotechnical Descrip	tion	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer
0.0	TOPSO	DIL		71/2. 71/								
	MADE CLAY V	GROUND - Soft to firm slightly with low cobble content and rare	sandy gravelly brick pieces.	*Q. ×Q.	0.20	25.24		AA141849	В	0.30		
1.0	sand w	GROUND - Medium dense gre ith medium cobble content and ck pieces.	y clayey gravelly old clay pipe and		0.70	24.74						
	Firm to medium	stiff grey very sandy very grave	elly CLAY with		1.40	24.04		AA141850	В	1.20		
2.0				0								
	Stiff to	very stiff pale brown gravelly Cl	LAY.	<u></u>	2.20	23.24		AA146801	В	2.40		
3.0	Very sti content	iff black gravelly CLAY with medic	dium cobble	- 0 - 0 - 0	2.80	22.64						
	End of	Trial Pit at 3.50m			3.50	21.94		AA146802	В	3.30		
4.0	End of	THE THE GLOOM										
Grou Dry	ndwater	Conditions										
Stabi	ility											
Stabl												
	eral Rema Scanned	arks location for services										

REPORT NUMBER

23927

CO-ORDINATES 722.818.50 E 728.486.63 N GROUND LEVEL (m) 25.12 Co-ORDINATES 722.818.50 E 728.486.63 N Co-ORDINATES 728.486.63 N Co-ORDINATES 722.818.50 E 728.486.63 N Co-ORDINATES	CON	TRACT	Dalguise House Development ,	Monkstown , Co.I	Dublin				TRIAL PIT	NO.	TP24 Sheet	1 1 of 1	
Geotechnical Description Geotechnical Descr	.OG	GED BY	S.Hannon	CO-ORDINAT	ES				DATE ST		01/02	/2022	
TOPSOIL Firm greyish brown slightly sandy very gravelly CLAY with medium cobble content and low boulder content. Stiff pale brown gravelly CLAY. Stiff to very stiff pale brown very gravelly CLAY with medium cobble content and low boulder content. Stiff to very stiff grey very gravelly CLAY with medium cobble content and low boulder content. Stiff to very stiff grey very gravelly CLAY with medium cobble content and low boulder content. Refusal on boulder in pit. Too little material recovered for a sample. End of Trial Pit at 3.10m				GROUND LEV	GROUND LEVEL (m)		25.12						
TOPSOIL Firm greyish brown slightly sandy very gravelly CLAY with medium cobble content and low boulder content. Stiff pale brown gravelly CLAY. Stiff to very stiff pale brown very gravelly CLAY with medium cobble content and low boulder content. Stiff to very stiff grey very gravelly CLAY with medium cobble content and low boulder content. Stiff to very stiff grey very gravelly CLAY with medium cobble content and low boulder content. Refusal on boulder in pit. Too little material recovered for a sample. End of Trial Pit at 3.10m									S	ample	s	(a)	meter
Firm greyish brown slightly sandy very gravelly CLAY with medium cobble content and low boulder content. Stiff pale brown gravelly CLAY. Stiff to very stiff pale brown very gravelly CLAY with medium cobble content and low boulder content. Stiff to very stiff grey very gravelly CLAY with medium cobble content and low boulder content. Stiff to very stiff grey very gravelly CLAY with medium cobble content and low boulder content. Refusal on boulder in pit. Too little material recovered for a sample. End of Trial Pit at 3.10m			Geotechnical Description	1	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KP	Hand Penetron
Stiff pale brown gravelly CLAY. Stiff to very stiff pale brown very gravelly CLAY with medium cobble content and low boulder content. Stiff to very stiff grey very gravelly CLAY with medium cobble content and low boulder content. Stiff to very stiff grey very gravelly CLAY with medium cobble content and low boulder content. Refusal on boulder in pit. Too little material recovered for a sample. End of Trial Pit at 3.10m	0.0	Firm greyish brown slightly sandy very gravelly CLAY with			11.11.1	0.25	24.87			В	0.50-0.70		
Stiff to very stiff grey very gravelly CLAY with medium cobble content and low boulder content. Stiff to very stiff grey very gravelly CLAY with medium cobble content and low boulder content. Refusal on boulder in pit. Too little material recovered for a sample. End of Trial Pit at 3.10m AA146804 B 2.00	1.0	Stiff pale brown gravelly CLAY.		- O	0.90	24.22	AA146803						
Stiff to very stiff grey very gravelly CLAY with medium cobble content and low boulder content. Refusal on boulder in pit. Too little material recovered for a sample. End of Trial Pit at 3.10m	2.0					1.80	23.32		AA146804	В	2.00		
	3.0	cobble content and low boulder content. Refusal on boulder in pit. Too little material recovered for a sample.			5	3.00 3.10							
	1.0												

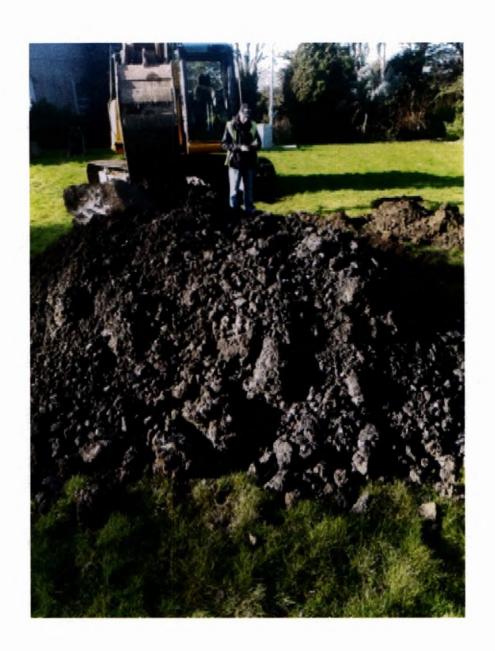
Stability
Stable

General Remarks
CAT Scanned location for services

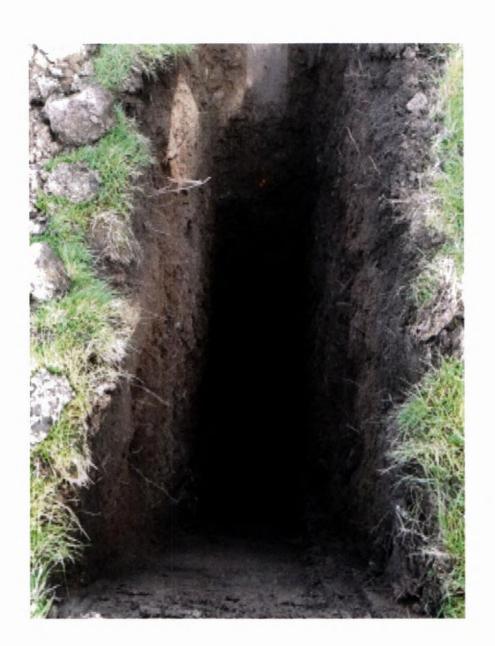
REPORT NUMBER

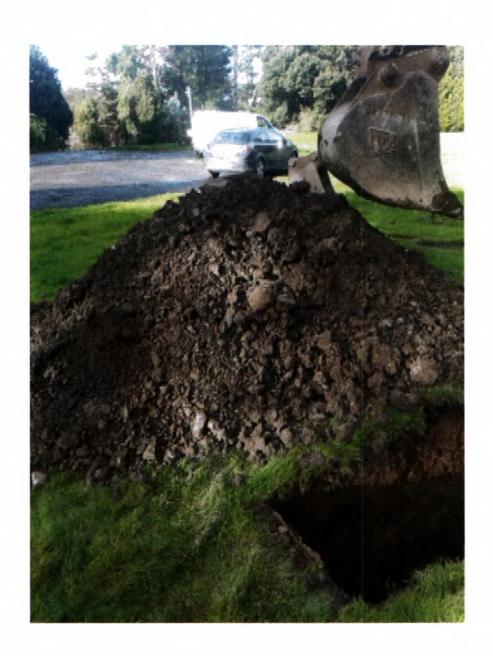
.ogc	SED BY	Dalguise House Development S.Hannon	CO-ORDINAT			18.50 E 36.63 N		DATE STA		01/02	et 1 of 1 2/2022	
			GROUND LE	VEL (m)	25.12			EXCAVAT			2/2022 Tracked	_
LIE	NT NEER	Greystar Ltd David Rehill Consulting						METHOD	ION		vator	'
								s	amples		_	eter
		Geotechnical Description	on	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer
0.0	TOPSO	L		3/4 /1/								
1	Soft to fi	irm brown slightly sandy very gra	avelly CLAY.	0	0.20	24.92						
		,,,										
ŀ	Firm to s	stiff brown slightly sandy gravelly cobble content.	CLAY with	0	0.50	24.62			В	0.60		
	medium	cobble content.						AA146807				
				0								
1.0												
				0	1.20	22.02						
	Stiff bro	wn mottled grey slightly sandy g cobble content and low boulder	ravelly CLAY with		1.20	23.92						
	medium	cobble content and low boulder	content.									
				0 .				AA146808	В	1.50		
				0								
2.0												
	Medium dense moist brown sandy GRAVEL.			0000	2.10 2.20	23.02 22.92						
	Stiff to v	very stiff brown very gravelly CLA		-0	2.20	22.52						
	cobble o	content.										
3.0	End of 1	Frial Pit at 2.50m			3.00	22.12						
4.0												
Frou	ndwater (Conditions										
Stabi												
Stable	е											
	ral Rema	rks location for services										

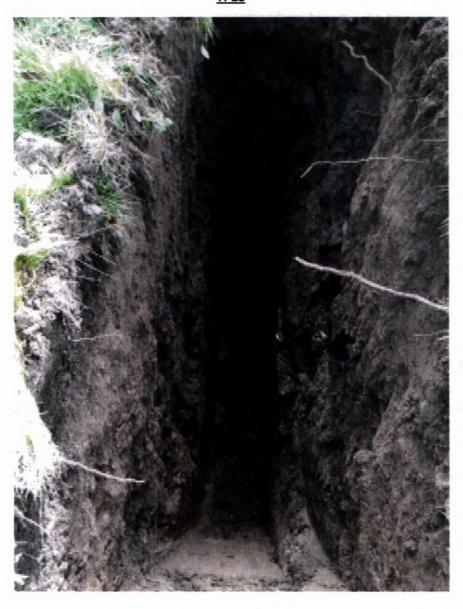
REPORT NUMBER


CONT	TRACT	Dalguise House Developme						TRIAL PIT		TP2	6 t 1 of 1	
.OG	GED BY	S.Hannon	CO-ORDINA		722,77 728,48	71.54 E 85.55 N		DATE STA			2/2022	
CLIE	NT NEER	Greystar Ltd David Rehill Consulting	GROUND LE	VEL (m)	26.26			EXCAVAT METHOD	ION	16T T excav	racked vator	
								s	amples	<u> </u>		neter
		Geotechnical Descrip	tion	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer
0.0	TOPSO			11-11-11 11-11-11	0.20	26.06						
		own slightly sandy gravelly CL/		0.	1.00	25.26		AA146809	В	0.50		
1.0	Firm to stiff greyish brown slightly sandy very gravelly CLAY with medium cobble content and medium boulder content.			0	1.00	25.20		AA146810	В	1.60		
2.0				0 0						377343-36		
	End of	Trial Pit at 2.50m		0	2.70	23.56						
3.0												
4.0												
Grou Dry	ındwater	Conditions										
Stab Stab												
	eral Rema											
CAT	scanned	location for services										

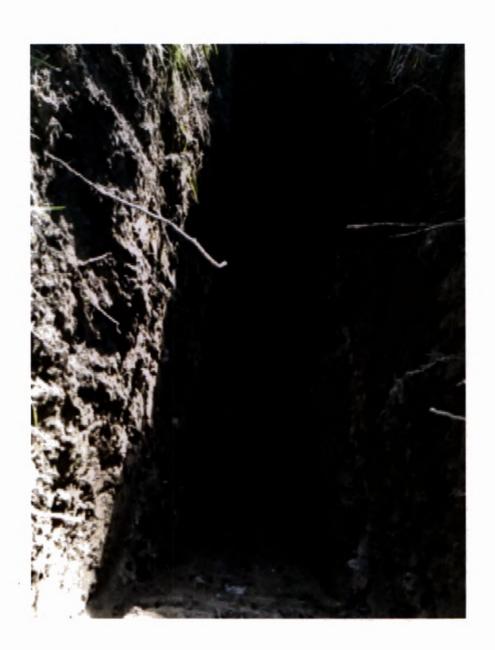
Dalguise House Development - Trial Pit Pictures.

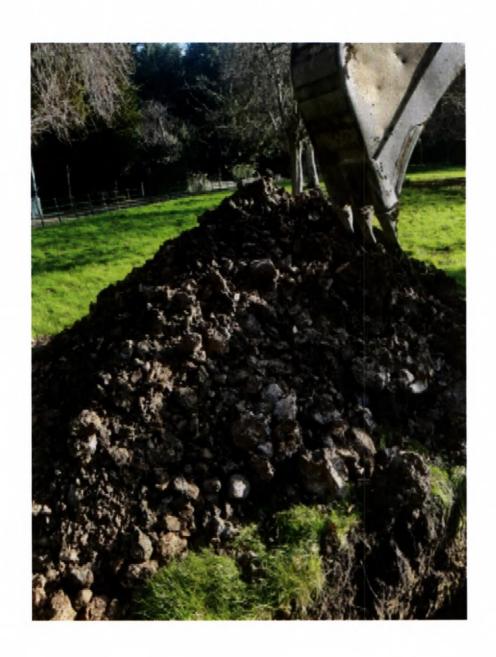

TP21

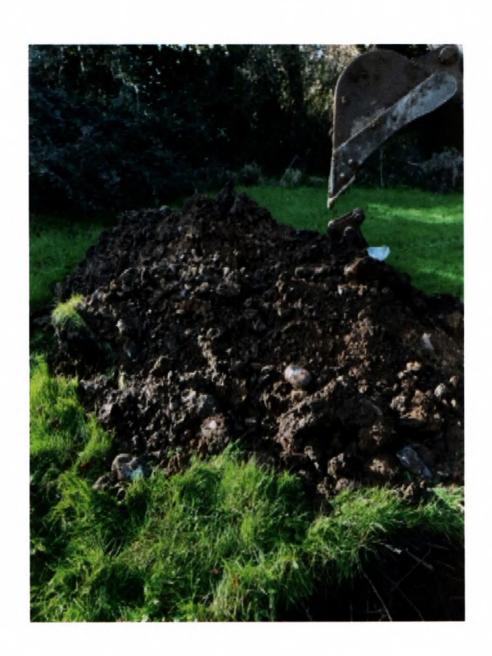












Appendix 4 Window Sample Records

WINDOW SAMPLE RECORD

REPORT NUMBER

CON	TRACT Dalguise House Development , M	onkstown , Co.	Dubli	n			BH NO. SHEET			WS0 Sheet	1 1 of 1	
co-c	PRDINATES(_)	GROUND LE	VEL	(mOD)			DATE D			06/03	/2022 /2022	
CLIE	NT Greystar Ltd NEER David Rehill Consulting		, ,				DRILLE			W. Ca	ahill ynihar	1
Depth (m)	Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Depth of Sample Run (m)	Recovery (%)	Blowcount	Ref. Number	Sample Camp Type	
0.0	Topsoil Firm dark brown slightly gravelly sandy SILT		X _O ,×	0.10			0.00-1.00	90			ENV	0.10-1.00
	Soft to firm brown slightly gravelly CLAY, Lens of sof material at 0.70m, likely peat	ft black organic	× × × × × × × × × × × × × × × × × × ×	0.30								
	No recovery, possible material fallout		F	0.90								
1.0	Firm brown slightly gravelly CLAY		_0_	1.00			1.00-2.00	50			ENV	1.00-2.00
	Firm greyish brown slightly sandy very gravelly CLA coarse and sub-angular to sub-rounded	Y. Gravels fine to		1.20								
2.0				2.00			2.00-3.00	0				
3.0	Final Depth 3.00m			3.00								
Gen	eral Remarks											
Insta	allations											

WINDOW SAMPLE RECORD

REPORT NUMBER

CONT	RACT	Dalguise House Development ,						BH NO. SHEET			WS0 Sheet	2 1 of 1	
co-o	RDINAT	ES(_)	GROUND LE	VEL	(mOD)			DATE D			06/03 06/03	/2022 /2022	
CLIEN	NT NEER	Greystar Ltd David Rehill Consulting						DRILLE			W. Ca	ahill oynihar	1
								Ф				Sampl	es
Depth (m)		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Depth of Sample Run (m)	Recovery (%)	Blowcount	Ref. Number	Sample Type	Depth (m)
0.0	Topsoil			31 1/2				0.00-1.00	85				
	Firm bron sub-angu	wn slightly sandy gravelly CLAY. Gravels ular to sub-rounded	s fine to coarse and		0.20							ENV	0.20-1.00
	No recov	very, possible material fallout		-	0.85								
1.0	Firm bro	wn slightly sandy slightly gravelly CLAY			1.00			1.00-2.00	60			ENV	1.00-2.00
	No recov	very, cobble blocking liner		0_	1.60								
													+
2.0	Final De	pth 2.00m			2.00								
3.0													
Gene	eral Rema	arks							1				
Instal	llations												

IGSL Limited

WINDOW SAMPLE RECORD

REPORT NUMBER

23927

(JC	33L										200	,_,	
CON	TRACT	Dalguise House Development , M	Monkstown , Co.	Dubl	in			BH NO.			WSO	3	
			ODOUND LE	\/FI	(OD)			SHEET				1 1 of 1	
0-0	RDINATI	ES(_)	GROUND LE	VEL	(MOD)			DATE L				/2022 /2022	
LIE	NT	Greystar Ltd						DRILLE	D BY		W. C	ahill	
ENG	INEER	David Rehill Consulting						LOGGE	D BY		C. Mo	ynihar	1
												Sampl	es
Depth (m)		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Depth of Sample Run (m)	Recovery (%)	Blowcount	Ref. Number	Sample Type	Depth (m)
0.0	MADE G	ROUND - Topsoil						0.00-1.00	100				
	MADE G GRAVEL MADE G	ROUND - Firm greyish brown slightly grav ROUND - Medium dense grey slightly clay Gravels fine to coarse and sub-angular to ROUND - Firm greyish brown slightly san	yey sandy to sub-rounded dy gravelly CLAY	, v	0.20 0.30 0.40							ENV	0.20-1.0
1.0	sub-roun	ROUND - Firm grevish brown slightly san	dy gravelly CLAY	\$ XXX XX	1.00			1.00-2.00	90			ENV	1.00-2.0
	Soft to fir 1.60m. G	wood pieces. Gravels fine to coarse and sided m brownish grey slightly gravelly SAND was a coarse and sub-rounded to re- e cobble included at 1.30m	ith gravel lens at	* × · · · ·	1.20								
	Stiff to ve	ery stiff brownish grey slightly gravelly sand	dy CLAY. Sand is	100	1.70								
	No recov	very, possible material fallout		_	1.90								
2.0	Stiff to ve Gravely	ery stiff brownish grey gravelly sandy CLA' fine to coarse and sub-angular to sub-rour	Y. Sand is fine. nded	61,1,61,1,61,1,61,1	2.00			2.00-3.00	100			ENV	2.00-3.0
3.0	Final De	pth 3.00m			3.00								
Gen	eral Rema	arks											

Installations

IGSL Limited

WINDOW SAMPLE RECORD

REPORT NUMBER

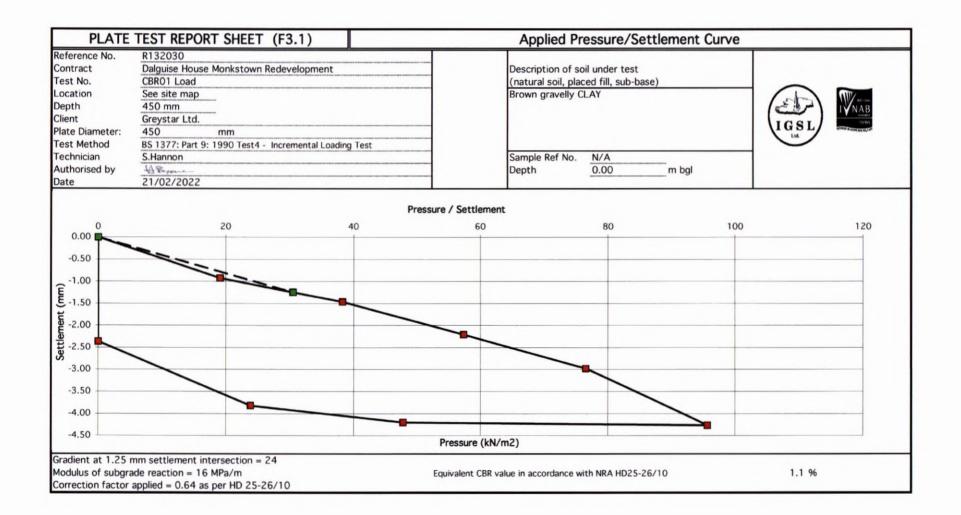
CONT	TRACT Dalguise House Development , Mo						BH NO. SHEET			WS0 Sheet	4 1 of 1	
0-00	RDINATES(_)	GROUND LE	VEL	(mOD)			DATE D				/2022 /2022	
CLIEN	NT Greystar Ltd NEER David Rehill Consulting					,	DRILLE			_	ynihar	
	Geotechnical Description					ike	Sample	(%)	=		Sampi	es
Depth (m)	Cooled III car Description		Legend	Depth (m)	Elevation	Water Strike	Depth of Sample Run (m)	Recovery (%)	Blowcount	Ref. Number	Sample	Depth (m)
0.0	Topsoil		1/2				0.00-1.00	100				
	Firm brown slightly gravelly slightly sandy SILT		×0×	0.30							ENV	0.30-1.00
	Firm brownish grey slightly gravelly sandy CLAY, Lim at 0.07m	estone cobble	×	0.70								-
1.0	Firm brown slightly gravelly very sandy CLAY	+ ODAVE!	_O_	1.00			1.00-2.00	100			ENV	1.00-2.00
	Medium dense greyish brown slightly clayey very san Gravels fine to coarse and sub-angular to sub-rounded	dy GRAVEL.	00	1.30								
	Stiff greyish brown sandy gravelly CLAY. Gravels fine sub-angular to rounded	to coarse and	0 6 1 1 6 1 1 6 1	1.30								
2.0	Stiff greyish brown sandy gravelly CLAY. Gravels fine sub-angular to rounded. Limestone cobbles at 2.0m, 2.30m	to coarse and 2.20m and	1 6 1 1 6 6	2.00			2.00-3.00	30				
	No recovery, possible cobble blocking liner			2.30								
				3.00								
3.0	Final Depth 3.00m											
Gene	ral Remarks											
Instal	lations											

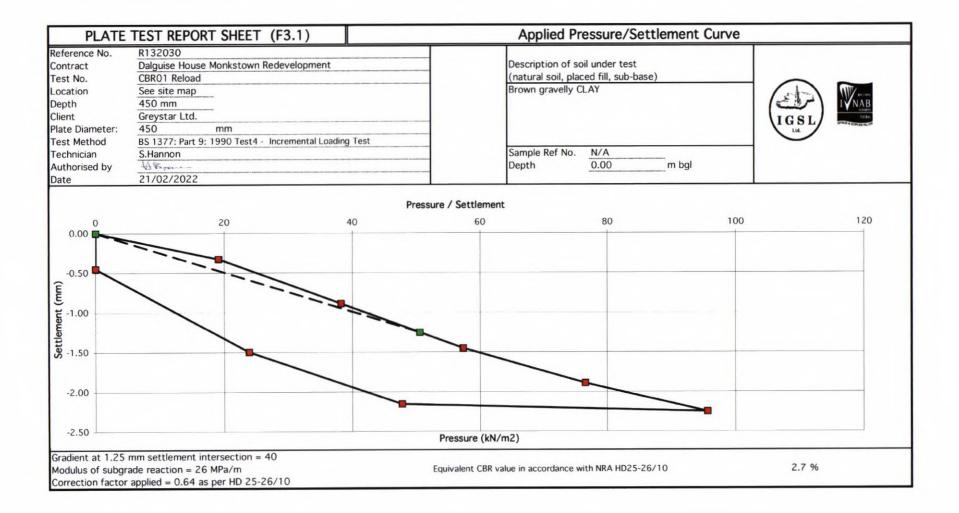
WINDOW SAMPLE RECORD

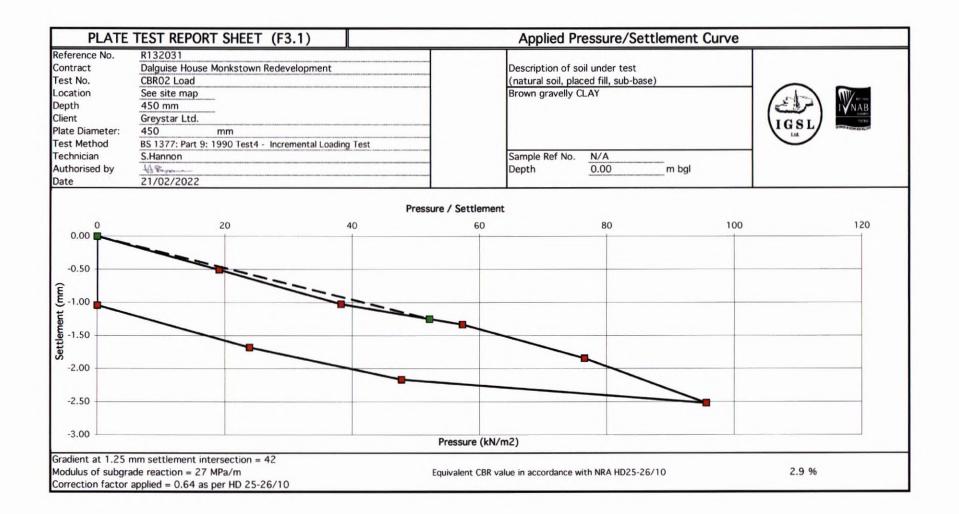
REPORT NUMBER

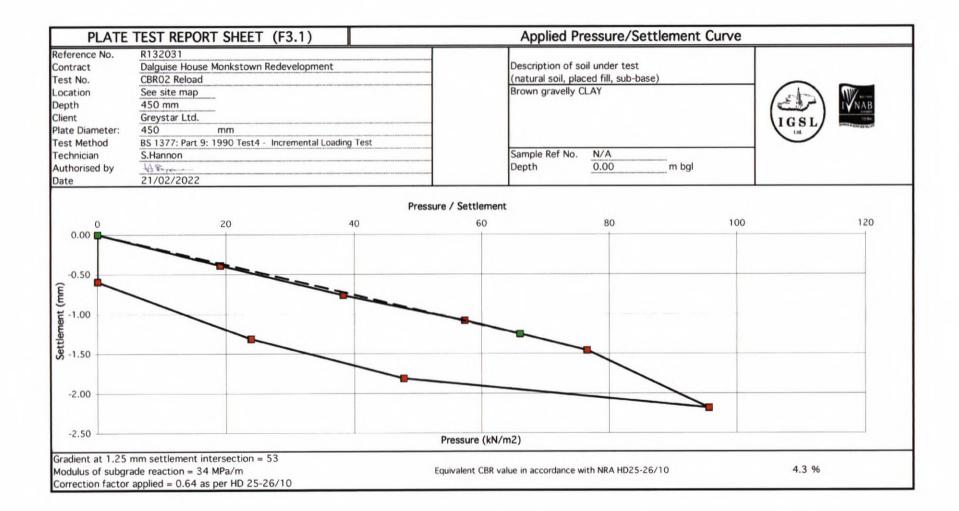
CONT	TRACT Dalguise House Development ,	Monkstown , Co.	Dubli	n			BH NO. SHEET			WS0 Sheet	5 1 1 of 2	
0-0	ORDINATES(_)	GROUND LE	VEL	(mOD)			DATE L				/2022 /2022	
CLIEN	NT Greystar Ltd INEER David Rehill Consulting						DRILLE			W. Ca	ahill oynihar	ı
											Sampl	es
Depth (m)	Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Depth of Sample Run (m)	Recovery (%)	Blowcount	Ref. Number	Sample Type	Depth (m)
0.0	Topsoil		7.7				0.00-1.00	100				
	Firm to stiff brown slightly gravelly SILT		×0 ×	0.30		ę.					ENV	0.30-1.0
			× × ×	0.70								
	Firm greyish brown slightly gravelly sandy CLAY 0.80m and gravel lens at 0.90m. Sand is fine. Gracoarse and sub-angular to sub-rounded	with sand lens at avels are fine to	0-1-1-6	0.70								
1.0	Stiff brown slightly sandy gravelly CLAY. Gravels angular to sub-rounded	fine to coarse and	0	1.00			1.00-2.00	100			ENV	1.00-2.0
			9									
2.0	Very stiff brown gravelly CLAY. Gravels fine to co sub-angular to sub-rounded	arse and	80.	1.95 2.00			2.00-3.00	100			ENV	2.00-3.
	Stiff brown slightly gravelly slightly sandy CLAY											
	Stiff greyish brown sandy gravelly CLAY. Gravels sub-angular to sub-rounded	fine to coarse and	91 91 1 91	2.40								
3.0	Stiff greyish brown slightly gravelly sandy CLAY	with sand lens at	0	3.00			3.00-4.00	95			ENV	3.00-4.
	3.40m. Sand is orange brown and fine		0 0 0									
			0.1									
	Stiff to very stiff dark grey sandy gravelly CLAY			3.80								
	No recovery, possible material fallout											

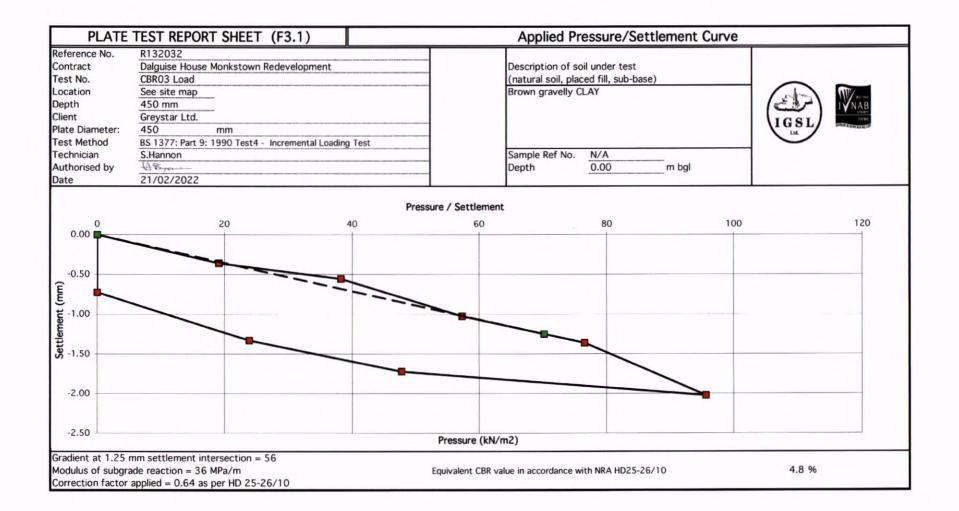
IGSL Limited

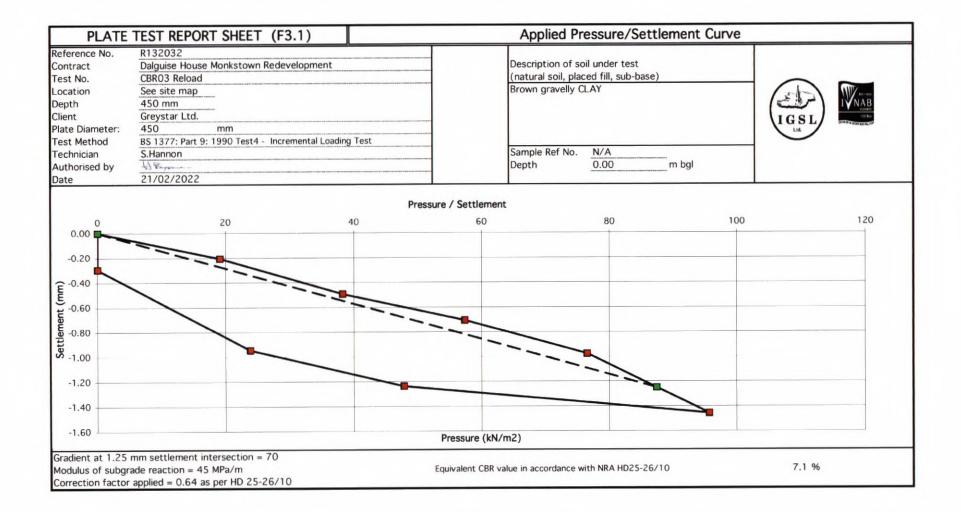

WINDOW SAMPLE RECORD


REPORT NUMBER


CONTRACT Dalgui	se House Development,	1					BH NO			WS0 Sheet	5 t 2 of 2	
CO-ORDINATES(_)		GROUND LE	VEL	(mOD)			DATE I				/2022 /2022	
CLIENT Greyst ENGINEER David	tar Ltd Rehill Consulting						DRILLE				ynihan	
(w) Depth (w)	Geotechnical Description		Legend	(a) Depth	Elevation	Water Strike	Depth of Sample Run (m)	Recovery (%)	Blowcount	Ref. Number	Sample Type	Depth
5.0												
6.0												
7.0												
General Remarks												
nstallations												


Appendix 5


Plate Bearing Test Results



Appendix 6

Foundation Inspection Pits

Report Number: 23927

FP01

Contract: Location: Dalguise House development

Engineer Client:

Monkstown Byrne Looby Greystar Ltd S.Hannon

Logged by: Date: PHOTOS

24/02/2022

TRIAL PIT NO.

from	to	Description	Ground water
0.00	0.20	TOPSOIL	
0.20	1.00	Firm brown sandy gravelly CLAY with abundant rootlets.	
			Dry

Foundation depth: 1 m. Sample at 0.6 m: AA141835.

il: evation	
Ground Level	
	Wall
Ground level.	R Wall
950mm	
	No step in foundation.
	Plan
	Wall

Report Number: 23927

FP02

Contract:

Dalguise House development

Location: Engineer Client: Logged by: Monkstown Byrne Looby Greystar Ltd. S.Hannon

24/02/2022

Date: PHOTOS

TRIAL PIT NO.

Summary of ground conditions

from	to	Description	Ground water
0.00	0.20	TOPSOIL	
0.20	1.00	Firm brown slightly sandy very gravelly CLAY with high cobble content.	
			Dry

Foundation depth: 0.8 m. Sample at 0.5 -0.75 m: AA141835.

all: evation	
Ground Level	
	Wall E
Ground level.	
800mm	1
	No step in foundation.
	<u>Plan</u>
	Well

Report Number: 23927

FP03

Dalguise House development Contract:

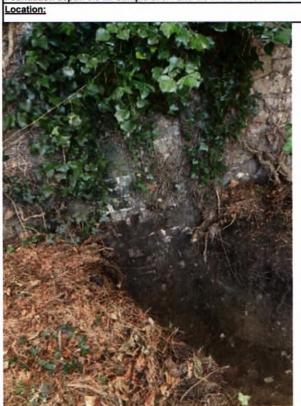
Location: Engineer

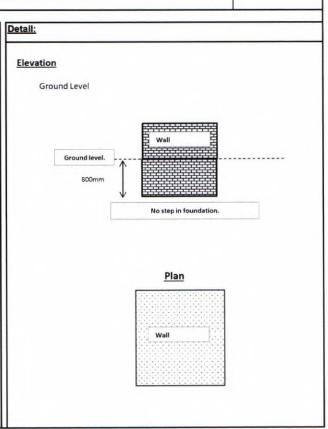
Monkstown Byrne Looby Greystar Ltd.

Logged by: Date:

S.Hannon 24/02/2022

Client:





TRIAL PIT NO.

Summary of gr	ound condition	ns	
from	to	Description	Ground water
0.00	0.20	TOPSOIL	
0.20	0.50	MADE GROUND soft to firm brown sandy gravelly clay with abundant glass and clay pipe pieces.	
0.50	1.00	Firm light brown sandy very gravelly CLAY with low cobble content.	Dry
			-

Foundation depth: 0.8 m. Sample at 0.4 and 0.8 m: AA141836/37

Report Number: 23927

Contract:

Dalguise House development

24/02/2022

Location: Engineer Client: Monkstown Byrne Looby Greystar Ltd. S.Hannon TRIAL PIT NO.

FP04

Summary of ground conditions

from	to	Description	Ground water
0.00	0.20	TOPSOIL	
0.20	0.40	MADE GROUND soft to firm dark brown sandy gravelly clay.	
0.40	0.80	Firm brown slightly gravelly CLAY.	Dry

Foundation depth: 0.5 m. Sample at 0.5 m: AA141838

tail:	
Elevation Ground Level	
	ਵ
Ground level.	E Well E
500mm	1
	No step in foundation.
	Plan
	Wall

Report Number: 23927

Dalguise House development Contract:

Location: Monkstown Engineer Client: Logged by: Date:

Byrne Looby Greystar Ltd. S.Hannon 24/02/2022 TRIAL PIT NO.

FP05

	.10 TOPSOIL	Description	
	II TOFSOIL		
0.10 0.	.60 Soft to f	irm dark brown sandy gravelly CLAY	
0.60 1.	.50 MADE GF	ROUND firm to stiff brown gravelly CLAY	Dry

Foundation depth: 1.35 m. Sample at 0.5 m and 1.2 m: AA141839/40

ail:	
<u>evation</u>	
Ground Level	
Ground level.	Housewall
	No step in foundation.
	Plan Wall

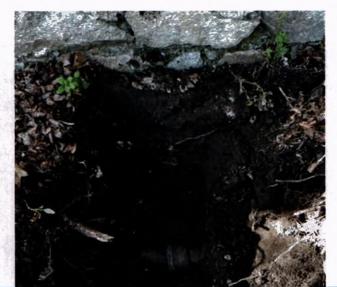
Report Number: 23927

FP08

Contract: Location: Dalguise Lodge Monkstown

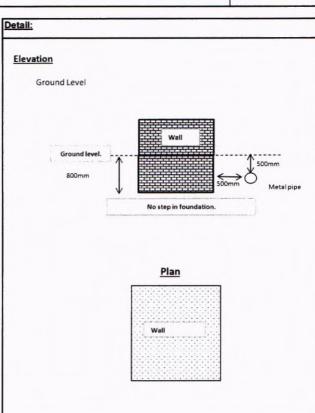
Engineer Client:

S.Hannon


Logged by: Date:

S.Hannon

24/02/2022


TRIAL PIT NO.

from	to	Description	Ground water
0.00	0.20	TOPSOIL	
0.20	0.90	Firm brown slightly sandy gravelly CLAY.	
			Dry

Foundation depth: 0.8 m. Sample at 0.5 m - 0.75 m: AA141841

Location:

Report Number: 23927

Contract:

Logged by:

Dalguise House development

Location: Engineer Client: Monkstown Byrne Looby Greystar Ltd. S.Hannon 24/02/2022 TRIAL PIT NO.

FP09

Summar	y of	ground	condi	tions
--------	------	--------	-------	-------

from	to	Description	Ground water
0.00	0.20	TOPSOIL	
0.20	0.90	Firm brown slightly sandy gravelly CLAY.	
			Dry

Foundation depth: None. Sample at 0.4 m: AA141842

D	e	t	a	i	۱	:
_	_	_	_			_

e	 	_	

Ground Level

Well Ground level.

No foundation. Wall sits on clay.

Plan

Wall

Report Number: 23927

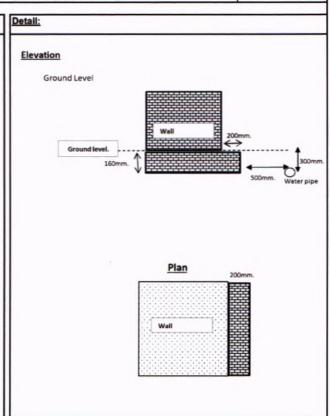
Contract:

Dalguise House development

Location: Engineer Client:

Monkstown Byrne Looby Greystar Ltd. S.Hannon Logged by: Date: 01/03/2022 TRIAL PIT NO.

FP12



Summar	of	around	condi	tions

from	to	Description	Ground water
0.00	0.20	TOPSOIL	
0.20	0.50	Firm brown slightly sandy gravelly CLAY.	
			Dry

Foundation depth: 0.16m. Sample at 0.3 m AA146805.

Report Number: 23927

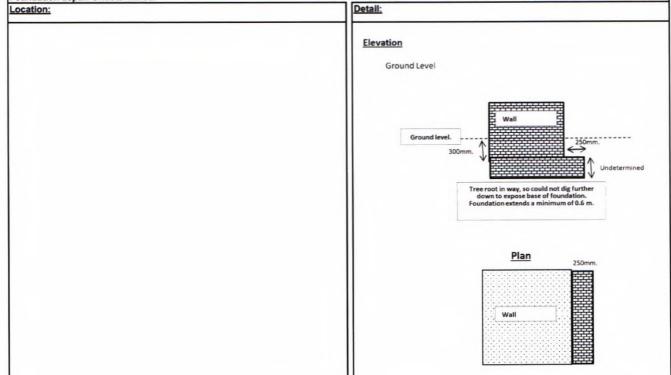
Dalguise House development

Location: Engineer Client: Logged by:

Monkstown Byrne Looby Greystar Ltd. S.Hannon 01/03/2022

PHOTOS

TRIAL PIT NO.


FP13

from	to	Description	Ground water
0.00	0.20	TOPSOIL	
0.20	0.60	Soft to firm brown slighty sandy gravelly clay with abundant rootlets and roots	D
			Dry

Foundation depth: Undetermined.

Report Number: 23927

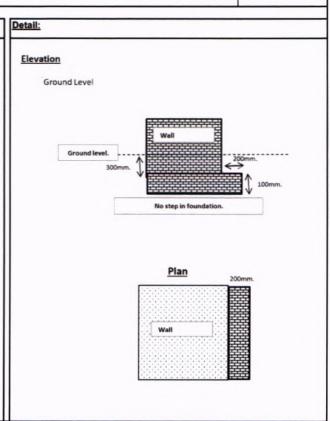
FP14

Contract: Location: Dalguise House development

Engineer Client: Logged by: Monkstown Byrne Looby Greystar Ltd. S.Hannon

24/02/2022

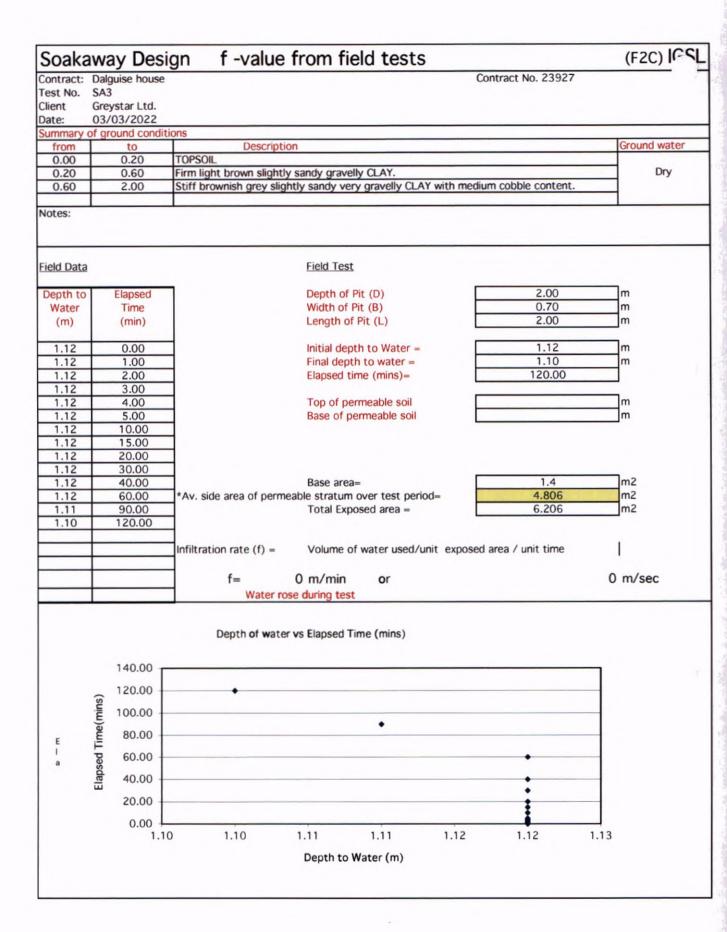
Date: PHOTOS


TRIAL PIT NO.

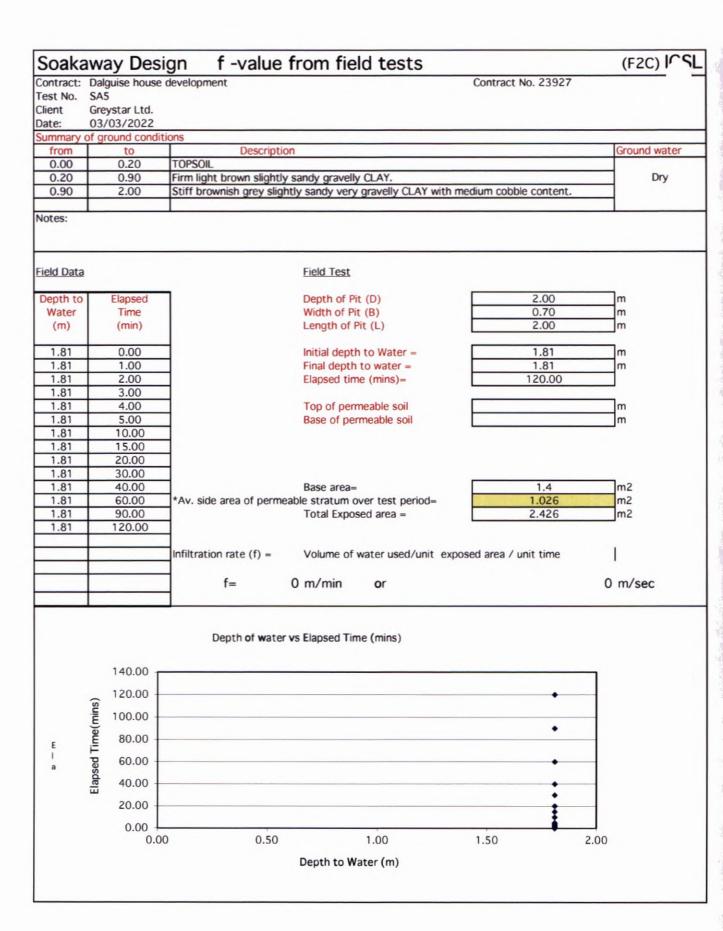
Summary of	gr	bund	cond	itions	
from			to		Г

from	to	Description	Ground water
0.00	0.10	TOPSOIL	
0.10	0.60	Soft to firm dark brown sandy gravelly CLAY	
0.60	1.50	MADE GROUND firm to stiff brown gravelly CLAY	Dry

Foundation depth: 0.4m. Sample at 0.5 m AA146806.



Appendix 7


Infiltration Test Results

Soaka	way Desi	gn f -value from field tests	(F2C) ICS
ontract: est No. lient ate:	Dalguise house SA1 Greystar Ltd 03/03/2022	Contract No. 23927	
	f ground conditi		
from	to	Description	Ground water
0.00	0.30	TOPSOIL	
0.30	1.20	Firm light brown slightly gravelly sandy CLAY.	Mod flow at 2
1.20	1.60	Medium dense grey very sandy very clayey GRAVEL.	_
1.60 otes:	2.00	Firm to stiff brownish grey slightly sandy gravelly CLAY with medium cobble content.	
ield Data		Field Test	
Depth to	Flancod	Depth of Pit (D) 2.00	m
Water	Elapsed Time	Width of Pit (B) 2.00	_
			- m m
(m)	(min)	Length of Pit (L) 2.00	
1.40	0.00	Initial depth to Water = 1.40	m
1.40	1.00	Final depth to water = 1.40	
1.40	2.00	Elapsed time (mins)= 120.00	⊣'''
1.40	3.00	Elapsed time (milis)=	
1.40	4.00	Top of permeable soil	m
1.40	5.00	Base of permeable soil	
1.40	10.00	base of permeable son	
1.40	15.00	1	
1.40	20.00	1	
1.40	30.00		
1.40	40.00	Base area= 1.4	m2
1.40	60.00	*Av. side area of permeable stratum over test period= 3.24	m2
1.40	90.00	Total Exposed area = 4.64	m2
1.40	120.00		
		Infiltration rate (f) = Volume of water used/unit exposed area / unit time	1
		f= 0 m/min or	0 m/sec
		Depth of water vs Elapsed Time (mins)	
	140.00		
	100.00	· ·	
E	Elapsed Time(mins) 100.00 — 6	•	
a	B 60.00	•	
	_	:	
	20.00	1	
	0.00	0 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.6	0
	0.00	Depth to Water (m)	

Contract: D Test No. S Client C Date: C	A2 Greystar Ltd. 03/03/2022	development Contract No. 23927	(F2C) IGS
	ground condi		Country
from	to	Description	Ground water
0.00	0.30	TOPSOIL	Des
0.30	0.90	Firm brown slightly sandy slightly gravelly CLAY. Stiff brownish grey slightly sandy very gravelly CLAY with high cobble content and	Dry
0.90	2.00	medium boulder content.	,
Notes:		priculant boulder content.	
Field Data		Field Test	
Depth to	Elapsed	Depth of Pit (D) 2.00	m
Water	Time	Width of Pit (B) 0.70	m
(m)	(min)	Length of Pit (L) 2.00	m
()	()	2.00	
1.23	0.00	Initial depth to Water = 1.23	m
1.23	1.00	Final depth to water = 1.23	m
1.23	2.00	Elapsed time (mins)= 120.00	
1.23	3.00		
1.23	4.00	Top of permeable soil	m
1.23	5.00	Base of permeable soil	m
1.23	10.00		
1.23	15.00		
1.23	20.00		
1.23	30.00		
1.23	40.00	Base area= 1.4	m2
1.23	60.00	*Av. side area of permeable stratum over test period= 4.158	m2
1.23	90.00	Total Exposed area = 5.558	m2
1.23	120.00	-	
		Infiltration rate (f) = Volume of water used/unit exposed area / unit time	1
		f= 0 m/min or	0 m/sec
	140.00	Depth of water vs Elapsed Time (mins)	
	100.00	•	-
E	80.00		
а	100.00 - 80.00 - 60.00 - 40.00 -		
i	20.00	•	
	0.00	•	

f -value from field tests (F2C) IGSI Soakaway Design Contract: Dalguise house development Contract No. 23927 Test No. SA4 Client Greystar Ltd 03/03/2022 Date: Summary of ground conditions Ground water Description 0.20 TOPSOIL 0.00 0.20 0.90 Firm light brown slightly sandy gravelly CLAY. Dry Stiff brownish grey slightly sandy very gravelly CLAY with medium cobble content. 0.90 2.00 Notes: Field Data Field Test Depth of Pit (D) 2.00 Depth to Elapsed Width of Pit (B) 0.70 Water Time m 2.00 (min) Length of Pit (L) m (m) 0.00 Initial depth to Water = 1.45 1.45 m 1.45 1.00 Final depth to water = 1.45 m 120.00 1.45 2.00 Elapsed time (mins)= 3.00 1.45 1.45 4.00 Top of permeable soil 1.45 5.00 Base of permeable soil m 10.00 1.45 15.00 1.45 1.45 20.00 1.45 30.00 1.45 40.00 1.4 m2 Base area= *Av. side area of permeable stratum over test period= 2.97 m2 1.45 60.00 4.37 m2 Total Exposed area = 1.45 90.00 1.45 120.00 Volume of water used/unit exposed area / unit time Infiltration rate (f) = 0 m/sec 0 m/min f= or Depth of water vs Elapsed Time (mins) 140.00 120.00 Elapsed Time(mins) 100.00 80.00 60.00 40.00 20.00 0.00 0.60 0.80 1.00 1.20 1.40 1.60 0.20 0.40 0.00 Depth to Water (m)

Contract: D est No. S		ign f -value from field tests development Contract No. 23927	(F2C) IGS
	3/03/2022		
	ground condit	tions	
from	to	Description	Ground water
0.00	0.25	TOPSOIL	
0.25	0.80	Firm yellowish brown slightly sandy gravelly CLAY.	Dry
0.80	2.00	Firm to stiff pinkish brown mottled grey slightly sandy slightly gravelly CLAY.	
Notes:			
ield Data		Field Test	
Donth to	Elancad	Depth of Pit (D) 2.00	m
Depth to	Elapsed Time	Width of Pit (B) 0.70	m
Water (m)	(min)	Length of Pit (L) 2.00	m
(111)	(11111)	Echgar of the (E)	
1.50	0.00	Initial depth to Water = 1.50	m
1.50	1.00	Final depth to water = 1.52	m
1.50	2.00	Elapsed time (mins)= 120.00	
1.50	3.00		
1.50	4.00	Top of permeable soil	m
1.50	5.00	Base of permeable soil	m
1.50	10.00		
1.50	15.00 20.00	-	
1.50	30.00	-	
1.50	40.00	Base area= 1.4	m2
1.51	60.00	*Av. side area of permeable stratum over test period= 2.646	m2
1.51	90.00	Total Exposed area = 4.046	m2
1.52	120.00		
		Infiltration rate (f) = Volume of water used/unit exposed area / unit time	1
		f= 5.8E-05 m/min or 9.6110	69E-07 m/sec
	140.00 r	Depth of water vs Elapsed Time (mins)	
	120.00		
в – в m – в	100.00		
	80.00	•	
E I	60.00	•	
de	40.00		
	20.00		
	0.00	• • • • • • • • • • • • • • • • • • • •	
	1.5	60 1.50 1.51 1.51 1.52 1.52	1.53

Appendix 8

Geotechnical Laboratory Testing

IGSL Ltd Materials Laboratory Unit J5, M7 Business Park Newhall, Naas Co. Kildare 045 846176

Test Report

Determination of Moisture Content, Liquid & Plastic Limits

Tested in accordance with BS1377:Part 2:1990, clauses 3.2, 4.3, 4.4 & 5.3**

Report No. R133392 Contract No. 23927 Contract Name: Dalguise House , Monsktown , Dublin

Customer David Rehill C.E

Samples Received: 04/04/22 Date Tested: 04/04/22

BH/TP*	Sample No.	Depth* (m)	Lab. Ref	Sample Type*	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index	% <425μm	Preparation	Liquid Limit Clause	Classification (BS5930)	Description	
BH01	AA165496	4.0	A22/1714	В	13	27	14	13	50	WS	4.4	CL	Brown sandy gravelly CLAY	
BH02A	AA161954	4.0	A22/1715	В	14	44	16	28	98	WS	4.4	CI	Brown sandy gravelly (CLAY
BH02A	AA161956	6.0	A22/1716	В	23	39	15	24	98	WS	4.4	CI	Brown slightly sandy, s	lightly gravelly, CLAY
BH02A	AA161929	9.0	A22/1717	В	27	69	16	53	37	WS	4.4	СН	Brown sandy gravelly (CLAY
BH03	AA161710	5.0	A22/1718	В	9.9	33	15	18	42	WS	4.4	CL	Brown slightly sandy, g	ravelly, CLAY
BH04	AA165494	4.0	A22/1719	В	19	34	16	18	56	WS	4.4	CL	Brown sandy gravelly (CLAY
BH05	AA162664	4.0	A22/1720	В	16	23	NP	NP	48	WS	4.4		Brown slightly sandy, s	lightly gravelly, SILT
BH06	AA166502	5.0	A22/1721	В	14	36	15	21	69	WS	4.4	CI	Brown slightly sandy, s	lightly gravelly, CLAY
TP22	AA141847	1.5	A22/1722	В	12	31	15	16	46	WS	4.4	CL	Brown sandy gravelly (CLAY
TP23	AA146802	3.3	A22/1723	В	7.1	28	12	16	55	WS	4.4	CL	Grey/brown slightly sandy, grave	elly, CLAY with some cobbles
TP26	AA146810	1.6	A22/1724	В	14	34	16	18	58	WS	4.4	CL	Brown sandy gravelly (CLAY
	Preparation:	WS - Wet sieved	1		Sample Type:			Remarks:						
		AR - As received	U - Undisturb	ed						otherwise noted.				
	Limited Limit	NP - Non plastic	amatar dafinitiva	mathad						been superced				information
	Liquid Limit Clause:	4.3 Cone Penetro 4.4 Cone Penetro						Opinions and interpretations are outside the scope of accreditation. * denotes Customer supplied information. This report shall not be reproduced except in full without written approval from the Laboratory.					inionnation.	
	Glause.	4.4 Cone renem	ometer one poin	metriou	Persons author	rized to appro	ve reports	This report site	an not be repro	Approved		io. upprovari		Page

IGSL Ltd Materials Laboratory

Persons authorized to approve reports

#Byane

04/05/22

1 of 1

H Byrne (Laboratory Manager)

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%		Contract No.	23927	Report No.	R133393			
size	passing		Contract Name :	Dalguise Hou	ise , Monkstow	n , Dublin		Results relate only to the spec	cimen tested in as receiv
75	100	COBBLES	BH/TP*:	BH02A				condition unless otherwise not	ted. * denotes Customer
63	100	COBBLES	Sample No.*	AA161956	Lab. Sample	No.	A22/1716	supplied information. Opinions	and interpretations are
50	86		Sample Type:	В				outside the scope of accredita	ation.
37.5	86		Depth* (m)	6.00	Customer:	David Rehill C.E		This report shall not be reproc	duced except in full with
28	85	1	Date Received	04/04/2022	2 Date Testing	started	04/04/2022	the written approval of the La	boratory.
20	81		Description:	Brown slight	y sandy, slight	tly gravelly, CLAY			
14	80	GRAVEL							
10	79	GRAVEL	Remarks	Note: **Clause 9.2 ar	nd Clause 9.5 of BS137	7:Part 2:1990 have been su	perseded by ISO17892-4	2016 .	
6.3	79					0.15	5 5 5 1 8	2 3.35 5.3 6.3 10 20	ν.
5	79		100			0.063	0.3 0.429 0.6 1.18	2 33.3	28 37 37 50 50 50
3.35	79		100						
2	79		90						
1.18	78		80						
0.6	78		§ 70						
0.425	77	SAND	Suis 60						
0.3	77		8 50 So						
0.15	74		Percentage passing (%) 00 00 00 00 00 00 00 00 00						
0.063	68		Cen.						
0.037	59	l 1							
0.027	50		20						
0.018	41	SILT/CLAY	10			1111111111	11111111		
0.010	34	SILITODA	0						100
0.007	29	I I	0.0001 0.0	001	0.01	0.1	1	10	100
0.005	24			CLAY	SILT S	Sieve size (mm)	SAND	GRAVEL	
0.002	17		•					-	-
		ICCL I	td Materials Laborato	n/		Approved by:		Date:	Page no:
		IUSL L	td Materials Laborato	y		# Byone	0	04/05/22	1 of 1
911					Persons	authorised to approv	e report: J Barret	t (Quality Manager) H Byrn	e (Laboratory Mana

Determination of Particle Size Distribution

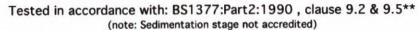
Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5**

(note: Sedimentation stage not accredited)

particle	%			Contract No.	23927	Report No.	R133394			
size	passing			Contract Name :	Dalguise House	se , Monksto	wn , Dublin		Results relate only to the specia	men tested in as receiv
75	100	COBBLES		BH/TP*:	BH03				condition unless otherwise note	ed. * denotes Custome
63	100	COBBLES		Sample No.*	AA161710	Lab. Sample	e No.	A22/1718	supplied information. Opinions a	and interpretations are
50	90			Sample Type:	В				outside the scope of accreditat	ion.
37.5	83			Depth* (m)	5.00	Customer:	David Rehill C.E		This report shall not be reprodu	ced except in full with
28	69			Date Received	04/04/2022		_	04/04/2022	the written approval of the Lab	oratory.
20	61			Description:	Brown slightly	sandy, grav	velly, CLAY			
14	54	GRAVEL								
10	50	GRAVEL		Remarks	Note: **Clause 9.2 and	d Clause 9.5 of BS13	377:Part 2:1990 have been sup	perseded by ISO17892-4:	2016 .	
6.3	46	l ì			,,		0.15	0.3 .425 0.6	32	3.
5	45	1 1	100				0.063	0.425 0.6 0.6	2 3.3 6.3 10 10 20 20	37.00
3.35	42	l I	100							
2	38		90							
1.18	35		80							
0.6	31		× 70							
0.425	30	SAND	ilis 60						$+ + + + + \times$	
0.3	28		50 bas							
0.15	26		Percentage passing (%) 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
0.063	23		cent						1	
0.037	20	1 1								
0.027	19		20							
0.017	18	SILT/CLAY	10			# - + -		1 1 1 1 1 1 1		
0.010	16	SILT/ CLAT	0			0.01			10	100
0.007	14		0.0	0.00	1	0.01	0.1	1	10	100
0.005	12				CLAY	SILT	Sieve size (mm)	SAND	GRAVEL	
0.001	10								1=	1=
		ICSL I	td Mata	iale Laboraton	,		Approved by:		Date:	Page no:
		IGSL L	.tu Mater	ials Laboratory			A Byone		04/05/22	1 of 1

Persons authorised to approve report: J Barrett (Quality Manager) H Byrne (Laboratory Manager)

Determination of Particle Size Distribution


Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

n anti-la	0/		C	22227	D	D12220F			
particle	%		Contract No.	23927	Report No.	R133395			
size	passing		Contract Name :		se , Monkstov	vn , Dublin		Results relate only to the spec	
75	100	COBBLES	BH/TP*:	BH05				condition unless otherwise not	
63	100		Sample No.*	AA162664	Lab. Sample	No.	A22/1720	supplied information. Opinions	
50	100		Sample Type:	В				outside the scope of accredita	
37.5	100	1 1	Depth* (m)	4.00	Customer:	David Rehill C.E		This report shall not be reproc	
28	97	1 1	Date Received	04/04/2022			04/04/2022	the written approval of the La	boratory.
20	90	1 1	Description:	Brown slightly	y sandy, sligh	tly gravelly, SILT			
14	82	GRAVEL							
10	80	OW WEE	Remarks	Note: **Clause 9.2 and	nd Clause 9.5 of BS137	7:Part 2:1990 have been sup	erseded by ISO17892-4:	2016 .	
6.3	75	1 1				63	0.6 0.6 1.18	32	. S.
5	73	1 1				0.063	0.425 0.6 1.18	2 3.3 6.3 10 10 20	37. 28
3.35	70	1 1	100						
2	66		90						
1.18	63		_ 80						+++++
0.6	59	1 1	§ 70						
0.425	57	SAND	70 60 40 30 40					1	
0.3	54	1 1	sed 50						
0.15	49		age age						
0.063	42		40 euta						
0.037	37	1 1	S 30						
0.027	33	I I	20						
0.017	29		10						
0.010	24	SILT/CLAY	0						
0.007	20		0.0001 0.	001	0.01	0.1	1	10	100
0.005	16			CLAY	SILT	Sieve size (mm)	SAND	GRAVEL	
0.002	9			CDAT	OIL I	51010 5120 (11111)		0.0.1.22	
J.002	,					Approved by:		Date:	Page no:
		IGSL L	td Materials Laborato	ry		4 Byone		04/05/22	1 of 1
						63 - 100			

Persons authorised to approve report: J Barrett (Quality Manager) H Byrne (Laboratory Manager)

Determination of Particle Size Distribution

particle	%		Contract No.	23927	Report No.	R133396			
size	passing		Contract Name :	Dalguise Hous	se , Monksto	wn , Dublin		Results relate only to the specir	men tested in as received
75	100	COBBLES	BH/TP*:	BH06				condition unless otherwise note	ed. * denotes Customer
63	100	COBBLES	Sample No.*	AA166502	Lab. Sample	e No.	A22/1721	supplied information. Opinions a	and interpretations are
50	100		Sample Type:	В				outside the scope of accreditat	ion.
37.5	100		Depth* (m)	5.00	Customer:	David Rehill C.E		This report shall not be reprodu	iced except in full withou
28	96	1 1	Date Received	04/04/2022			04/04/2022	the written approval of the Lab	oratory.
20	92	1 1	Description:	Brown slightly	y sandy, sligh	ntly gravelly, CLAY			
14	90	GRAVEL							
10	88	GRAVEL	Remarks	Note: **Clause 9.2 and	d Clause 9.5 of BS13	77:Part 2:1990 have been sup	erseded by ISO17892-4:2	2016 .	
6.3	85	1 1				0.15	6 6 18	32	5.000
5	83					0.063	0.428	2 3.3 5 6.3 10 10 20 20	26.50
3.35	81		100						
2	77		90						
1.18	74		80						
0.6	69		× 70						
0.425	66	SAND	70 60 60 40 40 40 40 40 40 40 40 40 40 40 40 40				<u> </u>		
0.3	62		50						
0.15	54		tage						
0.063	47		30						
0.037	40								
0.027	36		20						
0.017	32	SILT/CLAY	10	1 1 1 1 1 1					
0.010	28	SILT/ CLAT	0	001	0.01	0.1	1	10	100
0.007	25		0.0001 0	.001	0.01	0.1	,		100
0.005	22			CLAY	SILT	Sieve size (mm)	SAND	GRAVEL	
0.002	16							In.	ID
		IGSL I	td Materials Laborate	ory		Approved by:		Date:	Page no:
		IUSE E	itu Materiais Laborati	,,		A Byone		04/05/22	1 of 1

Persons authorised to approve report: J Barrett (Quality Manager) H Byrne (Laboratory Manager)

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%			Contract No.	23927	Report No.	R133397			
size	passing			Contract Name :	Dalguise Hou	ise , Monkstow	n , Dublin		Results relate only to the speci	men tested in as received
75	100	COBBLES		BH/TP*:	TP23				condition unless otherwise note	ed. * denotes Customer
63	90	COBBLES		Sample No.*	AA146802	Lab. Sample	No.	A22/1723	supplied information. Opinions	and interpretations are
50	82			Sample Type:	В				outside the scope of accreditat	tion.
37.5	78			Depth* (m)	3.30	Customer:	David Rehill C.I	Ε	This report shall not be reprodu	uced except in full without
28	73			Date Received		2 Date Testing			the written approval of the Lab	oratory.
20	69			Description:	Grey/brown	slightly sandy,	gravelly, CLAY	with some cobbl	es	
14	67	GRAVEL								
10	63	GRAVEL		Remarks	Note: **Clause 9.2 ar	nd Clause 9.5 of BS137	7:Part 2:1990 have been s	uperseded by ISO17892-4:	2016 .	
6.3	59	l li					0.15	0.3 .425 0.6 1.18	32	28 37.5 50 75 75
5	57		100				0.063	0.3 0.425 0.6 1.18	2 3.3.3 6.3 10 10 10 20	37 83 37 83 83 83 83 83 83 83 83 83 83 83 83 83
3.35	55		¹⁰⁰ [
2	51		90							
1.18	48		80							
0.6	44		× 70							
0.425	42	SAND	is 60							
0.3	40		8 50							
0.15	36		Percentage passing (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
0.063	33		30							
0.037	29									
0.027	26		20							
0.017	23	SILT/CLAY	10		T			+		
0.010	20	SIET/ SEAT	0 1			0.04			10	100
0.007	17		0.00	0.00	I	0.01	0.1	1	10	100
0.005	16				CLAY	SILT	Sieve size (mm)	SAND	GRAVEL	
0.002	11								le .	10
		IGSL I	td Materi	als Laboratory			Approved by:		Date:	Page no:
		IOSE E	ica Maceria	als Laboratory			# Byone		04/05/22 1 of 1	
		•				Persons	authorised to appro	ve report: J Barret	t (Quality Manager) H Byrne	(Laboratory Manager

	Monkstown, : 12/05/202		Sample Type: Contract no. 23						IGSL
RC No.	Depth m	D (Diameter) mm	P (failure load) kN	F	Is (index strength) Mpa	ls(50) (index strength) Mpa	*UCS MPa	Туре	Orienation
RC02	12.2	78	4.0	1.222	0.66	0.80	16	d	//
	13.9	78	12.0	1.222	1.97	2.41	48	d	//
	14.9	78	8.0	1.222	1.31	1.61	32	d	11
RC03	16.4	78	19.0	1.222	3.12	3.81	76	d	11
	16.9	78	11.0	1.222	1.81	2.21	44	d	11
RCO4	15.6	78	21.0	1.222	3.45	4.22	84	d	11
	15.7	78	19.0	1.222	3.12	3.81	76	d	11
	15.8	78	22.0	1.222	3.62	4.42	88	d	11
RCO5	13.7	78	6.0	1.222	0.99	1.20	24	d	//
	13.8	78	2.0	1.222	0.33	0.40	8	d	11
	14.9	78	8.0	1.222	1.31	1.61	32	d	11
RC06	11.2	78	23.0	1.222	3.78	4.62	92	d	11
	11.4	78	22.0	1.222	3.62	4.42	88	d	11
	11.9	78	18.0	1.222	2.96	3.61	72	d	11
RC07	11.4	78	9.0	1.222	1.48	1.81	36	d	11
	12.1	78	6.0	1.222	0.99	1.20	24	d	11
RC08	7.3	78	19.0	1.222	3.12	3.81	76	d	11
	7.6	78	26.0	1.222	4.27	5.22	104	d	11
	7.8	78	24.0	1.222	3.94	4.82	96	d	11
	8.4	78	26.0	1.222	4.27	5.22	104	d	11
	8.5	78	22.0	1.222	3.62	4.42	88	d	//
	I atistical Sumr		ls(50)	UCS*		Distribution Cun	/e	_	breviations
	Samples Teste	ed	21	21	0.0			j	irregular
Minimum			0.40	8				a	axial
Average			3.13	63				b	block
Maximum			5.22	104				d	diametral
Standard De			1.58	32	1				
	Confidence L		6.21	124.28	U. 1	\			ox. orientatio
ower 95%	Confidence L	imit	0.04	0.78	0.05				planes of
								Weak	ness/beddin
Comments:				20	0 10	0 200	300		
*UCS taken	as k x Point L	.oad ls(50): k=		20	0 10	0 200	300	P	perpendicula

	Monkstown,		Sample Type: Contract no. 23						IGSL
RC No.	Depth m	D (Diameter) mm	P (failure load) kN	F	Is (index strength) Mpa	ls(50) (index strength) Mpa	*UCS MPa	Туре	Orienation
RCO9	6.1 78 6.4 78 7.0 78 7.1 78		7.0 8.0 14.0 11.0 10.0	1.222 1.222 1.222 1.222 1.222	1.15 1.31 2.30 1.81 1.64	1.41 1.61 2.81 2.21 2.01	28 32 56 44 40	9 9 9 9	// // // //
Sta	tistical Sumn	nary Data	Is(50)	UCS*	*UCS Normal	Distribution Cur	/e	Ab	breviations
Minimum Average Maximum Standard Dev Upper 95% (amples Teste	mit	5 1.41 2.01 2.81 0.55 3.09 0.93	5 28 40 56 11 61.71 18.60	0.15			d	irregular axial block diametral ox. orientation planes of
Comments: *UCS taken a	as k x Point L	oad ls(50): k=		20	0 0 100	0 200	300	weak	ness/bedding unknown perpendicula parallel

Appendix 9

Chemical and Environmental Laboratory Testing

Eurofins Chemtest L Depot Road Newmarket CB8 0AL

Tel: 01638 606070

13-May-2022

Email: info@chemtest.com

Amended Report

Report No.:

22-12129-2

Initial Date of Issue:

07-Apr-2022

Client

IGSL

Client Address:

M7 Business Park

Naas

County Kildare

Ireland

Contact(s):

John Clancy

Project

23927 Dalguise House Monkstown

Dublin (David Rehill CE)

Quotation No.:

Q20-19951

Date Received:

Date of Re-Issue:

31-Mar-2022

Order No.:

Q20-10001

Date Instructed:

31-Mar-2022

No. of Samples:

27

Turnaround (Wkdays):

30

Results Due:

16-May-2022

Date Approved:

13-May-2022

Approved By:

Details:

Stuart Henderson, Technical

Manager

Results - Leachate

Client: IGSL		1500	Che	mtest J	ob No.:	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129
Quotation No.: Q20-19951			Chemte	st Sam	ple ID.:	1402334	1402335	1402336	1402337	1402338	1402339	1402340	1402341	1402342	1402343	1402344
			Cli	ent Sam	ple ID.:	AA165493	AA165494	AA161952	AA161953	AA165493	AA165495	AA165491	AA165492	AA162662	AA162663	AA165497
			S	ample Lo	ocation:	BH01	BH01	BH02A	BH02A	BH03	BH03	BH04	BH04	BH05	BH05	BH06
		Sample Type: Top Depth (m):			SOIL											
	Top Depth (m)		1.0	2.0	2.0	3.0	1.0	3.0	1.0	2.0	2.0	3.0	1.0			
Determinand	Accred.	SOP	Type	Units	LOD								4			
pH	U	1010	10:1		N/A	8.4	8.3	8.4	8.6	8.6	8.5	8.3	8.6	8.5	8.6	8.3
Ammonium	U	1220	10:1	mg/l	0.050	0.12	0.098	0.22	0.56	0.53	0.41	0.41	0.077	0.11	0.11	0.099
Ammonium	N	1220	10:1	mg/kg	0.10	1.4	1.1	2.5	6.8	6.5	4.9	4.6	0.96	1.3	1.3	1.1
Boron (Dissolved)	U	1455	10:1	mg/kg		< 0.01	< 0.01	< 0.01	0.19	0.16	0.20	0.14	< 0.01	< 0.01	< 0.01	< 0.01
Benzo[j]fluoranthene	N	1800	10:1	µg/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010

Results - Leachate

Client: IGSL	PLOS DE	Griffs.	Che	mtest J	ob No.:	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129
Quotation No.: Q20-19951		-	Chemte	st Sam	ple ID.:	1402345	1402346	1402347	1402348	1402349	1402350	1402351	1402352	1402353	1402354	1402355
			Cli	ent Sam	ple ID.:	AA165498	AA141843	AA141844	AA141845	AA141846	AA141847	AA141848	AA141849	AA141850	AA141801	AA146803
			Sa	ample Lo	ocation:	BH06	TP21	TP21	TP21	TP22	TP22	TP22	TP23	TP23	TP23	TP24
				Sampl	е Туре:	SOIL										
				Top De	pth (m):	2.0	0.75	1.5	3.0	0.6	1.5	3.3	0.3	1.2	2.4	0.5
Determinand	Accred.	SOP	Type	Units	LOD				10		C TALL	100				
pH	U	1010	10:1		N/A	8.4	8.8	8.6	8.5	8.3	8.7	8.7	8.2	8.6	8.8	8.7
Ammonium	U	1220	10:1	mg/l	0.050	0.14	0.063	0.29	0.32	0.51	0.14	0.11	0.15	0.14	0.21	0.21
Ammonium	N	1220	10:1	mg/kg	0.10	1.6	0.84	3.6	3.8	5.6	1.8	1.4	1.6	1.7	2.8	2.7
Boron (Dissolved)	U	1455	10:1	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo[j]fluoranthene	N	1800	10:1	μg/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010

Results - Leachate

Client: IGSL			Che	mtest J	ob No.:	22-12129	22-12129	22-12129	22-12129	22-12129
Quotation No.: Q20-19951		(Chemte	st Sam	ple ID.:	1402356	1402357	1402358	1402359	1402360
	Client Sample ID Sample Location					AA146804	AA146807	AA146808	AA146809	AA146810
			Sa	ample Lo	ocation:	TP24	TP25	TP25	TP26	TP26
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	oth (m):	2.0	0.6	1.5	0.5	1.6
Determinand	Accred.	SOP	Туре	Units	LOD	SEAN SEA		E PLEASE		
pH	U	1010	10:1		N/A	8.7	8.3	8.9	8.4	9.0
Ammonium	U	1220	10:1	mg/l	0.050	0.20	0.22	0.16	0.33	0.061
Ammonium	N	1220	10:1	mg/kg	0.10	2.5	2.4	2.3	3.8	0.96
Boron (Dissolved)	U	1455	10:1	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo[i]fluoranthene	N	1800	10:1	µg/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010

Client: IGSL				Job No.:	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129
Quotation No.: Q20-19951		Chem	test San	nple ID.:	1402334	1402335	1402336	1402337	1402338	1402339	1402340	1402341
		С	lient Sar	mple ID.:	AA165493	AA165494	AA161952	AA161953	AA165493	AA165495	AA165491	AA165492
				ocation:	BH01	BH01	BH02A	BH02A	BH03	BH03	BH04	BH04
				ole Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				epth (m):	1.0	2.0	2.0	3.0	1.0	3.0	1.0	2.0
			Asbes	tos Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD		The Control of the Co	Property Alexander	The state of the state of			Name of the last	
ACM Type	U	2192		N/A	-	-	-	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected
Moisture	N	2030	%	0.020	16	12	18	17	13	12	26	14
pH (2.5:1)	N	2010		4.0	[A] 8.6		[A] 8.5					
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	[A] 0.66	[A] 0.51	[A] 0.41	[A] 0.56	[A] < 0.40	[A] 0.58	[A] < 0.40	[A] < 0.40
Magnesium (Water Soluble)	N	2120	g/l	0.010	[A] < 0.010		[A] < 0.010					
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	[A] 0.015		[A] 0.020					
Total Sulphur	U	2175	%	0.010	[A] 0.043		[A] 0.027					
Sulphur (Elemental)	U	2180	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] 2.3	[A] 11	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Chloride (Water Soluble)	Ü	2220	g/I	0.010	[A] 0.012		[A] 0.011	` '				
Nitrate (Water Soluble)	N	2220	g/l	0.010	< 0.010		< 0.010					
Cyanide (Total)	U	2300	mg/kg	0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	[A] 3.9	[A] 6.5	[A] 8.8	[A] 8.8	[A] 5.9	[A] 5.9	[A] 5.6	[A] 4.1
Ammonium (Water Soluble)	U	2220	g/I	0.01	< 0.01	1,100	< 0.01	1,1			.,	
Sulphate (Acid Soluble)	U	2430	%	0.010	[A] 0.028	[A] 0.012	[A] < 0.010	[A] < 0.010	[A] 0.014	[A] < 0.010	[A] 0.010	[A] 0.013
Arsenic	U	2450	mg/kg	1.0	14	14	11	5.1	13	9.9	13	12
Barium	U	2450	mg/kg	10	79	52	50	25	43	30	55	46
Cadmium	U		mg/kg	0.10	1.1	1.4	0.47	0.25	1.6	1.0	1.7	1.8
Chromium	U	2450	mg/kg	1.0	14	13	27	10	13	9.9	23	12
Molybdenum	U	2450	mg/kg	2.0	2.7	3.1	< 2.0	< 2.0	2.6	< 2.0	2.0	3.2
Antimony	N	2450	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Copper	U	2450	mg/kg	0.50	1200	52	19	7.0	21	14	22	21
Mercury	U	2450	mg/kg	0.10	0.11	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	32	35	34	14	35	24	42	40
Lead	U	2450	mg/kg	0.50	130	51	22	7.2	13	11	18	11
Selenium	U	2450	mg/kg	0.20	0.37	0.56	< 0.20	< 0.20	0.22	0.34	< 0.20	1.2
Zinc	U	2450	mg/kg	0.50	290	110	55	29	64	43	86	61
Chromium (Trivalent)	N	2490	mg/kg	1.0	14	13	27	10	13	9.9	23	12
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Mineral Oil (TPH Calculation)	N	2670	mg/kg	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C10-C12	Ü	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C12-C16	Ü	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C16-C21	Ü	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C21-C35	Ü	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0

Project: 23927 Dalguise House Monkstown Dublin (David Rehill CE)

Project: 23927 Dalguise House Monk Client: IGSL			_	Job No.:	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129
Quotation No.: Q20-19951			est San		1402334	1402335	1402336	1402337	1402338	1402339	1402340	1402341
Quotation 140 Q20-19951	_		lient Sar	_	AA165493	AA165494	AA161952	AA161953	AA165493	AA165495	AA165491	AA165492
	_			ocation:	BH01	BH01	BH02A	BH02A	BH03	BH03	BH04	BH04
	_			ole Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	+			epth (m):	1.0	2.0	2.0	3.0	1.0	3.0	1.0	2.0
	_			stos Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD	DOMINI	DOITHAM	BOTTIFUT	DOI TO THE				Maria Caralla
Aliphatic TPH >C35-C44	N N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0				
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	[A] < 5.0	[A] < 5.0	[AC] < 5.0	[A] < 5.0				
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0				
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0				
Aromatic TPH >CF-C6 Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0				
Aromatic TPH >C0-C10	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0				
Aromatic TPH >C10-C12 Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0				
Aromatic TPH >C12-C16 Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0				
Aromatic TPH >C16-C21 Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0				
Aromatic TPH >C21-C35 Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0				
	N	2680	mg/kg	5.0	[A] < 5.0	[A] < 5.0	[AC] < 5.0	[A] < 5.0				
Total Aromatic Hydrocarbons	N	2680	mg/kg	10.0	[A] < 10	[A] < 10	[AC] < 10	[A] < 10				
Total Petroleum Hydrocarbons	U	2760		1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0				
Benzene			μg/kg	1.0	[A] < 1.0		[AC] < 1.0	[A] < 1.0				
Toluene	U	2760	μg/kg			[A] < 1.0	[AC] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Ethylbenzene	U	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0
m & p-Xylene	U	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0
o-Xylene	U	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0
Methyl Tert-Butyl Ether	U	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	
Naphthalene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Acenaphthylene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Acenaphthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Fluorene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Phenanthrene	N	2800	mg/kg	0.010	[A] 0.11	[A] 0.11	[A] 0.14	[A] 0.096	[A] < 0.010	[A] 0.24	[A] < 0.010	[A] < 0.010
Anthracene	N	2800	mg/kg	0.010	[A] 0.060	[A] 0.089	[A] 0.036	[A] 0.010	[A] < 0.010	[A] 0.069	[A] < 0.010	[A] < 0.010
Fluoranthene	N	2800	mg/kg	0.010	[A] 0.13	[A] 0.12	[A] 0.10	[A] 0.18	[A] < 0.010	[A] 0.23	[A] < 0.010	[A] < 0.010
Pyrene	N	2800	mg/kg	0.010	[A] 0.12	[A] 0.15	[A] 0.19	[A] 0.13	[A] < 0.010	[A] 0.19	[A] < 0.010	[A] < 0.010
Benzo[a]anthracene	N	2800	mg/kg	0.010	[A] 0.10	[A] 0.14	[A] 0.13	[A] 0.089	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Chrysene	N	2800	mg/kg	0.010	[A] 0.11	[A] 0.17	[A] 0.21	[A] 0.077	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[b]fluoranthene	N	2800	mg/kg	0.010	[A] 0.13	[A] 0.15	[A] 0.24	[A] < 0.010				
Benzo[k]fluoranthene	N	2800	mg/kg	0.010	[A] 0.13	[A] 0.093	[A] 0.074	[A] < 0.010				
Benzo[a]pyrene	N	2800	mg/kg	0.010	[A] 0.18	[A] 0.11	[A] 0.18	[A] < 0.010				
Indeno(1,2,3-c,d)Pyrene	N	2800	mg/kg	0.010	[A] 0.11	[A] < 0.010	[A] 0.11	[A] < 0.010				
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.010	[A] 0.11	[A] < 0.010	[A] 0.058	[A] < 0.010				
Benzo[g,h,i]perylene	N	2800	mg/kg	0.010	[A] 0.13	[A] < 0.010	[A] 0.20	[A] < 0.010				
Coronene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Total Of 17 PAH's	N	2800	mg/kg	0.20	[A] 1.4	[A] 1.1	[A] 1.7	[A] 0.58	[A] < 0.20	[A] 0.73	[A] < 0.20	[A] < 0.20
PCB 28	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[AC] < 0.0010		[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 52	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[AC] < 0.0010	[A] < 0.0010				

Client: IGSL		Che	emtest.	Job No.:	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129
Quotation No.: Q20-19951		Chemt	est Sar	nple ID.:	1402334	1402335	1402336	1402337	1402338	1402339	1402340	1402341
		CI	lient Sa	mple ID.:	AA165493	AA165494	AA161952	AA161953	AA165493	AA165495	AA165491	AA165492
		S	Sample I	Location:	BH01	BH01	BH02A	BH02A	BH03	BH03	BH04	BH04
			Sam	ole Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top D	epth (m):	1.0	2.0	2.0	3.0	1.0	3.0	1.0	2.0
			Asbes	stos Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD				CA APPLE				
PCB 90+101	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[AC] < 0.0010	[A] < 0.0010				
PCB 118	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[AC] < 0.0010	[A] < 0.0010				
PCB 153	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[AC] < 0.0010	[A] < 0.0010				
PCB 138	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[AC] < 0.0010	[A] < 0.0010				
PCB 180	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[AC] < 0.0010	[A] < 0.0010				
Total PCBs (7 congeners)	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[AC] < 0.0010	[A] < 0.0010				
Total Phenols	U	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Client: IGSL		Ch	emtest .	lob No.:	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129
Quotation No.: Q20-19951		Chem	test San	ple ID.:	1402342	1402343	1402344	1402345	1402346	1402347	1402348	1402349	1402350
		С	lient Sar	nple ID.:	AA162662	AA162663	AA165497	AA165498	AA141843	AA141844	AA141845	AA141846	AA141847
		5	Sample L	ocation:	BH05	BH05	BH06	BH06	TP21	TP21	TP21	TP22	TP22
			Samp	le Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	epth (m):	2.0	3.0	1.0	2.0	0.75	1.5	3.0	0.6	1.5
				tos Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD						100000000000000000000000000000000000000		5.5	
ACM Type	U	2192		N/A	-	-	-	-	-	-	-	-	
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected					
Moisture	N	2030	%	0.020	15	14	18	16	15	5.0	7.9	16	10
pH (2.5:1)	N	2010		4.0									[A] 8.6
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	[A] < 0.40	[A] < 0.40	[A] < 0.40	[A] 0.73	[A] 0.69	[A] 0.42	[A] < 0.40	[A] 0.68	[A] < 0.40
Magnesium (Water Soluble)	N	2120	g/I	0.010									[A] < 0.010
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010									[A] < 0.010
Total Sulphur	U	2175	%	0.010									[A] 0.040
Sulphur (Elemental)	U	2180	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] 1.3	[A] < 1.0	[A] 1.3	[A] 4.1	[A] < 1.0	[A] < 1.0
Chloride (Water Soluble)	U	2220	g/I	0.010									[A] < 0.010
Nitrate (Water Soluble)	N	2220	g/I	0.010									< 0.010
Cyanide (Total)	U	2300	mg/kg	0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	[A] 3.8	[A] 3.2	[A] 5.4	[A] 6.7	[A] 5.0	[A] 3.3	[A] 5.1	[A] 6.8	[A] 8.6
Ammonium (Water Soluble)	U	2220	g/I	0.01									< 0.01
Sulphate (Acid Soluble)	U	2430	%	0.010	[A] 0.011	[A] < 0.010	[A] < 0.010	[A] 0.010	[A] 0.023	[A] 0.017	[A] 0.032	[A] 0.023	[A] < 0.010
Arsenic	U	2450	mg/kg	1.0	10	12	12	9.8	11	5.7	12	9.9	12
Barium	U	2450	mg/kg	10	64	56	50	49	51	23	62	51	40
Cadmium	U	2450	mg/kg	0.10	0.84	1.6	1.3	0.75	0.97	0.85	1.7	1.4	1.5
Chromium	U	2450	mg/kg	1.0	18	13	21	26	20	5.6	10	16	9.7
Molybdenum	U	2450	mg/kg	2.0	< 2.0	3.2	2.1	< 2.0	< 2.0	< 2.0	3.5	< 2.0	2.8
Antimony	N	2450	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Copper	U	2450	mg/kg	0.50	14	20	23	18	24	11	22	22	18
Mercury	U	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	30	35	43	37	36	19	42	37	34
Lead	U	2450	mg/kg	0.50	10	12	19	15	39	5.5	13	17	11
Selenium	U	2450	mg/kg	0.20	< 0.20	0.53	0.42	< 0.20	0.46	0.20	3.1	0.30	0.34
Zinc	U	2450	mg/kg	0.50	52	56	74	53	84	31	63	78	57
Chromium (Trivalent)	N	2490	mg/kg	1.0	18	13	21	26	20	5.6	10	16	9.7
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Mineral Oil (TPH Calculation)	N	2670	mg/kg	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0

Client: IGSL				Job No.:	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129
Quotation No.: Q20-19951			test San		1402342	1402343	1402344	1402345	1402346	1402347	1402348	1402349	1402350
			lient Sar		AA162662	AA162663	AA165497	AA165498	AA141843	AA141844	AA141845	AA141846	AA141847
			Sample L		BH05	BH05	BH06	BH06	TP21	TP21	TP21	TP22	TP22
				le Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				epth (m):	2.0	3.0	1.0	2.0	0.75	1.5	3.0	0.6	1.5
			_	tos Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD	Marie San		Bullion Bullion		Transfer (Const.)	25	platin page		
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C10-C12	Ü	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C12-C16	Ü	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C16-C21	Ü	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C21-C35	Ü	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	[A] < 10	[A] < 10	[A] < 10	[A] < 10	[A] < 10	[A] < 10	[A] < 10	[A] < 10	[A] < 10
Benzene	U	2760	µg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Toluene	Ŭ	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Ethylbenzene	Ü	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
m & p-Xylene	U	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
o-Xylene	U	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Methyl Tert-Butyl Ether	Ü	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Naphthalene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Acenaphthylene	N	2800	mg/kg		[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Acenaphthene	N	2800		0.010						[A] < 0.010		[A] < 0.010	[A] < 0.010
			mg/kg		[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010
Fluorene Phenanthrene	N N	2800 2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010 [A] < 0.010	[A] < 0.010 [A] < 0.010	[A] < 0.010 [A] < 0.010	[A] < 0.010
	_	_	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010				[A] < 0.010
Anthracene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010 [A] < 0.010	[A] < 0.010 [A] < 0.010	[A] < 0.010
Fluoranthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010
Pyrene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010 [A] < 0.010	
Benzo[a]anthracene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010
Chrysene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[b]fluoranthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[k]fluoranthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[a]pyrene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Indeno(1,2,3-c,d)Pyrene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[g,h,i]perylene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Coronene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Total Of 17 PAH's	N	2800	mg/kg	0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20
PCB 28	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 52	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A1 < 0.0010

Client: IGSL		Ch	emtest.	Job No.:	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129
Quotation No.: Q20-19951		Chem	test Sar	nple ID.:	1402342	1402343	1402344	1402345	1402346	1402347	1402348	1402349	1402350
		С	lient Sa	mple ID.:	AA162662	AA162663	AA165497	AA165498	AA141843	AA141844	AA141845	AA141846	AA141847
			Sample I	ocation:	BH05	BH05	BH06	BH06	TP21	TP21	TP21	TP22	TP22
			Samp	ole Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top D	epth (m):	2.0	3.0	1.0	2.0	0.75	1.5	3.0	0.6	1.5
			Asbes	stos Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD		ESS ESTREMENT							
PCB 90+101	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 118	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 153	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 138	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 180	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
Total PCBs (7 congeners)	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
Total Phenols	U	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Client: IGSL				Job No.:	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129
Quotation No.: Q20-19951			test Sar	CONTRACTOR OF THE PARTY	1402351	1402352	1402353	1402354	1402355	1402356	1402357	1402358	1402359
			lient Sa	-	AA141848	AA141849	AA141850	AA141801	AA146803	AA146804	AA146807	AA146808	AA146809
			Sample	•	TP22	TP23	TP23	TP23	TP24	TP24	TP25	TP25	TP26
				ole Type:	SOIL								
				epth (m):	3.3	0.3	1.2	2.4	0.5	2.0	0.6	1.5	0.5
				stos Lab:	DURHAM								
Determinand	Accred.	SOP	Units	LOD			0.000		12 (1985)				- W. W. W. W.
ACM Type	U	2192		N/A	-	-	-	-	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected								
Moisture	N	2030	%	0.020	9.9	16	12	13	13	14	14	13	19
pH (2.5:1)	N	2010		4.0						[A] 8.6			[A] 8.5
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	[A] 0.44	[A] 0.75	[A] < 0.40	[A] < 0.40	[A] 0.47	[A] < 0.40	[A] 1.1	[A] < 0.40	[A] 0.58
Magnesium (Water Soluble)	N	2120	g/l	0.010						[A] < 0.010			[A] < 0.010
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010						[A] < 0.010			[A] 0.015
Total Sulphur	U	2175	%	0.010						[A] 0.020			[A] 0.025
Sulphur (Elemental)	U	2180	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] 1.3	[A] < 1.0	[A] 3.7	[A] < 1.0
Chloride (Water Soluble)	U	2220	g/l	0.010						[A] < 0.010			[A] 0.054
Nitrate (Water Soluble)	N	2220	g/l	0.010						< 0.010			< 0.010
Cyanide (Total)	U	2300	mg/kg	0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	[A] 10	[A] 3.6	[A] 2.1	[A] 3.9	[A] 2.2	[A] 5.1	[A] < 0.50	[A] 3.7	[A] 1.8
Ammonium (Water Soluble)	U	2220	g/l	0.01						< 0.01			< 0.01
Sulphate (Acid Soluble)	U	2430	%	0.010	[A] 0.013	[A] 0.017	[A] 0.013	[A] < 0.010					
Arsenic	U	2450	mg/kg	1.0	5.8	9.4	12	8.2	6.2	4.4	4.2	4.1	2.9
Barium	U	2450	mg/kg	10	30	41	33	39	18	23	21	25	27
Cadmium	U	2450	mg/kg	0.10	0.81	0.88	1.5	0.36	0.60	0.15	0.51	0.33	0.29
Chromium	U	2450	mg/kg	1.0	5.5	16	12	25	7.8	16	8.5	9.8	8.0
Molybdenum	U	2450	mg/kg	2.0	< 2.0	< 2.0	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Antimony	N	2450	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Copper	U	2450	mg/kg	0.50	10	24	16	15	12	9.4	8.2	7.8	7.7
Mercury	U	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	19	29	27	34	20	20	15	15	14
Lead	U	2450	mg/kg	0.50	9.8	44	13	11	9.5	5.7	6.5	8.3	9.9
Selenium	U	2450	mg/kg	0.20	0.51	0.37	0.23	< 0.20	0.78	< 0.20	0.23	< 0.20	< 0.20
Zinc	U	2450	mg/kg	0.50	37	88	61	47	31	28	37	21	24
Chromium (Trivalent)	N	2490	mg/kg	1.0	5.5	16	12	25	7.8	16	8.5	9.8	8.0
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Mineral Oil (TPH Calculation)	N	2670	mg/kg	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0

Client: IGSL	THE REAL PROPERTY.	Che	emtest .	Job No.:	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129
Quotation No.: Q20-19951		Chemi	test San	nple ID.:	1402351	1402352	1402353	1402354	1402355	1402356	1402357	1402358	1402359
		С	lient Sar	nple ID.:	AA141848	AA141849	AA141850	AA141801	AA146803	AA146804	AA146807	AA146808	AA146809
		5	Sample L	ocation:	TP22	TP23	TP23	TP23	TP24	TP24	TP25	TP25	TP26
			Samp	le Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	epth (m):	3.3	0.3	1.2	2.4	0.5	2.0	0.6	1.5	0.5
			Asbes	stos Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD						ne de la companya de			The Area
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	[A] < 10	[A] < 10	[A] < 10	[A] < 10					
Benzene	U	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Toluene	U	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Ethylbenzene	U	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
m & p-Xylene	U	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
o-Xylene	U	2760	µg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Methyl Tert-Butyl Ether	U	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Naphthalene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Acenaphthylene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Acenaphthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Fluorene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Phenanthrene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Anthracene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Fluoranthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Pyrene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[a]anthracene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Chrysene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[b]fluoranthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[k]fluoranthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[a]pyrene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Indeno(1,2,3-c,d)Pyrene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[g,h,i]perylene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Coronene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Total Of 17 PAH's	N	2800	mg/kg	0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20
PCB 28	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 52	N	2815		0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010

Client: IGSL		Ch	emtest .	Job No.:	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129
Quotation No.: Q20-19951		Chem	test Sar	nple ID.:	1402351	1402352	1402353	1402354	1402355	1402356	1402357	1402358	1402359
		С	lient Sa	mple ID.:	AA141848	AA141849	AA141850	AA141801	AA146803	AA146804	AA146807	AA146808	AA146809
			Sample	Location:	TP22	TP23	TP23	TP23	TP24	TP24	TP25	TP25	TP26
			Sam	ole Type:	SOIL								
			Top D	epth (m):	3.3	0.3	1.2	2.4	0.5	2.0	0.6	1.5	0.5
			Asbe	stos Lab:	DURHAM								
Determinand	Accred.	SOP	Units	LOD									
PCB 90+101	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 118	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 153	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 138	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 180	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
Total PCBs (7 congeners)	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
Total Phenois	U	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Client: IGSL		Che	emtest .	Job No.:	22-12129
Quotation No.: Q20-19951		Chemi	est San	nple ID.:	1402360
		С	lient Sar	nple ID.:	AA146810
				ocation:	TP26
				ole Type:	SOIL
				epth (m):	1.6
				stos Lab:	DURHAM
Determinand	Accred.	SOP	Units	LOD	Section Control
ACM Type	U	2192		N/A	
Asbestos Identification	U	2192		N/A	No Asbestos Detected
Moisture	N	2030	%	0.020	13
pH (2.5:1)	N	2010		4.0	
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	[A] < 0.40
Magnesium (Water Soluble)	N	2120	g/l	0.010	
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	
Total Sulphur	U	2175	%	0.010	
Sulphur (Elemental)	U	2180	mg/kg	1.0	[A] < 1.0
Chloride (Water Soluble)	U	2220	g/l	0.010	
Nitrate (Water Soluble)	N	2220	g/I	0.010	
Cyanide (Total)	U	2300	mg/kg	0.50	[A] < 0.50
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	[A] 4.3
Ammonium (Water Soluble)	U	2220	g/I	0.01	
Sulphate (Acid Soluble)	U	2430	%	0.010	[A] < 0.010
Arsenic	U		mg/kg	1.0	8.5
Barium	U	2450	mg/kg	10	34
Cadmium	U	2450	mg/kg	0.10	1.3
Chromium	U	2450		1.0	11
Molybdenum	U	2450		2.0	2.0
Antimony	N		mg/kg	2.0	< 2.0
Copper	U	2450		0.50	20
Mercury	U	2450	mg/kg	0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	33
Lead	U	2450		0.50	12
Selenium	U	2450			0.33
Zinc	U	2450			66
Chromium (Trivalent)	N	2490			11
Chromium (Hexavalent)	N	2490			< 0.50
Mineral Oil (TPH Calculation)	N		mg/kg	10	< 10
Aliphatic TPH >C5-C6	N		mg/kg		[A] < 1.0
Aliphatic TPH >C6-C8	N		mg/kg		[A] < 1.0
Aliphatic TPH >C8-C10	Ü		mg/kg		[A] < 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	[A] < 1.0
Aliphatic TPH >C12-C16	U		mg/kg		[A] < 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg		[A] < 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg		[A] < 1.0

Client: IGSL		Ch	emtest.	Job No.:	22-12129		
Quotation No.: Q20-19951				nple ID.:	1402360		
				mple ID.:	AA146810		
	3	5		Location:	TP26		
			Samp	ple Type:	SOIL		
4-74				epth (m):	1.6		
			Asbes	stos Lab:	DURHAM		
Determinand	Accred.	SOP	Units	LOD			
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	[A] < 1.0		
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	[A] < 5.0		
Aromatic TPH >C5-C7	N	2680		1.0	[A] < 1.0		
Aromatic TPH >C7-C8	N	2680		1.0	[A] < 1.0		
Aromatic TPH >C8-C10	U	2680		1.0	[A] < 1.0		
Aromatic TPH >C10-C12	U	2680		1.0	[A] < 1.0		
Aromatic TPH >C12-C16	U	2680		1.0	[A] < 1.0		
Aromatic TPH >C16-C21	U	2680		1.0	[A] < 1.0		
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	[A] < 1.0		
Aromatic TPH >C35-C44	N	2680		1.0	[A] < 1.0		
Total Aromatic Hydrocarbons	N	2680		5.0	[A] < 5.0		
Total Petroleum Hydrocarbons	N	2680		10.0	[A] < 10		
Benzene	U	2760		1.0	[A] < 1.0		
Toluene	U	2760		1.0	[A] < 1.0		
Ethylbenzene	U	2760		1.0	[A] < 1.0		
m & p-Xylene	U	2760	μg/kg	1.0	[A] < 1.0		
o-Xylene	U	2760		1.0	[A] < 1.0		
Methyl Tert-Butyl Ether	U	2760	_	1.0	[A] < 1.0		
Naphthalene	N	2800			[A] < 0.010		
Acenaphthylene	N	2800	9		[A] < 0.010		
Acenaphthene	N	2800			[A] < 0.010		
Fluorene	N	2800			[A] < 0.010		
Phenanthrene	N	2800			[A] < 0.010		
Anthracene	N	2800			[A] < 0.010		
Fluoranthene	N	2800			[A] < 0.010		
Pyrene	N	2800			[A] < 0.010		
Benzo[a]anthracene	N	2800			[A] < 0.010		
Chrysene	N	2800	mg/kg	0.010	[A] < 0.010		
Benzo[b]fluoranthene	N	2800	mg/kg		[A] < 0.010		
Benzo[k]fluoranthene	N	2800			[A] < 0.010		
Benzo[a]pyrene	N	2800			[A] < 0.010		
Indeno(1,2,3-c,d)Pyrene	N	2800	9		[A] < 0.010		
Dibenz(a,h)Anthracene	N	2800	mg/kg		[A] < 0.010		
Benzo[g,h,i]perylene	N	2800			[A] < 0.010		
Coronene	N	2800			[A] < 0.010		
Total Of 17 PAH's	N	2800			[A] < 0.20		
PCB 28	N	2815		0.0010	[A] < 0.0010		
PCB 52	N	2815	mg/kg				

Client: IGSL		Job No.:	22-12129				
Quotation No.: Q20-19951		nple ID.:	1402360				
		Client Sample ID.:					
		Sample Location:					
		Sample Type:					
		1.6					
		Top Depth (m): Asbestos Lab:					
Determinand	Accred.	SOP	Units	LOD			
PCB 90+101	N	2815	mg/kg	0.0010	[A] < 0.0010		
PCB 118	N	2815	mg/kg	0.0010	[A] < 0.0010		
PCB 153	N	2815	mg/kg	0.0010	[A] < 0.0010		
PCB 138	N	2815	mg/kg	0.0010	[A] < 0.0010		
PCB 180	N	2815	mg/kg	0.0010	[A] < 0.0010		
Total PCBs (7 congeners)	N	2815	mg/kg	0.0010	[A] < 0.0010		
Total Phenols	U	U 2920 mg/kg 0.10					

Project: 23927 Dalguise Hous	e Monkstown Dublin (David Rehill CE)	
Chemtest Job No:	22-12129	Landfil
Chambrot Commits ID.	4400004	

Chemtest Job No:	22-12129		Landfill	Waste Acceptanc	e Criteria		
Chemtest Sample ID:	1402334					Limits	
Sample Ref: Sample ID:	AA165493					Stable, Non- reactive	
Sample Location: Top Depth(m):	BH01 1.0				Inert Waste	hazardous waste in non-	Hazardous Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 1.8	3	5	6
Loss On Ignition	2610	U	%	3.8	-		10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		-
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		-
Total Of 17 PAH's	2800	N	mg/kg	[A] 1.4	100		
pH	2010	U		8.4	-	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.0080	1	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
			mg/l	mg/kg	using BS EN 12457 at L/S 10 I/kg		
Arsenic	1455	U	0.0068	0.068	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0064	0.064	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.019	0.18	0.5	10	30
Nickel	1455	U	0.0006	0.0063	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	0.0016	0.016	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	1.2	12	800	15000	25000
Fluoride	1220	U	0.16	1.6	10	150	500
Sulphate	1220	U	1.6	16	1000	20000	50000
Total Dissolved Solids	1020	N	78	780	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	20	200	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.090				
Moisture (%)	16				

Waste Acceptance Criteria

Project: 23927 Dalguise House Monkstown Dublin (David Rehill CE)

Chemtest Job No:	22-12129		Landfill	Waste Acceptance	e Criteria		
Chemtest Sample ID:	1402335					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA165494					reactive	
Sample Location:	BH01					hazardous	Hazardous
Top Depth(m):	2.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.84	3	5	6
Loss On Ignition	2610	U	%	3.2	-		10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1	**	-
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		-
Total Of 17 PAH's	2800	N	mg/kg	[A] 1.1	100		-
pH	2010	U		8.5	-	>6	-
Acid Neutralisation Capacity					1	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
•	mg/l			mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455	U	0.0044	0.044	0.5	2	25
Barium	1455	U	0.007	0.070	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0007	0.0067	0.5	10	70
Copper	1455	U	0.0067	0.067	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.020	0.20	0.5	10	30
Nickel	1455	U	0.0009	0.0093	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	0.0014	0.014	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	1.2	12	800	15000	25000
Fluoride	1220	U	0.18	1.8	10	150	500
Sulphate	1220	U	2.8	28	1000	20000	50000
Total Dissolved Solids	1020	N	98	970	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	21	210	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.090				
Moisture (%)	12				

Waste Acceptance Criteria

Project: 23927 Dalguise House Monkstown Dublin (David Rehill CE)

Chemtest Job No: Chemtest Sample ID:	22-12129 1402336				Landfill Waste Acceptance Criter Limits			
Sample Ref: Sample ID: Sample Location: Top Depth(m): Bottom Depth(m): Sampling Date:	AA161952 BH02A 2.0				Inert Waste Landfill	Stable, Non- reactive hazardous waste in non- hazardous Landfill	Hazardous Waste Landfill	
Determinand	SOP	Accred.	Units					
Total Organic Carbon	2625	U	%	[A] 0.54	3	5	6	
Loss On Ignition	2610	U	%	2.0	-		10	
Total BTEX	2760	U	mg/kg	[AC] < 0.010	6		-	
Total PCBs (7 congeners)	2815	N	mg/kg	[AC] < 0.0010	1		-	
TPH Total WAC	2670	U	mg/kg	[AC] < 10	500		-	
Total Of 17 PAH's	2800	N	mg/kg	[A] 1.7	100		-	
pH	2010	U		8.5	-	>6	-	
Acid Neutralisation Capacity	2015	N	mol/kg	0.0090	-	To evaluate	To evaluate	
Eluate Analysis			10:1 Eluate mg/l	10:1 Eluate mg/kg		for compliance I S EN 12457 at L/S		
Arsenic	1455	U	0.0004	0.0041	0.5	2	25	
Barium	1455	Ü	0.007	0.065	20	100	300	
Cadmium	1455	Ü	< 0.00011	< 0.00011	0.04	1	5	
Chromium	1455	Ü	0.0012	0.012	0.5	10	70	
Copper	1455	U	0.0012	0.012	2	50	100	
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2	
Molybdenum	1455	U	0.0077	0.077	0.5	10	30	
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40	
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50	
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5	
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7	
Zinc	1455	U	< 0.003	< 0.003	4	50	200	
Chloride	1220	U	< 1.0	< 10	800	15000	25000	
Fluoride	1220	U	0.37	3.7	10	150	500	
Sulphate	1220	U	3.1	31	1000	20000	50000	
Total Dissolved Solids	1020	N	78	780	4000	60000	100000	
Phenol Index	1920	U	< 0.030	< 0.30	1		-	
Dissolved Organic Carbon	1610	U	2.5	< 50	500	800	1000	

Solid Information				
Dry mass of test portion/kg	0.090			
Moisture (%)	18			

Waste Acceptance Criteria

Project:	23927	Dalguise	House	Monkstown	Dublin	(David	Rehill CE)	

Chemtest Job No:	22-12129			Landfill	Waste Acceptance	e Criteria	
Chemtest Sample ID:	1402337					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA161953					reactive	
Sample Location:	BH02A					hazardous	Hazardous
Top Depth(m):	3.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.39	3	5	6
Loss On Ignition	2610	U	%	2.3	-		10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		-
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		-
Total Of 17 PAH's	2800	N	mg/kg	[A] 0.58	100		-
pH	2010	U		8.5	-	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.016	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance l	eaching test
•			mg/l	mg/kg	using B	S EN 12457 at L/S	6 10 l/kg
Arsenic	1455	U	0.0003	0.0025	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0006	0.0056	0.5	10	70
Copper	1455	U	0.0010	0.0098	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0045	0.046	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.22	2.2	10	150	500
Sulphate	1220	U	1.2	12	1000	20000	50000
Total Dissolved Solids	1020	N	59	580	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	*	-
Dissolved Organic Carbon	1610	U	4.0	< 50	500	800	1000

Solid Information				
Dry mass of test portion/kg	0.090			
Moisture (%)	17			

Waste Acceptance Criteria

Project:	23927	Dalguise	House	Monkstown	Dublin	(David Rehill CE	1

Chemtest Job No:	22-12129 1402338				Landfill	Waste Acceptanc		
Chemtest Sample ID: Sample Ref:	1402338					Limits Stable, Non-		
Sample ID:	AA165493					reactive		
Sample Location:	BH03					hazardous	Hazardous	
Top Depth(m):	1.0				Inert Waste	waste in non-	Waste	
Bottom Depth(m):					Landfill	hazardous	Landfill	
Sampling Date:					100000000	Landfill		
Determinand	SOP	Accred.	Units					
Total Organic Carbon	2625	U	%	[A] 0.47	3	5	6	
Loss On Ignition	2610	U	%	1.7			10	
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		-	
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1			
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		-	
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100			
pH	2010	U		8.6	-	>6	-	
Acid Neutralisation Capacity	2015	N	mol/kg	0.079	-	To evaluate	To evaluate	
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test	
			mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg			
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25	
Barium	1455	U	< 0.005	< 0.0005	20	100	300	
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5	
Chromium	1455	U	0.0007	0.0074	0.5	10	70	
Copper	1455	U	0.0010	0.0096	2	50	100	
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2	
Molybdenum	1455	U	0.0056	0.056	0.5	10	30	
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40	
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50	
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5	
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7	
Zinc	1455	U	< 0.003	< 0.003	4	50	200	
Chloride	1220	U	15	150	800	15000	25000	
Fluoride	1220	U	0.32	3.2	10	150	500	
Sulphate	1220	U	12	120	1000	20000	50000	
Total Dissolved Solids	1020	N	59	580	4000	60000	100000	
Phenol Index	1920	U	< 0.030	< 0.30	1		-	
Dissolved Organic Carbon	1610	U	2.8	< 50	500	800	1000	

Solid Information				
Dry mass of test portion/kg	0.090			
Moisture (%)	13			

Waste Acceptance Criteria

Project: 23927 Dalguise House Monkstown Dublin (David Rehill CE)

Chemtest Job No:	22-12129 1402339				Landfill \	Waste Acceptance Limits	e Criteria
Chemtest Sample ID: Sample Ref:						Stable, Non-	
Sample ID:	AA165495					reactive	
Sample Location:	BH03					hazardous	Hazardous
Top Depth(m):	3.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.39	3	5	6
Loss On Ignition	2610	U	%	1.8	-		10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		-
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		-
Total Of 17 PAH's	2800	N	mg/kg	[A] 0.73	100		1
pH	2010	U		8.5	1	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.017	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455	U	0.0002	0.0021	0.5	2	25
Barium	1455	U	0.006	0.064	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0007	0.0071	0.5	10	70
Copper	1455	U	0.0009	0.0089	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.021	0.21	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	1.8	18	800	15000	25000
Fluoride	1220	Ü	0.34	3.4	10	150	500
Sulphate	1220	U	2.6	26	1000	20000	50000
Total Dissolved Solids	1020	N	65	650	4000	60000	100000
Phenol Index	1920	Ü	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	3.3	< 50	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.090				
Moisture (%)	12				

Waste Acceptance Criteria

Chemtest Job No: Chemtest Sample ID:	22-12129 1402340				Landfill	Waste Acceptance Limits	• Criteria
Sample Ref: Sample ID: Sample Location: Top Depth(m): Bottom Depth(m): Sampling Date:	AA165491 BH04 1.0				Inert Waste Landfill	Stable, Non- reactive hazardous waste in non- hazardous Landfill	Hazardous Waste Landfill
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 1.2	3	5	6
Loss On Ignition	2610	U	%	4.1	-		10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		-
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		-
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		-
pH	2010	U		8.6	1	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.013	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance l	eaching test
			mg/l	mg/kg	using E	IS EN 12457 at L/S	3 10 l/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0009	0.0095	0.5	10	70
Copper	1455	U	0.0012	0.012	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0056	0.056	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	2.2	22	800	15000	25000
Fluoride	1220	U	0.39	3.9	10	150	500
Sulphate	1220	U	2.9	29	1000	20000	50000
Total Dissolved Solids	1020	N	91	900	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	2.7	< 50	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.090				
Moisture (%)	26				

Waste Acceptance Criteria

Project: 23927 Dalguise House Monkstown Dublin (David Rehill CE)

Chemtest Job No:	22-12129				Landfill	Waste Acceptance	e Criteria
Chemtest Sample ID:	1402341					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA165492					reactive	
Sample Location:	BH04					hazardous	Hazardous
Top Depth(m):	2.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.39	3	5	6
Loss On Ignition	2610	U	%	2.5	-		10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		-
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		-
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		1
pH	2010	U		8.5	1	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.078	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/S	5 10 l/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0007	0.0068	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.032	0.32	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.30	3.0	10	150	500
Sulphate	1220	U	1.7	17	1000	20000	50000
Total Dissolved Solids	1020	N	65	650	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	2.9	< 50	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.090				
Moisture (%)	14				

Waste Acceptance Criteria

Project: 23927 Dalguise House No.:	22-12129	d Reniii CE)			I andfill	Waste Acceptance	Criteria
Chemtest Sample ID:	1402342				Landini	Limits	. Oillona
Sample Ref:	1402042					Stable, Non-	
Sample ID:	AA162662					reactive	
Sample Location:	BH05					hazardous	Hazardous
Top Depth(m):	2.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):	2.0				Landfill	hazardous	Landfill
Sampling Date:					Lunum	Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.33	3	5	6
Loss On Ignition	2610	Ü	%	3.2	_		10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
pH	2010	U		8.7	-	>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.075	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance le	eaching test
			mg/l	mg/kg	using E	S EN 12457 at L/S	10 l/kg
Arsenic	1455	U	0.0002	0.0020	0.5	2	25
Barium	1455	U	0.006	0.064	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0005	0.0052	0.5	10	70
Copper	1455	U	0.0010	0.0096	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0093	0.093	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.42	4.2	10	150	500
Sulphate	1220	U	1.8	18	1000	20000	50000
Total Dissolved Solids	1020	N	65	650	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	< 2.5	< 50	500	800	1000

Solid Information				
Dry mass of test portion/kg	0.090			
Moisture (%)	15			

Waste Acceptance Criteria

Project:	23927	Dalguise	House	Monkstown	Dublin	(David	Rehill CE)	

Project: 23927 Dalguise House No.:	22-12129	u Kelliii CE)			Landfill	Waste Acceptanc	e Criteria
Chemtest Sample ID:	1402343				Landin	Limits	
Sample Ref:	1402040					Stable, Non-	
Sample ID:	AA162663					reactive	
Sample Location:	BH05					hazardous	Hazardous
Top Depth(m):	3.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units	1			
Total Organic Carbon	2625	U	%	[A] 0.46	3	5	6
Loss On Ignition	2610	U	%	2.2	-		10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		-
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
pH	2010	U		8.6	_	>6	1
Acid Neutralisation Capacity	2015	N	mol/kg	0.023	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
•			mg/l	mg/kg	using B	S EN 12457 at L/S	3 10 l/kg
Arsenic	1455	U	0.0003	0.0028	0.5	2	25
Barium	1455	U	0.006	0.056	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0019	0.019	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.016	0.16	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	1.1	11	800	15000	25000
Fluoride	1220	U	0.32	3.2	10	150	500
Sulphate	1220	U	2.7	27	1000	20000	50000
Total Dissolved Solids	1020	N	72	710	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	2.8	< 50	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.090				
Moisture (%)	14				

Waste Acceptance Criteria

Chemtest Job No:	22-12129				Landfill Waste Acceptance Criteria Limits		
Chemtest Sample ID:	1402344						
Sample Ref: Sample ID: Sample Location:	AA165497 BH06					Stable, Non- reactive hazardous	Hazardous
Top Depth(m): Bottom Depth(m): Sampling Date:	1.0				Inert Waste Landfill	waste in non- hazardous Landfill	Waste Landfill
Determinand	SOP	Accred.	Units			Lundiiii	
Total Organic Carbon	2625	U	%	[A] 0.76	3	5	6
Loss On Ignition	2610	U	%	3.2	-		10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		-
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		_
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		-
pH	2010	U		8.3	-	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.042		To evaluate	To evaluate
Eluate Analysis	10:1 Eluate			10:1 Eluate	Limit values for compliance leaching test using BS EN 12457 at L/S 10 l/kg		
A	4455		mg/l	mg/kg			
Arsenic Barium	1455	U	0.0002	0.0022	0.5	100	25
Cadmium	1455	U	< 0.005 < 0.00011	< 0.0005 < 0.00011	0.04	100	300 5
Chromium	1455 1455	U	0.0007	0.0072	0.04	10	70
Copper	1455	U	0.0007	0.015	2	50	100
Mercury	1455	Ü	< 0.0005	< 0.0005	0.01	0.2	2
Molybdenum	1455	Ü	0.0044	0.044	0.5	10	30
Nickel	1455	Ü	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	Ü	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	Ü	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	Ü	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	Ü	< 0.003	< 0.003	4	50	200
Chloride	1220	Ü	< 1.0	< 10	800	15000	25000
Fluoride	1220	Ü	0.33	3.3	10	150	500
Sulphate	1220	Ü	2.3	23	1000	20000	50000
Total Dissolved Solids	1020	N	100	1000	4000	60000	100000
Phenol Index	1920	Ü	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	Ü	4.6	< 50	500	800	1000

Solid Information				
Dry mass of test portion/kg	0.090			
Moisture (%)	18			

Waste Acceptance Criteria

Project: 23927 Dalguise House Monkstown Dublin (David Reh	III CE)
---	---------

Chemtest Job No:	22-12129				Landfill \	Waste Acceptance	e Criteria
Chemtest Sample ID:	1402345					Limits Stable, Non-	
Sample Ref:	AA165498					reactive	
Sample ID:							Hazardous
Sample Location:	BH06 2.0				Inert Waste	hazardous waste in non-	Waste
Top Depth(m):	2.0				Landfill	hazardous	Landfill
Bottom Depth(m):					Landilli	Landfill	Landilli
Sampling Date:		· · ·	11.11.			Landilli	
Determinand	SOP	Accred.	Units			_	0
Total Organic Carbon	2625	U	%	[A] 0.66	3	5	6
Loss On Ignition	2610	U	%	4.5	-		10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1	-	-
TPH Total WAC	2670	U	mg/kg	[A] < 10	500	-	-
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		-
pH	2010	U		8.5	-	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.021	-	To evaluate	To evaluate
Eluate Analysis		10:1 Eluate		10:1 Eluate			
			mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0010	0.0097	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0042	0.042	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.32	3.2	10	150	500
Sulphate	1220	U	2.0	20	1000	20000	50000
Total Dissolved Solids	1020	N	78	780	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	2.9	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	16

Waste Acceptance Criteria

Project: 23927 Dalguise House Monkstown Dublin (David Rehill CE)

Project: 23927 Dalguise House N Chemtest Job No:	22-12129				Landfill	Waste Acceptance	e Criteria	
Chemtest Sample ID:	1402346					Limits		
Sample Ref:						Stable, Non-		
Sample ID:	AA141843					reactive		
Sample Location:	TP21					hazardous	Hazardous	
Top Depth(m):	0.75				Inert Waste	waste in non-	Waste	
Bottom Depth(m):					Landfill	hazardous	Landfill	
Sampling Date:						Landfill		
Determinand	SOP	Accred.	Units					
Total Organic Carbon	2625	U	%	[A] 1.8	3	5	6	
Loss On Ignition	2610	U	%	4.3			10	
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		_	
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		-	
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		_	
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		-	
pH	2010	U		8.4	-	>6	_	
Acid Neutralisation Capacity	2015	N	mol/kg	0.0080		To evaluate	To evaluate	
Eluate Analysis			10:1 Eluate	10:1 Eluate	te Limit values for compliance l			
			mg/l	mg/kg	using BS EN 12457 at L/S 10 I/kg			
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25	
Barium	1455	U	< 0.005	< 0.0005	20	100	300	
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5	
Chromium	1455	U	0.0005	0.0051	0.5	10	70	
Copper	1455	U	0.0005	0.0051	2	50	100	
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2	
Molybdenum	1455	U	0.0092	0.092	0.5	10	30	
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40	
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50	
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5	
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7	
Zinc	1455	U	< 0.003	< 0.003	4	50	200	
Chloride	1220	U	< 1.0	< 10	800	15000	25000	
Fluoride	1220	U	0.34	3.4	10	150	500	
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000	
Total Dissolved Solids	1020	N	46	450	4000	60000	100000	
Phenol Index	1920	U	< 0.030	< 0.30	1		-	
Dissolved Organic Carbon	1610	U	4.5	< 50	500	800	1000	

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	15

Waste Acceptance Criteria

Project: 23927 Dalguise House N		d Reniii CE)					A 11 1	
Chemtest Job No:	22-12129				Landfill \	Waste Acceptance	e Criteria	
Chemtest Sample ID:	1402347					Limits		
Sample Ref:						Stable, Non-		
Sample ID:	AA141844					reactive		
Sample Location:	TP21					hazardous	Hazardous	
Top Depth(m):	1.5				Inert Waste	waste in non-	Waste	
Bottom Depth(m):					Landfill	hazardous	Landfill	
Sampling Date:						Landfill		
Determinand	SOP	Accred.	Units					
Total Organic Carbon	2625	U	%	[A] 0.30	3	5	6	
Loss On Ignition	2610	U	%	3.0	-	**	10	
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		-	
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		-	
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		-	
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		-	
pH	2010	U		8.6	1	>6	-	
Acid Neutralisation Capacity	2015	N	mol/kg	0.023	-	To evaluate	To evaluate	
Eluate Analysis			10:1 Eluate	10:1 Eluate	ate Limit values for compliance les		eaching test	
			mg/l	mg/kg	using BS EN 12457 at L/S 10 I/kg			
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25	
Barium	1455	U	< 0.005	< 0.0005	20	100	300	
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5	
Chromium	1455	U	0.0006	0.0061	0.5	10	70	
Copper	1455	U	0.0008	0.0078	2	50	100	
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2	
Molybdenum	1455	U	0.011	0.11	0.5	10	30	
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40	
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50	
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5	
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7	
Zinc	1455	U	< 0.003	< 0.003	4	50	200	
Chloride	1220	U	< 1.0	< 10	800	15000	25000	
Fluoride	1220	U	0.27	2.7	10	150	500	
Sulphate	1220	U	1.0	10	1000	20000	50000	
Total Dissolved Solids	1020	N	52	520	4000	60000	100000	
Phenol Index	1920	U	< 0.030	< 0.30	1		-	
Dissolved Organic Carbon	1610	U	2.5	< 50	500	800	1000	

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	5.0

Waste Acceptance Criteria

Project: 23927 Dalguise House Monkstown Dublin (David Rehill CE) Chemtest Job No: 22-12129 LandfIII Waste Acceptance Criteria 1402348 Chemtest Sample ID: Limits Sample Ref: Stable, Non-Sample ID: AA141845 reactive Sample Location: **TP21** hazardous Hazardous Top Depth(m): 3.0 **Inert Waste** waste in non-Waste Bottom Depth(m): Landfill hazardous Landfill Sampling Date: Landfill Determinand SOP Accred. Units **Total Organic Carbon** 2625 U % [A] 0.56 3 5 6 10 Loss On Ignition 2610 U % 2.2 ---Total BTEX 2760 U mg/kg [A] < 0.010 6 ---Total PCBs (7 congeners) 2815 N mg/kg [A] < 0.0010 1 ---**TPH Total WAC** 2670 [A] < 10 500 U mg/kg ---Total Of 17 PAH's 2800 N 100 [A] < 0.20 mg/kg 2010 U 8.6 >6 -**Acid Neutralisation Capacity** 2015 N mol/kg 0.039 To evaluate To evaluate Limit values for compliance leaching test **Eluate Analysis** 10:1 Eluate 10:1 Eluate using BS EN 12457 at L/S 10 I/kg mg/l mg/kg Arsenic 1455 U < 0.0002 < 0.0002 0.5 25 100 300 Barium 1455 U < 0.005 < 0.0005 20 Cadmium 1455 U < 0.00011 < 0.00011 0.04 1 5 10 70 Chromium 1455 U < 0.0005 < 0.0005 0.5 Copper 1455 U 0.0009 0.0092 2 50 100 < 0.00005 0.01 0.2 2 Mercury 1455 U < 0.00005 30 Molybdenum 1455 U 0.029 0.29 0.5 10

< 0.0005

< 0.0005

< 0.0005

0.0053

< 0.003

3.1

0.35

9.1

72

< 0.030

< 2.5

U

U

U

U

U

U

U

U

N

U

U

< 0.0005

< 0.0005

< 0.0005

0.053

< 0.003

31

3.5

91

720

< 0.30

< 50

0.4

0.5

0.06

0.1

800

10

1000

4000

500

10

10

0.7

0.5

50

15000

150 20000

60000

800

40

50

5

7

200

25000

500

50000

100000

1000

Solid Information			
Dry mass of test portion/kg	0.090		
Moisture (%)	7.9		

1455

1455

1455

1455

1455

1220

1220

1220

1020

1920

1610

Waste Acceptance Criteria

Nickel

Lead

Zinc

Antimony

Selenium

Chloride

Fluoride

Sulphate

Phenol Index

Total Dissolved Solids

Dissolved Organic Carbon

Project:	23927	Dalguise	House	Monkstown	Dublin	(David Rehill C	(E)

Chemtest Job No:	22-12129				Landfill \	Waste Acceptance	e Criteria
Chemtest Sample ID:	1402349					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA141846					reactive	
Sample Location:	TP22					hazardous	Hazardous
Top Depth(m):	0.6				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 1.0	3	5	6
Loss On Ignition	2610	U	%	5.4	-		10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		-
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		-
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
pH	2010	U		8.6	-	>6	1
Acid Neutralisation Capacity	2015	N	mol/kg	0.012	_	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	using BS EN 12457 at L/S 10 l/kg		
			mg/l	mg/kg			
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0007	0.0070	0.5	10	70
Copper	1455	U	0.0012	0.012	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0017	0.017	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.39	3.9	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	65	650	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	7.5	75	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	16

Waste Acceptance Criteria

Project: 23927 Dalguise House Monkstown Dublin (David Rehill CE	Project:	23927	Dalguise	House	Monkstown	Dublin	(David R	tehill C	E
---	----------	-------	----------	-------	-----------	--------	----------	----------	---

Chemtest Job No:	22-12129				Landfill	Waste Acceptanc	e Criteria
Chemtest Sample ID:	1402350				Limits		
Sample Ref:						Stable, Non-	
Sample ID:	AA141847					reactive	
Sample Location:	TP22					hazardous	Hazardous
Top Depth(m):	1.5				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.21	3	5	6
Loss On Ignition	2610	U	%	2.7	-		10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		1
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1	-	-
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		-
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		-
pH	2010	U		8.6	-	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.48		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance l	eaching test
			mg/l	mg/kg	using E	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0007	0.0073	0.5	10	70
Copper	1455	U	0.0006	0.0063	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0083	0.083	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.26	2.6	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	59	580	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		
Dissolved Organic Carbon	1610	U	2.5	< 50	500	800	1000

Solid Information				
Dry mass of test portion/kg	0.090			
Moisture (%)	10			

Waste Acceptance Criteria

Project: 23927 Dalquise House Monkstown Dublin (David Rehill CE)

Chemtest Job No:	22-12129				Landfill	Waste Acceptance	e Criteria
Chemtest Sample ID:	1402351					Limits	
Sample Ref:	4444040					Stable, Non-	
Sample ID:	AA141848					reactive	Hanandaua
Sample Location:	TP22				I	hazardous	Hazardous Waste
Top Depth(m):	3.3				Inert Waste	waste in non-	Landfill
Bottom Depth(m):					Landfill	hazardous	Landilli
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.85	3	5	6
Loss On Ignition	2610	U	%	2.9	-		10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		-
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		_
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		-
pH	2010	U		8.3	-	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.014	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/S	6 10 l/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0005	0.0053	0.5	10	70
Copper	1455	U	0.0008	0.0075	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.015	0.15	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.26	2.6	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	59	580	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	8.1	81	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.090				
Moisture (%)	9.9				

Waste Acceptance Criteria

Project: 23927 Dalguise House M Chemtest Job No:	22-12129	id Reniii CE)			Landfill	Waste Acceptance	Criteria	
Chemtest Sample ID:	1402352				Lanami	Limits		
Sample Ref:	1402002					Stable, Non-		
Sample ID:	AA141849					reactive		
Sample Location:	TP23					hazardous	Hazardous	
Top Depth(m):	0.3				Inert Waste	waste in non-	Waste	
Bottom Depth(m):	0.0				Landfill	hazardous	Landfill	
Sampling Date:					Landin	Landfill	Lunum	
Determinand	SOP	Accred.	Units					
Total Organic Carbon	2625	U	%	[A] 1.9	3	5	6	
Loss On Ignition	2610	U	%	4.9			10	
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		-	
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		_	
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		-	
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		-	
pH	2010	U		8.5	-	>6	-	
Acid Neutralisation Capacity	2015	N	mol/kg	0.015		To evaluate	To evaluate	
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance le	eaching test	
			mg/l	mg/kg	using B	S EN 12457 at L/S	10 l/kg	
Arsenic	1455	U	0.0003	0.0029	0.5	2	25	
Barium	1455	U	< 0.005	< 0.0005	20	100	300	
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5	
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70	
Copper	1455	U	0.0012	0.012	2	50	100	
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2	
Molybdenum	1455	U	0.0004	0.0039	0.5	10	30	
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40	
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50	
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5	
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7	
Zinc	1455	U	0.003	0.025	4	50	200	
Chloride	1220	U	1.1	11	800	15000	25000	
Fluoride	1220	U	0.33	3.3	10	150	500	
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000	
Total Dissolved Solids	1020	N	26	260	4000	60000	100000	
Phenol Index	1920	U	< 0.030	< 0.30	1		-	
Dissolved Organic Carbon	1610	U	3.2	< 50	500	800	1000	

Solid Information			
Dry mass of test portion/kg	0.090		
Moisture (%)	16		

Waste Acceptance Criteria

Project:	23927	Dalguise	House	Monkstown	Dublin	(David Rehill (CE)

Chemtest Job No:	22-12129				Landfill	Waste Acceptance	e Criteria
Chemtest Sample ID:	1402353					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA141850					reactive	
Sample Location:	TP23					hazardous	Hazardous
Top Depth(m):	1.2				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.40	3	5	6
Loss On Ignition	2610	U	%	1.8	-		10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		-
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		-
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		-
pH	2010	U		8.7	1	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.0070	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/S	5 10 l/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0007	0.0075	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0007	0.0068	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.095	< 1.0	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	26	260	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	
Dissolved Organic Carbon	1610	U	3.3	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	12

Waste Acceptance Criteria

Project:	23927	Dalguise	House	Monkstown	Dublin	(David Rehill C	E)

Project: 23927 Dalguise House M Chemtest Job No:	22-12129				Landfill	Waste Acceptance	e Criteria
Chemtest Sample ID:	1402354				Limits		
Sample Ref:						Stable, Non-	
Sample ID:	AA141801					reactive	
Sample Location:	TP23					hazardous	Hazardous
Top Depth(m):	2.4				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.30	3	5	6
Loss On Ignition	2610	U	%	20	-		10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		-
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		-
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100	-	
pH	2010	U		8.6	-	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.038	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/S	3 10 l/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0006	0.0056	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0003	0.0025	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.087	< 1.0	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	20	200	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	•	-
Dissolved Organic Carbon	1610	U	< 2.5	< 50	500	800	1000

Solid Information			
Dry mass of test portion/kg	0.090		
Moisture (%)	13		

Waste Acceptance Criteria

Project: 23927 Dalguise House Monkstown Dublin (David Rehill CE)

Chemtest Job No:	22-12129		Landfill	Waste Acceptance	e Criteria		
Chemtest Sample ID:	1402355					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA146803					reactive	Managara
Sample Location:	TP24					hazardous	Hazardous
Top Depth(m):	0.5				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.74	3	5	6
Loss On Ignition	2610	U	%	3.6	-		10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		-
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		-
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		-
pH	2010	U		9.3	-	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.0040	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate		for compliance I	-
			mg/l	mg/kg	using B	S EN 12457 at L/S	
Arsenic	1455	U	0.0003	0.0029	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0009	0.0094	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0006	0.0057	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.12	1.2	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	33	320	4000	60000	100000
Phenol Index	1920	Ü	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	3.7	< 50	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.090				
Moisture (%)	13				

Waste Acceptance Criteria

Chemtest Job No:	22-12129			Landfill	Waste Acceptanc	e Criteria	
Chemtest Sample ID:	1402356					Limits	
Sample Ref: Sample ID:	AA146804					Stable, Non- reactive	
Sample Location: Top Depth(m): Bottom Depth(m):	TP24 2.0				Inert Waste Landfill	hazardous waste in non- hazardous Landfill	Hazardous Waste Landfill
Sampling Date: Determinand	SOP	Accred.	Units			Landilli	
Total Organic Carbon	2625	U	%	[A] 0.33	3	5	6
Loss On Ignition	2610	Ü	%	3.9	-		10
Total BTEX	2760	Ü	mg/kg	[A] < 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		_
TPH Total WAC	2670	Ü	mg/kg	[A] < 10	500		_
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		-
pH	2010	Ü	mgmg	8.6	-	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.017	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	
			mg/l	mg/kg		S EN 12457 at L/S	
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0013	0.013	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	< 0.0002	< 0.0002	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.085	< 1.0	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	20	200	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	Ü	< 2.5	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	14

Waste Acceptance Criteria

Project: 23927 Dalguise House Monkstown Dublin (David Rehill CE)

Chemtest Job No:	22-12129		Landfill \	Waste Acceptance	e Criteria		
Chemtest Sample ID:	1402357					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA146807					reactive	
Sample Location:	TP25					hazardous	Hazardous
Top Depth(m):	0.6				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.49	3	5	6
Loss On Ignition	2610	U	%	3.0	-		10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		-
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		-
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		-
pH	2010	U		8.3	1	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.0040	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/S	5 10 l/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0008	0.0080	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0003	0.0026	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.10	1.0	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	20	200	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	3.2	< 50	500	800	1000

Solid Information				
Dry mass of test portion/kg	0.090			
Moisture (%)	14			

Waste Acceptance Criteria

Project: 23927 Dalguise House Monkstown Dublin (David Rehill CE)

Chemtest Job No:	22-12129 1402358		Landfill	Waste Acceptance	e Criteria		
Chemtest Sample ID: Sample Ref:						Limits Stable, Non-	
Sample ID:	AA146808					reactive	
Sample Location:	TP25					hazardous	Hazardous
Top Depth(m):	1.5				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.29	3	5	6
Loss On Ignition	2610	U	%	2.9	-		10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		-
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		-
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		-
pH	2010	U		8.5	-	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.015	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/S	5 10 l/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	< 0.0005	< 0.0005	2	. 50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	< 0.0002	< 0.0002	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.087	< 1.0	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	20	200	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	< 2.5	< 50	500	800	1000

Solid Information			
Dry mass of test portion/kg	0.090		
Moisture (%)	13		

Waste Acceptance Criteria

Chemtest Job No: Chemtest Sample ID:	22-12129 1402359		Landfill \	Waste Acceptance	e Criteria		
Sample Ref: Sample ID: Sample Location: Top Depth(m):	AA146809 TP26 0.5				Inert Waste	Stable, Non- reactive hazardous waste in non-	Hazardous Waste
Bottom Depth(m):					Landfill	hazardous Landfill	Landfill
Sampling Date: Determinand	SOP	Accred.	Units			Landin	
Total Organic Carbon	2625	U	%	[A] 0.99	3	5	6
Loss On Ignition	2610	Ü	%	3.8	_		10
Total BTEX	2760	Ü	mg/kg	[A] < 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		-
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		-
oH	2010	U		8.4	-	>6	_
Acid Neutralisation Capacity	2015	N	mol/kg	0.030	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate		for compliance le	-
			mg/l	mg/kg	using B	S EN 12457 at L/S	
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	< 0.0005	< 0.0005	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	< 0.0002	< 0.0002	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.092	< 1.0	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	6.5	65	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	3.0	< 50	500	800	1000

Solid Information			
Dry mass of test portion/kg	0.090		
Moisture (%)	19		

Waste Acceptance Criteria

Project:	23927	Dalguise	House	Monkstown	Dublin	David	Rehill	CE)

Chemtest Job No:	22-12129		Landfill	Waste Acceptanc	e Criteria		
Chemtest Sample ID:	1402360					Limits	
Sample Ref:	4.5000000					Stable, Non-	
Sample ID:	AA146810					reactive	
Sample Location:	TP26					hazardous	Hazardous
Top Depth(m):	1.6				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.27	3	5	6
Loss On Ignition	2610	U	%	2.7	-		10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6	-	-
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		-
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		-
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		-
pH	2010	U		8.6	-	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.067	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
			mg/l	mg/kg	using BS EN 12457 at L/S 10 I/kg		
Arsenic	1455	U	0.0002	0.0024	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0009	0.0088	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	< 0.0002	< 0.0002	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.085	< 1.0	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	26	260	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	2.7	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	13

Waste Acceptance Criteria

Test Methods

SOP	Title	Parameters included	Method summary		
1010	pH Value of Waters	рН	pH Meter		
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter		
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.		
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper, Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).		
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation		
1800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-MS	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GCMS detection		
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.		
2010	pH Value of Soils	pH	pH Meter		
2015	Acid Neutralisation Capacity	Acid Reserve	Titration		
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.		
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930		
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES		
	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.		
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection		
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry		
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.		
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.		
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.		
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.		
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.		
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600 Discrete Analyser using 1,5-diphenylcarbazide.		

Test Methods

SOP	Title	Parameters included	Method summary
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key	
U	UKAS accredited
M	MCERTS and UKAS accredited
N	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Chemtest

Eurofins Chemtest Li Depot Road Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

Amended Report

Report No.: 2

22-12698-2

Initial Date of Issue:

12-Apr-2022

Client

IGSL

Client Address:

M7 Business Park

Naas

County Kildare

Ireland

Contact(s):

Darren Keogh

Project

23927 Dalguise House Monkstown

Dublin (David Rehill CE)

Quotation No.:

Q20-19951

Date Received:

04-Apr-2022

Order No.:

Data Instruct

Date Instructed:

04-Apr-2022

No. of Samples:

3

7

Turnaround (Wkdays):

Results Due:

12-Apr-2022

Date Approved:

12-Apr-2022

Approved By:

AC. Winterser

Details:

Alison Drinkwater, Specalist Chemist

Results - Leachate

Project: 23927 Dalguise House Monkstown Dublin (David Rehill CE)

<u>VL</u>								
Client: IGSL		172010	Che	mtest Jo	b No.:	22-12698	22-12698	22-12698
Quotation No.: Q20-19951			Chemte	st Sam	ple ID.:	1405028	1405032	1405036
			Clie	ent Sam	AA161951	AA165494	AA162661	
			Sa	ample Lo	BH02A	BH03	BH05	
				Sampl	SOIL	SOIL	SOIL	
	Top Depth (m):					1.00	2.00	1.00
Determinand	Accred.	SOP	Type	Units	LOD			
pH	U	1010	10:1		N/A	8.4	8.6	8.4
Ammonium	U	1220	10:1	mg/l	0.050	< 0.050	0.098	< 0.050
Ammonium	N	1220	10:1	mg/kg	0.10	0.34	1.2	0.15
Boron (Dissolved)	U	1455	10:1	mg/kg	0.01	< 0.01	< 0.01	< 0.01
Benzo[j]fluoranthene	N	1800	10:1	µg/l	0.010	< 0.010	< 0.010	< 0.010

<u>Project: 23927 Dalguise House Monkstown Dublin (David Rehill CE)</u>

Client: IGSL	Mary Sales	Ch	emtest.	Job No.:	22-12698	22-12698	22-12698
Quotation No.: Q20-19951		Chem	test San	nple ID.:	1405028	1405032	1405036
		С	lient Sar	mple ID.:	AA161951	AA165494	AA162661
			Sample I	ocation:	BH02A	BH03	BH05
			Samp	ole Type:	SOIL	SOIL	SOIL
				epth (m):	1.00	2.00	1.00
			Asbes	stos Lab:	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD			
ACM Type	U	2192		N/A	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected
Moisture	N	2030	%	0.020	18	14	10
Boron (Hot Water Soluble)	Ü	2120	mg/kg	0.40	0.67	< 0.40	< 0.40
Sulphur (Elemental)	Ü	2180	mg/kg	1.0	4.3	< 1.0	1.4
Cyanide (Total)	Ü	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50
Sulphide (Easily Liberatable)	N		mg/kg	0.50	7.2	3.9	6.7
Sulphate (Acid Soluble)	Ü	2430	%	0.010	0.02	0.018	0.027
Arsenic	Ü	2450	mg/kg	1.0	6.0	8.1	11
Barium	Ü	2450	mg/kg	10	41	27	49
Cadmium	Ü	2450	mg/kg	0.10	0.60	1.0	1.3
Chromium	Ü	2450	mg/kg	1.0	9.8	7.2	9.2
Molybdenum	Ü	2450	mg/kg	2.0	< 2.0	< 2.0	< 2.0
Antimony	N	2450	mg/kg	2.0	< 2.0	< 2.0	< 2.0
Copper	Ü	2450	mg/kg	0.50	15	14	21
Mercury	Ü	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Nickel	Ü	2450	mg/kg	0.50	21	22	29
Lead	Ü	2450	mg/kg	0.50	26	8.0	22
Selenium	Ü	2450	mg/kg	0.20	0.20	0.54	0.43
Zinc	Ü	2450	mg/kg	0.50	37	40	87
Chromium (Trivalent)	N	2490	mg/kg	1.0	9.8	7.2	10.2
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50
Mineral Oil (TPH Calculation)	N	2670	mg/kg	10	< 10	< 10	< 10
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	Ü	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	Ü	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	Ü	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	Ü	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	Ü	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	Ü	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	Ü	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0

Project: 23927 Dalguise House Monkstown Dublin (David Rehill CE)

Client: IGSL	Chemtest Job No.:				22-12698	22-12698	22-12698	
Quotation No.: Q20-19951				nple ID.:	1405028	1405032	1405036	
		С	lient Sar	nple ID.:	AA161951	AA165494	AA162661	
		5	Sample L	ocation:	BH02A	BH03	BH05	
			Samp	ole Type:	SOIL	SOIL	SOIL	
			Top De	epth (m):	1.00	2.00	1.00	
			Asbes	stos Lab:	COVENTRY	COVENTRY	COVENTRY	
Determinand	Accred.	SOP	Units	LOD	10-10-10-10-10-10-10-10-10-10-10-10-10-1		PANICE SERVICE	
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	< 10	
Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	
Toluene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	
o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	
Methyl Tert-Butyl Ether	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	
Naphthalene	N	2800	mg/kg	0.010	0.43	< 0.010	< 0.010	
Acenaphthylene	N	2800	mg/kg	0.010	0.048	< 0.010	< 0.010	
Acenaphthene	N	2800	mg/kg	0.010	0.092	< 0.010	< 0.010	
Fluorene	N	2800	mg/kg	0.010	0.04	< 0.010	< 0.010	
Phenanthrene	N	2800	mg/kg	0.010	0.2	< 0.010	< 0.010	
Anthracene	N	2800	mg/kg	0.010	0.038	< 0.010	< 0.010	
Fluoranthene	N	2800	mg/kg	0.010	0.31	< 0.010	< 0.010	
Pyrene	N	2800	mg/kg	0.010	0.34	< 0.010	< 0.010	
Benzoanthracene	N	2800	mg/kg	0.010	0.31	< 0.010	< 0.010	
Chrysene	N	2800	mg/kg	0.010	0.3	< 0.010	< 0.010	
Benzo[b]fluoranthene	N	2800	mg/kg	0.010	0.6	< 0.010	< 0.010	
Benzo[k]fluoranthene	N	2800	mg/kg	0.010	0.24	< 0.010	< 0.010	
Benzopyrene	N	2800	mg/kg	0.010	0.58	< 0.010	< 0.010	
Indeno(1,2,3-c,d)Pyrene	N	2800	mg/kg	0.010	0.46	< 0.010	< 0.010	
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.010	0.13	< 0.010	< 0.010	
Benzo[g,h,i]perylene	N	2800	mg/kg	0.010	0.55	< 0.010	< 0.010	
Coronene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010	
Total Of 17 PAH's	N	2800	mg/kg	0.20	4.7	< 0.20	< 0.20	
PCB 28	N			0.0010	< 0.0010	< 0.0010	< 0.0010	
PCB 52	N	2815	mg/kg		< 0.0010	< 0.0010	< 0.0010	
PCB 90+101	N		mg/kg		< 0.0010	< 0.0010	< 0.0010	
PCB 118	N	2815	mg/kg		< 0.0010	< 0.0010	< 0.0010	
PCB 153	N	2815	mg/kg		< 0.0010	< 0.0010	< 0.0010	
PCB 138	N	2815	mg/kg	0.0010	< 0.0010	< 0.0010	< 0.0010	
PCB 180	N	2815	mg/kg		< 0.0010	< 0.0010	< 0.0010	
Total PCBs (7 congeners)	N	2815	mg/kg		< 0.0010	< 0.0010	< 0.0010	
Total Phenols	U	2920		0.10	< 0.10	< 0.10	< 0.10	

Landfill Waste Acceptance Criteria

Hazardous

Project: 23927 Daiguise Hou	Project: 23927 Daiguise House Monkstown Dublin (David Rehill CE)									
Chemtest Job No:	22-12698									

 Chemtest Sample ID:
 1405028
 Limits

 Sample Ref:
 Stable, Non-reactive

 Sample ID:
 AA161951
 reactive

 Sample Location:
 BH02A
 hazardous

 Top Depth(m):
 1.00
 Inert Waste
 waste in non-landfill

 Bottom Depth(m):
 Landfill
 hazardous

Top Depth(m): Bottom Depth(m): Sampling Date:	1.00				Inert Waste Landfill	waste in non- hazardous Landfill	Waste Landfill
Determinand	SOP	Accred.	Units		2		
Total Organic Carbon	2625	U	%	0.55	3	5	6
Loss On Ignition	2610	U	%	3.5	-	-	10
Total BTEX	2760	U	mg/kg	< 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010	1		-
TPH Total WAC	2670	U	mg/kg	< 10	500		-
Total Of 17 PAH's	2800	N	mg/kg	4.7	100		-
pH	2010	U		9.9	-	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.015		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate mg/l	10:1 Eluate mg/kg		for compliance l	
Arsenic	1455	U	0.0004	0.0038	0.5	2	25
Barium	1455	U	0.006	0.061	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0006	0.0063	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0091	0.091	0.5	10	30
Nickel	1455	U	0.0007	0.0067	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.7	7	10	150	500
Sulphate	1220	U	3.3	33	1000	20000	50000
Total Dissolved Solids	1020	N	72	710	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		
Dissolved Organic Carbon	1610	U	< 2.5	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	18

Waste Acceptance Criteria

Project: 23927 Dalguise House Monkstown D	Dublin (David Rehill CE)
---	--------------------------

Chemtest Job No:	22-12698				Landfill \	Waste Acceptance	e Criteria
Chemtest Sample ID:	1405032					Limits Stable, Non-	
Sample Ref:	AA465404					reactive	
Sample ID:	AA165494						Hazardous
Sample Location:	BH03				I W	hazardous	Waste
Top Depth(m):	2.00				Inert Waste	waste in non- hazardous	Landfill
Bottom Depth(m):					Landfill		Landilli
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				_
Total Organic Carbon	2625	U	%	0.63	3	5	6
oss On Ignition	2610	U	%	2.2	-		10
Total BTEX	2760	U	mg/kg	< 0.010	6	**	-
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010	1		-
TPH Total WAC	2670	U	mg/kg	< 10	500	**	-
Total Of 17 PAH's	2800	N	mg/kg	< 0.20	100	**	-
pH	2010	U		9.3	-	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.073	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values for compliance leaching		
			mg/l	mg/kg	using B	S EN 12457 at L/S	
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	< 0.0005	< 0.0005	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0081	0.081	0.5	10	30
Nickel	1455	U	0.0008	0.0080	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.19	1.9	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	39	390	4000	60000	100000
Phenol Index	1920	Ü	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	< 2.5	< 50	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	14						

Waste Acceptance Criteria

Chemtest Job No:	22-12698				Landfill	Waste Acceptanc	e Criteria
Chemtest Sample ID:	1405036					Limits	24.6
Sample Ref: Sample ID: Sample Location: Top Depth(m): Bottom Depth(m): Sampling Date:	AA162661 BH05 1.00				Inert Waste Landfill	Stable, Non- reactive hazardous waste in non- hazardous Landfill	Hazardous Waste Landfill
Determinand	SOP	Accred.	Units			Lundiiii	
Total Organic Carbon	2625	U	%	0.3	3	5	6
Loss On Ignition	2610	U	%	2.6	-		10
Total BTEX	2760	U	mg/kg	< 0.010	6	-	
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010	1		-
TPH Total WAC	2670	U	mg/kg	< 10	500		-
Total Of 17 PAH's	2800	N	mg/kg	< 0.20	100		-
pH	2010	U		8.7	-	>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.016	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
•			mg/l	mg/kg	using B	S EN 12457 at L/S	10 l/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0007	0.0070	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0094	0.094	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.35	3.5	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	55	550	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	
Dissolved Organic Carbon	1610	U	15	150	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	10						

Waste Acceptance Criteria

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	pH	pH Meter
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-MS	Acenaphthene; Acenaphthylene; Anthracene; BenzoAnthracene; BenzoPyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GCMS detection
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	pH	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N-dimethyl-p-phenylenediamine.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.

Test Methods

SOP	Title	Parameters included	Method summary
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; BenzoAnthracene*; BenzoPyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key	
U	UKAS accredited
M	MCERTS and UKAS accredited
N	Unaccredited
s	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Chemtest

Eurofins Chemtest L'
Depot Roao
Newmarket
CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

Final Report

Report No.:

22-13843-1

Initial Date of Issue:

21-Apr-2022

Client

IGSL

Client Address:

M7 Business Park

Naas

County Kildare

Ireland

Contact(s):

Darren Keogh

Project

23927 Dalguise House Monkstown

Dublin

Quotation No.:

Q20-19951

Date Received:

12-Apr-2022

Order No.:

Date Instructed:

12-Apr-2022

No. of Samples:

12

7

Turnaround (Wkdays):

Results Due:

22-Apr-2022

Date Approved:

21-Apr-2022

Approved By:

Details:

Stuart Henderson, Technical

Manager

Results - Leachate

										-				
Client: IGSL			Che	mtest J	ob No.:	22-13843	22-13843	22-13843	22-13843	22-13843	22-13843	22-13843	22-13843	22-13843
Quotation No.: Q20-19951	Chemtest Sample ID.:					1410301	1410302	1410303	1410304	1410305	1410306	1410307	1410308	1410309
			S	ample Lo	cation:	WS01	WS01	WS02	WS02	WS03	WS03	WS03	WS04	WS04
				Sampl	e Type:	SOIL	SOIL							
	Top Depth (m):				oth (m):	0.0	1.0	0.0	1.0	0.0	1.0	2.0	0.0	1.0
Bottom Depth (m):				1.0	2.0	1.0	2.0	1.0	2.0	3.0	1.0	2.0		
		Date Sampled:			07-Apr-2022									
Determinand	Accred.	SOP	Type	Units	LOD									
pH	U	1010	10:1		N/A	8.2	8.5	8.1	8.2	8.6	9.0	9.2	9.1	9.2
Ammonium	U	1220	10:1	mg/l	0.050	0.11	0.10	0.074	0.092	0.083	0.052	< 0.050	0.051	0.052
Ammonium	N	1220	10:1	mg/kg	0.10	1.2	1.2	0.79	1.0	1.0	0.80	0.93	0.90	1.0
Boron (Dissolved)	U	1455		mg/kg			0.13	0.16	0.16	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo[i]fluoranthene	N	1800	10:1		0.010		0.082	0.038	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010

Results - Leachate

Client: IGSL			Che	mtest J	:.oN do	22-13843	22-13843	22-13843
Quotation No.: Q20-19951		(Chemte	st Sam	ple ID.:	1410310	1410311	1410312
			Sa	ample Lo	ocation:	WS05	WS05	WS05
				Sampl	е Туре:	SOIL	SOIL	SOIL
				Top De	oth (m):	0.0	1.0	2.0
			Bot	tom De	oth (m):	1.0	2.0	3.0
				Date Sa	ampled:	07-Apr-2022	07-Apr-2022	07-Apr-2022
Determinand	Accred.	SOP	Туре	Units	LOD			Constant Constant
pH	U	1010	10:1		N/A	8.6	9.0	9.0
Ammonium	U	1220	10:1	mg/l	0.050	0.12	0.058	0.058
Ammonium	N			mg/kg	0.10	1.5	0.89	0.91
Boron (Dissolved)	U	1455	10:1	mg/kg	0.01	< 0.01	< 0.01	< 0.01
Benzo[j]fluoranthene	N	1800	10:1	µg/l	0.010	< 0.010	< 0.010	< 0.010

Project: Dalguise House Monks Client: IGSL	100 mm		emtest.	Job No.:	22-13843	22-13843	22-13843	22-13843	22-13843	22-13843	22-13843	22-13843	22-13843
Quotation No.: Q20-19951			test San		1410301	1410302	1410303	1410304	1410305	1410306	1410307	1410308	1410309
addition (10.1 also 1000)				ocation:	WS01	WS01	WS02	WS02	WS03	WS03	WS03	WS04	WS04
				ole Type:	SOIL								
				epth (m):	0.0	1.0	0.0	1.0	0.0	1.0	2.0	0.0	1.0
		В		epth (m):	1.0	2.0	1.0	2.0	1.0	2.0	3.0	1.0	2.0
				Sampled:		07-Apr-2022							
			stos Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	
Determinand	Accred.	SOP	Units	LOD		THE STREET		The same of the					
ACM Type	U	2192	Unito	N/A	-	-	-	-			-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected								
Moisture	N	2030	%	0.020	18	16	18	17	12	12	9.6	11	9.5
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	0.76	< 0.40	0.97	2.8	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40
Sulphur (Elemental)	Ü	2180	mg/kg	1.0	< 1.0	< 1.0	3.2	23	< 1.0	19	< 1.0	< 1.0	1.8
Cyanide (Total)	Ü	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	2.2	1.9	1.7	3.9	6.0	5.4	6.1	6.0	6.3
Sulphate (Acid Soluble)	U	2430	%	0.010	0.042	0.022	0.024	0.014	0.017	0.069	0.022	0.029	0.016
Arsenic	U	2450	mg/kg	1.0	21	17	18	15	14	18	17	31	24
Barium	U	2450	mg/kg	10	110	59	100	820	59	70	81	75	70
Cadmium	Ü	2450	mg/kg	0.10	1.7	1.2	1.6	< 0.10	1.2	1.6	1.8	2.2	2.0
Chromium	U	2450	mg/kg	1.0	29	23	25	13	15	13	16	25	26
Molybdenum	U	2450	mg/kg	2.0	4.5	2.6	3.9	< 2.0	< 2.0	2.3	2.9	3.2	3.3
Antimony	N	2450	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Copper	U	2450	mg/kg	0.50	40	31	38	3.9	21	24	27	36	31
Mercury	Ü	2450		0.10	0.22	0.10	0.21	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	Ü	2450	mg/kg	0.50	54	45	46	10	32	37	43	50	53
Lead	Ü	2450		0.50	87	32	100	6.4	30	15	45	32	19
Selenium	Ü	2450		0.20	0.90	0.32	0.79	< 0.20	0.64	0.33	0.86	0.53	0.32
Zinc	Ü	2450	mg/kg	0.50	160	94	150	12	54	57	75	97	89
Chromium (Trivalent)	N	2490		1.0	29	23	25	13	15	13	16	25	26
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Mineral Oil (TPH Calculation)	N	2670		10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	Ü	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	Ü	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	Ü	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C5-C7 Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C6 Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680		1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Project: Dalguise House Monks	town Dubli	<u>n</u>								100			
Client: IGSL		Ch	emtest	Job No.:	22-13843	22-13843	22-13843	22-13843	22-13843	22-13843	22-13843	22-13843	22-13843
Quotation No.: Q20-19951		Chem	test Sar	nple ID.:	1410301	1410302	1410303	1410304	1410305	1410306	1410307	1410308	1410309
			Sample	Location:	WS01	WS01	WS02	WS02	WS03	WS03	WS03	WS04	WS04
			Sam	ple Type:	SOIL								
		Top Depth (m):				1.0	0.0	1.0	0.0	1.0	2.0	0.0	1.0
		В		epth (m):	1.0	2.0	1.0	2.0	1.0	2.0	3.0	1.0	2.0
			Date S	Sampled:	07-Apr-2022								
			Asbe	stos Lab:	DURHAM								
Determinand	Accred.	SOP	Units	LOD								4.0	
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene	N	2800	mg/kg	0.010	< 0.010	< 0.010	0.35	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Acenaphthylene	N	2800	mg/kg	0.010	< 0.010	< 0.010	0.070	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Acenaphthene	N	2800	mg/kg	0.010	< 0.010	< 0.010	0.040	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Fluorene	N	2800	mg/kg	0.010	< 0.010	< 0.010	0.050	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Phenanthrene	N	2800	mg/kg	0.010	0.080	0.060	0.12	< 0.010	< 0.010	< 0.010	< 0.010	0.16	< 0.010
Anthracene	N	2800	mg/kg	0.010	0.030	0.020	0.030	< 0.010	< 0.010	< 0.010	< 0.010	0.064	< 0.010
Fluoranthene	N	2800	mg/kg	0.010	0.070	0.16	0.10	< 0.010	< 0.010	< 0.010	< 0.010	0.25	< 0.010
Pyrene	N	2800	mg/kg	0.010	0.090	0.17	0.10	< 0.010	< 0.010	< 0.010	< 0.010	0.23	< 0.010
Benzo[a]anthracene	N	2800	mg/kg	0.010	< 0.010	0.090	0.040	< 0.010	< 0.010	< 0.010	< 0.010	0.13	< 0.010
Chrysene	N	2800	mg/kg	0.010	< 0.010	0.060	0.050	< 0.010	< 0.010	< 0.010	< 0.010	0.11	< 0.010
Benzo[b]fluoranthene	N	2800	mg/kg	0.010	< 0.010	0.15	0.060	< 0.010	< 0.010	< 0.010	< 0.010	0.14	< 0.010
Benzo[k]fluoranthene		2800	mg/kg	0.010	< 0.010	0.10	0.050	< 0.010	< 0.010	< 0.010	< 0.010	0.065	< 0.010
Benzo[a]pyrene	N	2800	mg/kg	0.010	< 0.010	0.13	0.080	< 0.010	< 0.010	< 0.010	< 0.010	0.12	< 0.010
Indeno(1,2,3-c,d)Pyrene	N	2800	mg/kg	0.010	< 0.010	0.070	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.061	< 0.010
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.010	< 0.010	0.040	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.049	< 0.010
Benzo[g,h,i]perylene	N	2800	mg/kg	0.010	< 0.010	0.11	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.085	< 0.010
Coronene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Total Of 17 PAH's	N	2800	mg/kg	0.20	0.27	1.2	1.1	< 0.20	< 0.20	< 0.20	< 0.20	1.5	< 0.20
PCB 28	N	2815	mg/kg	0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
PCB 52	N	2815	mg/kg	0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
PCB 90+101	N	2815	mg/kg	0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
PCB 118	N	2815		0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
PCB 153	N	2815	mg/kg	0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
PCB 138	N	2815	mg/kg	0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
PCB 180	N	2815	mg/kg	0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Total PCBs (7 congeners)	N	2815	mg/kg	0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Total Phenols	Ü	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Client: IGSL		Che	emtest.	Job No.:	22-13843	22-13843	22-13843
Quotation No.: Q20-19951		Chemi	test San	nple ID.:	1410310	1410311	1410312
		5	Sample L	ocation:	WS05	WS05	WS05
			Samp	ole Type:	SOIL	SOIL	SOIL
			Top De	epth (m):	0.0	1.0	2.0
		В	ottom De	epth (m):	1.0	2.0	3.0
			Date S	Sampled:	07-Apr-2022	07-Apr-2022	07-Apr-2022
			Asbes	stos Lab:	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD	THE STATE OF THE S	Sales Sales	
ACM Type	U	2192		N/A	-		-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected
Moisture	N	2030	%	0.020	15	11	9.4
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	< 0.40	< 0.40	< 0.40
Sulphur (Elemental)	U	2180	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Cyanide (Total)	Ü	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	6.3	7.3	6.7
Sulphate (Acid Soluble)	Ü	2430	%	0.010	0.031	0.021	0.051
Arsenic	U	2450	mg/kg	1.0	28	38	55
Barium	U	2450	mg/kg	10	68	55	68
Cadmium	U	2450	mg/kg	0.10	1.8	1.7	1.9
Chromium	U	2450	mg/kg	1.0	23	24	24
Molybdenum	Ü	2450	mg/kg	2.0	2.8	3.0	2.6
Antimony	N	2450	mg/kg	2.0	< 2.0	< 2.0	< 2.0
Copper	U	2450	mg/kg	0.50	35	29	36
Mercury	Ü	2450		0.10	< 0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	48	45	51
Lead	Ü	2450	mg/kg	0.50	29	17	29
Selenium	Ü	2450	mg/kg	0.20	0.50	0.44	0.54
Zinc	U	2450	mg/kg	0.50	110	75	100
Chromium (Trivalent)	N	2490	mg/kg	1.0	23	24	24
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50
Mineral Oil (TPH Calculation)	N	2670	mg/kg	10	< 10	< 10	< 10
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	Ü	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	Ü	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	Ü	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	Ü	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	Ü	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	Ü	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	Ü	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0

Client: IGSL	Maria Contract	Ch	emtest	Job No.:	22-13843	22-13843	22-13843
Quotation No.: Q20-19951				nple ID.:	1410310	1410311	1410312
			Sample	Location:	WS05	WS05	WS05
			Sam	ple Type:	SOIL	SOIL	SOIL
			Top D	epth (m):	0.0	1.0	2.0
		В		epth (m):	1.0	2.0	3.0
			Date S	Sampled:	07-Apr-2022	07-Apr-2022	07-Apr-2022
			Asbe	stos Lab:	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD		Mary and a second	
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	< 10
Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Naphthalene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Acenaphthylene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Acenaphthene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Fluorene	N	2800	mg/kg		< 0.010	< 0.010	< 0.010
Phenanthrene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Anthracene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Fluoranthene	N	2800	mg/kg	0.010	0.050	< 0.010	< 0.010
Pyrene	N	2800	mg/kg	0.010	0.078	< 0.010	< 0.010
Benzo[a]anthracene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Chrysene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Benzo[b]fluoranthene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Benzo[k]fluoranthene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Benzo[a]pyrene	N	2800	mg/kg		< 0.010	< 0.010	< 0.010
Indeno(1,2,3-c,d)Pyrene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Benzo[g,h,i]perylene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Coronene	N	2800	mg/kg		< 0.010	< 0.010	< 0.010
Total Of 17 PAH's	N	2800	mg/kg	0.20	< 0.20	< 0.20	< 0.20
PCB 28	N	2815	mg/kg	0.0010	< 0.0010	< 0.0010	< 0.0010
PCB 52	N	2815	mg/kg		< 0.0010	< 0.0010	< 0.0010
PCB 90+101	N	2815	mg/kg		< 0.0010	< 0.0010	< 0.0010
PCB 118	N		mg/kg		< 0.0010	< 0.0010	< 0.0010
PCB 153	N	2815	mg/kg		< 0.0010	< 0.0010	< 0.0010
PCB 138	N	2815		0.0010	< 0.0010	< 0.0010	< 0.0010
PCB 180	N	2815	mg/kg		< 0.0010	< 0.0010	< 0.0010
Total PCBs (7 congeners)	N	2815		0.0010	< 0.0010	< 0.0010	< 0.0010
Total Phenols	U	2920	mg/kg		< 0.10	< 0.10	< 0.10

Project: Dalguis	e House Mon	kstown Dublin
------------------	-------------	---------------

Chemtest Job No:	22-13843				Landfill	Naste Acceptance	e Criteria
Chemtest Sample ID:	1410301	1410301				Limits Stable, Non-	
Sample Ref:						reactive	
Sample ID:	WS01					hazardous	Hazardous
Sample Location:	0.0				Inert Waste	waste in non-	Waste
Top Depth(m):	1.0				Landfill	hazardous	Landfill
Bottom Depth(m):	07-Apr-2022				Landini	Landfill	Landini
Sampling Date:	SOP	Accred.	Units			Landini	
Determinand	2625	U Accred.	%	1.2	3	5	6
Total Organic Carbon		Ü	%	4.5	-		10
Loss On Ignition	2610	U		< 0.010	6		-
Total BTEX	2760		mg/kg	< 0.0010	1		-
Total PCBs (7 congeners)	2815	N	mg/kg		500		
TPH Total WAC	2670	U	mg/kg	< 10			-
Total Of 17 PAH's	2800	N	mg/kg	0.27	100		-
pH	2010	U		8.5	-	>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.0040	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Complete Com	for compliance I	
			mg/l	mg/kg		S EN 12457 at L/S	
Arsenic	1455	U	0.0042	0.042	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0052	0.052	0.5	10	70
Copper	1455	U	0.0029	0.029	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.012	0.12	0.5	10	30
Nickel	1455	U	0.0037	0.037	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	0.0005	0.0054	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	0.003	0.031	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.13	1.3	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	130	1300	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	18	180	500	800	1000

Solid Information			
Dry mass of test portion/kg	0.090		
Moisture (%)	18		

Waste Acceptance Criteria

Project: Dalguise House Monkstown D	Dublin
-------------------------------------	--------

Chemtest Job No:	22-13843				Landfill	Waste Acceptance	e Criteria
Chemtest Sample ID:	1410302			l .		Limits	
Sample Ref:						Stable, Non-	
Sample ID:	144004					reactive	
Sample Location:	WS01					hazardous	Hazardous
Top Depth(m):	1.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):	2.0				Landfill	hazardous	Landfill
Sampling Date:	07-Apr-2022					Landfill	
Determinand	SOP	Accred.	Units				1
Total Organic Carbon	2625	U	%	0.63	3	5	6
Loss On Ignition	2610	U	%	3.6	-		10
Total BTEX	2760	U	mg/kg	< 0.010	6	-	-
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010	1		-
TPH Total WAC	2670	U	mg/kg	< 10	500		-
Total Of 17 PAH's	2800	N	mg/kg	1.2	100		-
pH	2010	U		8.6	-	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.019	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate mg/l	10:1 Eluate mg/kg	Limit values for compliance leaching te using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455	U	0.0008	0.0083	0.5	2	25
Barium	1455	U	0.005	0.053	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0055	0.055	0.5	10	70
Copper	1455	U	0.0028	0.028	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.013	0.13	0.5	10	30
Nickel	1455	U	0.0039	0.039	0.4	10	40
Lead	1455	U	0.0006	0.0059	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	0.004	0.037	4	50	200
Chloride	1220	U	1.2	12	800	15000	25000
Fluoride	1220	U	0.20	2.0	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	72	710	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	15	150	500	800	1000

Solid Information			
Dry mass of test portion/kg	0.090		
Moisture (%)	16		

Waste Acceptance Criteria

Project:	Dalgui	se h	ouse	Monk	stown	Dublin

Project: Dalguise House Monkst							0.11.1
Chemtest Job No:	22-13843				Landfill	Waste Acceptance	e Criteria
Chemtest Sample ID:	1410303	1410303				Limits	
Sample Ref:						Stable, Non-	
Sample ID:						reactive	
Sample Location:	WS02					hazardous	Hazardous
Top Depth(m):	0.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):	1.0				Landfill	hazardous	Landfill
Sampling Date:	07-Apr-2022					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	2.2	3	5	6
Loss On Ignition	2610	U	%	5.0	-		10
Total BTEX	2760	U	mg/kg	< 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010	1		
TPH Total WAC	2670	U	mg/kg	< 10	500		-
Total Of 17 PAH's	2800	N	mg/kg	1.1	100		-
pH	2010	U		8.4	-	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.0070	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/S	
Arsenic	1455	U	0.013	0.13	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0050	0.049	0.5	10	70
Copper	1455	U	0.0043	0.043	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0061	0.061	0.5	10	30
Nickel	1455	U	0.0043	0.043	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	0.0015	0.015	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.084	< 1.0	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	72	710	4000	60000	100000
Phenol Index	1920	Ü	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	12	120	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.090				
Moisture (%)	18				

Waste Acceptance Criteria

P	ro	ect:	Da	gui	se	House	Mon	kstown	Dublin	

Project: Dalguise House Monkst Chemtest Job No:	22-13843				Landfill	Nasta Accentance	Critoria	
Chemtest Sample ID:	****				Landfill Waste Acceptance Criteria Limits			
Sample Ref:	1410304	1410304				Stable, Non-		
Sample ID:						reactive		
Sample Location:	WS02					hazardous	Hazardous	
Top Depth(m):	1.0				Inert Waste	waste in non-	Waste	
Bottom Depth(m):	2.0				Landfill	hazardous	Landfill	
					Landilli	Landfill	Landini	
Sampling Date:	07-Apr-2022		11.11			Landilli		
Determinand	SOP	Accred.	Units			_		
Total Organic Carbon	2625	U	%	1.3	3	5	6	
Loss On Ignition	2610	U	%	2.2	-		10	
Total BTEX	2760	U	mg/kg	< 0.010	6	-	-	
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010	1		-	
TPH Total WAC	2670	U	mg/kg	< 10	500		-	
Total Of 17 PAH's	2800	N	mg/kg	< 0.20	100		-	
pH	2010	U		8.6	-	>6	-	
Acid Neutralisation Capacity	2015	N	mol/kg	0.029	-	To evaluate	To evaluate	
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	or compliance leaching test	
			mg/l	mg/kg	using B	S EN 12457 at L/S	10 l/kg	
Arsenic	1455	U	0.0068	0.068	0.5	2	25	
Barium	1455	U	< 0.005	< 0.0005	20	100	300	
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5	
Chromium	1455	U	0.0047	0.047	0.5	10	70	
Copper	1455	U	0.0042	0.042	2	50	100	
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2	
Molybdenum	1455	U	0.018	0.18	0.5	10	30	
Nickel	1455	U	0.0040	0.040	0.4	10	40	
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50	
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5	
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7	
Zinc	1455	Ü	< 0.003	< 0.003	4	50	200	
Chloride	1220	U	< 1.0	< 10	800	15000	25000	
Fluoride	1220	Ü	0.12	1.2	10	150	500	
Sulphate	1220	Ü	< 1.0	< 10	1000	20000	50000	
Total Dissolved Solids	1020	N	65	650	4000	60000	100000	
Phenol Index	1920	Ü	< 0.030	< 0.30	1		-	
Dissolved Organic Carbon	1610	Ŭ	19	190	500	800	1000	

Solid Information					
Dry mass of test portion/kg	0.090				
Moisture (%)	17				

Waste Acceptance Criteria

Project:	Dalguise	House	Monkstown	Dublin

Project: Dalguise House Monkst							
Chemtest Job No:	22-13843				Landfill \	Waste Acceptance	e Criteria
Chemtest Sample ID:	1410305					Limits	
Sample Ref:						Stable, Non-	
Sample ID:						reactive	
Sample Location:	WS03					hazardous	Hazardous
Top Depth(m):	0.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):	1.0				Landfill	hazardous	Landfill
Sampling Date:	07-Apr-2022					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	0.79	3	5	6
Loss On Ignition	2610	U	%	2.7	-		10
Total BTEX	2760	U	mg/kg	< 0.010	6	**	-
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010	1		-
TPH Total WAC	2670	U	mg/kg	< 10	500		-
Total Of 17 PAH's	2800	N	mg/kg	< 0.20	100		-
pH	2010	U		9.1	-	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.025	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate		for compliance I	
				mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455	U	0.0009	0.0093	0.5	2	25
Barium	1455	U	0.006	0.057	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0052	0.052	0.5	10	70
Copper	1455	U	0.0035	0.035	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0049	0.049	0.5	10	30
Nickel	1455	U	0.0041	0.041	0.4	10	40
Lead	1455	U	0.0006	0.0062	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	0.008	0.081	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.47	4.7	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	59	580	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		
Dissolved Organic Carbon	1610	U	12	120	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	12

Waste Acceptance Criteria

Chemtest Job No:	22-13843	22-13843			Landfill	Waste Acceptance	e Criteria
Chemtest Sample ID:	1410306					Limits	
Sample Ref: Sample ID:						Stable, Non- reactive	
Sample Location:	WS03					hazardous	Hazardous
Top Depth(m):	1.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):	2.0				Landfill	hazardous	Landfill
Sampling Date:	07-Apr-2022					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	0.21	3	5	6
Loss On Ignition	2610	U	%	2.4			10
Total BTEX	2760	U	mg/kg	< 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010	1		-
TPH Total WAC	2670	U	mg/kg	< 10	500		1
Total Of 17 PAH's	2800	N	mg/kg	< 0.20	100		-
ρΗ	2010	U		8.9	-	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.066	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	e Limit values for compliance leac		
			mg/l	mg/kg	using B	IS EN 12457 at L/S	3 10 l/kg
Arsenic	1455	U	0.0004	0.0038	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0048	0.048	0.5	10	70
Copper	1455	U	0.0022	0.022	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0006	0.0063	0.5	10	30
Nickel	1455	U	0.0032	0.032	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.060	< 1.0	10	150	500
A. JLL.	1220	U	< 1.0	< 10	1000	20000	50000
Sulphate	1220	U	V 1.0	000	1000	20000	100000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	12

1020

1920

1610

N

U

U

Waste Acceptance Criteria

Total Dissolved Solids

Dissolved Organic Carbon

Phenol Index

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

26

< 0.030

< 2.5

260

< 0.30

< 50

4000

500

60000

800

100000

1000

Project:	Dalguise	House	Monkstown	Dublin

Project: Dalguise House Monkst					1 1011 1	Norte Assessan	- C-ltl-
Chemtest Job No:	22-13843				Landrill	Waste Acceptance	e Criteria
Chemtest Sample ID:	1410307					Limits	
Sample Ref:						Stable, Non-	
Sample ID:						reactive	
Sample Location:	WS03					hazardous	Hazardous
Top Depth(m):	2.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):	3.0				Landfill	hazardous	Landfill
Sampling Date:	07-Apr-2022					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	0.57	3	5	6
Loss On Ignition	2610	U	%	3.0	-		10
Total BTEX	2760	U	mg/kg	< 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010	1	**	
TPH Total WAC	2670	U	mg/kg	< 10	500		-
Total Of 17 PAH's	2800	N	mg/kg	< 0.20	100		
pH	2010	U		8.9	-	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.037	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values for compliance leaching		eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/S	
Arsenic	1455	U	0.0002	0.0023	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0046	0.046	0.5	10	70
Copper	1455	U	0.0021	0.021	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0017	0.017	0.5	10	30
Nickel	1455	U	0.0032	0.032	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.052	< 1.0	10	150	500
Sulphate	1220	U	1.1	11	1000	20000	50000
Total Dissolved Solids	1020	N	26	260	4000	60000	100000
Phenol Index	1920	Ü	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	Ü	< 2.5	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	9.6

Waste Acceptance Criteria

Project:	Dalguise	House	Monkstown	Dublin

Chemtest Job No:	22-13843				Landfill	Waste Acceptance	Criteria
Chemtest Sample ID:	1410308					Limits	
Sample Ref:						Stable, Non-	
Sample ID:						reactive	
Sample Location:	WS04					hazardous	Hazardous
Top Depth(m):	0.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):	1.0				Landfill	hazardous	Landfill
Sampling Date:	07-Apr-2022					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	0.62	3	5	6
Loss On Ignition	2610	U	%	2.6	-		10
Total BTEX	2760	U	mg/kg	< 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010	1		-
TPH Total WAC	2670	U	mg/kg	< 10	500		_
Total Of 17 PAH's	2800	N	mg/kg	1.5	100		-
pH	2010	U		7.9	-	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.067	-	To evaluate	To evaluate
Eluate Analysis		10:1 Eluate 10:1 Eluate L		Limit values	for compliance le	eaching test	
			mg/l	mg/kg	using B	S EN 12457 at L/S	10 l/kg
Arsenic	1455	U	0.0004	0.0039	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0048	0.048	0.5	10	70
Copper	1455	U	0.0026	0.026	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0008	0.0080	0.5	10	30
Nickel	1455	U	0.0035	0.035	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	< 0.050	< 1.0	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	26	260	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	2.7	< 50	500	800	1000

Solid Information		
Dry mass of test portion/kg	0.090	
Moisture (%)	11	

Waste Acceptance Criteria

Project:	Dalguise	House	Monkstown	Dublin

Project: Dalguise House Monkst							
Chemtest Job No:	22-13843				Landfill Waste Acceptance Criteria		
Chemtest Sample ID:	1410309					Limits	
Sample Ref:						Stable, Non-	
Sample ID:						reactive	
Sample Location:	WS04					hazardous	Hazardous
Top Depth(m):	1.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):	2.0				Landfill	hazardous	Landfill
Sampling Date:	07-Apr-2022					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	0.26	3	5	6
Loss On Ignition	2610	U	%	2.1	-		10
Total BTEX	2760	U	mg/kg	< 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010	1		-
TPH Total WAC	2670	U	mg/kg	< 10	500		-
Total Of 17 PAH's	2800	N	mg/kg	< 0.20	100		-
pH	2010	U		8.1	-	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.050	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate		for compliance l	
			mg/l	mg/kg	using B	S EN 12457 at L/S	
Arsenic	1455	U	0.0003	0.0028	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0051	0.051	0.5	10	70
Copper	1455	U	0.0027	0.027	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0013	0.013	0.5	10	30
Nickel	1455	U	0.0035	0.035	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	< 0.050	< 1.0	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	26	260	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		•
Dissolved Organic Carbon	1610	U	2.6	< 50	500	800	1000

Solid Information				
Dry mass of test portion/kg	0.090			
Moisture (%)	9.5			

Waste Acceptance Criteria

Project:	Dalguise	House	Monkstown	Dublin
----------	----------	-------	-----------	--------

Project: Dalguise House Monkst							
Chemtest Job No:	22-13843				Landfill	Waste Acceptance	Criteria
Chemtest Sample ID:	1410310					Limits	
Sample Ref:						Stable, Non-	10
Sample ID:						reactive	
Sample Location:	WS05					hazardous	Hazardous
Top Depth(m):	0.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):	1.0				Landfill	hazardous	Landfill
Sampling Date:	07-Apr-2022					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	0.49	3	5	6
Loss On Ignition	2610	U	%	2.9	-		10
Total BTEX	2760	U	mg/kg	< 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010	1		-
TPH Total WAC	2670	U	mg/kg	< 10	500		-
Total Of 17 PAH's	2800	N	mg/kg	< 0.20	100		-
pH	2010	U		8.1	-	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.076	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate mg/l	10:1 Eluate mg/kg		for compliance less EN 12457 at L/S	
Arsenic	1455	U	0.0003	0.0026	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0049	0.049	0.5	10	70
Copper	1455	U	0.0022	0.022	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0004	0.0045	0.5	10	30
Nickel	1455	U	0.0035	0.035	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	< 0.050	< 1.0	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	13	130	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		*
Dissolved Organic Carbon	1610	U	2.6	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	15

Waste Acceptance Criteria

Project: Dalguise House Monkstown Dub	lin
---------------------------------------	-----

Chemtest Job No:	22-13843 1410311					e Criteria	
Chemtest Sample ID: Sample Ref: Sample ID:	1410311					Stable, Non- reactive	
Sample Location: Top Depth(m):	WS05 1.0				Inert Waste	hazardous waste in non-	Hazardous Waste
Bottom Depth(m):	2.0				Landfill	hazardous	Landfill
Sampling Date:	07-Apr-2022				Lunum	Landfill	Lanam
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U U	%	0.63	3	5	6
Loss On Ignition	2610	Ü	%	2.3	-		10
Total BTEX	2760	Ü	mg/kg	< 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010	1		-
TPH Total WAC	2670	U	mg/kg	< 10	500		-
Total Of 17 PAH's	2800	N	mg/kg	< 0.20	100		-
pH	2010	U	mg/kg	8.1	-	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.073		To evaluate	To evaluate
	2013	- 14	10:1 Eluate	10:1 Eluate	Limit values	for compliance	
Eluate Analysis			mg/l	mg/kg		S EN 12457 at L/S	
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0042	0.042	0.5	10	70
Copper	1455	U	0.0018	0.019	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0016	0.016	0.5	10	30
Nickel	1455	U	0.0027	0.027	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	< 0.050	< 1.0	10	150	500
Sulphate	1220	Ü	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	26	260	4000	60000	100000
Phenol Index	1920	Ü	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	< 2.5	< 50	500	800	1000

Solid Information				
Dry mass of test portion/kg	0.090			
Moisture (%)	11			

Waste Acceptance Criteria

Landfill Waste Acceptance Criteria

Limits Stable, Nonreactive

Project: Dalguise House Moni	kstown Dublin
Chemtest Job No:	22-13843
Chemtest Sample ID:	1410312

Determinand	SO
Sampling Date:	07-Apr-20
Bottom Depth(m):	3.0
Top Depth(m):	2.0
Sample Location:	WS05
Sample ID:	
Sample Ker.	

Sample Location: Top Depth(m):	WS05 2.0 3.0				Inert Waste Landfill	hazardous waste in non- hazardous	Hazardous Waste Landfill
Bottom Depth(m): Sampling Date:	07-Apr-2022				Landilli	Landfill	Landilli
Determinand	SOP	Accred.	Units			Landini	
Total Organic Carbon	2625	U	%	0.55	3	5	6
Loss On Ignition	2610	Ü	%	2.2	-		10
Total BTEX	2760	U	mg/kg	< 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010	1		-
TPH Total WAC	2670	U	mg/kg	< 10	500		-
Total Of 17 PAH's	2800	N	mg/kg	< 0.20	100		
pH	2010	U		8.2	_	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.13		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
			mg/l	mg/kg	using E	S EN 12457 at L/S	5 10 l/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0045	0.045	0.5	10	70
Copper	1455	U	0.0024	0.024	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0012	0.012	0.5	10	30
Nickel	1455	U	0.0034	0.034	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	< 0.050	< 1.0	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	26	260	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	< 2.5	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	9.4

Waste Acceptance Criteria

Test Methods

SOP	Title	Parameters included	Method summary			
1010	pH Value of Waters	pH	pH Meter			
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter			
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.			
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma			
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation			
1800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-MS	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GCMS detection			
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.			
2010	pH Value of Soils	pH	pH Meter			
2015	Acid Neutralisation Capacity	Acid Reserve	Titration			
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.			
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930			
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES			
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection			
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry			
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.			
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N-dimethyl-p-phenylenediamine.			
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.			
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.			
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600 Discrete Analyser using 1,5-diphenylcarbazide.			
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.			
		Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental			

Test Methods

SOP	Title	Parameters included	Method summary
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key	
U	UKAS accredited
M	MCERTS and UKAS accredited
N	Unaccredited
s	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
T	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are havened the scope of LIKAS accreditation

Comments or interpretations are beyond the scope of UKAS accreditation. The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

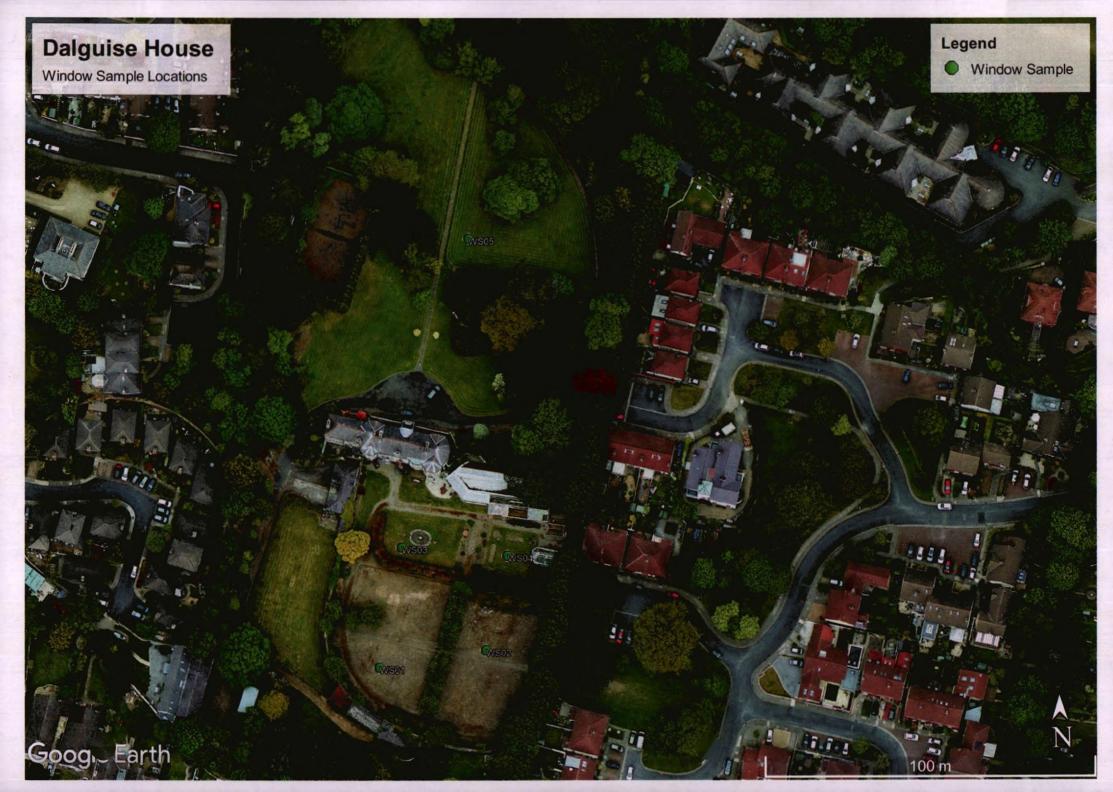
All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal


All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Appendix 10

Site Plans

T: 021 434 5366 E:admin@ocallaghanmoran.com www.ocallaghanmoran.com

Waste Characterisation Assessment

Dalguise House,

Clifton Lane,

Monkstown,

Co. Dublin

Prepared For: -

IGSL Limited
Unit F
M7 Business Park
Naas
County Kildare

Prepared By: -

O' Callaghan Moran & Associates Unit 15 Melbourne Business Park Model Farm Road Cork

May 2022

Registration/VAT Number: 8272844U

Project	Waste Charac	terisation: Da	lguise House, Monkstown	
Client	IGSL Limited			
Report No	Date	Status	Prepared By	Reviewed By
220011801	13/05/2022	Final	Austin Hynes MSc PGeo	Sean Moran B.Sc. MSc

TABLE OF CONTENTS

			PAGE
1	IN	ITRODUCTION	1
	1.1	METHODOLOGY	1
2	W	ASTE CLASSIFICATION ASSESSMENT	2
	2.1	SOIL SAMPLING AND LABORATORY ANALYSIS	2
	2.2	WASTE CLASSIFICATION	3
	2.3	WASTE ACCEPTANCE CRITERIA	6
	2.4	WASTE MANAGEMENT OPTIONS	11
3	C	ONCLUSIONS AND RECOMMENDATIONS	13
	3.1	CONCLUSIONS	13
	3.2	RECOMMENDATIONS	13

APPENDICES

APPENDIX 1 - Borehole, Trial Pit and Window Sample Logs

APPENDIX 2 - Laboratory Results

APPENDIX 3 - Waste Classification Report

1 INTRODUCTION

IGSL Limited requested O'Callaghan Moran & Associates (OCM) to undertake a waste characterisation assessment of samples of made ground and natural ground collected from six (6 No.) trial pits, six (6 No.) cable percussion and five (5 No.) window sample boreholes at a site at Dalguise House, Monkstown, Co. Dublin.

1.1 Methodology

IGSL provided a description of the ground conditions and collected samples of the soils from the trial pit and borehole locations. The samples were analysed at an accredited laboratory and the results formed the basis for a waste classification assessment, which was undertaken by OCM in accordance with the Environmental Protection Agency (EPA) Guidelines on the Classification of Waste (2015).

2 WASTE CLASSIFICATION ASSESSMENT

2.1 Soil Sampling and Laboratory Analysis

2.1.1 Site Investigation

The site investigation was completed by IGSL Limited in March 2022 and included the collection of forty two composite samples from six (6 No.) cable percussion boreholes, six (6 No.) trial pits and five (5 No.) window sample boreholes. The locations are shown on figure 2.1a and 2.1b. The logs are in Appendix 1.

There is topsoil at the surface of all locations with the exception of BH01 and BH02A. There is Made Ground composed of sandy CLAY at the surface of BH01 and GRAVEL at the surface of BH02A.

The subsurface of BH01, TP23 and WS03 is composed of Made Ground underlain by Natural Ground. The Made Ground at BH01 is composed of sandy CLAY to 1.60 mbgl. The Made Ground at TP23 is composed of sandy gravelly CLAY to 0.70 mbgl which is underlain by clayey gravelly SAND with cobble content to 1.40 mbgl. The Made Ground at WS03 is composed of sandy gravelly CLAY to 1.20 mbgl.

The Natural Ground at all locations is composed of firm sandy gravelly CLAY with some cobble content which becomes stiff to very stiff at depths greater than 2.00 mbgl. The maximum depth reached was 10.00 mbgl in BH02A

The Made Ground contains rare non-natural material including brick and metal fragments <2% of the soil matrix.

2.1.2 Sample Collection

IGSL collected the samples and placed them in laboratory prepared containers that were stored in coolers prior to shipment to Chemtest Ltd.

2.1.3 Laboratory Analysis

The samples were tested for Total Heavy Metals, Total Organic Carbon (TOC), BTEX (benzene, toluene, ethylbenzene and xylene) aliphatic and aromatic hydrocarbons, Polychlorinated Biphenyls (PCB), Mineral Oil, Polyaromatic Hydrocarbons (PAH) and asbestos. Leachate generated from the samples was tested for arsenic, barium, cadmium, chromium, copper, mercury, molybdenum, nickel, lead, antimony, selenium and zinc, chloride, fluoride, soluble sulphate, phenols, dissolved organic carbon (DOC), total dissolved solids (TDS).

This parameter range facilitates an assessment of the hazardous properties of the waste, and also allows a determination of appropriate off-site management options based on the Waste Acceptance Criteria (WAC) applied by landfill operators.

The analytical methods were all ISO/CEN approved and the method detection limits were below the relevant guidance/threshold values. The full laboratory report is in Appendix 2.

2.2 Waste Classification

The Haz Waste Online Classification Engine, developed in the UK by One Touch Data Ltd, was used to determine the waste classification. This tool was developed specifically to establish whether waste is non-hazardous or hazardous and has been approved for use in Ireland by the Environmental Protection Agency.


The full Waste Classification Report is in Appendix 3 and the results are summarised in Table 2.1.

Table 2.1 Waste Classification

Sample No.	Depth	Classification	LoW Code	Sample No.	Depth	Classification	LoW Code
BH01	1.0	Non-Hazardous	17 05 04	TP23	0.3	Non-Hazardous	17 05 04
BH01	2.0	Non-Hazardous	17 05 04	TP23	1.2	Non-Hazardous	17 05 04
BH02A	1.00	Non-Hazardous	17 05 04	TP23	2.4	Non-Hazardous	17 05 04
BH02A	2.0	Non-Hazardous	17 05 04	TP24	0.5	Non-Hazardous	17 05 04
BH02A	3.0	Non-Hazardous	17 05 04	TP24	2.0	Non-Hazardous	17 05 04
BH03	1.0	Non-Hazardous	17 05 04	TP25	0.6	Non-Hazardous	17 05 04
BH03	2.00	Non-Hazardous	17 05 04	TP25	1.5	Non-Hazardous	17 05 04
BH03	3.0	Non-Hazardous	17 05 04	TP26	0.5	Non-Hazardous	17 05 04
BH04	1.0	Non-Hazardous	17 05 04	TP26	1.6	Non-Hazardous	17 05 04
BH04	2.0	Non-Hazardous	17 05 04	WS01	0.0-1.0	Non-Hazardous	17 05 04
BH05	1.00	Non-Hazardous	17 05 04	WS01	1.0-2.0	Non-Hazardous	17 05 04
BH05	2.0	Non-Hazardous	17 05 04	WS02	0.0-1.0	Non-Hazardous	17 05 04
BH05	3.0	Non-Hazardous	17 05 04	WS02	1.0-2.0	Non-Hazardous	17 05 04
BH06	1.0	Non-Hazardous	17 05 04	WS03	0.0-1.0	Non-Hazardous	17 05 04
BH06	2.0	Non-Hazardous	17 05 04	WS03	1.0-2.0	Non-Hazardous	17 05 04
TP21	0.75	Non-Hazardous	17 05 04	WS03	2.0-3.0	Non-Hazardous	17 05 04
TP21	1.5	Non-Hazardous	17 05 04	WS04	0.0-1.0	Non-Hazardous	17 05 04
TP21	3.0	Non-Hazardous	17 05 04	WS04	1.0-2.0	Non-Hazardous	17 05 04
TP22	0.6	Non-Hazardous	17 05 04	WS05	0.0-1.0	Non-Hazardous	17 05 04
TP22	1.5	Non-Hazardous	17 05 04	WS05	1.0-2.0	Non-Hazardous	17 05 04
TP22	3.3	Non-Hazardous	17 05 04	WS05	2.0-3.0	Non-Hazardous	17 05 04

Asbestos was not detected in any of the samples.

All samples are classified as non-hazardous and the appropriate List of Waste Code is 17 05 04 (Soil and Stone other than those mentioned in 17 05 03*).

O'Callaghan Moran & Associates, Unit 15 Melbourne Business Park, Model Farm Road, Cork. Tel. (021) 4345366

Email: info@ocallaghanmoran.com

This drawing is the property of O'Callaghan Moran & Associates and shall not be used, reproduced or disclosed to anyone without the prior written permission of O'Callaghan Moran & Associates and shall be returned upon request.

Title:

Figure 2.1a Sample Location Plan

Legend

Client:

IGSL Limited

O'Callaghan Moran & Associates, Unit 15 Melbourne Business Park, Model Farm Road, Cork. Tel. (021) 4345366

Email: info@ocallaghanmoran.com

This drawing is the property of O'Callaghan Moran & Associates and shall not be used, reproduced or disclosed to anyone without the prior written permission of O'Callaghan Moran & Associates and shall be returned upon request.

Title:

Figure 2.1b Sample Location Plan

Client:

IGSL Limited

Legend

2.3 Waste Acceptance Criteria

The results of the WAC testing are presented in Table 2.2-2.5, which includes for comparative purposes the WAC for Inert, Non Hazardous and Hazardous Waste Landfills pursuant to Article 16 of the EU Landfill Directive 1999/31/EC Annex II which establishes criteria and procedures for the acceptance of waste at landfills.

All samples meet the inert WAC.

Table 2.2 WAC Results

Parameter	Unit	BH01	вно2А	вно2А	вно2А	вноз	вноз	вноз	ВН04	BH04	вно5	Inert Landfill	Inert Landfill Increased Limits	Non- Hazardous Landfill	Hazardous Landfill
Depth	m	1.0	1.00	2.0	3.0	1.0	2.00	3.0	1.0	2.0	1.00		20010		
Antimony	mg/kg	0.016	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.06	0.18	0.7	5
Arsenic	mg/kg	0.068	0.0038	0.0041	0.0025	< 0.0002	< 0.0002	0.0021	< 0.0002	< 0.0002	< 0.0002	0.5	1.5	2	25
Barium	mg/kg	< 0.0005	0.061	0.065	< 0.0005	< 0.0005	< 0.0005	0.064	< 0.0005	< 0.0005	< 0.0005	20	20	100	300
Cadmium	mg/kg	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	0.04	1	5
Chromium	mg/kg	< 0.0005	< 0.0005	0.012	0.0056	0.0074	< 0.0005	0.0071	0.0095	< 0.0005	< 0.0005	0.5	0.5	10	70
Copper	mg/kg	0.064	0.0063	0.012	0.0098	0.0096	< 0.0005	0.0089	0.012	0.0068	0.0070	2	2	50	100
Lead	mg/kg	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	0.5	10	50
Molybdenum	mg/kg	0.18	0.091	0.077	0.046	0.056	0.081	0.21	0.056	0.32	0.094	0.5	1.5	10	30
Nickel	mg/kg	0.0063	0.0067	< 0.0005	< 0.0005	< 0.0005	0.0080	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.4	0.4	10	40
Selenium	mg/kg	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.1	0.3	0.5	7
Zinc	mg/kg	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	4	4	50	200
Mercury	mg/kg	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.01	0.2	2
Phenol	mg/kg	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	1	1	NE	NE
Fluoride	mg/kg	1.6	7	3.7	2.2	3.2	1.9	3.4	3.9	3.0	3.5	10	10	150	500
Chloride	mg/kg	12	< 10	< 10	<10	150	<10	18	22	<10	< 10	800	2,400	15,000	25,000
Sulphate	mg/kg	16	33	31	12	120	<10	26	29	17	<10	1000*	3,000	20000*	50,000
DOC **	mg/kg	200	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	150	500	500	800	1,000
pH	pH units	8.4	9.9	8.5	8.5	8.6	9.3	8.5	8.6	8.5	8.7	NE	NE	NE	NE
TDS ***	mg/kg	780	710	780	580	580	390	650	900	650	550	4,000	12,000	60,000	100,000
TOC	%	1.8	0.55	0.54	0.39	0.47	0.63	0.39	1.2	0.39	0.3	3	6	NE	6
Benzene	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
Toluene	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
Ethylbenzene	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
m/p-Xylene	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
o-Xylene	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
PCB Total of 7	mg/kg	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	1	1	NE	NE
Total 17 PAH's	mg/kg	1.4	4.7	1.7	0.58	< 0.20	< 0.20	0.73	< 0.20	< 0.20	< 0.20	NE	100	NE	NE
Mineral Oil	mg/kg	<10	<10	< 10	<10	<10	<10	<10	<10	< 10	<10	500	500	NE	NE
Asbestos	% mass	NAD	NE	NE	NE	NE									

^{*} denotes sulphate level exceeding inert waste limit may be considered as complying if the TDS value does not exceed 6,000mg/kg at L/S = 10l/kg.

** denotes a higher limit may be accepted provided the DOC values of 500mg/kg is achieved

^{***} denotes TDS. The values for TDS can be used alternative to sulphate and chloride.

PAH over 1mg/kg and/or Mineral Oil over 50 mg/kg exceeds PAH limit at soil recovery site in Ireland. Material is suitable for Inert Landfill.

Table 2.3 WAC Results

Parameter	Unit	вн05	BH05	вно6	вно6	TP21	TP21	TP21	TP22	TP22	TP22	TP23	Inert Landfill	Inert Landfill Increased Limits	Non- Hazardous Landfill	Hazardous Landfill
Depth	m	2.0	3.0	1.0	2.0	0.75	1.5	3.0	0.6	1.5	3.3	0.3				
Antimony	mg/kg	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.06	0.18	0.7	5
Arsenic	mg/kg	0.0020	0.0028	0.0022	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0029	0.5	1.5	2	25
Barium	mg/kg	0.064	0.056	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	20	20	100	300
Cadmium	mg/kg	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	0.04	1	5
Chromium	mg/kg	0.0052	< 0.0005	0.0072	< 0.0005	0.0051	0.0061	< 0.0005	0.0070	0.0073	0.0053	< 0.0005	0.5	0.5	10	70
Copper	mg/kg	0.0096	0.019	0.015	0.0097	0.0051	0.0078	0.0092	0.012	0.0063	0.0075	0.012	2	2	50	100
Lead	mg/kg	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	0.5	10	50
Molybdenum	mg/kg	0.093	0.16	0.044	0.042	0.092	0.11	0.29	0.017	0.083	0.15	0.0039	0.5	1.5	10	30
Nickel	mg/kg	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.4	0.4	10	40
Selenium	mg/kg	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.053	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.1	0.3	0.5	7
Zinc	mg/kg	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	0.025	4	4	50	200
Mercury	mg/kg	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.01	0.2	2
Phenol	mg/kg	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	1	1	NE	NE
Fluoride	mg/kg	4.2	3.2	3.3	3.2	3.4	2.7	3.5	3.9	2.6	2.6	3.3	10	10	150	500
Chloride	mg/kg	< 10	11	< 10	< 10	< 10	< 10	31	< 10	<10	< 10	11	800	2,400	15,000	25,000
Sulphate	mg/kg	18	27	23	20	< 10	10	91	< 10	<10	< 10	< 10	1000*	3,000	20000*	50,000
DOC **	mg/kg	< 50	< 50	< 50	< 50	< 50	< 50	< 50	75	< 50	81	< 50	500	500	800	1,000
pH	pH units	8.7	8.6	8.3	8.5	8.4	8.6	8.6	8.6	8.6	8.3	8.5	NE	NE	NE	NE
TDS ***	mg/kg	650	710	1000	780	450	520	720	650	580	580	260	4,000	12,000	60,000	100,000
тос	%	0.33	0.46	0.76	0.66	1.8	0.3	0.56	1	0.21	0.85	1.9	3	6	NE	6
Benzene	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
Toluene	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
Ethylbenzene	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
m/p-Xylene	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
o-Xylene	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
PCB Total of 7	mg/kg	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	1	1	NE	NE
Total 17 PAH's	mg/kg	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	NE	100	NE	NE
Mineral Oil	mg/kg	<10	< 10	<10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	500	500	NE	NE
Asbestos	% mass	NAD	NE	NE	NE	NE										

PAH over 1mg/kg and/or Mineral Oil over 50 mg/kg exceeds PAH limit at soil recovery site in Ireland. Material is suitable for Inert Landfill.

^{*} denotes sulphate level exceeding inert waste limit may be considered as complying if the TDS value does not exceed 6,000mg/kg at L/S = 10l/kg.

^{**} denotes a higher limit may be accepted provided the DOC values of 500mg/kg is achieved

^{***} denotes TDS. The values for TDS can be used alternative to sulphate and chloride.

Table 2.4 WAC Results

Parameter	Unit	TP23	TP23	TP24	TP24	TP25	TP25	TP26	TP26	WS01	WS01	Inert Landfill	Inert Landfill Increased Limits	Non- Hazardous Landfill	Hazardous Landfill
Depth	m	1.2	2.4	0.5	2.0	0.6	1.5	0.5	1.6	0.0-1.0	1.0-2.0				F8 1947)
								100							
Antimony	mg/kg	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0054	< 0.0005	0.06	0.18	0.7	5
Arsenic	mg/kg	< 0.0002	< 0.0002	0.0029	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0024	0.042	0.0083	0.5	1.5	2	25
Barium	mg/kg	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.053	20	20	100	300
Cadmium	mg/kg	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	0.04	1	5
Chromium	mg/kg	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.052	0.055	0.5	0.5	10	70
Copper	mg/kg	0.0075	0.0056	0.0094	0.013	0.0080	< 0.0005	< 0.0005	0.0088	0.029	0.028	2	2	50	100
Lead	mg/kg	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0059	0.5	0.5	10	50
Molybdenum	mg/kg	0.0068	0.0025	0.0057	< 0.0002	0.0026	< 0.0002	< 0.0002	< 0.0002	0.12	0.13	0.5	1.5	10	30
Nickel	mg/kg	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.037	0.039	0.4	0.4	10	40
Selenium	mg/kg	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.1	0.3	0.5	7
Zinc	mg/kg	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	0.031	0.037	4	4	50	200
Mercury	mg/kg	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.01	0.2	2
Phenol	mg/kg	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	1	1	NE	NE
Fluoride	mg/kg	< 1.0	< 1.0	1.2	< 1.0	1.0	< 1.0	< 1.0	< 1.0	1.3	2.0	10	10	150	500
Chloride	mg/kg	< 10	< 10	< 10	< 10	< 10	<10	<10	< 10	<10	12	800	2,400	15,000	25,000
Sulphate	mg/kg	< 10	< 10	< 10	< 10	< 10	<10	<10	< 10	<10	< 10	1000*	3,000	20000*	50,000
DOC **	mg/kg	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	180	150	500	500	800	1,000
pH	pH units	8.7	8.6	9.3	8.6	8.3	8.5	8.4	8.6	8.5	8.6	NE	NE	NE	NE
TDS ***	mg/kg	260	200	320	200	200	200	65	260	1300	710	4,000	12,000	60,000	100,000
TOC	%	0.4	0.3	0.74	0.33	0.49	0.29	0.99	0.27	1.2	0.63	3	6	NE	6
Benzene	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
Toluene	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
Ethylbenzene	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
m/p-Xylene	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
o-Xylene	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
PCB Total of 7	mg/kg	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	1	1	NE	NE
Total 17 PAH's	mg/kg	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.27	1.2	NE	100	NE	NE
Mineral Oil	mg/kg	< 10	<10	< 10	< 10	<10	< 10	< 10	<10	<10	< 10	500	500	NE	NE
Asbestos	% mass	NAD	NE	NE	NE	NE									

*** denotes TDS. The values for TDS can be used alternative to sulphate and chloride.

PAH over 1mg/kg and/or Mineral Oil over 50 mg/kg exceeds PAH limit at soil recovery site in Ireland. Material is suitable for Inert Landfill.

^{*} denotes sulphate level exceeding inert waste limit may be considered as complying if the TDS value does not exceed 6,000mg/kg at L/S = 10l/kg.

** denotes a higher limit may be accepted provided the DOC values of 500mg/kg is achieved

Table 2.5 WAC Results

Parameter	Unit	WS02	WS02	WS03	WS03	WS03	WS04	WS04	WS05	WS05	WS05	Inert Landfill	Inert Landfill Increased Limits	Non- Hazardous Landfill	Hazardous Landfill
Depth	m	0.0-1.0	1.0-2.0	0.0-1.0	1.0-2.0	2.0-3.0	0.0-1.0	1.0-2.0	0.0-1.0	1.0-2.0	2.0-3.0				
													(Charles)		
Antimony	mg/kg	0.015	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.06	0.18	0.7	5
Arsenic	mg/kg	0.13	0.068	0.0093	0.0038	0.0023	0.0039	0.0028	0.0026	< 0.0002	< 0.0002	0.5	1.5	2	25
Barium	mg/kg	< 0.0005	< 0.0005	0.057	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	20	20	100	300
Cadmium	mg/kg	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	0.04	1	5
Chromium	mg/kg	0.049	0.047	0.052	0.048	0.046	0.048	0.051	0.049	0.042	0.045	0.5	0.5	10	70
Copper	mg/kg	0.043	0.042	0.035	0.022	0.021	0.026	0.027	0.022	0.019	0.024	2	2	50	100
Lead	mg/kg	< 0.0005	< 0.0005	0.0062	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	0.5	10	50
Molybdenum	mg/kg	0.061	0.18	0.049	0.0063	0.017	0.0080	0.013	0.0045	0.016	0.012	0.5	1.5	10	30
Nickel	mg/kg	0.043	0.040	0.041	0.032	0.032	0.035	0.035	0.035	0.027	0.034	0.4	0.4	10	40
Selenium	mg/kg	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.1	0.3	0.5	7
Zinc	mg/kg	< 0.003	< 0.003	0.081	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	4	4	50	200
Mercury	mg/kg	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.01	0.2	2
Phenol	mg/kg	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	1	1	NE	NE
Fluoride	mg/kg	< 1.0	1.2	4.7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	10	10	150	500
Chloride	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	<10	< 10	800	2,400	15,000	25,000
Sulphate	mg/kg	< 10	< 10	< 10	< 10	11	< 10	< 10	< 10	<10	< 10	1000*	3,000	20000*	50,000
DOC **	mg/kg	120	190	120	< 50	< 50	< 50	< 50	< 50	<50	< 50	500	500	800	1,000
pH	pH units	8.4	8.6	9.1	8.9	8.9	7.9	8.1	8.1	8.1	8.2	NE	NE	NE	NE
TDS ***	mg/kg	710	650	580	260	260	260	260	130	260	260	4,000	12,000	60,000	100,000
TOC	%	2.2	1.3	0.79	0.21	0.57	0.62	0.26	0.49	0.63	0.55	3	6	NE	6
Benzene	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
Toluene	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
Ethylbenzene	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
m/p-Xylene	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
o-Xylene	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
PCB Total of 7	mg/kg	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	1	1	NE	NE
Total 17 PAH's	mg/kg	1.1	< 0.20	< 0.20	< 0.20	< 0.20	1.5	< 0.20	< 0.20	< 0.20	< 0.20	NE	100	NE	NE
Mineral Oil	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	<10	< 10	500	500	NE	NE
Asbestos	% mass	NAD	NE	NE	NE	NE									

PAH over 1mg/kg and/or Mineral Oil over 50 mg/kg exceeds PAH limit at soil recovery site in Ireland. Material is suitable for Inert Landfill.

^{*} denotes sulphate level exceeding inert waste limit may be considered as complying if the TDS value does not exceed 6,000mg/kg at L/S = 10l/kg.

^{**} denotes a higher limit may be accepted provided the DOC values of 500mg/kg is achieved

^{***} denotes TDS. The values for TDS can be used alternative to sulphate and chloride.

2.4 Waste Management Options

The EPA has released new guidance on waste acceptance criteria for a range of parameters for soil recovery facilities. These include;

- . Metals in soil and stone (including As, Cd, Cr, Cu, Hg, Ni, Pb, Zn);
- · Total organic carbon in soil and stone;
- Total BTEX (benzene, toluene, ethylbenzene, xylenes) in soil and stone;
- · Mineral oil in soil and stone;
- · Polycyclic aromatic hydrocarbons (PAHs) in soil and stone;
- · Polychlorinated Biphenyls (PCBs) in soil and stone;
- Asbestos fibres in soil and stone.

This requires that soils from brownfield sites should not exceed the limits for the parameters specified in Table 2.6 and 2.7. For metals the limits have been specified for a range of soil types nationally separated into six domain areas.

Table 2.6 Soil Recovery Site Criteria

Parameter	Limit for Soil Recovery Sites
Total BTEX	0.05 mg/kg
Mineral oil	50 mg/kg
Total PAHs	1 mg/kg
Total PCBs	0.05 mg/kg

The samples from BH01, BH02A (2.00 m), WS01 (1.0-2.0m), WS02 (0.0-1.0m) and WS04 (0.0-1.0m) exceed the soil recovery criteria for PAH's. These samples have been classified as (B-1) suitable for inert landfill. The sample from BH02A (1.00m) exceeds the soil recovery criteria for PAH's, however as this sample exceeds the inert WAC, the soil recovery limits do not apply.

The soil and stone cannot be sent for recovery if the trigger levels for a particular domain are exceeded. There is however some flexibility in applying the limits. A derogation applies where up to three parameters can exceed the limit for a sample provided the concentration in the samples is no more than 1.5 times the trigger level. The site which is subject to this investigation is located in Domain 6 and the trigger levels are listed in Table 2.7.

Table 2.7

		Domain 6 Trigger Level	1.5 times Trigger Level
Arsenic	mg/kg	85.8	128.7
Cadmium	mg/kg	2.38	3.57
Chromium	mg/kg	54	81
Copper	mg/kg	40	60
Mercury	mg/kg	0.527	0.7905
Nickel	mg/kg	28.2	42.3
Lead	mg/kg	108	162
Zinc	mg/kg	168	252

The samples from BH01 (1.0m), BH06 (1.0m), WS01, WS02 (0.0-1.0m), WS03 (2.0-3.0m), WS04 (1.0-2.0m) and WS05 exceed the soil recovery criteria for metal concentrations.

The sample from BH01 (1.0m) exceeds the 1.5 times trigger level for Copper and Zinc.

The remaining samples exceed the 1.5 times trigger level for Nickel.

Waste management options are summarised on Table 2.8. All are subject to approval of the waste management facility operators. Class A material meets the soil recovery criteria and is suitable for removal to a soil recovery facility. Class B-1 wastes are suitable for disposal to inert landfill.

Table 2.8 Waste Management Options

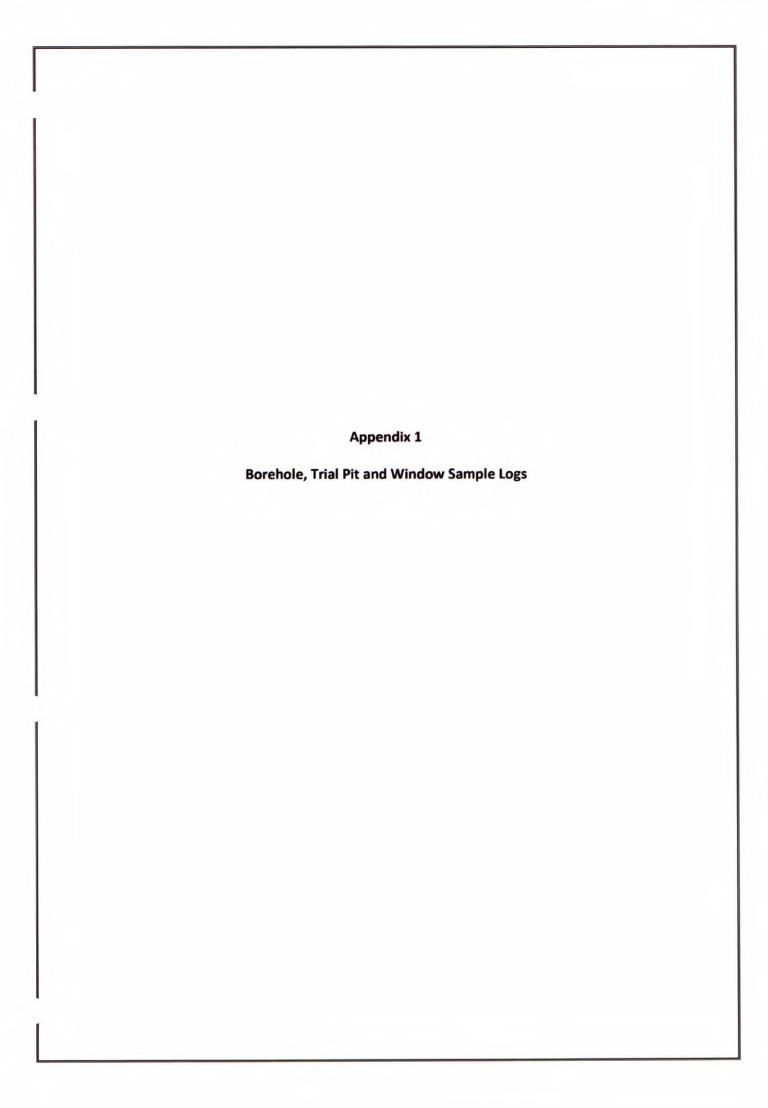
Sample No.	Depth	LoW Code	Category	Sample No.	Depth	LoW Code	Category	
BH01	1.0	17 05 04	B-1	TP23	0.3	17 05 04	A	
BH01	2.0	17 05 04	B-1	TP23	1.2	17 05 04	Α	
BH02A	1.00	17 05 04	B-1	TP23	2.4	17 05 04	A	
BH02A	2.0	17 05 04	B-1	TP24	0.5	17 05 04	A	
BH02A	3.0	17 05 04	Α	TP24	2.0	17 05 04	A	
BH03	1.0	17 05 04	Α	TP25	0.6	17 05 04	A	
BH03	2.00	17 05 04	A	TP25	1.5	17 05 04	A	
BH03	3.0	17 05 04	A	TP26	0.5	17 05 04	A	
BH04	1.0	17 05 04	A	TP26	1.6	17 05 04	A	
BH04	2.0	17 05 04	A	WS01	0.0-1.0	17 05 04	B-1	
BH05	1.00	17 05 04	A	WS01	1.0-2.0	17 05 04	B-1	
BH05	2.0	17 05 04	A	WS02	0.0-1.0	17 05 04	B-1	
BH05	3.0	17 05 04	A	WS02	1.0-2.0	17 05 04	A	
BH06	1.0	17 05 04	B-1	WS03	0.0-1.0	17 05 04	A	
BH06	2.0	17 05 04	A	WS03	1.0-2.0	17 05 04	A	
TP21	0.75	17 05 04	A	WS03	2.0-3.0	17 05 04	B-1	
TP21	1.5	17 05 04	A	WS04	0.0-1.0	17 05 04	B-1	
TP21	3.0	17 05 04	A	WS04	1.0-2.0	17 05 04	B-1	
TP22	0.6	17 05 04	A	WS05	0.0-1.0	17 05 04	B-1	
TP22	1.5	17 05 04	A	WS05	1.0-2.0	17 05 04	B-1	
TP22	3.3	17 05 04	A	WS05	2.0-3.0	17 05 04	B-1	

Α	Meets Soil Recovery Criteria				
B-1	Suitable for disposal/recovery to Inert Landfill				

3 CONCLUSIONS AND RECOMMENDATIONS

3.1 Conclusions

3.1.1 Waste Classification


Asbestos was not detected in any of the samples.

All samples are classified as non-hazardous and the appropriate List of Waste Code is 17 05 04 (Soil and Stone other than those mentioned in 17 05 03*).

The recovery/disposal options are discussed in Section 2.4.

3.2 Recommendations

OCM recommend that a copy of this report be provided in full to the relevant waste management facilities to which the made ground will be consigned to confirm its suitability for acceptance.

WINDOW SAMPLE RECORD

REPORT NUMBER

23927

CONTRACT Dalguise House Development , Monks CO-ORDINATES GROUND LEVEL (mOD)			o.Dublin				PROBE SHEET DATE D DATE L	RILLED	WS01 Sheet 1 of 1 06/03/2022 06/03/2022		
CLIENT Greystar Ltd ENGINEER Byrne Looby					SAMPLED BY LOGGED BY		W. Cahill C. Moynihan				
Depth (m)	Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Depth of Sample Run (m)	Recovery (%)	Blowcount	Vane Test (KPa)	Hand Penetrometer
0.0	Topsoil		x ₀ x	0.10							
	Firm dark brown slightly gravelly sandy SILT Soft to firm brown slightly gravelly CLAY. Lens black organic material at 0.70m, likely peat	of soft	<u></u>	0.30		,					
-	No recovery, possible material fallout			0.90			0.00-1.00	90			
1.0	Firm brown slightly gravelly CLAY		<u>-o</u>	1.00			0.10-1.00				
	Firm greyish brown slightly sandy very gravelly Gravels fine to coarse and sub-angular to sub-	CLAY.	<u> </u>	1.20							
	No recovery, possible material fallout	Tourided	<u>e-</u>	1.50							
2.0				2.00			1.00-2.00	50			
4.0	Final Depth 3.00m			3.00			2.00-3.00	0			
3ene	ral Remarks										
nstal	lations										

REPORT NUMBER

OC	33L/	JOIL ON		11201				23	927	
CON	TRACT Dalguise House Development , Monkstown	, Co.Dublin				PROBE SHEET	NO.	WS02 Sheet		
:0-0	ORDINATES					DATE D		06/03/2	2022	
	UND LEVEL (mOD)					DATELO		06/03/2	Cahill	
NGI	NT Greystar Ltd NEER Byrne Looby					LOGGE			loynihan	
Depth (m)	Geotechnical Description	Puegend	Depth (m)	Elevation	Water Strike	Depth of Sample Run (m)	Recovery (%)	Blowcount	Vane Test (KPa)	Hand Penetrometer
0.0	Topsoil	3 1/2 A 1/2		_						
	Firm brown slightly sandy gravelly CLAY. Gravels fine to coarse and sub-angular to sub-rounded	110	0.20							
	No recovery, possible material fallout		0.85			0.00-1.00	85			
1.0	Firm brown slightly sandy slightly gravelly CLAY		1.60			0.20-1.00				
	No recovery, cobble blocking liner		1.00			4.00.000	60			
2.0	Final Depth 2.00m		2.00			1.00-2.00	60		1	
3.0										
4.0										
5.0										
Gen	eral Remarks			I						
Insta	allations									

REPORT NUMBER

ONT	TRACT	Dalguise House Development , Mon	nkstown , C	co.Dublin				PROBE SHEET	NO.	WS03 Sheet 1		
	RDINATES							DATE D		06/03/2 06/03/2	022	
IEI	NT	Greystar Ltd Byrne Looby						SAMPL		W. C.	ahill oynihan	
Cepui (III)		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Depth of Sample Run (m)	Recovery (%)	Blowcount	Vane Test (KPa)	Hand Penetrometer
0	MADE GF	ROUND - Topsoil										
	slightly sa MADE GF	ROUND - Medium dense grey slightl	y gravelly y clayey	(b)	0.20 0.30 0.40							
.0	sub-angul MADE GF gravelly C	AVEL. Gravels fine to coarse and lar to sub-rounded ROUND - Firm greyish brown slightly LAY with rare wood pieces. Gravels	y sandy fine to		1.00			0.00-1.00 0.20-1.00	100			
	MADE GF gravelly C	d sub-angular to sub-rounded ROUND - Firm greyish brown slightly LAY with rare wood pieces. Gravels d sub-angular to sub-rounded	y sandy fine to	**************************************	1.20			0.20-1.00				
	Soft to fire	m brownish grey slightly gravelly SAI s at 1.60m. Gravel fine to coarse an ded to rounded. Large limestone cob	d	0	1.70 1.90			1.00-2.00	90			
0		ry stiff brownish grey slightly gravelly	y sandy	<u></u>	2.00			1.00-2.00	90			
	No recover	ery, possible material fallout ry stiff brownish grey gravelly sandy ne. Gravely fine to coarse and sub-a	CLAY. Ingular to					2.00-3.00	100			
0	Final Dep	th 3.00m			3.00							
.0												Ī
ene	ral Remar	ks										
stal	llations											-

REPORT NUMBER

Je	131/							23	921	
ON	FRACT Dalguise House Development , Monkstow	n , Co.Dublin				PROBE	NO.	WS04	1	
						SHEET		Sheet 1	of 1	
	ORDINATES UND LEVEL (mOD)					DATE LO		06/03/2 06/03/2		
LIE						SAMPL	ED BY	W. C	Cahill	
	NEER Byrne Looby					LOGGE			loynihan	
Depth (m)	Geotechnical Description	pueden	Depth (m)	Elevation	Water Strike	Depth of Sample Run (m)	Recovery (%)	Blowcount	Vane Test (KPa)	Hand Penetrometer
0.0	Topsoil	1/- 31 //								
	Firm brown slightly gravelly slightly sandy SILT	*o × × × o× *o ×								
	Firm brownish grey slightly gravelly sandy CLAY. Limestone cobble at 0.07m	- <u></u>	0.70			0.00-1.00	100			
1.0	Firm brown slightly gravelly very sandy CLAY	-0	1.00 1.10			0.30-1.00	100		1	
	Medium dense greyish brown slightly clayey very sa GRAVEL. Gravels fine to coarse and sub-angular to sub-rounded		1.30							
	Stiff greyish brown sandy gravelly CLAY. Gravels fi to coarse and sub-angular to rounded	ne				1.00-2.00	100			
2.0	Stiff greyish brown sandy gravelly CLAY. Gravels fi to coarse and sub-angular to rounded. Limestone cobbles at 2.0m, 2.20m and 2.30m	ne O	2.00			1.50 2.50				
	No recovery, possible cobble blocking liner					2.00-3.00	30			
3.0	Final Depth 3.00m		3.00			2.50-5.00	33			
4.0										
5.0										
Gen	eral Remarks									
Insta	illations									

REPORT NUMBER

0-0	RACT Dalguise House Development , Monkstown , GRDINATES UND LEVEL (mOD)	Co.Dublin				PROBE SHEET DATE DI DATE LO	RILLED	WS05 Sheet 1 06/03/2 06/03/2	of 1	
CLIE						SAMPL		W. C	ahill oynihan	
Depth (m)	Geotechnical Description	Legend	Depth (m)	Elevation	Water Strike	Depth of Sample Run (m)	Recovery (%)	Blowcount	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	Topsoil Firm to stiff brown slightly gravelly SILT	× × ×	0.30							
1.0	Firm greyish brown slightly gravelly sandy CLAY with sand lens at 0.80m and gravel lens at 0.90m. Sand is fine. Gravels are fine to coarse and sub-angular to sub-rounded	× × ×	1.00			0.00-1.00 0.30-1.00	100			
	Stiff brown slightly sandy gravelly CLAY. Gravels fine to coarse and angular to sub-rounded	0								
2.0	Very stiff brown gravelly CLAY. Gravels fine to coarse and sub-angular to sub-rounded Stiff brown slightly gravelly slightly sandy CLAY Stiff greyish brown sandy gravelly CLAY. Gravels fine		1.95 2.00			1.00-2.00	100			
3.0	to coarse and sub-angular to sub-rounded Stiff grevish brown slightly gravelly sandy CLAY with	9 - 0 -	3.00			2.00-3.00	100		-	
	sand lens at 3.40m. Sand is orange brown and fine	- e-								
4.0	Stiff to very stiff dark grey sandy gravelly CLAY No recovery, possible material fallout Final Depth 4.00m		3.80 3.90 4.00			3.00-4.00	95		-	
5.0										
Sene	eral Remarks									
nsta	llations	,								

REPORT NUMBER

ONTRACT		se House	Development ,							BOREH SHEET	ULE NO	D. BH01 Sheet 1 of 1	
O-ORDINAT))			PE HOLE DIAMET HOLE DEPTH		m) :	Dando 20 200 3.40	000			CED 05/03/2022 TED 05/03/2022	
LIENT	Greyst	ar Ltd		SPT HA	MMER REF.	NO.				BORED	BY	W.Cahill	
IGINEER	Byrne l	.ooby		ENERG	Y RATIO (%)			_		PROCE	SSED B	Y F.C	
						_	Ê			nples		-	ed
		Desci	ription		Legend	Elevation	Depth (m)	Ref. Number	Sample	Depth (m)	Recovery	Field Test Results	Standpipe
MADE C	ROUND AY with m		sed of dark browr es)	sandy			1.60	AA165493		1.00		N = 11 (2, 2, 3, 3, 2, 3)	
Firm dar gravel	k brown s	andy SIL	T/CLAY with occ	asional	×			AA165494	В	2.00		N = 11 (3, 3, 3, 2, 3, 3)	
	f dark bro	wn sandy	y silty gravelly CL	AY	×0		3.40	AA165495	В	3.00		N = 50/150 mm (10, 10, 40, 10)	
Obstruc End of E	orehole a	it 3.40 m											
HARD STRA			ELLING									NATER STRIKE DET	TAILS
rom (m) To		ime (h)	omments		Water Strike		sing pth	Sealed At			rime min)	Comments	
3.30 3	.40	1.5										No water strike	
							Hole	Casing		enth to		ROUNDWATER PRO	OGRE
ISTALLATI Date			RZ Base	Type	Date		Depth	Depth		epth to Water	Comm	ents	
Date	ip Depth	KZ IOD	KZ Dase	туре									
			19 Safe Working dug inspection p				B - Bull LB - La	ple Leger all Disturbed (tu c Disturbed rge Bulk Disturb	ed	ar + Vial + Tub	Sar P -	- Undisturbed 100mm Diameter mple Undisturbed Piston Sample Water Sample	

REPORT NUMBER

		IATES				BOF		E DIAMET		m) 2	Dando 20 200 0.30	000		СОММІ		Sheet 1 of 1 D 05/03/2022 D 05/03/2022	
	NT			ar Ltd				MER REF. I	-	·		_	BORE			W.Cahill	
ENG	INEER			ooby		ENE	RGY R	(%)					PROC	ESSED	BY	F.C	
Depth (m)				Desc	ription			Puegend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth	Î.	Recovery	Field Test Results	Standpipe
0	MAD	F GROU	JND	(Compris	sed of fine	gravel)	8	<u></u>	ш	0.30	42	0, -	-	_	<u>«</u>		0)1
1 2 3 4 5 5 6 7 7				l plate ni													
		RATA E	Ti	NG/CHIS	ELLING			Water	Cas		Sealed	Ris		Time	1	TER STRIKE DET	AILS
	30	()	_	h) 0				Strike	De	ptn	At	То		(min)		lo water strike	
										Hala	Cos'-		-44 :	_		UNDWATER PRO	GRE
		TION D			D7.5			Date		Hole Depth	Casing Depth	De W	pth to ater	Com	ment	s	
_[Date	TIP D	epth	KZ TOP	RZ Base	Type											

REPORT NUMBER

OUND LEV	ES (EL (mOD)			HOLE DIAMETI HOLE DEPTH (m) 2	0ando 20 200 0.00					D 05/03/2022 D 06/03/2022	
ENT	Greystar			AMMER REF. N	10.			- 1	BORE			W.Cahill	
GINEER	Byrne Loo	by	ENER	GY RATIO (%)			_		PROCE	SSED	BY	F.C	
					اء	2			nples		\vdash		9
		Description		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth		Kecovery	Field Test Results	Standpipe
MADE G	ROUND (C	omprised of fine gr	avel)			0.40							
	brown san	dy SILT/CLAY with	occasional	-X9									
gravel													
				×		1.30	AA161951	В	1.00			N = 11 (2, 3, 3, 2, 3, 3)	
Stiff light	brown sand	ly SILT/CLAY				1.30	-						
							AA161952	В	2.00			N = 27	
							AA 10 1932	В	2.00			(4, 5, 5, 6, 8, 8)	
							AA161953	В	3.00			N = 28 (5, 6, 6, 7, 7, 8)	
				<u> </u>								(0, 0, 0, 7, 7, 0)	
						3.80							
Stiff dark	grey sandy	SILT/CLAY				3.00	1		7/55			N = 28	
	, , , ,						AA161954	В	4.00			(4, 6, 6, 7, 7, 8)	
							AA161955	В	5.00			N = 28	
												(5, 5, 6, 7, 7, 8)	
							AA161956	В	6.00			N = 29 (6, 6, 7, 7, 8, 7)	
								_				N = 30	
							AA161957	В	7.00	'		(6, 7, 7, 8, 8, 7)	
							AA161958	В	8.00			N = 33	
												(7, 8, 8, 8, 9, 8)	
						9.20	AA161959	В	9.00)		N = 40 (8, 8, 9, 10, 10, 11)	
Very stiff	dark grey s	andy gravelly SIL1	CLAY	®									
				XG									
				*		10.00							
	Tim	ACBOSELLING		Water	Ca	sing	Sealed	Ris	se	Time	T.	TER STRIKE DET	AILS
m (m) To	(m) (h)			Strike		pth	At	To	0	(min)		omments	
											^	lo water strike	
					1					-	GRO	UNDWATER PRO	GRE
STALLATIC	ON DETAILS			Date		Hole	Casing	De	epth to Vater	Com			
		Z Top RZ Base	Туре		+	Depth	Depth	1	. 4101				
										1			

REPORT NUMBER

COI	NTRA	CT D	alguis	e House	e Develop	ment , Monk	stown,	Co.Dublin				- 1	BOREH SHEET	OLE N	D. BH03 Sheet 1	of 1	
		NATES	(mOD)		В		LE DIAMET LE DEPTH		m) :	Dando 20 200 5.50	00	DATE C		ICED 03/03/2	022	
LI	ENT	G	reysta	ar Ltd		S	PT HAM	MER REF.	NO.				BORED	BY	W.Ca	ahill	
NO	SINEE		yrne L			E	NERGY	RATIO (%)					PROCE	SSED E	Y F.C		
										_		San	nples				
nebin (m)				Desc	ription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field To Result		Standpipe
)	Soft occa	to firm o	ark br ravel	rown sar	ndy SILT/C	CLAY with		XO		2.30	AA165493 AA165494		1.00		N = (2, 3, 2, 2) N = (2, 3, 3, 4)	2, 3, 2)	
	and o	occasio	nal col	bbles		vith some gra				3.60	AA165495	В	3.00		N = (3, 4, 4, 4		
	with	to very s	suff da	and oc	sandy silty casional b	gravelly CL. oulders	AY			5.50					N = 3 (6, 6, 7, 9) N = 4 (7, 8, 10, 10	9, 9, 9)	
		51 Bal 51		t 5.50 m													
	DD 63	DATA (20011	10/01/10	F1 1 110									Ь.			
			-	me C				Water	Cas	sing	Sealed	Ris	e I 1	ime	WATER STRII	VE DE L	AIL
_	n (m) .20	To (m) 5.50		1)	omments			Strike	De		At	To		min)	No water st	triko	
															140 Water S	uike	
	TA	TIO: -								Hole	Casing	De	onth to		ROUNDWATE	ER PRO	GR
		ATION D			D7.0	-		Date		Depth	Depth	Ň	pth to ater	Comm	ents		
	Date	TIP D	epth F	KZ TOP	RZ Base	Туре											
EN	MARK	S 1hr E	recting	g Covid	19 Safe W	Vorking Area	. CAT s	scanned		Samp D - Small	ole Legeno Disturbed (tub)	d		ŲT-	- Undisturbed 100mm	Diameter	
					-5opou	più odilli				B - Bulk I	Disturbed pe Bulk Disturbed vironmental Sam	d	+ Vial + Tub)	San P - I W -	nple Undisturbed Piston Sa Water Sample	ample	

REPORT NUMBER

O-ORDINAT	ES	use Development , N	RIG TYP) 2	Dando 20 200 2.50	00		ОММЕ	NCE	BH04 Sheet 1 of 1 D 03/03/2022 D 03/03/2022	
LIENT	Greystar Ltd		1	MMER REF. N Y RATIO (%)	Ю.			- 1	BORED		RY	W.Cahill F.C	
NGINEER	Byrne Looby		ENERG	1 10 (76)	T			_	ples	JOLD	1	1.0	
	De	escription		Legend	Elevation	Depth (m)	Ref. Number	Sample	Depth (m)		Recovery	Field Test Results	Standpipe
Dark bro	wn sandy SILT	CLAY with occasion	al gravel	XOX X		0.90							
Stiff to v some gr	ery stiff light broavel and occas	own sandy SILT/CLA ional cobbles	Y with			2.50	AA165491 AA165492		2.00			N = 23 (4, 4, 5, 5, 6, 7) N = 40 (6, 7, 7, 8, 10, 15)	
Obstruct End of E	ion Jorehole at 2.50	O m											
	Time			Water	Cas	ina	Sealed	Ris	se l	Time	T	TER STRIKE DET	AILS
	(h) (h)	Comments		Strike	Der		At	To		(min)	+	No water strike	
)	GRO	UNDWATER PRO	GRE
NSTALLATI	ON DETAILS			Date		lole epth	Casing	De	epth to Vater	Com			
	Tip Depth RZ	Top RZ Base	Туре			epui	Depin	+	. 4601				
EMARKS	1hr Erecting Co location and ha	ovid 19 Safe Working and dug inspection pi	Area . CA t carried ou	T scanned ut		LB - La	ple Leger all Disturbed (tu Disturbed rge Bulk Disturb revironmental Sa	ped	r + Vial + Tu		Sample P - Undi	disturbed 100mm Diameter sturbed Piston Sample ter Sample	

REPORT NUMBER

CONTRA	CT Da	lguise Hou	se Developme	ent , Monkstown	, Co.Dublin					BOREHO SHEET	DLE NO.	Sheet 1 of 1	
CO-ORDI	INATES	nOD)			PE HOLE DIAMET HOLE DEPTH		m) :	Dando 20 200 4.20	00	DATE CO		CED 07/03/2022 ED 07/03/2022	
CLIENT	Gre	eystar Ltd		SPT H	AMMER REF.	NO.				BORED	BY	W.Cahill	
ENGINEE	R Byr	ne Looby		ENERG	SY RATIO (%)					PROCES	SED BY	Y F.C	
=							-		San	nples			
nebin (m)		De	scription		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standbibe
0 Dark	k brown sa	indy SILT/	CLAY with occ	asional gravel	X0X		0.70						
Firm grav	to stiff lig	ht brown s casional co	andy SILT/CL	AY with some			0.70	AA162661	В	1.00		N = 12 (3, 3, 2, 3, 3, 4)	
2					×			AA162662	В	2.00		N = 20 (3, 4, 4, 5, 5, 6)	
					Ø .▼								
1					\$ _ \$ \$ _ \$ \$ _ \$		2.00	AA162663	В	3.00		N = 24 (4, 4, 5, 6, 6, 7)	
Very	stiff brow	n sandy gi	ravelly silty CL	AY with			3.90 4.20	AA162664	В	4.00		N = 50/150 mm (16, 9, 33, 17)	
3													
IARD S	TRATA BO	Time	SELLING Comments		Water	Cas		Sealed	Rise		me (ATER STRIKE DET	AIL
2.60 4.00	2.90 4.20	(h) 1 1.5			Strike	Dep	JUI	At	То	(m	nin)	No water strike	
											GR	OUNDWATER PRO	GR
NSTALL	ATION DE	TAILS			Date		lole epth	Casing Depth	De	oth to ater	Comme	nts	
Date	Tip Dep	oth RZ To	p RZ Base	Туре			орит	Бериг	.,,				
EMARK	S 1hr Ere location	cting Covi	d 19 Safe World dug inspection	rking Area . CA on pit carried ou	T scanned t		B - Bulk D	Disturbed (tub) Disturbed Bulk Disturbed Fronmental Sam		Vial + Tub)	Sampl P - Un	Indisturbed 100mm Diameter e disturbed Piston Sample ater Sample	

REPORT NUMBER

O-ORDINAT		e Development ,	RIG TYP	E	ED /-		Dando 20		SHEET DATE CO		Sheet 1 of 1	
ROUND LE	VEL (mOD)			OLE DIAMET OLE DEPTH (200 2.60				TED 08/03/2022	
LIENT NGINEER	Greystar Ltd Byrne Looby			MMER REF. I	NO.				BORED		W.Cahill	
TOINEER	Dynne Loody		LITERIO	1104110 (70)				Sar	nples		1	
	Desc	cription		Legend	Elevation	Depth (m)	Ref. Number	Sample	Depth (m)	Recovery	Field Test Results	Standpipe
Stiff darl	c brown sandy SIL	T/CLAY with occ	asional	XO	ш	1.30	AA165497		1.00	<u> </u>	N = 25 (3, 3, 4, 6, 6, 9)	0,1
Stiff to v with son roots Obstruct	ery stiff mottled lig ne gravel and occa	ht brown sandy S asional cobbles a	SILT/CLAY nd large	\$ X X X X X X X X X		2.60	AA165498	вВ	2.00		N = 27 (4, 4, 5, 6, 6, 10)	
Obstruct End of E	tion Borehole at 2.60 m											
											DUNDWATER PRO	
	Time C			Water	Car	sing	Sealed	Ri	se T	Time	VATER STRIKE DET	AILS
	o (m) (h) C	comments		Strike		epth	At			min)	No water strike	
										GI	ROUNDWATER PRO	OGRE
STALL AT	ON DETAILS			Date		Hole	Casing	D	epth to Water	Comm		
	Tip Depth RZ Top	RZ Base	Туре	-		Depth	Depth	+	vvaler			
EMARKS	1hr Erecting Covid location and hand	119 Safe Working dug inspection p	g Area . CA it carried ou	T scanned		I R - Rulk	ple Leger all Disturbed (tul Disturbed age Bulk Disturb avironmental Sa			San	- Undisturbed 100mm Diameter nple Undisturbed Piston Sample Water Sample	

REPORT NUMBER

CON	TRACT	Dalguise House Development , M						TRIAL PIT	NO.	TP2 Shee	1 et 1 of 1	
.OG	GED BY	S.Hannon	CO-ORDINAT		728,42	90.09 E 26.07 N		DATE STA			2/2022 2/2022	
LIE	NT NEER	Greystar Ltd Byrne Looby	GROUND LE	VEL (m)	27.87			EXCAVAT METHOD			Tracked vator	
								s	Samples		a)	neter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer
.0	TOPSO	IL		31/2 11/2								
ł	Subsoil	soft to firm brown slightly sandy gra	avelly CLAY.	0	0.20	27.67						
	Firm to CLAY w	stiff greyish brown slightly sandy verith medium cobble content.	ery gravelly	0 0	0.40	27.47		AA141843	В	0.75		
.0	Stiff gre medium	eyish brown slightly sandy very grav n cobble content and low boulder or	elly CLAY with ontent.	0	0.90	26.97		AC141043	Ь	0.75		
				0		-		AA141844	В	1.50		
.0	Stiff to v	very stiff brown very gravelly CLAY content.	with medium	- C	2.00	25.87						
.0	Very stir	ff black gravelly CLAY with medium	ncobble	<u>-</u>	2.70	25.17		AA141845	В	3.00		
					3.40	24.47						
1.0	Endoi	Trial Pit at 3.50m										
ry		Conditions										
tabi												
	ral Rema Scanned	rks location for services										

REPORT NUMBER

LOG	GED BY S.Hannon	CO-ORDINAT	ES		16.49 E 13.39 N		DATE ST		25/02	1 of 1 /2022	
LIE		GROUND LE	VEL (m)	27.47			EXCAVAT METHOD	TION		racked	
NGI	INEER Byrne Looby						s	Samples		_	eter
	Geotechnical Descri	iption	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer
0.0	TOPSOIL Soft to firm brown slightly sandy very	gravelly CLAY	777	0.20	27.27						
	Firm grey slightly sandy very gravelly cobble content and low boulder cont		0	0.80	26.67		AA141846	В	0.60		
1.0	Stiff greyish brown slightly sandy ver low cobble content and low boulder	v gravelly CLAY with		1.20	26.27		AA141847	В	1.50-1.60		
2.0							W141047		1.30-1.00		
3.0	End of Trial Pit at 3.30m			3.30	24.17		AA141848	В	3.30		
4.0											
See	undwater Conditions page at 3 m.										
Stab											
CAT	neral Remarks T Scanned location for services										

REPORT NUMBER

.OG	GED BY	S.Hannon	CO-ORDINA	TES		43.55 E 55.72 N		DATE STA		25/02	et 1 of 1 2/2022 2/2022	
LIE	NT	Greystar Ltd	GROUND L	EVEL (m)	25.44			EXCAVAT		16T	Tracked	ı
NGI		Byrne Looby						METHOD		exca	vator	
								s	amples		a)	meter
		Geotechnical Descr	iption	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer
0.0	TOPSOIL	(31/2 11/2								
	MADE GF	ROUND - Soft to firm slight	ly sandy gravelly	100	0.20	25.24						
	CLAY with	h low cobble content and ra	are brick pieces.	7 * 6				AA141849	В	0.30		
				*0.*0 *0.*0 *0.*0 *0.*0								
				3 (3	0.70	24.74						
	MADE GF	ROUND - Medium dense g medium cobble content ar	rey dayey gravelly	*****								1
	rare brick	pieces.	id old clay pipe and	- XXXX								
1.0				- XXXX								
				- XXXX				AA141850	В	1.20		
	Firm to at	#	undles OL AV seith	<u> </u>	1.40	24.04						
	medium c	iff grey very sandy very gra cobble content.	velly CLAY with									1
2.0												
					2.20	23.24						
	Stiff to ver	ry stiff pale brown gravelly	CLAY.		2.20	25.24						
								AA146801	В	2.40		
				-0				10111000	_	2		
				e_		00.04						
		black gravelly CLAY with m	nedium cobble		2.80	22.64						
3.0	content.											
								AA146802	В	3.30		
				0	3.50	21.94		AA 140002	ь	3.30		
	End of Tri	ial Pit at 3.50m			3.30	21.54						
4.0												
rou	ndwater Co	onditions										
tabi												
				-11								
ene	eral Remark	ss ecation for services										

REPORT NUMBER

23927

uise House Development , I	GROUND LE	TES		8.50 E 6.63 N		TRIAL PIT SHEET DATE ST/ DATE CO EXCAVAT METHOD	ARTED MPLET	16T Trexcava	1 of 1 /2022 /2022 racked	
rstar Ltd e Looby Geotechnical Description	GROUND LE	VEL (m)	728,48			DATE STA DATE CO EXCAVAT METHOD	MPLET TION	01/02/ ED 01/02/ 16T Tr excava	/2022 /2022 racked	
e Looby Geotechnical Description			25.12			EXCAVAT METHOD	TION	16T Tr excava	racked	
Geotechnical Description		pue				s	amples			
		end						5	_	eter
rown slightly sandy very gra		Leg	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer
e content and low boulder of	wally CLAV with	1/ 31/ 3 31/ 31/	0.25	24.87						
	content.	0				AA146803	В	0.50-0.70		
n gravelly CLAY.			0.90	24.22						
ff pale brown very gravelly (le content and low boulder o	CLAY with content.	- 0 - 0 - 0 - 0	1.80	23.32		AA146804	В	2.00		
iff grey very gravelly CLAY v	with medium	00	3.00 3.10	22.12 22.02						
Too little material recovered it at 3.10m	d for a sample.									
tions										
	it at 3.10m	it at 3.10m	it at 3.10m	it at 3.10m	it at 3.10m	it at 3.10m	it at 3.10m	it at 3.10m	it at 3.10m	it at 3.10m

General Remarks
CAT Scanned location for services

REPORT NUMBER

CONT	RACT	Dalguise House Developme	nt , Monkstown , Co.	Dublin				TRIAL PIT	NO.	TP2 Shee	5 et 1 of 1	
.ogo	SED BY	S.Hannon	CO-ORDINAT			18.50 E 36.63 N		DATE STA			2/2022	
LIEN	VT	Greystar Ltd	GROUND LE	VEL (m)	25.12			EXCAVAT	ION	16T	Tracked	
	NEER	Byrne Looby						METHOD		exca	vator	
								s	amples			ter
											(Pa)	e e
		Geotechnical Descrip	tion	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer
0.0	TOPSO	IL		14 1/2 VIV								
-	Soft to f	rm brown slightly sandy very g	arayelly CLAV	11.34.3	0.20	24.92						
	Soit to i	in brown slightly saidy very (gravelly OLAT.									
-	Firm to	stiff brown slightly sandy grave	elly CLAY with	0 :	0.50	24.62						
	medium	cobble content.	any object with					AA146807	В	0.60		
				0								
1.0												
				0	1.20	23.92						
	Stiff bro	wn mottled grey slightly sandy cobble content and low bould	gravelly CLAY with	0	1.20	23.92						
	medium	cobble content and low bould	er content.	0-								
- 1				0				AA146808	В	1.50		
				- 6-								
				0								
2.0				-0-	2.10	23.02						
		dense moist brown sandy GR		2000	2.20	22.92				51		
	Stiff to v	ery stiff brown very gravelly C	LAY with medium									
	coppie (ontent.										
												1
					3.00	22.12						
3.0	End of	rial Pit at 2.50m										
1.0												
roui	ndwater (Conditions										
Stabi l												
	ral Rema Scanned	rks location for services					1					

REPORT NUMBER

13L									921	
TRACT Dalguise House Development , Mo	onkstown , Co.D	Oublin					NO.			
GED BY S.Hannon	CO-ORDINATI	ES	722,77 728,48	71.54 E 35.55 N		DATE ST		01/02	2/2022	
NT Greystar Ltd	GROUND LEV	ÆL (m)	26.26							
NEER Byrrie Looby										-
						S	amples		Pa)	mete
Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (K	Hand Penetrometer
TOPSOIL		71/2 VIV.								
Firm brown slightly sandy gravelly CLAY.		0_0	0.20	26.06						
		0 .				AA146809	В	0.50		
		0								
Firm to stiff greyish brown slightly sandy ver	y gravelly	0	1.00	25.26						
CLAY with medium cobble content and med	lium boulder									
content.										
		0				AA146810	В	1.60		
		-0								
		-°								
			2.70	23.56						
End of Trial Pit at 2.50m										
undwater Conditions										
ility ble										
eral Remarks										
	RACT Dalguise House Development , MoseD BY S.Hannon IT Greystar Ltd NEER Byrne Looby Geotechnical Description TOPSOIL Firm brown slightly sandy gravelly CLAY. Firm to stiff greyish brown slightly sandy ver CLAY with medium cobble content and medicontent. End of Trial Pit at 2.50m	RACT Dalguise House Development , Monkstown , Co.D. SED BY S.Hannon TOPSOIL Firm brown slightly sandy gravelly CLAY. Firm to stiff greyish brown slightly sandy very gravelly CLAY with medium cobble content and medium boulder content. End of Trial Pit at 2.50m	RACT Dalguise House Development , Monkstown , Co.Dublin SED BY S.Hannon AT Greystar Ltd NEER Byrne Looby Geotechnical Description Geotechnical Description TOPSOIL Firm brown slightly sandy gravelly CLAY. Firm to stiff greyish brown slightly sandy very gravelly CLAY with medium cobble content and medium boulder content. End of Trial Pit at 2.50m	RACT Dalguise House Development , Monkstown , Co.Dublin SED BY S.Hannon T Greystar Ltd WEER Byrne Looby Geotechnical Description Geotechnical Description TOPSOIL Firm brown slightly sandy gravelly CLAY. Firm to stiff greyish brown slightly sandy very gravelly CLAY with medium cobble content and medium boulder content. End of Trial Pit at 2.50m End of Trial Pit at 2.50m ACCOORDINATES 722,77 728,48 GROUND LEVEL (m) 26.26 1.00 2.00 2.70 2.70	RACT Dalguise House Development , Monkstown , Co.Dublin SED BY S.Hannon TOPSOIL Firm to stiff greyish brown slightly sandy very gravelly CLAY with medium cobble content and medium boulder content. End of Trial Pit at 2.50m CO-ORDINATES 722,771.54 E 728,485.55 N GROUND LEVEL (m) 26.26 Firm to stiff greyish brown slightly sandy very gravelly CLAY with medium cobble content and medium boulder content.	RACT Dalguise House Development , Monkstown , Co.Dublin CO-ORDINATES 722,771.54 E 728,485.55 N GROUND LEVEL (m) 26.26 TOPSOIL Firm brown slightly sandy gravelly CLAY. Firm to stiff grevish brown slightly sandy very gravelly CLAY with medium cobble content and medium boulder content. End of Trial Pit at 2.50m	TRIAL PIT SHEET SH	TRIAL PIT NO. SHEET SED BY S. Hannon CO-ORDINATES T22,771.54 E T28,485.55 N DATE STARTED DATE COMPLETE EXCAVATION METHOD GROUND LEVEL (m) 26.26 GROUND LEVEL (m) 26.26 GROUND LEVEL (m) 26.26 CO-ORDINATES T28,485.55 N DATE STARTED DATE STARTED DATE STARTED DATE COMPLETE EXCAVATION METHOD Samples TOPSOIL TOPSOIL Firm brown slightly sandy gravelly CLAY. Firm to stiff greyish brown slightly sandy very gravelly CLAY with medium cobble content and medium boulder content. End of Trial Pit at 2.50m TRIAL PIT NO. SHEET DATE STARTED DATE STARTED DATE STARTED DATE STARTED DATE STARTED DATE COMPLETE EXCAVATION METHOD Samples Samples AA146809 B AA146810 B AA146810 B AA146810 B AA146810 B	TRIAL PIT NO. SHEET Shee Shee BY S.Hannon CO-ORDINATES 722,771.54 E 728,485.55 N GROUND LEVEL (m) 26.26 GROUND LEVEL (m) 26.26 Geotechnical Description Geotechnical Descr	RACT Dalguise House Development, Monkstown, Co. Dublin FIRAL PIT NO. SHEET SHEET SHEET SHEET SHEET DATE STARTED OATE STARTED OATE COMPLETED OATE STARTED OATE COMPLETED OATE STARTED OATE STARTED OATE STARTED OATE COMPLETED OATE STARTED OATE STARTED OATE COMPLETED OATE STARTED OATE COMPLETED OATE COMPLETED OATE COMPLETED OATE STARTED OATE COMPLETED OATE COMPLETED OATE STARTED OATE COMPLETED OATE COMPLE

Appendix 2	
Laboratory Report	

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Chemtest

Tel: 01638 606070

13-May-2022

Email: info@chemtest.com

Amended Report

Report No.:

22-12129-2

Initial Date of Issue:

07-Apr-2022

Client

IGSL

Client Address:

M7 Business Park

Naas

County Kildare

Ireland

Contact(s):

John Clancy

Project

23927 Dalguise House Monkstown

Dublin (David Rehill CE)

Quotation No.:

Q20-19951

Date Received:

31-Mar-2022

....

Date Instructed:

Date of Re-Issue:

31-Mar-2022

Order No.: No. of Samples:

27

Turnaround (Wkdays):

30

30

Results Due:

16-May-2022

Date Approved:

13-May-2022

Approved By:

Details:

Stuart Henderson, Technical

Manager

Results - Leachate

Client: IGSL	1000	STURE S	Che	mtest J	ob No.:	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129
Quotation No.: Q20-19951			Chemte	est Sam	ple ID.:	1402334	1402335	1402336	1402337	1402338	1402339	1402340	1402341	1402342	1402343	1402344
			Cli	ent Sam	ple ID.:	AA165493	AA165494	AA161952	AA161953	AA165493	AA165495	AA165491	AA165492	AA162662	AA162663	AA165497
			S	ample L	ocation:	BH01	BH01	BH02A	BH02A	BH03	BH03	BH04	BH04	BH05	BH05	BH06
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Top Depth (m): Accred. SOP Type Units LOD				1.0	2.0	2.0	3.0	1.0	3.0	1.0	2.0	2.0	3.0	1.0
Determinand	Accred.	SOP	Туре	Units	LOD		10 San 10 San			NY SERVICE	(C) - (C)	AS 17/7		The same of	53600000000	
pH	U	1010	10:1		N/A	8.4	8.3	8.4	8.6	8.6	8.5	8.3	8.6	8.5	8.6	8.3
Ammonium	U	1220	10:1	mg/l	0.050	0.12	0.098	0.22	0.56	0.53	0.41	0.41	0.077	0.11	0.11	0.099
Ammonium	N	1220	10:1	mg/kg	0.10	1.4	1.1	2.5	6.8	6.5	4.9	4.6	0.96	1.3	1.3	1.1
Boron (Dissolved)	U	1455	10:1	mg/kg	0.01	< 0.01	< 0.01	< 0.01	0.19	0.16	0.20	0.14	< 0.01	< 0.01	< 0.01	< 0.01
Benzo[j]fluoranthene	N	1800	10:1	µg/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010

Results - Leachate

<u></u>																
Client: IGSL	25	1000	Che	mtest J	ob No.:	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129
Quotation No.: Q20-19951			Chemte	st Sam	ple ID.:	1402345	1402346	1402347	1402348	1402349	1402350	1402351	1402352	1402353	1402354	1402355
			Cli	ent Sam	ple ID.:	AA165498	AA141843	AA141844	AA141845	AA141846	AA141847	AA141848	AA141849	AA141850	AA141801	AA146803
			Sa	ample L	ocation:	BH06	TP21	TP21	TP21	TP22	TP22	TP22	TP23	TP23	TP23	TP24
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Top Depth (m):				2.0	0.75	1.5	3.0	0.6	1.5	3.3	0.3	1.2	2.4	0.5	
Determinand	Accred.	SOP	Type	Units	LOD		SULPHINA TO SERVICE	TO SEPTION OF THE PARTY OF THE						0		
На	U	1010	10:1		N/A	8.4	8.8	8.6	8.5	8.3	8.7	8.7	8.2	8.6	8.8	8.7
Ammonium	U	1220	10:1	mg/l	0.050	0.14	0.063	0.29	0.32	0.51	0.14	0.11	0.15	0.14	0.21	0.21
Ammonium	N	1220	10:1	mg/kg	0.10	1.6	0.84	3.6	3.8	5.6	1.8	1.4	1.6	1.7	2.8	2.7
Boron (Dissolved)	U	1455	10:1	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo[j]fluoranthene	N	1800	10:1	µg/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010

Results - Leachate

										
Client: IGSL		18.33	Che	mtest J	ob No.:	22-12129	22-12129	22-12129	22-12129	22-12129
Quotation No.: Q20-19951			Chemte	st Sam	ple ID.:	1402356	1402357	1402358	1402359	1402360
			Cli	ent Sam	ple ID.:	AA146804	AA146807	AA146808	AA146809	AA146810
			Sa	ample Lo	ocation:	TP24	TP25	TP25	TP26	TP26
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	oth (m):	2.0	0.6	1.5	0.5	1.6
Determinand	Accred.	SOP	Type	Units	LOD					
pH	U	1010	10:1		N/A	8.7	8.3	8.9	8.4	9.0
Ammonium	U	1220	10:1	mg/l	0.050	0.20	0.22	0.16	0.33	0.061
Ammonium	N	1220	10:1	mg/kg	0.10	2.5	2.4	2.3	3.8	0.96
Boron (Dissolved)	U	1455	10:1	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo[j]fluoranthene	N	1800	10:1	μg/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010

Client: IGSL		Ch	emtest.	Job No.:	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129
Quotation No.: Q20-19951		Chem	test Sar	nple ID.:	1402334	1402335	1402336	1402337	1402338	1402339	1402340	1402341
		C	lient Sa	mple ID.:	AA165493	AA165494	AA161952	AA161953	AA165493	AA165495	AA165491	AA165492
			Sample I	ocation:	BH01	BH01	BH02A	BH02A	BH03	BH03	BH04	BH04
			Samp	ole Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top D	epth (m):	1.0	2.0	2.0	3.0	1.0	3.0	1.0	2.0
			Asbe	stos Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD		Company of the Compan						NO SECURITION OF PARTY AND PARTY.
ACM Type	U	2192		N/A	-		-		-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected
Moisture	N	2030	%	0.020	16	12	18	17	13	12	26	14
pH (2.5:1)	N	2010		4.0	[A] 8.6		[A] 8.5					
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	[A] 0.66	[A] 0.51	[A] 0.41	[A] 0.56	[A] < 0.40	[A] 0.58	[A] < 0.40	[A] < 0.40
Magnesium (Water Soluble)	N	2120	g/l	0.010	[A] < 0.010		[A] < 0.010					
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	[A] 0.015		[A] 0.020					
Total Sulphur	U	2175	%	0.010	[A] 0.043		[A] 0.027					
Sulphur (Elemental)	U	2180	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] 2.3	[A] 11	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Chloride (Water Soluble)	U	2220	g/l	0.010	[A] 0.012		[A] 0.011					
Nitrate (Water Soluble)	N	2220	g/l	0.010	< 0.010		< 0.010					
Cyanide (Total)	U	2300	mg/kg	0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	[A] 3.9	[A] 6.5	[A] 8.8	[A] 8.8	[A] 5.9	[A] 5.9	[A] 5.6	[A] 4.1
Ammonium (Water Soluble)	U	2220	g/l	0.01	< 0.01		< 0.01					
Sulphate (Acid Soluble)	U	2430	%	0.010	[A] 0.028	[A] 0.012	[A] < 0.010	[A] < 0.010	[A] 0.014	[A] < 0.010	[A] 0.010	[A] 0.013
Arsenic	U	2450	mg/kg	1.0	14	14	11	5.1	13	9.9	13	12
Barium	U	2450	mg/kg	10	79	52	50	25	43	30	55	46
Cadmium	U	2450	mg/kg	0.10	1.1	1.4	0.47	0.25	1.6	1.0	1.7	1.8
Chromium	U	2450	mg/kg	1.0	14	13	27	10	13	9.9	23	12
Molybdenum	U	2450	mg/kg	2.0	2.7	3.1	< 2.0	< 2.0	2.6	< 2.0	2.0	3.2
Antimony	N	2450	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Copper	U	2450		0.50	1200	52	19	7.0	21	14	22	21
Mercury	U	2450		0.10	0.11	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	32	35	34	14	35	24	42	40
Lead	U	2450	mg/kg	0.50	130	51	22	7.2	13	11	18	11
Selenium	U	2450	mg/kg	0.20	0.37	0.56	< 0.20	< 0.20	0.22	0.34	< 0.20	1.2
Zinc	U	2450	mg/kg	0.50	290	110	55	29	64	43	86	61
Chromium (Trivalent)	N	2490	mg/kg	1.0	14	13	27	10	13	9.9	23	12
Chromium (Hexavalent)	N	2490		0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Mineral Oil (TPH Calculation)	N	2670	mg/kg	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0

Client ICSI	I Dubin				00 40400	00 40400	20 40400	20 40400	22 42420	22 42420	22 42420	22 42420
Client: IGSL	NAME OF STREET			Job No.:	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129
Quotation No.: Q20-19951			test San		1402334	1402335	1402336	1402337	1402338	1402339	1402340	1402341
			lient Sar		AA165493	AA165494	AA161952	AA161953	AA165493	AA165495	AA165491	AA165492
				ocation:	BH01	BH01	BH02A	BH02A	BH03	BH03	BH04	BH04
				ole Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			_	epth (m):	1.0	2.0	2.0	3.0	1.0	3.0	1.0	2.0
			_	stos Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD								
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	[A] < 5.0	[A] < 5.0	[AC] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	[A] < 5.0	[A] < 5.0	[AC] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	[A] < 10	[A] < 10	[AC] < 10	[A] < 10	[A] < 10	[A] < 10	[A] < 10	[A] < 10
Benzene	U	2760	µg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Toluene	U	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Ethylbenzene	U	2760	µg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
m & p-Xylene	Ü	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
o-Xylene	Ü	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Methyl Tert-Butyl Ether	Ü	2760	µg/kg	1.0	[A] < 1.0	[A] < 1.0	[AC] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Naphthalene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Acenaphthylene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Acenaphthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Fluorene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Phenanthrene	N	2800	mg/kg	0.010	[A] 0.11	[A] 0.11	[A] 0.14	[A] 0.096	[A] < 0.010	[A] 0.24	[A] < 0.010	[A] < 0.010
Anthracene	N	2800	mg/kg	0.010	[A] 0.060	[A] 0.089	[A] 0.036	[A] 0.010	[A] < 0.010	[A] 0.069	[A] < 0.010	[A] < 0.010
Fluoranthene	N	2800	mg/kg	0.010	[A] 0.13	[A] 0.12	[A] 0.10	[A] 0.18	[A] < 0.010	[A] 0.23	[A] < 0.010	[A] < 0.010
Pyrene	N	2800	mg/kg	0.010	[A] 0.12	[A] 0.15	[A] 0.19	[A] 0.13	[A] < 0.010	[A] 0.19	[A] < 0.010	[A] < 0.010
Benzo[a]anthracene	N	2800	mg/kg	0.010	[A] 0.12	[A] 0.14	[A] 0.13	[A] 0.089	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Chrysene	N	2800	mg/kg	0.010	[A] 0.10	[A] 0.17	[A] 0.21	[A] 0.077	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[b]fluoranthene	N	2800	mg/kg	0.010	[A] 0.11	[A] 0.17	[A] 0.24	[A] < 0.010				
Benzo[k]fluoranthene	N	2800	mg/kg	0.010	[A] 0.13	[A] 0.093	[A] 0.074	[A] < 0.010				
Benzo[a]pyrene	N	2800	mg/kg	0.010	[A] 0.13	[A] 0.093	[A] 0.074 [A] 0.18	[A] < 0.010				
Indeno(1,2,3-c,d)Pyrene	N	2800	mg/kg	0.010	[A] 0.16 [A] 0.11	[A] < 0.010	[A] 0.10	[A] < 0.010				
Dibenz(a,h)Anthracene	N	2800							[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
			mg/kg	0.010	[A] 0.11	[A] < 0.010	[A] 0.058	[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[g,h,i]perylene	N	2800	mg/kg	0.010	[A] 0.13	[A] < 0.010	[A] 0.20	[A] < 0.010	[A] < 0.010		[A] < 0.010	[A] < 0.010
Coronene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010		
Total Of 17 PAH's	N	2800	mg/kg	0.20	[A] 1.4	[A] 1.1	[A] 1.7	[A] 0.58	[A] < 0.20	[A] 0.73	[A] < 0.20	[A] < 0.20
PCB 28	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[AC] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 52	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[AC] < 0.0010	[A] < 0.0010	IAJ < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010

Tiolect. Edder Daiguide House in	CHINOLO IVII DUNIII											
Client: IGSL	Pr. 2012	Che	emtest.	Job No.:	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129
Quotation No.: Q20-19951		Chemt	est San	nple ID.:	1402334	1402335	1402336	1402337	1402338	1402339	1402340	1402341
audianor rior alla riore.		CI	ient Sar	mple ID.:	AA165493	AA165494	AA161952	AA161953	AA165493	AA165495	AA165491	AA165492
		S	ample I	ocation:	BH01	BH01	BH02A	BH02A	BH03	BH03	BH04	BH04
			Samp	ole Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	epth (m):	1.0	2.0	2.0	3.0	1.0	3.0	1.0	2.0
		Asbestos Lab:				DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD								
PCB 90+101	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[AC] < 0.0010	[A] < 0.0010			[A] < 0.0010	[A] < 0.0010
PCB 118	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[AC] < 0.0010	[A] < 0.0010				
PCB 153	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[AC] < 0.0010	[A] < 0.0010				
PCB 138	N				[A] < 0.0010		[AC] < 0.0010	[A] < 0.0010				
PCB 180	N				[A] < 0.0010		[AC] < 0.0010	[A] < 0.0010				
Total PCBs (7 congeners)	N				[A] < 0.0010		[AC] < 0.0010	[A] < 0.0010				
Total Phenois	U			0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Client: IGSL				Job No.:	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129
Quotation No.: Q20-19951			test Sar		1402342	1402343	1402344	1402345	1402346	1402347	1402348	1402349	1402350
			lient Sa		AA162662	AA162663	AA165497	AA165498	AA141843	AA141844	AA141845	AA141846	AA141847
				Location:	BH05	BH05	BH06	BH06	TP21	TP21	TP21	TP22	TP22
				ole Type:	SOIL								
				epth (m):	2.0	3.0	1.0	2.0	0.75	1.5	3.0	0.6	1.5
			Asbes	stos Lab:	DURHAM								
Determinand	Accred.	SOP		LOD		SAULE S			Barrier de Colo	A CONTRACTOR OF STREET		ATTEM CONTRACTOR	
ACM Type	U	2192		N/A	-			-	-			-	
Asbestos Identification	U	2192		N/A	No Asbestos Detected								
Moisture	N	2030	%	0.020	15	14	18	16	15	5.0	7.9	16	10
pH (2.5:1)	N	2010		4.0									[A] 8.6
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	[A] < 0.40	[A] < 0.40	[A] < 0.40	[A] 0.73	[A] 0.69	[A] 0.42	[A] < 0.40	[A] 0.68	[A] < 0.40
Magnesium (Water Soluble)	N	2120	g/l	0.010									[A] < 0.010
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010									[A] < 0.010
Total Sulphur	U	2175	%	0.010									[A] 0.040
Sulphur (Elemental)	U	2180	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] 1.3	[A] < 1.0	[A] 1.3	[A] 4.1	[A] < 1.0	[A] < 1.0
Chloride (Water Soluble)	U	2220	g/l	0.010									[A] < 0.010
Nitrate (Water Soluble)	N	2220	g/l	0.010									< 0.010
Cyanide (Total)	U	2300	mg/kg	0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	[A] 3.8	[A] 3.2	[A] 5.4	[A] 6.7	[A] 5.0	[A] 3.3	[A] 5.1	[A] 6.8	[A] 8.6
Ammonium (Water Soluble)	U	2220	g/l	0.01							•		< 0.01
Sulphate (Acid Soluble)	U	2430	%	0.010	[A] 0.011	[A] < 0.010	[A] < 0.010	[A] 0.010	[A] 0.023	[A] 0.017	[A] 0.032	[A] 0.023	[A] < 0.010
Arsenic	U	2450	mg/kg	1.0	10	12	12	9.8	11	5.7	12	9.9	12
Barium	U	2450	mg/kg	10	64	56	50	49	51	23	62	51	40
Cadmium	U	2450	mg/kg	0.10	0.84	1.6	1.3	0.75	0.97	0.85	1.7	1.4	1.5
Chromium	U	2450	mg/kg	1.0	18	13	21	26	20	5.6	10	16	9.7
Molybdenum	U	2450	mg/kg	2.0	< 2.0	3.2	2.1	< 2.0	< 2.0	< 2.0	3.5	< 2.0	2.8
Antimony	N	2450	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Copper	U	2450	mg/kg	0.50	14	20	23	18	24	11	22	22	18
Mercury	U	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	30	35	43	37	36	19	42	37	34
Lead	U	2450	mg/kg	0.50	10	12	19	15	39	5.5	13	17	11
Selenium	U	2450	mg/kg	0.20	< 0.20	0.53	0.42	< 0.20	0.46	0.20	3.1	0.30	0.34
Zinc	U	2450	mg/kg	0.50	52	56	74	53	84	31	63	78	57
Chromium (Trivalent)	N	2490	mg/kg	1.0	18	13	21	26	20	5.6	10	16	9.7
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Mineral Oil (TPH Calculation)	N	2670	mg/kg	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	JA1 < 1.0

Project: 23927 Dalguise House Monks				Job No.:	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129
Quotation No.: Q20-19951		-	test San		1402342	1402343	1402344	1402345	1402346	1402347	1402348	1402349	1402350
Quotation 140.: Q20-10001			lient Sar		AA162662	AA162663	AA165497	AA165498	AA141843	AA141844	AA141845	AA141846	AA141847
			Sample L	-	BH05	BH05	BH06	BH06	TP21	TP21	TP21	TP22	TP22
			_	le Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				epth (m):	2.0	3.0	1.0	2.0	0.75	1.5	3.0	0.6	1.5
				tos Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD		THE RESIDENCE							
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH > C8-C10	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C10-C12	Ü	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C10-C12	Ü	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C12-C16	Ü	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C16-C21 Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	[A] < 10	[A] < 10	[A] < 10	[A] < 10	[A] < 10	[A] < 10	[A] < 10	[A] < 10	[A] < 10
	U	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Benzene Toluene	Ü	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Ethylbenzene	Ü	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
	Ü	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
m & p-Xylene	Ü	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
o-Xylene	Ü	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Methyl Tert-Butyl Ether	N N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Naphthalene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Acenaphthylene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Acenaphthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Fluorene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Phenanthrene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Anthracene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Fluoranthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Pyrene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[a]anthracene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Chrysene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[b]fluoranthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[k]fluoranthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[a]pyrene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Indeno(1,2,3-c,d)Pyrene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[g,h,i]perylene		2800		0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Coronene	N	_	mg/kg			[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.20				
Total Of 17 PAH's	N	2800	mg/kg	0.20	[A] < 0.20 [A] < 0.0010	[A] < 0.20	[A] < 0.0010						
PCB 28	N	2815	mg/kg	0.0010			[A] < 0.0010						
PCB 52	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] > 0.0010	[4] > 0.0010	[A] \ 0.0010	[7] - 0.0010	[7] - 0.0010	M - 0.0010

Client: IGSL		Ch	emtest	Job No.:	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129
Quotation No.: Q20-19951		Chem	test Sa	mple ID.:	1402342	1402343	1402344	1402345	1402346	1402347	1402348	1402349	1402350
		C	lient Sa	mple ID.:	AA162662	AA162663	AA165497	AA165498	AA141843	AA141844	AA141845	AA141846	AA141847
			Sample	Location:	BH05	BH05	BH06	BH06	TP21	TP21	TP21	TP22	TP22
			Sam	ple Type:	SOIL								
			Top D	epth (m):	2.0	3.0	1.0	2.0	0.75	1.5	3.0	0.6	1.5
			Asbe	stos Lab:	DURHAM								
Determinand	Accred.	SOP	Units	LOD		1000000	1 Sept. 18			N 9 0 2 3 3			
PCB 90+101	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 118	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 153	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 138	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 180	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
Total PCBs (7 congeners)	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
Total Phenols	U	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Project: 23927 Dalguise House Monkst Client: IGSL			emtest.		22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129
Quotation No.: Q20-19951			test San		1402351	1402352	1402353	1402354	1402355	1402356	1402357	1402358	1402359
Quotation No.: Q20-19951	_		lient Sar		AA141848	AA141849	AA141850	AA141801	AA146803	AA146804	AA146807	AA146808	AA146809
	_			ocation:	TP22	TP23	TP23	TP23	TP24	TP24	TP25	TP25	TP26
	+			ole Type:	SOIL	SOIL	SOIL						
	_			epth (m):	3.3	0.3	1.2	2.4	0.5	2.0	0.6	1.5	0.5
	_			stos Lab:	DURHAM	DURHAM	DURHAM						
P. Landson de la Contraction d	Angrad	SOP	Units	LOD	DONIAN	DONINA	DOMINI	DOIGHAM	DOI TO THE		Designation of the last of the		WATER TO SE
Determinand	Accred.	2192	Units	N/A								-	
ACM Type	- 0	2192		IN/A	No Asbestos	No Asbestos	No Asbestos						
Asbestos Identification	U	2192		N/A	Detected	Detected	Detected 19						
Moisture	N	2030	%	0.020	9.9	16	12	13	13	14	14	13	
pH (2.5:1)	N	2010		4.0					****	[A] 8.6	743.4.4	(4) - 0 40	[A] 8.5
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	[A] 0.44	[A] 0.75	[A] < 0.40	[A] < 0.40	[A] 0.47	[A] < 0.40	[A] 1.1	[A] < 0.40	[A] 0.58
Magnesium (Water Soluble)	N	2120	g/l	0.010						[A] < 0.010			[A] < 0.010
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010						[A] < 0.010			[A] 0.015
Total Sulphur	U	2175	%	0.010						[A] 0.020			[A] 0.025
Sulphur (Elemental)	U	2180	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] 1.3	[A] < 1.0	[A] 3.7	[A] < 1.0
Chloride (Water Soluble)	U	2220	g/l	0.010						[A] < 0.010			[A] 0.054
Nitrate (Water Soluble)	N	2220	g/l	0.010						< 0.010			< 0.010
Cyanide (Total)	U	2300	mg/kg	0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	[A] 10	[A] 3.6	[A] 2.1	[A] 3.9	[A] 2.2	[A] 5.1	[A] < 0.50	[A] 3.7	[A] 1.8
Ammonium (Water Soluble)	U	2220	g/l	0.01						< 0.01			< 0.01
Sulphate (Acid Soluble)	U	2430	%	0.010	[A] 0.013	[A] 0.017	[A] 0.013	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Arsenic	U	2450	mg/kg	1.0	5.8	9.4	12	8.2	6.2	4.4	4.2	4.1	2.9
Barium	U	2450	mg/kg	10	30	41	33	39	18	23	21	25	27
Cadmium	U	2450	mg/kg	0.10	0.81	0.88	1.5	0.36	0.60	0.15	0.51	0.33	0.29
Chromium	U	2450	mg/kg	1.0	5.5	16	12	25	7.8	16	8.5	9.8	8.0
Molybdenum	U	2450	mg/kg	2.0	< 2.0	< 2.0	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Antimony	N	2450	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Copper	U	2450	mg/kg	0.50	10	24	16	15	12	9.4	8.2	7.8	7.7
Mercury	U	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	19	29	27	34	20	20	15	15	14
Lead	U	2450	mg/kg	0.50	9.8	44	13	11	9.5	5.7	6.5	8.3	9.9
Selenium	U	2450	mg/kg	0.20	0.51	0.37	0.23	< 0.20	0.78	< 0.20	0.23	< 0.20	< 0.20
Zinc	U	2450	mg/kg	0.50	37	88	61	47	31	28	37	21	24
Chromium (Trivalent)	N	2490		1.0	5.5	16	12	25	7.8	16	8.5	9.8	8.0
Chromium (Hexavalent)	N	2490		0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Mineral Oil (TPH Calculation)	N	2670	mg/kg	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C10-C12	Ü	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C12-C16	Ü	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C16-C21	Ü	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C10-C21	Ü	2680	mg/kg	_	[A] < 1.0	[A] < 1.0	[A] < 1.0						

Client: IGSL				Job No.:	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129
Quotation No.: Q20-19951		Chem	test San	nple ID.:	1402351	1402352	1402353	1402354	1402355	1402356	1402357	1402358	1402359
		С	lient Sar	mple ID.:	AA141848	AA141849	AA141850	AA141801	AA146803	AA146804	AA146807	AA146808	AA146809
			Sample I	ocation:	TP22	TP23	TP23	TP23	TP24	TP24	TP25	TP25	TP26
			Samp	ole Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				epth (m):	3.3	0.3	1.2	2.4	0.5	2.0	0.6	1.5	0.5
				stos Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD	Name of the last	Sheet Cale							
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	[A] < 10	[A] < 10	[A] < 10	[A] < 10	[A] < 10	[A] < 10	[A] < 10	[A] < 10	[A] < 10
Benzene	U	2760	µg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Toluene	U	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Ethylbenzene	U	2760	µg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
m & p-Xylene	U	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
o-Xylene	U	2760	µg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Methyl Tert-Butyl Ether	U	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Naphthalene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Acenaphthylene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Acenaphthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Fluorene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Phenanthrene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Anthracene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Fluoranthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Pyrene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[a]anthracene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Chrysene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[b]fluoranthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[k]fluoranthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[a]pyrene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Indeno(1,2,3-c,d)Pyrene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[g,h,i]perylene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Coronene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Total Of 17 PAH's	N	2800	mg/kg	0.20	[A] < 0.20	[A] < 0.010	[A] < 0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20
PCB 28	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 52	N	2815			[A] < 0.0010			[A] < 0.0010		[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
F G D 32	N	2815	mg/kg	0.00111	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	1 -A[< 0.0010	[A] ~ 0.0010	[A] - 0.0010	M > 0.0010	LAI - 0.0010

Client: IGSL	司基本是於	Ch	emtest.	Job No.:	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129	22-12129
Quotation No.: Q20-19951		Chem	test Sar	nple ID.:	1402351	1402352	1402353	1402354	1402355	1402356	1402357	1402358	1402359
		С	lient Sa	mple ID.:	AA141848	AA141849	AA141850	AA141801	AA146803	AA146804	AA146807	AA146808	AA146809
			Sample	Location:	TP22	TP23	TP23	TP23	TP24	TP24	TP25	TP25	TP26
			Sam	ple Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top D	epth (m):	3.3	0.3	1.2	2.4	0.5	2.0	0.6	1.5	0.5
			_	stos Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD			1 Total			A STATE OF THE			CONTRACTOR OF THE PARTY OF THE
PCB 90+101	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010		[A] < 0.0010				
PCB 118	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010			[A] < 0.0010				
PCB 153	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010		[A] < 0.0010				
PCB 138	N				[A] < 0.0010		[A] < 0.0010	[A] < 0.0010	[A] < 0.0010				
PCB 180	N					[A] < 0.0010							
Total PCBs (7 congeners)	N				[A] < 0.0010		[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
Total Phenois	U	_		0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Client: IGSL	Section 1975	Ch	emtest.	Job No.:	22-12129
Quotation No.: Q20-19951				nple ID.:	1402360
				mple ID.:	AA146810
				ocation:	TP26
	,			ole Type:	SOIL
	100			epth (m):	1.6
				stos Lab:	DURHAM
Determinand	Accred.	SOP	Units	Control of the second	
ACM Type	U	2192		N/A	
Asbestos Identification	U	2192		N/A	No Asbestos Detected
Moisture	N	2030	%	0.020	13
pH (2.5:1)	N	2010		4.0	
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	[A] < 0.40
Magnesium (Water Soluble)	N	2120	g/l	0.010	
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	
Total Sulphur	U	2175	%	0.010	
Sulphur (Elemental)	U	2180	mg/kg		[A] < 1.0
Chloride (Water Soluble)	U	2220	g/l	0.010	
Nitrate (Water Soluble)	N	2220	g/l	0.010	
Cyanide (Total)	U	2300			[A] < 0.50
Sulphide (Easily Liberatable)	N	2325	mg/kg		[A] 4.3
Ammonium (Water Soluble)	U	2220	g/l	0.01	
Sulphate (Acid Soluble)	U	2430	%	0.010	[A] < 0.010
Arsenic	U	2450	mg/kg	1.0	8.5
Barium	U	2450	mg/kg	10	34
Cadmium	U		mg/kg		1.3
Chromium	U		mg/kg	1.0	11
Molybdenum	U		mg/kg	2.0	2.0
Antimony	N		mg/kg		< 2.0
Copper	U		mg/kg		20
Mercury	U		mg/kg		< 0.10
Nickel	U	2450	mg/kg	0.50	33
Lead	U	2450	mg/kg	0.50	12
Selenium	U		mg/kg		0.33
Zinc	U	2450	mg/kg		66
Chromium (Trivalent)	N	2490	mg/kg		11
Chromium (Hexavalent)	N		mg/kg		< 0.50
Mineral Oil (TPH Calculation)	N		mg/kg	10	< 10
Aliphatic TPH >C5-C6	N		mg/kg		[A] < 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	[A] < 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	[A] < 1.0 [A] < 1.0
Aliphatic TPH >C12-C16	U	2680		1.0	[A] < 1.0
Aliphatic TPH >C16-C21	U		mg/kg	1.0	[A] < 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg		[A] < 1.0

Client: IGSL		Che	emtest.	Job No.:	22-12129
Quotation No.: Q20-19951				nple ID.:	1402360
				nple ID.:	AA146810
		5		ocation:	TP26
			Samp	le Type:	SOIL
			Top De	epth (m):	1.6
			Asbes	tos Lab:	DURHAM
Determinand	Accred.	SOP	Units	LOD	
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	[A] < 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	[A] < 5.0
Aromatic TPH >C5-C7	N			1.0	[A] < 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	[A] < 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	[A] < 1.0
Aromatic TPH >C10-C12	U	2680		1.0	[A] < 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	[A] < 1.0
Aromatic TPH >C16-C21	U	2680		1.0	[A] < 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	[A] < 1.0
Aromatic TPH >C35-C44	N	2680		1.0	[A] < 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	[A] < 5.0
Total Petroleum Hydrocarbons	N		mg/kg	10.0	[A] < 10
Benzene	U		μg/kg	1.0	[A] < 1.0
Toluene	U	2760		1.0	[A] < 1.0
Ethylbenzene	U	2760		1.0	[A] < 1.0
m & p-Xylene	U		μg/kg	1.0	[A] < 1.0
o-Xylene	U		μg/kg	1.0	[A] < 1.0
Methyl Tert-Butyl Ether	U		μg/kg	1.0	[A] < 1.0
Naphthalene	N		mg/kg		[A] < 0.010
Acenaphthylene	N		mg/kg	0.010	[A] < 0.010
Acenaphthene	N		mg/kg		[A] < 0.010
Fluorene	N		mg/kg		[A] < 0.010
Phenanthrene	N	2800			[A] < 0.010
Anthracene	N	2800			[A] < 0.010
Fluoranthene	N	2800	mg/kg		[A] < 0.010
Pyrene	N		mg/kg		[A] < 0.010
Benzo[a]anthracene	N		mg/kg		[A] < 0.010
Chrysene	N		mg/kg		[A] < 0.010
Benzo[b]fluoranthene	N	2800			[A] < 0.010
Benzo[k]fluoranthene	N	2800	mg/kg		[A] < 0.010
Benzo[a]pyrene	N	2800			[A] < 0.010
Indeno(1,2,3-c,d)Pyrene	N	2800			[A] < 0.010
Dibenz(a,h)Anthracene	N		mg/kg		[A] < 0.010
Benzo[g,h,i]perylene	N	2800			[A] < 0.010
Coronene	N	2800			[A] < 0.010
Total Of 17 PAH's	N	2800			[A] < 0.20
PCB 28	N	2815			[A] < 0.0010
PCB 52	N	2815			[A] < 0.0010

Client: IGSL		Ch	emtest.	Job No.:	22-12129
Quotation No.: Q20-19951		Chem	test Sar	nple ID.:	1402360
		C	lient Sa	mple ID.:	AA146810
1.00			Sample I	Location:	TP26
			Samp	ole Type:	SOIL
			Top D	epth (m):	1.6
			Asbes	stos Lab:	DURHAM
Determinand	Accred.	SOP	Units	LOD	
PCB 90+101	N	2815	mg/kg	0.0010	[A] < 0.0010
PCB 118	N	2815	mg/kg	0.0010	[A] < 0.0010
PCB 153	N	2815	mg/kg	0.0010	[A] < 0.0010
PCB 138	N	2815	mg/kg	0.0010	[A] < 0.0010
PCB 180	N	2815	mg/kg	0.0010	[A] < 0.0010
Total PCBs (7 congeners)	N	2815	mg/kg	0.0010	[A] < 0.0010
Total Phenois	U	2920	mg/kg	0.10	< 0.10

Results - Single Stage WAC

Project:	23927	Dalguise	House	Monkstown	Dublin	(David	Rehill CE)	
----------	-------	----------	-------	-----------	--------	--------	------------	--

Chemtest Job No:	22-12129				Landfill	Waste Acceptance	e Criteria
Chemtest Sample ID:	1402334					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA165493					reactive	
Sample Location:	BH01					hazardous	Hazardous
Top Depth(m):	1.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 1.8	3	5	6
Loss On Ignition	2610	U	%	3.8			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] 1.4	100	-	**
pH	2010	U		8.4		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.0080	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
•			mg/l	mg/kg	using E	S EN 12457 at L/S	S 10 l/kg
Arsenic	1455	U	0.0068	0.068	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0064	0.064	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.019	0.18	0.5	10	30
Nickel	1455	U	0.0006	0.0063	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	0.0016	0.016	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	1.2	12	800	15000	25000
Fluoride	1220	U	0.16	1.6	10	150	500
Sulphate	1220	U	1.6	16	1000	20000	50000
Total Dissolved Solids	1020	N	78	780	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	20	200	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	16

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Results - Single Stage WAC

Project: 23927 Dalguise House Monkstown Dublin (David Rehill CE) Chemtest Job No: Landfill Waste Acceptance Criteria Chemtest Sample ID: 1402335 Limits Sample Ref: Stable, Non-Sample ID: AA165494 reactive Sample Location: **BH01** hazardous Hazardous Top Depth(m): 2.0 **Inert Waste** waste in non-Waste Bottom Depth(m): Landfill hazardous Landfill Sampling Date: Landfill Determinand SOP Accred. Units Total Organic Carbon 2625 [A] 0.84 U % 5 6 Loss On Ignition 2610 U % 3.2 10 ----Total BTEX 2760 U mg/kg [A] < 0.010 6 --Total PCBs (7 congeners) 2815 N mg/kg [A] < 0.0010 1 ----TPH Total WAC 2670 [A] < 10 500 U mg/kg ---Total Of 17 PAH's 2800 N 100 [A] 1.1 mg/kg рН 2010 U 8.5 >6 --**Acid Neutralisation Capacity** To evaluate To evaluate **Eluate Analysis** Limit values for compliance leaching test 10:1 Eluate 10:1 Eluate using BS EN 12457 at L/S 10 I/kg mg/l mg/kg Arsenic 1455 U 0.0044 0.044 0.5 25 Barium 1455 U 0.007 0.070 20 100 300 Cadmium 1455 U < 0.00011 < 0.00011 0.04 1 5 Chromium 1455 0.0067 10 70 U 0.0007 0.5 Copper 1455 U 0.0067 0.067 2 50 100 Mercury < 0.00005 < 0.00005 0.01 0.2 1455 U 2 1455 Molybdenum U 0.020 0.20 0.5 10 30 Nickel 1455 0.0009 0.0093 10 40 U 0.4 Lead 1455 U < 0.0005 < 0.0005 0.5 10 50 Antimony 1455 U 0.0014 0.014 0.06 0.7 5 Selenium 1455 U < 0.0005 < 0.0005 0.1 0.5 7 Zinc 1455 U < 0.003 50 200 < 0.003 Chloride 1220 U 1.2 12 800 15000 25000 Fluoride 1220 U 0.18 1.8 10 150 500 Sulphate 28 1220 U 2.8 1000 20000 50000 Total Dissolved Solids 1020 N 98 970 4000 60000 100000 Phenol Index 1920 U < 0.030 < 0.30

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	12

1610

Waste Acceptance Criteria

Dissolved Organic Carbon

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

21

U

500

800

210

Project:	23927	Dalguise	House	Monkstown	Dublin	(David	Rehill CE)	

Chemtest Job No:	22-12129				Landfill \	Waste Acceptanc Limits	e Criteria
Chemtest Sample ID: Sample Ref:	1402336					Stable, Non-	
Sample ID: Sample Location:	AA161952 BH02A					reactive hazardous	Hazardous
Top Depth(m):	2.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units	_			
Total Organic Carbon	2625	U	%	[A] 0.54	3	5	6
Loss On Ignition	2610	U	%	2.0	-		10
Total BTEX	2760	U	mg/kg	[AC] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[AC] < 0.0010	1		-
TPH Total WAC	2670	U	mg/kg	[AC] < 10	500	-	
Total Of 17 PAH's	2800	N	mg/kg	[A] 1.7	100	-	-
pH	2010	U		8.5	-	>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.0090	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate		for compliance	
			mg/l	mg/kg	using B	S EN 12457 at L/S	5 10 l/kg
Arsenic	1455	U	0.0004	0.0041	0.5	2	25
Barium	1455	U	0.007	0.065	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0012	0.012	0.5	10	70
Copper	1455	U	0.0012	0.012	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0077	0.077	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.37	3.7	10	150	500
Sulphate	1220	U	3.1	31	1000	20000	50000
Total Dissolved Solids	1020	N	78	780	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		
Dissolved Organic Carbon	1610	U	2.5	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	18

Waste Acceptance Criteria

Chemtest Job No:	22-12129				Landfill	Waste Acceptance	e Criteria
Chemtest Sample ID:	1402337					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA161953				1	reactive	
Sample Location:	BH02A					hazardous	Hazardous
Top Depth(m):	3.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:					1,1-1,1-1	Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.39	3	5	6
Loss On Ignition	2610	U	%	2.3	-		10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6	-	
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1	-	
TPH Total WAC	2670	U	mg/kg	[A] < 10	500	-	
Total Of 17 PAH's	2800	N	mg/kg	[A] 0.58	100		
H	2010	U		8.5	-	>6	1
Acid Neutralisation Capacity	2015	N	mol/kg	0.016	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance l	eaching test
199			mg/l	mg/kg	using B	S EN 12457 at L/S	3 10 l/kg
Arsenic	1455	U	0.0003	0.0025	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0006	0.0056	0.5	10	70
Copper	1455	U	0.0010	0.0098	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0045	0.046	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
ead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
luoride	1220	U	0.22	2.2	10	150	500
Sulphate	1220	U	1.2	12	1000	20000	50000
Total Dissolved Solids	1020	N	59	580	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	- 1		
Dissolved Organic Carbon	1610	U	4.0	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	17

Waste Acceptance Criteria

Project:	23927	Dalguise	House	Monkstown	Dublin	(David Rehill CE)	L
----------	-------	----------	-------	-----------	--------	-------------------	---

Chemtest Job No:	22-12129				Landfill \	Waste Acceptance	e Criteria
Chemtest Sample ID:	1402338					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA165493					reactive	
Sample Location:	BH03					hazardous	Hazardous
Top Depth(m):	1.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.47	3	5	6
Loss On Ignition	2610	U	%	1.7	-	-	10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500	-	
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100	-	
pH	2010	U		8.6	-	>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.079	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
			mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0007	0.0074	0.5	10	70
Copper	1455	U	0.0010	0.0096	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0056	0.056	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	15	150	800	15000	25000
Fluoride	1220	U	0.32	3.2	10	150	500
Sulphate	1220	U	12	120	1000	20000	50000
Total Dissolved Solids	1020	N	59	580	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		
Dissolved Organic Carbon	1610	U	2.8	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	13

Waste Acceptance Criteria

Project:	23927	Dalguise	House	Monkstown	Dublin	(David	Rehill CE)	

Chemtest Job No: Chemtest Sample ID:	22-12129 1402339				Landfill \	Waste Acceptance Limits	e Criteria
Sample Ref:						Stable, Non-	
Sample ID: Sample Location:	AA165495 BH03					reactive hazardous	Hazardous
Top Depth(m):	3.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.39	3	5	6
Loss On Ignition	2610	U	%	1.8			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1	-	
TPH Total WAC	2670	· U	mg/kg	[A] < 10	500	-	
Total Of 17 PAH's	2800	N	mg/kg	[A] 0.73	100	-	-
pH	2010	U		8.5		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.017	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
•			mg/l	mg/kg	using B	S EN 12457 at L/S	3 10 l/kg
Arsenic	1455	U	0.0002	0.0021	0.5	2	25
Barium	1455	U	0.006	0.064	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0007	0.0071	0.5	10	70
Copper	1455	U	0.0009	0.0089	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.021	0.21	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	1.8	18	800	15000	25000
Fluoride	1220	U	0.34	3.4	10	150	500
Sulphate	1220	U	2.6	26	1000	20000	50000
Total Dissolved Solids	1020	N	65	650	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		
Dissolved Organic Carbon	1610	U	3.3	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	12

Waste Acceptance Criteria

Project:	23927	Dalguise	House	Monkstown	Dublin	(David R	ehill CE)

Chemtest Job No:	22-12129				Landfill Waste Acceptance Criteria Limits		
Chemtest Sample ID: Sample Ref:	1402340					Stable, Non-	
Sample ID:	AA165491					reactive	
Sample Location:	BH04					hazardous	Hazardous
Top Depth(m):	1.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 1.2	3	5	6
Loss On Ignition	2610	U	%	4.1	-		10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
pH	2010	U		8.6	-	>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.013	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values for compliance leaching test using BS EN 12457 at L/S 10 l/kg		
			mg/l	mg/kg			
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0009	0.0095	0.5	10	70
Copper	1455	U	0.0012	0.012	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0056	0.056	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	2.2	22	800	15000	25000
Fluoride	1220	U	0.39	3.9	10	150	500
Sulphate	1220	U	2.9	29	1000	20000	50000
Total Dissolved Solids	1020	N	91	900	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	3.E.
Dissolved Organic Carbon	1610	U	2.7	< 50	500	800	1000

Solid Information				
Dry mass of test portion/kg	0.090			
Moisture (%)	26			

Waste Acceptance Criteria

Project:	23927	Dalguise I	House N	Monkstown	Dublin	(David	Rehill (CE)	
01				00.4	0400				-

Chemtest Job No:	22-12129				Landfill	Waste Acceptanc	e Criteria
Chemtest Sample ID:	1402341					Limits	
Sample Ref: Sample ID:	AA165492					Stable, Non- reactive	
Sample Location:	BH04					hazardous	Hazardous
Top Depth(m):	2.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.39	3	5	6
Loss On Ignition	2610	U	%	2.5		-	10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6	-	
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1	-	
TPH Total WAC	2670	U	mg/kg	[A] < 10	500	-	
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
pH	2010	U		8.5	-	>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.078	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values for compliance leaching		eaching test
			mg/l	mg/kg	using BS EN 12457 at L/S 10 I/kg		
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0007	0.0068	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.032	0.32	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	·U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.30	3.0	10	150	500
Sulphate	1220	U	1.7	17	1000	20000	50000
Total Dissolved Solids	1020	N	65	650	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	2.9	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	14

Waste Acceptance Criteria

Project: 23927 Dalguise House N Chemtest Job No:	22-12129				Landfill	Waste Acceptance	e Criteria
Chemtest Sample ID:	1402342					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA162662					reactive	
Sample Location:	BH05					hazardous	Hazardous
Top Depth(m):	2.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.33	3	5	6
oss On Ignition	2610	U	%	3.2	-		10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500	-	
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100	-	
oH .	2010	U		8.7	-	>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.075		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate		s for compliance I	
			mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455	U	0.0002	0.0020	0.5	2	25
Barium	1455	U	0.006	0.064	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0005	0.0052	0.5	10	70
Copper	1455	U	0.0010	0.0096	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0093	0.093	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.42	4.2	10	150	500
Sulphate	1220	U	1.8	18	1000	20000	50000
Total Dissolved Solids	1020	N	65	650	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		
Dissolved Organic Carbon	1610	U	< 2.5	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	15

Waste Acceptance Criteria

Project: 2392/ Daiguise Hous	Monkstown Dublin (David Rehill CE)	
Chemtest Job No:	22-12129	Landfill Waste Acceptance Criteria
Chemtest Sample ID:	1402343	Limits
Sample Ref:		Stable, Non-
Sample ID:	AA162663	reactive
Sample Location:	BH05	hazardous Hazardous

Sample Ref: Sample ID: Sample Location: Top Depth(m): Bottom Depth(m): Sampling Date:	AA162663 BH05 3.0				Inert Waste Landfill	Stable, Non- reactive hazardous waste in non- hazardous Landfill	Hazardous Waste Landfill	
Determinand	SOP	Accred.	Units					
Total Organic Carbon	2625	U	%	[A] 0.46	3	5	6	
Loss On Ignition	2610	U	%	2.2			10	
Total BTEX	2760	U	mg/kg	[A] < 0.010	6	-		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1			
TPH Total WAC	2670	U	mg/kg	[A] < 10	500	-		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100			
pH	2010	U		8.6	-	>6		
Acid Neutralisation Capacity	2015	N	mol/kg	0.023	1	To evaluate	To evaluate	
Eluate Analysis	10:1 Eluate mg/l			10:1 Eluate mg/kg				
Arsenic	1455	U	0.0003	0.0028	0.5	2	25	
Barium	1455	U	0.006	0.056	20	100	300	
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5	
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70	
Copper	1455	U	0.0019	0.019	2	50	100	
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2	
Molybdenum	1455	U	0.016	0.16	0.5	10	30	
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40	
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50	
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5	
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7	
Zinc	1455	U	< 0.003	< 0.003	4	50	200	
Chloride	1220	U	1.1	11	800	15000	25000	
Fluoride	1220	U	0.32	3.2	10	150	500	
Sulphate	1220	U	2.7	27	1000	20000	50000	
Total Dissolved Solids	1020	N	72	710	4000	60000	100000	
Phenol Index	1920	U	< 0.030	< 0.30	1			
Dissolved Organic Carbon	1610	U	2.8	< 50	500	800	1000	

Solid Information				
Dry mass of test portion/kg	0.090			
Moisture (%)	14			

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Project: 23927 Dalguise House Monkstown Dublin (David Rehill Cl	1
---	---

Chemtest Job No:	22-12129				Landfill	Waste Acceptance	e Criteria
Chemtest Sample ID:	1402344					Limits Stable, Non-	
Sample Ref:	******					reactive	
Sample ID:	AA165497						Hazardous
Sample Location:	BH06				Inert Waste	hazardous waste in non-	Waste
Top Depth(m):	1.0					hazardous	Landfill
Bottom Depth(m):					Landfill		Landilli
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.76	3	5	6
Loss On Ignition	2610	U	%	3.2	-	-	10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6	-	
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1	-	
TPH Total WAC	2670	U	mg/kg	[A] < 10	500	-	
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
pH	2010	U		8.3		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.042	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	using BS EN 12457 at L/S 10 l/kg		
			mg/l	mg/kg			
Arsenic	1455	U	0.0002	0.0022	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0007	0.0072	0.5	10	70
Copper	1455	U	0.0015	0.015	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0044	0.044	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.33	3.3	10	150	500
Sulphate	1220	U	2.3	23	1000	20000	50000
Total Dissolved Solids	1020	N	100	1000	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	4.6	< 50	500	800	1000

Solid Information				
Dry mass of test portion/kg	0.090			
Moisture (%)	18			

Waste Acceptance Criteria

Project:	23927	Dalguise	House	Monkstown	Dublin	(David Rehill CE)

Chemtest Job No:	22-12129				Landfill	Waste Acceptance	e Criteria
Chemtest Sample ID:	1402345					Limits	
Sample Ref: Sample ID:	AA165498					Stable, Non- reactive	
Sample Location: Top Depth(m):	BH06 2.0				Inert Waste	hazardous waste in non-	Hazardous Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.66	3	5	6
Loss On Ignition	2610	U	%	4.5	-		10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6	-	-
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1	-	-
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100	-	
pH	2010	U		8.5	-	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.021	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/S	10 l/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0010	0.0097	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0042	0.042	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	Ü	0.32	3.2	10	150	500
Sulphate	1220	Ü	2.0	20	1000	20000	50000
Total Dissolved Solids	1020	N	78	780	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		
Dissolved Organic Carbon	1610	Ü	2.9	< 50	500	800	1000

Solid Information				
Dry mass of test portion/kg	0.090			
Moisture (%)	16			

Waste Acceptance Criteria

Project:	23927	Dalguise	House	Monkstown	Dublin	(David	Rehill CE)	

Chemtest Job No:	22-12129				Landfill \	Naste Acceptance	e Criteria
Chemtest Sample ID:	1402346					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA141843					reactive	
Sample Location:	TP21				A	hazardous	Hazardous
Top Depth(m):	0.75				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 1.8	3	5	6
Loss On Ignition	2610	U	%	4.3	-		10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500	-	
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100	-	
pH	2010	U		8.4	-	>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.0080	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate		for compliance l	
			mg/l	mg/kg	using E	S EN 12457 at L/S	
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0005	0.0051	0.5	10	70
Copper	1455	U	0.0005	0.0051	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0092	0.092	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.34	3.4	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	46	450	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	4.5	< 50	500	800	1000

Solid Information				
Dry mass of test portion/kg	0.090			
Moisture (%)	15			

Waste Acceptance Criteria

Chemtest Job No:	22-12129				Landfill	Waste Acceptance	e Criteria
Chemtest Sample ID: Sample Ref:	1402347					Limits Stable, Non-	
Sample ID: Sample Location: Top Depth(m): Bottom Depth(m): Sampling Date:	AA141844 TP21 1.5				Inert Waste Landfill	reactive hazardous waste in non- hazardous Landfill	Hazardous Waste Landfill
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.30	3	5	6
Loss On Ignition	2610	U	%	3.0	-	-	10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6	-	-
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1	-	•
TPH Total WAC	2670	U	mg/kg	[A] < 10	500	_	-
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100	-	-
pH	2010	U		8.6	-	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.023	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate mg/l	10:1 Eluate mg/kg	Limit values for compliance leaching test using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0006	0.0061	0.5	10	70
Copper	1455	U	0.0008	0.0078	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.011	0.11	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Selenium	1700		0.0000	0.000	0.1	0.0	200

< 0.003

< 1.0

0.27

1.0

52

< 0.030

2.5

< 0.003

< 10

2.7

10

520

< 0.30

< 50

800

10

1000

4000

500

50

15000

150

20000

60000

800

200

25000

500

50000

100000

1000

Solid Information					
Dry mass of test portion/kg	0.090				
Moisture (%)	5.0				

1455

1220

1220

1220

1020

1920

1610

U

U

U

U

N

U

U

Waste Acceptance Criteria

Zinc

Chloride

Fluoride

Sulphate

Phenol Index

Total Dissolved Solids

Dissolved Organic Carbon

Project: 23927 Dalguise House Monkstown Dublin (Davi	d Rehill CE)
--	--------------

Chemtest Job No:	22-12129				Landfill \	Naste Acceptance	e Criteria
Chemtest Sample ID:	1402348					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA141845					reactive	
Sample Location:	TP21				and the same of th	hazardous	Hazardous
Top Depth(m):	3.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.56	3	5	6
Loss On Ignition	2610	U	%	2.2	-	-	10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6	-	
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1	-	
TPH Total WAC	2670	U	mg/kg	[A] < 10	500	-	-
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100	-	-
pH	2010	U		8.6	1	>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.039	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/S	3 10 l/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0009	0.0092	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.029	0.29	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	0.0053	0.053	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	3.1	31	800	15000	25000
Fluoride	1220	U	0.35	3.5	10	150	500
Sulphate	1220	Ü	9.1	91	1000	20000	50000
Total Dissolved Solids	1020	N	72	720	4000	60000	100000
Phenol Index	1920	Ü	< 0.030	< 0.30	1	-	
Dissolved Organic Carbon	1610	Ü	< 2.5	< 50	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.090				
Moisture (%)	7.9				

Waste Acceptance Criteria

Project: 23927 Dalguise House Monkstown Dublin (David Rehill (CE)
--	-----

Chemtest Job No:	22-12129				Landfill	Waste Acceptance	Criteria	
Chemtest Sample ID:	1402349					Limits		
Sample Ref:	AA141846					Stable, Non-		
Sample ID:						reactive		
Sample Location:	TP22					hazardous	Hazardous	
Top Depth(m):	0.6				Inert Waste	waste in non-	Waste	
Bottom Depth(m):					Landfill	hazardous	Landfill	
Sampling Date:					1	Landfill		
Determinand	SOP	Accred.	Units					
Total Organic Carbon	2625	U	%	[A] 1.0	3	5	6	
Loss On Ignition	2610	U	%	5.4			10	
Total BTEX	2760	U	mg/kg	[A] < 0.010	6			
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		-	
TPH Total WAC	2670	U	mg/kg	[A] < 10	500			
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100	-		
pH	2010	U		8.6	-	>6		
Acid Neutralisation Capacity	2015	N	mol/kg	0.012	-	To evaluate	To evaluate	
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance l	eaching test	
The state of the s			mg/l	mg/kg	using B	using BS EN 12457 at L/S 10 I/kg		
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25	
Barium	1455	U	< 0.005	< 0.0005	20	100	300	
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5	
Chromium	1455	U	0.0007	0.0070	0.5	10	70	
Copper	1455	U	0.0012	0.012	2	50	100	
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2	
Molybdenum	1455	U	0.0017	0.017	0.5	10	30	
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40	
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50	
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5	
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7	
Zinc	1455	U	< 0.003	< 0.003	4	50	200	
Chloride	1220	U	< 1.0	< 10	800	15000	25000	
Fluoride	1220	U	0.39	3.9	10	150	500	
Sulphate	1220	Ü	< 1.0	< 10	1000	20000	50000	
Total Dissolved Solids	1020	N	65	650	4000	60000	100000	
Phenol Index	1920	Ü	< 0.030	< 0.30	1	-	-	
Dissolved Organic Carbon	1610	Ü	7.5	75	500	800	1000	

Solid Information			
Dry mass of test portion/kg	0.090		
Moisture (%)	16		

Waste Acceptance Criteria

Project: 23927 Dalguise House M Chemtest Job No:	22-12129			Landfill	Waste Acceptance	e Criteria	
Chemtest Sample ID:	1402350					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA141847					reactive	
Sample Location:	TP22					hazardous	Hazardous
Top Depth(m):	1.5				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
otal Organic Carbon	2625	U	%	[A] 0.21	3	5	6
oss On Ignition	2610	U	%	2.7	-	-	10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100	-	
oH	2010	U		8.6	-	>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.48	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values for compliance leaching		
			mg/l	mg/kg	using E	SS EN 12457 at L/S	
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0007	0.0073	0.5	10	70
Copper	1455	U	0.0006	0.0063	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0083	0.083	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
ead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	Ü	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.26	2.6	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	59	580	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	2.5	< 50	500	800	1000

Solid Information			
Dry mass of test portion/kg	0.090		
Moisture (%)	10		

Waste Acceptance Criteria

Project: 23927 Dalquise House Monkstown Dublin (Da	avid Rehill CE)
--	-----------------

Chemtest Job No:	22-12129				Landfill \	Waste Acceptance	e Criteria
Chemtest Sample ID:	1402351					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA141848					reactive	
Sample Location:	TP22					hazardous	Hazardous
Top Depth(m):	3.3				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.85	3	5	6
Loss On Ignition	2610	U	%	2.9			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100	-	
pH	2010	U		8.3		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.014	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	
			mg/l	mg/kg		S EN 12457 at L/S	
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0005	0.0053	0.5	10	70
Copper	1455	U	0.0008	0.0075	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.015	0.15	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.26	2.6	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	59	580	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	8.1	81	500	800	1000

Solid Information			
Dry mass of test portion/kg	0.090		
Moisture (%)	9.9		

Waste Acceptance Criteria

Project: 2	3927 Da	Iguise Hou	se Monkstown	Dublin	(David	Rehill CE)	
------------	---------	------------	--------------	--------	--------	------------	--

Chemtest Job No:	22-12129				Landfill \	Waste Acceptance	e Criteria	
Chemtest Sample ID:	1402352					Limits		
Sample Ref:						Stable, Non-		
Sample ID:	AA141849					reactive		
Sample Location:	TP23					hazardous	Hazardous	
Top Depth(m):	0.3				Inert Waste	waste in non-	Waste	
Bottom Depth(m):					Landfill	hazardous	Landfill	
Sampling Date:						Landfill		
Determinand	SOP	Accred.	Units					
Total Organic Carbon	2625	U	%	[A] 1.9	3	5	6	
Loss On Ignition	2610	U	%	4.9	-		10	
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		-	
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		-	
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		-	
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100			
pH	2010	U		8.5	1	>6		
Acid Neutralisation Capacity	2015	N	mol/kg	0.015	1	To evaluate	To evaluate	
Eluate Analysis			10:1 Eluate	10:1 Eluate		for compliance l		
			mg/l	mg/kg	using BS EN 12457 at L/S 10 I/kg			
Arsenic	1455	U	0.0003	0.0029	0.5	2	25	
Barium	1455	U	< 0.005	< 0.0005	20	100	300	
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5	
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70	
Copper	1455	U	0.0012	0.012	2	50	100	
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2	
Molybdenum	1455	U	0.0004	0.0039	0.5	10	30	
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40	
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50	
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5	
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7	
Zinc	1455	U	0.003	0.025	4	50	200	
Chloride	1220	U	1.1	11	800	15000	25000	
Fluoride	1220	U	0.33	3.3	10	150	500	
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000	
Total Dissolved Solids	1020	N	26	260	4000	60000	100000	
Phenol Index	1920	U	< 0.030	< 0.30	1		-	
Dissolved Organic Carbon	1610	Ü	3.2	< 50	500	800	1000	

Solid Information			
Dry mass of test portion/kg	0.090		
Moisture (%)	16		

Waste Acceptance Criteria

Project:	23927	Dalguise	House	Monkstown	Dublin	David	Rehill (E)
••								

Chemtest Job No: Chemtest Sample ID:	22-12129 1402353				Landfill	Waste Acceptance	e Criteria
Sample Ref: Sample ID: Sample Location: Top Depth(m): Bottom Depth(m):	AA141850 TP23 1.2				Inert Waste Landfill	Stable, Non- reactive hazardous waste in non- hazardous	Hazardous Waste Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.40	3	5	6
Loss On Ignition	2610	U	%	1.8	-		10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		-
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100	-	
pH	2010	U		8.7	-	>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.0070		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate mg/l	10:1 Eluate mg/kg		for compliance I S EN 12457 at L/S	
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0007	0.0075	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0007	0.0068	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.095	< 1.0	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	26	260	4000	60000	100000
Phenol Index	1920	Ü	< 0.030	< 0.30	1		
Dissolved Organic Carbon	1610	U	3.3	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	12

Waste Acceptance Criteria

Chemtest Job No:	22-12129				Landfill	Waste Acceptance	Criteria
Chemtest Sample ID:	1402354					Limits	
Sample Ref: Sample ID:	AA141801					Stable, Non- reactive	Hazardous
Sample Location:	TP23				Incut Wests	hazardous waste in non-	Waste
Γop Depth(m):	2.4				Inert Waste Landfill	hazardous	Landfill
Bottom Depth(m):					Landilli	Landfill	Landilli
Sampling Date:						Landilli	
Determinand	SOP	Accred.	Units	111000			
Total Organic Carbon	2625	U	%	[A] 0.30	3	5	10
oss On Ignition	2610	U	%	20	-	-	
Total BTEX	2760	U	mg/kg	[A] < 0.010	6	-	
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1	-	
TPH Total WAC	2670	U	mg/kg	[A] < 10	500	-	
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
oH .	2010	U		8.6	-	>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.038 10:1 Eluate	-	To evaluate	To evaluate
Eluate Analysis		10:1 Eluate			Limit values for compliance leaching tes		
		,	mg/l	mg/kg		S EN 12457 at L/S	
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0006	0.0056	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0003	0.0025	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
ead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zin a	1455	U	< 0.003	< 0.003	4	50	200
ZINC			< 1.0	< 10	800	15000	25000
	1220	U	V 1.0				
Chloride	1220 1220	U	0.087	< 1.0	10	150	500
Chloride Fluoride			0.087 < 1.0	< 1.0 < 10	1000	20000	50000
Chloride Fluoride Sulphate	1220	U	0.087	< 1.0			
Zinc Chloride Fluoride Sulphate Total Dissolved Solids Phenol Index	1220 1220	U	0.087 < 1.0	< 1.0 < 10	1000	20000	50000

Solid Information			
Dry mass of test portion/kg	0.090		
Moisture (%)	13		

1610

Waste Acceptance Criteria

Dissolved Organic Carbon

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

< 2.5

< 50

800

500

1000

Project: 23927 Dalguise House Monkstown Dublin (David Rehill	CE)	
--	-----	--

Project: 23927 Dalguise House No.:	Monkstown Dublin (Dav 22-12129	id Rehill CE)			Landfill	Waste Acceptance	Criteria
Chemtest Sample ID:	1402355					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA146803					reactive	
Sample Location:	TP24					hazardous	Hazardous
Top Depth(m):	0.5				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.74	3	5	6
Loss On Ignition	2610	U	%	3.6	-	-	10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6	-	-
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1	-	
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		r
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100	-	
pH	2010	U		9.3	-	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.0040	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate		s for compliance less EN 12457 at L/S	CONTRACTOR OF THE PARTY OF THE
Arsenic	1455	U	mg/l 0.0003	mg/kg 0.0029	0.5	2	25
Barium	1455	Ü	< 0.005	< 0.0029	20	100	300
Cadmium	1455	Ü	< 0.00011	< 0.00011	0.04	100	5
Chromium	1455	Ü	< 0.00011	< 0.00011	0.04	10	70
Copper	1455	Ü	0.0009	0.0094	2	50	100
Mercury	1455	Ü	< 0.0009	< 0.00005	0.01	0.2	2
Molybdenum	1455	Ü	0.0006	0.0057	0.5	10	30
Nickel	1455	Ü	< 0.0005	< 0.0057	0.4	10	40
Lead	1455	Ü	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	Ü	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	Ü	< 0.0005	< 0.0005	0.06	0.7	7
Zinc	1455	Ü	< 0.0005	< 0.0005	4	50	200
Chloride	1220	Ü	< 1.0	< 10	800	15000	25000
Fluoride	1220	Ü	0.12	1.2	10	15000	500
Sulphate	1220	Ü	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	33	320	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	60000	100000
Trainer trainer	1920	U		< 0.30 < 50	500	800	1000
Dissolved Organic Carbon	1610	U	3.7	< 50	500	800	1000

Solid Information			
Dry mass of test portion/kg	0.090		
Moisture (%)	13		

Waste Acceptance Criteria

Chemtest Job No:	22-12129				Landfill	Waste Acceptance	e Criteria
Chemtest Sample ID:	1402356					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA146804					reactive	
Sample Location:	TP24					hazardous	Hazardous
Top Depth(m):	2.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.33	3	5	6
Loss On Ignition	2610	U	%	3.9	-		10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		**
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		**
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100	-	
pH	2010	U		8.6		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.017	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate		s for compliance I	
			mg/l	mg/kg		SS EN 12457 at L/S	
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0013	0.013	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	< 0.0002	< 0.0002	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.085	< 1.0	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	20	200	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	< 2.5	< 50	500	800	1000

Solid Information				
Dry mass of test portion/kg	0.090			
Moisture (%)	14			

Waste Acceptance Criteria

Project:	23927	Dalguise	House	Monkstown	Dublin	(David	Rehill CE)

Chemtest Job No:	22-12129 1402357				Landfill	Waste Acceptance	e Criteria
Chemtest Sample ID: Sample Ref:	1402357					Limits Stable, Non-	
Sample Ref:	AA146807					reactive	
Sample ID: Sample Location:	TP25					hazardous	Hazardous
Sample Location: Top Depth(m):	0.6				Inert Waste	waste in non-	Waste
Bottom Depth(m):	0.0				Landfill	hazardous	Landfill
					Landilli	Landfill	Lanum
Sampling Date: Determinand	000	Accord	11-14-			Landilli	
	SOP	Accred.	Units	743.0.40		-	
Total Organic Carbon	2625	U	%	[A] 0.49	3	5	6
Loss On Ignition	2610	U	%	3.0		-	10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6	-	-
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1	-	-
TPH Total WAC	2670	U	mg/kg	[A] < 10	500	-	
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100	-	
pH	2010	U		8.3	-	>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.0040	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate		for compliance I	
			mg/l	mg/kg	using B	S EN 12457 at L/S	6 10 l/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0008	0.0080	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0003	0.0026	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.10	1.0	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	20	200	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	3.2	< 50	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.090				
Moisture (%)	14				

Waste Acceptance Criteria

Chemtest Job No:	22-12129				Landfill	Waste Acceptance	Criteria
Chemtest Sample ID:	1402358					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA146808					reactive	
Sample Location:	TP25					hazardous	Hazardous
Top Depth(m):	1.5				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
otal Organic Carbon	2625	U	%	[A] 0.29	3	5	6
oss On Ignition	2610	U	%	2.9	-	-	10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1	-	
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
Н	2010	U		8.5	-	>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.015	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate		for compliance l	
			mg/l	mg/kg		S EN 12457 at L/S	
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	< 0.0005	< 0.0005	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	< 0.0002	< 0.0002	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
ead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.087	< 1.0	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	20	200	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	< 2.5	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	13

Waste Acceptance Criteria

Project: 23927 Dalguise House Monkstown Dublin (David Rehill CE) Chemtest Job No: 22-12129 Landfill Waste Acceptance Criteria 1402359 Chemtest Sample ID: Limits Sample Ref: Stable, Non-Sample ID: AA146809 reactive Sample Location: **TP26** hazardous Hazardous Top Depth(m): 0.5 **Inert Waste** waste in non-Waste Bottom Depth(m): Landfill hazardous Landfill Sampling Date: Landfill Determinand SOP Accred. Units Total Organic Carbon 2625 [A] 0.99 U % 3 5 6 Loss On Ignition 2610 10 U % 3.8 --Total BTEX 2760 U mg/kg [A] < 0.010 6 --Total PCBs (7 congeners) 2815 N mg/kg [A] < 0.0010 1 ---**TPH Total WAC** 2670 [A] < 10 500 U mg/kg ---Total Of 17 PAH's 2800 N [A] < 0.20 100 mg/kg 2010 U 8.4 >6 --0.030 Acid Neutralisation Capacity 2015 N mol/kg To evaluate To evaluate Limit values for compliance leaching test Eluate Analysis 10:1 Eluate 10:1 Eluate using BS EN 12457 at L/S 10 I/kg mg/l mg/kg Arsenic 1455 U < 0.0002 < 0.0002 0.5 25 100 300 Barium 1455 U < 0.005 < 0.0005 20 Cadmium 1455 U < 0.00011 < 0.00011 0.04 1 5 1455 U < 0.0005 < 0.0005 0.5 10 70 Chromium Copper 1455 U < 0.0005 < 0.0005 2 50 100 U < 0.00005 < 0.00005 0.01 0.2 2 Mercury 1455 Molybdenum 1455 U < 0.0002 < 0.0002 0.5 10 30 Nickel 1455 < 0.0005 < 0.0005 0.4 10 40 U 50 Lead 1455 U < 0.0005 < 0.0005 0.5 10 Antimony 1455 U < 0.0005 < 0.0005 0.06 0.7 5 Selenium 1455 U < 0.0005 < 0.0005 0.1 0.5 7 1455 U < 0.003 50 200 Zinc < 0.003 15000 25000 Chloride 1220 U < 1.0 < 10 800 500 Fluoride 1220 U 0.092 < 1.0 10 150

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	19

1220

1020

1920

1610

U

N

U

U

Waste Acceptance Criteria

Sulphate

Phenol Index

Total Dissolved Solids

Dissolved Organic Carbon

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

< 1.0

6.5

< 0.030

3.0

< 10

65

< 0.30

< 50

20000

60000

800

1000

4000

500

50000

100000

1000

Project:	23927	Dalguise	House	Monkstown	Dublin	(David Rehill CE	1

Project: 23927 Dalguise House N Chemtest Job No:	22-12129	u 11011111 0 2 1			Landfill \	Waste Acceptance	e Criteria
Chemtest Sample ID:	1402360					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA146810					reactive	
Sample Location:	TP26					hazardous	Hazardous
Top Depth(m):	1.6				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.27	3	5	6
Loss On Ignition	2610	U	%	2.7	-	-	10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6	-	-
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500	-	-
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		-
pH	2010	U		8.6	-	>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.067	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values for compliance leaching		
			mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455	U	0.0002	0.0024	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0009	0.0088	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	< 0.0002	< 0.0002	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.085	< 1.0	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	26	260	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	2.7	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	13

Waste Acceptance Criteria

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	pH	pH Meter
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-MS	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GCMS detection
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N-dimethyl-p-phenylenediamine.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.

Test Methods

SOP	Title	Parameters included	Method summary
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited N This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated "less than" < > "greater than" SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Chemtest Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Amended Report

Report No.: 22-12698-2

Initial Date of Issue: 12-Apr-2022

Client IGSL

Client Address: M7 Business Park

Naas

County Kildare

Ireland

Contact(s): Darren Keogh

Project 23927 Dalguise House Monkstown

Dublin (David Rehill CE)

Quotation No.: Q20-19951 Date Received: 04-Apr-2022

Order No.: Date Instructed: 04-Apr-2022

No. of Samples: 3

Turnaround (Wkdays): 7 Results Due: 12-Apr-2022

Date Approved: 12-Apr-2022

Approved By:

A.C. Winter

Details:

Alison Drinkwater, Specalist Chemist

Results - Leachate

Project: 23927 Dalquise House Monkstown Dublin (David Rehill CE)

Client: IGSL			Che	mtest J	22-12698	22-12698	22-12698	
Quotation No.: Q20-19951			Chemte	st Sam	ple ID.:	1405028	1405032	1405036
			Cli	ent Sam	ple ID.:	AA161951	AA165494	AA162661
			Sa	ample Lo	BH02A	BH03	BH05	
				Sampl	е Туре:	SOIL	SOIL	SOIL
	Top Depth (m):		1.00	2.00	1.00			
Determinand	Accred.	SOP	Туре	Units	LOD		dien -	1 S 1 S 1 S 1 S 1
pH	U	1010	10:1		N/A	8.4	8.6	8.4
Ammonium	U	1220	10:1	mg/l	0.050	< 0.050	0.098	< 0.050
Ammonium	N	1220	10:1	mg/kg	0.10	0.34	1.2	0.15
Boron (Dissolved)	U	1455	10:1	mg/kg	0.01	< 0.01	< 0.01	< 0.01
Benzo[j]fluoranthene	N	1800	10:1	μg/l	0.010	< 0.010	< 0.010	< 0.010

Results - Soil

Project: 23927 Dalguise House Monkstown Dublin (David Rehill CE)

Client: IGSL				Job No.:	22-12698	22-12698	22-12698	
Quotation No.: Q20-19951				nple ID.:	1405028	1405032	1405036	
				nple ID.:	AA161951	AA165494	AA162661	
		S		ocation:	BH02A	BH03	BH05	
			Samp	ole Type:	SOIL	SOIL	SOIL	
				epth (m):	1.00	2.00	1.00	
			Asbes	stos Lab:	COVENTRY	COVENTRY	COVENTRY	
Determinand	Accred.	SOP	Units	LOD	是上海。			
ACM Type	U	2192		N/A			-	
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	
Moisture	N	2030	%	0.020	18	14	10	
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	0.67	< 0.40	< 0.40	
Sulphur (Elemental)	U	2180	mg/kg	1.0	4.3	< 1.0	1.4	
Cyanide (Total)	U	2300		0.50	< 0.50	< 0.50	< 0.50	
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	7.2	3.9	6.7	
Sulphate (Acid Soluble)	U	2430	%	0.010	0.02	0.018	0.027	
Arsenic	U	2450		1.0	6.0	8.1	11	
Barium	U	2450	mg/kg	10	41	27	49	
Cadmium	Ü		mg/kg	0.10	0.60	1.0	1.3	
Chromium	U	2450			9.8	7.2	9.2	
Molybdenum	U	2450	mg/kg	2.0	< 2.0	< 2.0	< 2.0	
Antimony	N	2450		2.0	< 2.0	< 2.0	< 2.0	
Copper	U		mg/kg	0.50	15	14	21	
Mercury	U		mg/kg		< 0.10	< 0.10	< 0.10	
Nickel	Ü	2450			21	22	29	
Lead	Ü	2450		0.50	26	8.0	22	
Selenium	U	2450		0.20	0.20	0.54	0.43	
Zinc	U	2450	mg/kg		37	40	87	
Chromium (Trivalent)	N	2490			9.8	7.2	10.2	
Chromium (Hexavalent)	N	2490			< 0.50	< 0.50	< 0.50	
Mineral Oil (TPH Calculation)	N	2670	mg/kg		< 10	< 10	< 10	
Aliphatic TPH >C5-C6	N	2680			< 1.0	< 1.0	< 1.0	
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	
Aliphatic TPH >C10-C12	U	2680	mg/kg		< 1.0	< 1.0	< 1.0	
Aliphatic TPH >C12-C16	U	2680			< 1.0	< 1.0	< 1.0	
Aliphatic TPH >C16-C21	U	2680			< 1.0	< 1.0	< 1.0	
Aliphatic TPH >C21-C35	U	2680			< 1.0	< 1.0	< 1.0	
Aliphatic TPH >C35-C44	N	2680			< 1.0	< 1.0	< 1.0	
Total Aliphatic Hydrocarbons	N	2680	mg/kg		< 5.0	< 5.0	< 5.0	
Aromatic TPH >C5-C7	N	2680	_		< 1.0	< 1.0	< 1.0	
Aromatic TPH >C7-C8	N	2680			< 1.0	< 1.0	< 1.0	
Aromatic TPH >C8-C10	U	2680			< 1.0	< 1.0	< 1.0	
Aromatic TPH >C10-C12	U	2680	mg/kg		< 1.0	< 1.0	< 1.0	
Aromatic TPH >C12-C16	U	2680	mg/kg		< 1.0	< 1.0	< 1.0	

Results - Soil

Project: 23927 Dalguise House Monkstown Dublin (David Rehill CE)

Client: IGSL		Ch	emtest.	Job No.:	22-12698	22-12698	22-12698
Quotation No.: Q20-19951				nple ID.:	1405028	1405032	1405036
		C	lient Sa	mple ID.:	AA161951	AA165494	AA162661
			Sample	Location:	BH02A	BH03	BH05
				ole Type:	SOIL	SOIL	SOIL
				epth (m):	1.00	2.00	1.00
			Asbe	stos Lab:	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD		10 Th 10 Th 10 Th	1000
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	< 10
Benzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Naphthalene	N	2800	mg/kg	0.010	0.43	< 0.010	< 0.010
Acenaphthylene	N	2800	mg/kg	0.010	0.048	< 0.010	< 0.010
Acenaphthene	N	2800	mg/kg	0.010	0.092	< 0.010	< 0.010
Fluorene	N	2800	mg/kg	0.010	0.04	< 0.010	< 0.010
Phenanthrene	N	2800	mg/kg		0.2	< 0.010	< 0.010
Anthracene	N	2800	mg/kg	0.010	0.038	< 0.010	< 0.010
Fluoranthene	N	2800	mg/kg	0.010	0.31	< 0.010	< 0.010
Pyrene	N	2800	mg/kg	0.010	0.34	< 0.010	< 0.010
Benzoanthracene	N	2800	mg/kg	0.010	0.31	< 0.010	< 0.010
Chrysene	N	2800	mg/kg	0.010	0.3	< 0.010	< 0.010
Benzo[b]fluoranthene	N	2800	mg/kg	0.010	0.6	< 0.010	< 0.010
Benzo[k]fluoranthene	N	2800	mg/kg	0.010	0.24	< 0.010	< 0.010
Benzopyrene	N	2800	mg/kg	0.010	0.58	< 0.010	< 0.010
Indeno(1,2,3-c,d)Pyrene	N	2800	mg/kg	0.010	0.46	< 0.010	< 0.010
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.010	0.13	< 0.010	< 0.010
Benzo[g,h,i]perylene	N	2800	mg/kg	0.010	0.55	< 0.010	< 0.010
Coronene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Total Of 17 PAH's	N	2800	mg/kg	0.20	4.7	< 0.20	< 0.20
PCB 28	N	2815	mg/kg	0.0010	< 0.0010	< 0.0010	< 0.0010
PCB 52	N		mg/kg	0.0010	< 0.0010	< 0.0010	< 0.0010
PCB 90+101	N	2815	mg/kg	0.0010	< 0.0010	< 0.0010	< 0.0010
PCB 118	N	2815	mg/kg		< 0.0010	< 0.0010	< 0.0010
PCB 153	N	2815	mg/kg	0.0010	< 0.0010	< 0.0010	< 0.0010
PCB 138	N	2815	mg/kg	0.0010	< 0.0010	< 0.0010	< 0.0010
PCB 180	N	2815			< 0.0010	< 0.0010	< 0.0010
Total PCBs (7 congeners)	N	2815	mg/kg	0.0010	< 0.0010	< 0.0010	< 0.0010
Total Phenois	U	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10

Project:	23927	Dalguise	House	Monkstown	Dublin	(David	Rehill CE	.)

Chemtest Job No:	22-12698				Landfill \	Waste Acceptance Limits	e Criteria
Chemtest Sample ID: Sample Ref:	1405028					Stable, Non-	
Sample ID: Sample Location:	AA161951 BH02A					reactive hazardous	Hazardous
Top Depth(m):	1.00				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	0.55	3	5	6
Loss On Ignition	2610	U	%	3.5	-		10
Total BTEX	2760	U	mg/kg	< 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010	1	-	
TPH Total WAC	2670	U	mg/kg	< 10	500		
Total Of 17 PAH's	2800	N	mg/kg	4.7	100	-	
pH	2010	U		9.9	-	>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.015	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values for compliance leaching tes		
•			mg/l	mg/kg	using B	S EN 12457 at L/S	
Arsenic	1455	U	0.0004	0.0038	0.5	2	25
Barium	1455	U	0.006	0.061	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0006	0.0063	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0091	0.091	0.5	10	30
Nickel	1455	U	0.0007	0.0067	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.7	7	10	150	500
Sulphate	1220	U	3.3	33	1000	20000	50000
Total Dissolved Solids	1020	N	72	710	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	
Dissolved Organic Carbon	1610	U	< 2.5	< 50	500	800	1000

Solid Information		
Dry mass of test portion/kg	0.090	
Moisture (%)	18	

Waste Acceptance Criteria

Project: 23927 Dalguise House M Chemtest Job No:	Monkstown Dublin (Dav 22-12698	id Rehill CE)			Landfill	Waste Acceptance	Criteria
Chemtest Sample ID:	1405032				Landini	Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA165494					reactive	
Sample Location:	BH03					hazardous	Hazardous
Top Depth(m):	2.00				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	0.63	3	5	6
Loss On Ignition	2610	U	%	2.2		-	10
Total BTEX	2760	U	mg/kg	< 0.010	6	-	
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010	1	-	
TPH Total WAC	2670	U	mg/kg	< 10	500		
Total Of 17 PAH's	2800	N	mg/kg	< 0.20	100		
pH	2010	U		9.3		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.073	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance le	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/S	10 l/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	< 0.0005	< 0.0005	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0081	0.081	0.5	10	30
Nickel	1455	U	0.0008	0.0080	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.19	1.9	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	39	390	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		•
Dissolved Organic Carbon	1610	U	< 2.5	< 50	500	800	1000

Solid Information			
Dry mass of test portion/kg	0.090		
Moisture (%)	14		

Waste Acceptance Criteria

Chemtest Job No:	22-12698				Landfill	Waste Acceptance	Criteria
Chemtest Sample ID:	1405036					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA162661					reactive	
Sample Location:	BH05					hazardous	Hazardous
Top Depth(m):	1.00				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	0.3	3	5	6
Loss On Ignition	2610	U	%	2.6	-		10
Total BTEX	2760	U	mg/kg	< 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010	1		
TPH Total WAC	2670	U	mg/kg	< 10	500		
Total Of 17 PAH's	2800	N	mg/kg	< 0.20	100		
pH	2010	U		8.7	-	>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.016	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate		s for compliance I	
•			mg/l	mg/kg		SS EN 12457 at L/S	
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0007	0.0070	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0094	0.094	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.35	3.5	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	55	550	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		
Dissolved Organic Carbon	1610	U	15	150	500	800	1000

Solid Information		
Dry mass of test portion/kg	0.090	
Moisture (%)	10	

Waste Acceptance Criteria

Test Methods

SOP	Title	Parameters included	Method summary		
1010	pH Value of Waters	pH	pH Meter		
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter		
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.		
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).		
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation		
1800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-MS	Acenaphthene; Acenaphthylene; Anthracene; BenzoAnthracene; BenzoPyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GCMS detection		
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.		
2010	pH Value of Soils	рН	pH Meter		
2015	Acid Neutralisation Capacity	Acid Reserve	Titration		
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.		
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930		
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES		
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection		
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry		
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.		
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N-dimethyl-p-phenylenediamine.		
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.		
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.		
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.		
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.		
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.		

Test Methods

SOP	Title	Parameters included	Method summary
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; BenzoAnthracene*; BenzoPyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key	
U	UKAS accredited
M	MCERTS and UKAS accredited
N	Unaccredited
s	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

Final Report

Report No.:

22-13843-1

Initial Date of Issue:

21-Apr-2022

Client

IGSL

Client Address:

M7 Business Park

Naas

County Kildare

Ireland

Contact(s):

Darren Keogh

Project

23927 Dalguise House Monkstown

Dublin

Quotation No.:

Q20-19951

Date Received:

12-Apr-2022

Order No.:

Date Instructed:

12-Apr-2022

No. of Samples:

12

7

Turnaround (Wkdays):

Results Due:

22-Apr-2022

Date Approved:

21-Apr-2022

Approved By:

Details:

Stuart Henderson, Technical

Manager

Results - Leachate

Project: Dalguise House Monkstown Dublin

														1111
Client: IGSL	13.00	38 36 47	Che	mtest J	ob No.:	22-13843	22-13843	22-13843	22-13843	22-13843	22-13843	22-13843	22-13843	22-13843
Quotation No.: Q20-19951		Chemtest Sample ID.:				1410301	1410302	1410303	1410304	1410305	1410306	1410307	1410308	1410309
			Sa	ample Lo	ocation:	WS01	WS01	WS02	WS02	WS03	WS03	WS03	WS04	WS04
		Sample Type:					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Top Depth (m):				0.0	1.0	0.0	1.0	0.0	1.0	2.0	0.0	1.0
		Bottom Depth (m):				1.0	2.0	1.0	2.0	1.0	2.0	3.0	1.0	2.0
		Date Sampled:			07-Apr-2022	07-Apr-2022	07-Apr-2022	07-Apr-2022	07-Apr-2022	07-Apr-2022	07-Apr-2022	07-Apr-2022	07-Apr-2022	
Determinand	Accred.	SOP	Туре	Units	LOD	15/60 \$ TUNE				A CONTRACTOR		Paris Asia	Collins of the	
pH	U	1010	10:1		N/A	8.2	8.5	8.1	8.2	8.6	9.0	9.2	9.1	9.2
Ammonium	U	1220	10:1	mg/l	0.050	0.11	0.10	0.074	0.092	0.083	0.052	< 0.050	0.051	0.052
Ammonium	N	1220	10:1	mg/kg	0.10	1.2	1.2	0.79	1.0	1.0	0.80	0.93	0.90	1.0
Boron (Dissolved)	U	1455		mg/kg		0.16	0.13	0.16	0.16	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo[j]fluoranthene	N	1800	10:1	μg/l	0.010	< 0.010	0.082	0.038	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010

Results - Leachate

Project: Dalquise House Monkstown Dublin

Client: IGSL		150 H	Che	mtest J	ob No.:	22-13843	22-13843	22-13843
Quotation No.: Q20-19951		-	Chemte	st Sam	ple ID.:	1410310	1410311	1410312
			Sa	ample Lo	ocation:	WS05	WS05	WS05
				Sampl	e Type:	SOIL	SOIL	SOIL
				Top De	oth (m):	0.0	1.0	2.0
			Bot	tom De	oth (m):	1.0	2.0	3.0
				Date Sa	ampled:	07-Apr-2022	07-Apr-2022	07-Apr-2022
Determinand	Accred.	SOP	Туре	Units	LOD	1 Sept 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		15 18
pH	U	1010	10:1		N/A	8.6	9.0	9.0
Ammonium	U	1220	10:1	mg/l	0.050	0.12	0.058	0.058
Ammonium	N	Ü		0.10	1.5	0.89	0.91	
Boron (Dissolved)	U	1455	10:1	mg/kg	0.01	< 0.01	< 0.01	< 0.01
Benzo[i]fluoranthene	N	1800	10:1	µg/l	0.010	< 0.010	< 0.010	< 0.010

Project: Dalguise House Monkstown Dublin

Project: Dalguise House Monks	stown Dubli	<u>n</u>											
Client: IGSL		Ch	emtest.	Job No.:	22-13843	22-13843	22-13843	22-13843	22-13843	22-13843	22-13843	22-13843	22-13843
Quotation No.: Q20-19951		Chem	test Sar	nple ID.:	1410301	1410302	1410303	1410304	1410305	1410306	1410307	1410308	1410309
			Sample I	Location:	WS01	WS01	WS02	WS02	WS03	WS03	WS03	WS04	WS04
			Sam	ple Type:	SOIL								
			Top D	epth (m):	0.0	1.0	0.0	1.0	0.0	1.0	2.0	0.0	1.0
		В	ottom D	epth (m):	1.0	2.0	1.0	2.0	1.0	2.0	3.0	1.0	2.0
			Date S	Sampled:	07-Apr-2022								
			Asbes	stos Lab:	DURHAM								
Determinand	Accred.	SOP	Units	LOD	3	302.3		and the same of					
ACM Type	U	2192		N/A	-	-	-	-	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected								
Moisture	N	2030	%	0.020	18	16	18	17	12	12	9.6	11	9.5
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	0.76	< 0.40	0.97	2.8	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40
Sulphur (Elemental)	U	2180	mg/kg	1.0	< 1.0	< 1.0	3.2	23	< 1.0	19	< 1.0	< 1.0	1.8
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	2.2	1.9	1.7	3.9	6.0	5.4	6.1	6.0	6.3
Sulphate (Acid Soluble)	U	2430	%	0.010	0.042	0.022	0.024	0.014	0.017	0.069	0.022	0.029	0.016
Arsenic	U	2450	mg/kg	1.0	21	17	18	15	14	18	17	31	24
Barium	U	2450	mg/kg	10	110	59	100	820	59	70	81	75	70
Cadmium	U	2450	mg/kg	0.10	1.7	1.2	1.6	< 0.10	1.2	1.6	1.8	2.2	2.0
Chromium	U	2450	mg/kg	1.0	29	23	25	13	15	13	16	25	26
Molybdenum	U	2450	mg/kg	2.0	4.5	2.6	3.9	< 2.0	< 2.0	2.3	2.9	3.2	3.3
Antimony	N	2450	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Copper	U	2450	mg/kg	0.50	40	31	38	3.9	21	24	27	36	31
Mercury	U	2450	mg/kg	0.10	0.22	0.10	0.21	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	54	45	46	10	32	37	43	50	53
Lead	U	2450	mg/kg	0.50	87	32	100	6.4	30	15	45	32	19
Selenium	U	2450	mg/kg	0.20	0.90	0.32	0.79	< 0.20	0.64	0.33	0.86	0.53	0.32
Zinc	U	2450	mg/kg	0.50	160	94	150	12	54	57	75	97	89
Chromium (Trivalent)	N	2490	mg/kg	1.0	29	23	25	13	15	13	16	25	26
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Mineral Oil (TPH Calculation)	N	2670	mg/kg	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	Ü	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	Ü	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	Ü	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	<10	< 1.0	< 1.0	< 1.0	< 1.0

Client: IGSL		Che	emtest.	lob No.:	22-13843	22-13843	22-13843	22-13843	22-13843	22-13843	22-13843	22-13843	22-13843
Quotation No.: Q20-19951		Chemt	est San	ple ID.:	1410301	1410302	1410303	1410304	1410305	1410306	1410307	1410308	1410309
		S	Sample L	ocation:	WS01	WS01	WS02	WS02	WS03	WS03	WS03	WS04	WS04
			Samp	le Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	epth (m):	0.0	1.0	0.0	1.0	0.0	1.0	2.0	0.0	1.0
		Во	ottom De	epth (m):	1.0	2.0	1.0	2.0	1.0	2.0	3.0	1.0	2.0
			Date S	ampled:	07-Apr-2022	07-Apr-2022	07-Apr-2022	07-Apr-2022	07-Apr-2022	07-Apr-2022	07-Apr-2022	07-Apr-2022	07-Apr-2022
				tos Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD	CHARLES			A STATE OF THE STATE OF					The last of the last
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Benzene	Ü	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	Ü	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	Ü	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	Ü	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	Ü	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether	Ü	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene	N	2800	mg/kg	0.010	< 0.010	< 0.010	0.35	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Acenaphthylene	N	2800	mg/kg	0.010	< 0.010	< 0.010	0.070	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Acenaphthene	N	2800	mg/kg	0.010	< 0.010	< 0.010	0.040	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Fluorene	N	2800	mg/kg	0.010	< 0.010	< 0.010	0.050	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Phenanthrene	N	2800	mg/kg	0.010	0.080	0.060	0.12	< 0.010	< 0.010	< 0.010	< 0.010	0.16	< 0.010
Anthracene	N	2800	mg/kg	0.010	0.030	0.020	0.030	< 0.010	< 0.010	< 0.010	< 0.010	0.064	< 0.010
Fluoranthene	N	2800	mg/kg	0.010	0.070	0.16	0.10	< 0.010	< 0.010	< 0.010	< 0.010	0.25	< 0.010
Pyrene	N	2800	mg/kg	0.010	0.090	0.17	0.10	< 0.010	< 0.010	< 0.010	< 0.010	0.23	< 0.010
Benzo[a]anthracene	N	2800	mg/kg	0.010	< 0.010	0.090	0.040	< 0.010	< 0.010	< 0.010	< 0.010	0.13	< 0.010
Chrysene	N	2800	mg/kg	0.010	< 0.010	0.060	0.050	< 0.010	< 0.010	< 0.010	< 0.010	0.11	< 0.010
Benzo[b]fluoranthene	N	2800	mg/kg	0.010	< 0.010	0.15	0.060	< 0.010	< 0.010	< 0.010	< 0.010	0.14	< 0.010
Benzo[k]fluoranthene	N	2800	mg/kg	0.010	< 0.010	0.10	0.050	< 0.010	< 0.010	< 0.010	< 0.010	0.065	< 0.010
	N	2800	mg/kg	0.010	< 0.010	0.13	0.080	< 0.010	< 0.010	< 0.010	< 0.010	0.12	< 0.010
Benzo[a]pyrene	N	2800	mg/kg	0.010	< 0.010	0.070	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.061	< 0.010
Indeno(1,2,3-c,d)Pyrene	N	2800	mg/kg	0.010	< 0.010	0.040	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.049	< 0.010
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.010	< 0.010	0.11	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.085	< 0.010
Benzo[g,h,i]perylene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Coronene Total Of 17 PAH's	N	2800	mg/kg	0.20	0.27	1.2	1.1	< 0.20	< 0.20	< 0.20	< 0.20	1.5	< 0.20
	N	2815	mg/kg	0.0010		< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
PCB 28	N	2815		0.0010		< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
PCB 52	N	2815		0.0010		< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
PCB 90+101	N	2815		0.0010		< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
PCB 118	N	2815	mg/kg	0.0010		< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
PCB 153		_				< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
PCB 138	N	2815	mg/kg	0.0010		< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
PCB 180	N	2815	mg/kg			< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Total PCBs (7 congeners)	N	2815	mg/kg	0.0010	< 0.0010 < 0.10	< 0.0010	< 0.0010	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Project: Dalguise House Monkstown Dublin

Client: IGSL	Shirt Sale	Ch	emtest.	Job No.:	22-13843	22-13843	22-13843	
Quotation No.: Q20-19951				nple ID.:	1410310	1410311	1410312	
		5		Location:	WS05	WS05	WS05	
				ole Type:	SOIL	SOIL	SOIL	
	1		Top D	epth (m):	0.0	1.0	2.0	
		В	ottom D	epth (m):	1.0	2.0	3.0	
			Date S	Sampled:	07-Apr-2022	07-Apr-2022	07-Apr-2022	
			Asbestos Lab:		DURHAM	DURHAM	DURHAM	
Determinand	Accred.	SOP	Units	LOD		STATE OF THE PARTY		
ACM Type	U	2192		N/A	-	-		
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected	No Asbesto Detected	
Moisture	N	2030	%	0.020	15	11	9.4	
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	< 0.40	< 0.40	< 0.40	
Sulphur (Elemental)	U	2180	mg/kg	1.0	< 1.0	< 1.0	< 1.0	
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	6.3	7.3	6.7	
Sulphate (Acid Soluble)	U	2430	%	0.010	0.031	0.021	0.051	
Arsenic	U	2450	mg/kg	1.0	28	38	55	
Barium	U	2450	mg/kg	10	68	55	68	
Cadmium	U	2450	mg/kg	0.10	1.8	1.7	1.9	
Chromium	U	2450	mg/kg	1.0	23	24	24	
Molybdenum	U	2450	mg/kg	2.0	2.8	3.0	2.6	
Antimony	N	2450	mg/kg	2.0	< 2.0	< 2.0	< 2.0	
Copper	U	2450	mg/kg	0.50	35	29	36	
Mercury	U	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10	
Nickel	U	2450	mg/kg	0.50	48	45	51	
Lead	U	2450	mg/kg	0.50	29	17	29	
Selenium	U	2450	mg/kg	0.20	0.50	0.44	0.54	
Zinc	U	2450	mg/kg	0.50	110	75	100	
Chromium (Trivalent)	N	2490	mg/kg	1.0	23	24	24	
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	
Mineral Oil (TPH Calculation)	N	2670	mg/kg	10	< 10	< 10	< 10	
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	

Project: Dalguise House Monkstown Dublin

Client: IGSL	Barrier T	Ch	emtest .	Job No.:	22-13843	22-13843	22-13843
Quotation No.: Q20-19951				nple ID.:	1410310	1410311	1410312
		5	Sample L	ocation:	WS05	WS05	WS05
			Samp	le Type:	SOIL	SOIL	SOIL
			Top De	epth (m):	0.0	1.0	2.0
		В	ottom De	epth (m):	1.0	2.0	3.0
			Date S	ampled:	07-Apr-2022	07-Apr-2022	07-Apr-2022
			Asbes	stos Lab:	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD		Habita San	
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	< 10
Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Naphthalene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Acenaphthylene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Acenaphthene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Fluorene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Phenanthrene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Anthracene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Fluoranthene	N	2800	mg/kg	0.010	0.050	< 0.010	< 0.010
Pyrene	N	2800	mg/kg	0.010	0.078	< 0.010	< 0.010
Benzo[a]anthracene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Chrysene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Benzo[b]fluoranthene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Benzo[k]fluoranthene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Benzo[a]pyrene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Indeno(1,2,3-c,d)Pyrene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Benzo[g,h,i]perylene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Coronene	N	2800		0.010	< 0.010	< 0.010	< 0.010
Total Of 17 PAH's	N	2800	mg/kg	0.20	< 0.20	< 0.20	< 0.20
PCB 28	N	2815	mg/kg		< 0.0010	< 0.0010	< 0.0010
PCB 52	N	2815			< 0.0010	< 0.0010	< 0.0010
PCB 90+101	N	2815			< 0.0010	< 0.0010	< 0.0010
PCB 118	N			0.0010	< 0.0010	< 0.0010	< 0.0010
PCB 153	N	2815	mg/kg	0.0010	< 0.0010	< 0.0010	< 0.0010
PCB 138	N	2815	mg/kg	0.0010	< 0.0010	< 0.0010	< 0:0010
PCB 180	N	2815	ma/ka	0.0010	< 0.0010	< 0.0010	< 0.0010
Total PCBs (7 congeners)	N	2815		0.0010	< 0.0010	< 0.0010	< 0.0010
Total Phenois	U	2920			< 0.10	< 0.10	< 0.10

Project	t: Da	lguise	House	Monkstown	Dublin

Chemtest Job No: Chemtest Sample ID:	22-13843 1410301				Landfill	Waste Acceptance	e Criteria
Sample Ref: Sample ID: Sample Location:	WS01					Stable, Non- reactive	U
Top Depth(m):	0.0				Inert Waste	hazardous waste in non-	Hazardous Waste
Bottom Depth(m):	1.0				Landfill	hazardous	Landfill
Sampling Date:	07-Apr-2022				Landilli	Landfill	Landilli
Determinand	SOP	Accred.	Units			Landini	
Total Organic Carbon	2625	U	%	1,2	3	5	6
Loss On Ignition	2610	Ü	%	4.5		-	10
Total BTEX	2760	Ü	mg/kg	< 0.010	6	-	
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010	1	-	
TPH Total WAC	2670	Ü	mg/kg	< 10	500	-	
Total Of 17 PAH's	2800	N	mg/kg	0.27	100		
pH	2010	U		8.5		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.0040	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate mg/l	10:1 Eluate mg/kg		for compliance less EN 12457 at L/S	eaching test
Arsenic	1455	U	0.0042	0.042	0.5	2	25
Barium	1455	Ü	< 0.005	< 0.0005	20	100	300
Cadmium	1455	Ü	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	Ü	0.0052	0.052	0.5	10	70
Copper	1455	Ü	0.0029	0.029	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.012	0.12	0.5	10	30
Nickel	1455	U	0.0037	0.037	0.4	10	40
Lead	1455	Ü	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	0.0005	0.0054	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	0.003	0.031	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.13	1.3	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	130	1300	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		
Dissolved Organic Carbon	1610	U	18	180	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	18

Waste Acceptance Criteria

Chemtest Job No:	22-13843				Landfill	Naste Acceptance	e Criteria
Chemtest Sample ID:	1410302					Limits	
Sample Ref: Sample ID: Sample Location: Top Depth(m): Bottom Depth(m): Sampling Date:	WS01 1.0 2.0 07-Apr-2022				Inert Waste Landfill	Stable, Non- reactive hazardous waste in non- hazardous Landfill	Hazardous Waste Landfill
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	0.63	3	5	6
Loss On Ignition	2610	U	%	3.6	-		10
Total BTEX	2760	U	mg/kg	< 0.010	6	-	
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010	1	-	-
TPH Total WAC	2670	U	mg/kg	< 10	500	-	-
Total Of 17 PAH's	2800	N	mg/kg	1.2	100		-
pH	2010	U		8.6	-	>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.019	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate		for compliance I	
			mg/l	mg/kg	using E	S EN 12457 at L/S	
Arsenic	1455	U	0.0008	0.0083	0.5	2	25
Barium	1455	U	0.005	0.053	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0055	0.055	0.5	10	70
Copper	1455	U	0.0028	0.028	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.013	0.13	0.5	10	30
Nickel	1455	U	0.0039	0.039	0.4	10	40
Lead	1455	U	0.0006	0.0059	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	C	0.004	0.037	4	50	200
Chloride	1220	U	1.2	12	800	15000	25000
Fluoride	1220	U	0.20	2.0	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	72	710	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	15	150	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	16

Waste Acceptance Criteria

	Project:	Dalguise	House	Monkstown	Dublin
ľ					

Project: Dalguise House Monkst							
Chemtest Job No:	22-13843				Landfill	Waste Acceptance	Criteria
Chemtest Sample ID:	1410303					Limits	
Sample Ref:						Stable, Non-	
Sample ID:						reactive	
Sample Location:	WS02					hazardous	Hazardous
Top Depth(m):	0.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):	1.0				Landfill	hazardous	Landfill
Sampling Date:	07-Apr-2022					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	2.2	3	5	6
Loss On Ignition	2610	U	%	5.0	-	-	10
Total BTEX	2760	U	mg/kg	< 0.010	6	-	
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010	1	-	
TPH Total WAC	2670	U	mg/kg	< 10	500	-	
Total Of 17 PAH's	2800	N	mg/kg	1.1	100		
pH	2010	U		8.4	-	>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.0070		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance le	eaching test
			mg/l	mg/kg	using B	IS EN 12457 at L/S	10 l/kg
Arsenic	1455	U	0.013	0.13	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0050	0.049	0.5	10	70
Copper	1455	U	0.0043	0.043	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0061	0.061	0.5	10	30
Nickel	1455	U	0.0043	0.043	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	0.0015	0.015	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.084	< 1.0	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	72	710	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	
Dissolved Organic Carbon	1610	U	12	120	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	18

Waste Acceptance Criteria

Project: Dalquise House Monksto Chemtest Job No:	22-13843				Landfill	Waste Acceptance	Criteria
Chemtest Sample ID:	1410304					Limits	
Sample Ref:						Stable, Non-	
Sample ID:						reactive	
Sample Location:	WS02					hazardous	Hazardous
Top Depth(m):	1.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):	2.0				Landfill	hazardous	Landfill
Sampling Date:	07-Apr-2022					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	1.3	3	5	6
Loss On Ignition	2610	J	%	2.2			10
Total BTEX	2760	U	mg/kg	< 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010	1		
TPH Total WAC	2670	U	mg/kg	< 10	500		
Total Of 17 PAH's	2800	N	mg/kg	< 0.20	100		
pH	2010	U		8.6	-	>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.029	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate		for compliance le	
			mg/l	mg/kg	using E	S EN 12457 at L/S	
Arsenic	1455	U	0.0068	0.068	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0047	0.047	0.5	10	70
Copper	1455	U	0.0042	0.042	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.018	0.18	0.5	10	30
Nickel	1455	U	0.0040	0.040	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.12	1.2	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	65	650	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	19	190	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	17

Waste Acceptance Criteria

	Project:	Dalguise	House	Monkstown	Dublin
--	----------	----------	-------	-----------	--------

Project: Dalguise House Monkst							
Chemtest Job No:	22-13843				Landfill	Waste Acceptance	Criteria
Chemtest Sample ID:	1410305					Limits	
Sample Ref:						Stable, Non-	
Sample ID:						reactive	
Sample Location:	WS03					hazardous	Hazardous
Top Depth(m):	0.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):	1.0				Landfill	hazardous	Landfill
Sampling Date:	07-Apr-2022					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	0.79	3	5	6
Loss On Ignition	2610	U	%	2.7			10
Total BTEX	2760	U	mg/kg	< 0.010	6	-	
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010	1	-	
TPH Total WAC	2670	U	mg/kg	< 10	500	-	
Total Of 17 PAH's	2800	N	mg/kg	< 0.20	100		
pH	2010	U		9.1	-	>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.025	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance l	eaching test
•			mg/l	mg/kg	using E	S EN 12457 at L/S	10 l/kg
Arsenic	1455	U	0.0009	0.0093	0.5	2	25
Barium	1455	U	0.006	0.057	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0052	0.052	0.5	10	70
Copper	1455	U	0.0035	0.035	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0049	0.049	0.5	10	30
Nickel	1455	U	0.0041	0.041	0.4	10	40
Lead	1455	U	0.0006	0.0062	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	0.008	0.081	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.47	4.7	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	59	580	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		
Dissolved Organic Carbon	1610	U	12	120	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	12

Waste Acceptance Criteria

Chemtest Job No:	22-13843				Landfill \	Naste Acceptance	e Criteria
Chemtest Sample ID:	1410306					Limits	
Sample Ref: Sample ID:						Stable, Non- reactive	
Sample Location:	WS03			1	-2.7	hazardous	Hazardous
Top Depth(m):	1.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):	2.0				Landfill	hazardous	Landfill
Sampling Date:	07-Apr-2022					Landfill	
Determinand	SOP	Accred.	Units				•
Total Organic Carbon	2625	U	%	0.21	3	5	6
Loss On Ignition	2610	U	%	2.4	-	-	10
Total BTEX	2760	U	mg/kg	< 0.010	6	-	
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010	1		
TPH Total WAC	2670	U	mg/kg	< 10	500	-	
Total Of 17 PAH's	2800	N	mg/kg	< 0.20	100		
pH	2010	U		8.9	-	>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.066		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate		for compliance I	
•			mg/l	mg/kg		S EN 12457 at L/S	
Arsenic	1455	U	0.0004	0.0038	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0048	0.048	0.5	10	70
Copper	1455	U	0.0022	0.022	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0006	0.0063	0.5	10	30
Nickel	1455	U	0.0032	0.032	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.060	< 1.0	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	26	260	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	< 2.5	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	12

Waste Acceptance Criteria

Project: Dalguise H	louse Mon	kstown Dub	lin
---------------------	-----------	------------	-----

Project: Dalquise House Monkst Chemtest Job No:	22-13843				Landfill	Waste Acceptance	Criteria
Chemtest Sample ID:	1410307					Limits	
Sample Ref:						Stable, Non-	
Sample ID:						reactive	
Sample Location:	WS03					hazardous	Hazardous
Top Depth(m):	2.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):	3.0				Landfill	hazardous	Landfill
Sampling Date:	07-Apr-2022				Lundiiii	Landfill	Landini
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	0.57	3	5	6
Loss On Ignition	2610	U	%	3.0	-		10
Total BTEX	2760	U	mg/kg	< 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010	1	-	
TPH Total WAC	2670	U	mg/kg	< 10	500	J. 22	-
Total Of 17 PAH's	2800	N	mg/kg	< 0.20	100	-	_
pH	2010	U		8.9		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.037	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance le	
			mg/l	mg/kg	using B	S EN 12457 at L/S	10 l/kg
Arsenic	1455	U	0.0002	0.0023	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	Ü	0.0046	0.046	0.5	10	70
Copper	1455	U	0.0021	0.021	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0017	0.017	0.5	10	30
Nickel	1455	U	0.0032	0.032	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.052	< 1.0	10	150	500
Sulphate	1220	U	1.1	11	1000	20000	50000
Total Dissolved Solids	1020	N	26	260	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		
Dissolved Organic Carbon	1610	U	< 2.5	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	9.6

Waste Acceptance Criteria

Chemtest Job No:	22-13843				Landfill	Waste Acceptance	Criteria
Chemtest Sample ID:	1410308					Limits	
Sample Ref:						Stable, Non-	
Sample ID:						reactive	
Sample Location:	WS04					hazardous	Hazardous
Top Depth(m):	0.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):	1.0				Landfill	hazardous	Landfill
Sampling Date:	07-Apr-2022					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	0.62	3	5	6
Loss On Ignition	2610	U	%	2.6		-	10
Total BTEX	2760	U	mg/kg	< 0.010	6	-	
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010	1		
TPH Total WAC	2670	U	mg/kg	< 10	500		
Total Of 17 PAH's	2800	N	mg/kg	1.5	100		
pH	2010	U		7.9	-	>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.067	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate		s for compliance I	
			mg/l	mg/kg		3S EN 12457 at L/S	
Arsenic	1455	U	0.0004	0.0039	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	Ü	0.0048	0.048	0.5	10	70
Copper	1455	U	0.0026	0.026	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0008	0.0080	0.5	10	30
Nickel	1455	U	0.0035	0.035	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	< 0.050	< 1.0	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	26	260	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		
Dissolved Organic Carbon	1610	U	2.7	< 50	500	800	1000

Solid Information				
Dry mass of test portion/kg	0.090			
Moisture (%)	11			

Waste Acceptance Criteria

Project: Dalguise House Monkstown Dublin	Project:	Dalguise	House	Monkstown	Dublin
--	----------	-----------------	-------	-----------	---------------

Chemtest Job No:	22-13843				Landfill	Waste Acceptance	Criteria
Chemtest Sample ID:	1410309					Limits	
Sample Ref:						Stable, Non-	
Sample ID:						reactive	
Sample Location:	WS04					hazardous	Hazardous
Top Depth(m):	1.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):	2.0				Landfill	hazardous	Landfill
Sampling Date:	07-Apr-2022					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	0.26	3	5	6
Loss On Ignition	2610	U	%	2.1	-		10
Total BTEX	2760	U	mg/kg	< 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010	1		
TPH Total WAC	2670	U	mg/kg	< 10	500		
Total Of 17 PAH's	2800	N	mg/kg	< 0.20	100	-	
pH	2010	U		8.1	-	>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.050	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance le	
			mg/l	mg/kg		S EN 12457 at L/S	
Arsenic	1455	U	0.0003	0.0028	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0051	0.051	0.5	10	70
Copper	1455	U	0.0027	0.027	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0013	0.013	0.5	10	30
Nickel	1455	U	0.0035	0.035	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
luoride	1220	U	< 0.050	< 1.0	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	26	260	4000	60000	100000
Phenol Index	1920	Ü	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	2.6	< 50	500	800	1000

Solid Information				
Dry mass of test portion/kg	0.090			
Moisture (%)	9.5			

Waste Acceptance Criteria

Project: Dalguise House Monksto Chemtest Job No:	22-13843				Landfill	Waste Acceptance	Criteria
Chemtest Sample ID:	1410310					Limits	
Sample Ref:						Stable, Non-	
Sample ID:						reactive	
Sample Location:	WS05					hazardous	Hazardous
Top Depth(m):	0.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):	1.0				Landfill	hazardous	Landfill
Sampling Date:	07-Apr-2022					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	0.49	3	5	6
Loss On Ignition	2610	U	%	2.9			10
Total BTEX	2760	U	mg/kg	< 0.010	6	-	
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010	1		
TPH Total WAC	2670	U	mg/kg	< 10	500		
Total Of 17 PAH's	2800	N	mg/kg	< 0.20	100		
pH	2010	U		8.1	-	>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.076		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate		for compliance l	
			mg/l	mg/kg	using E	SS EN 12457 at L/S	
Arsenic	1455	U	0.0003	0.0026	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0049	0.049	0.5	10	70
Copper	1455	U	0.0022	0.022	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0004	0.0045	0.5	10	30
Nickel	1455	U	0.0035	0.035	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	< 0.050	< 1.0	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	13	130	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	2.6	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	15

Waste Acceptance Criteria

Project: Dalquise House Mor	nkstown Dublin	
Chemtest Job No:	22-13843	•

Chemtest Job No:	22-13843				Landfill \	Waste Acceptanc	e Criteria
Chemtest Sample ID: Sample Ref:	1410311					Limits Stable, Non-	
Sample ID:						reactive	
Sample Location:	WS05					hazardous	Hazardous
Top Depth(m):	1.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):	2.0				Landfill	hazardous	Landfill
Sampling Date:	07-Apr-2022				Landin	Landfill	Landini
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	0.63	3	5	6
Loss On Ignition	2610	U	%	2.3			10
Total BTEX	2760	U	mg/kg	< 0.010	6	-	
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010	1		
TPH Total WAC	2670	U	mg/kg	< 10	500	-	
Total Of 17 PAH's	2800	N	mg/kg	< 0.20	100	-	
pH	2010	U		8.1		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.073		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/	S 10 l/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0042	0.042	0.5	10	70
Copper	1455	U	0.0018	0.019	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0016	0.016	0.5	10	30
Nickel	1455	U	0.0027	0.027	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	< 0.050	< 1.0	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	26	260	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		

Solid Information			
Dry mass of test portion/kg	0.090		
Moisture (%)	11		

1610

Waste Acceptance Criteria

Dissolved Organic Carbon

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

< 50

1000

800

P	ro	ec	: 1	Da	qui	ise	H	louse	N	lon	ks	tov	vn	Dul	oli	n	

Project: Dalguise House Monkst									
Chemtest Job No:	22-13843				Landfill		e Criteria		
Chemtest Sample ID:	1410312								
Sample Ref:									
Sample ID:									
Sample Location:	WS05					hazardous	Hazardous		
Top Depth(m):	2.0						Waste		
Bottom Depth(m):	3.0				Landfill	hazardous	Landfill		
Sampling Date:	Sample ID:					Landfill			
Determinand	SOP	Accred.	Units		Inert Waste Landfill Waste in non-hazardous Landfill				
Total Organic Carbon	2625	U	%	0.55	3	5	6		
Loss On Ignition	2610	U	%	2.2	-	-	10		
Total BTEX	2760	U	mg/kg	< 0.010	6				
Total PCBs (7 congeners)	2815	N	mg/kg	< 0.0010		-			
TPH Total WAC	2670	U	mg/kg	< 10	500				
Total Of 17 PAH's	2800	N	mg/kg	< 0.20	100				
pH	2010	U		8.2	-	>6			
Acid Neutralisation Capacity	2015	N	mol/kg	0.13	-	To evaluate	To evaluate		
Eluate Analysis		10:1 Eluate		10:1 Eluate	Limit values for compliance leaching tes				
			mg/l	mg/kg	using B	S EN 12457 at L/S	10 l/kg		
Arsenic	1455	U	< 0.0002	< 0.0002	0.5		25		
Barium	1455	U	< 0.005	< 0.0005	20	100	300		
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5		
Chromium	1455	U	0.0045	0.045	0.5	10	70		
Copper	1455	U	0.0024	0.024	2	50	100		
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2		
Molybdenum	1455	U	0.0012	0.012	0.5	10	30		
Nickel	1455	U	0.0034	0.034	0.4	10	40		
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50		
Antimony	1455	U	< 0.0005	< 0.0005	0.06		5		
Selenium	1455	U	< 0.0005	< 0.0005	0.1		7		
Zinc	1455	U	< 0.003	< 0.003	4		200		
Chloride	1220	U	< 1.0	< 10	800	15000	25000		
Fluoride	1220	U	< 0.050	< 1.0		150	500		
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000		
Total Dissolved Solids	1020	N	26	260	4000	60000	100000		
Phenol Index	1920	U	< 0.030	< 0.30	1				
Dissolved Organic Carbon	1610	U	< 2.5	< 50	500	800	1000		

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	9.4						

Waste Acceptance Criteria

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	pH	pH Meter
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-MS	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GCMS detection
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N-dimethyl-p-phenylenediamine.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.

Test Methods

SOP	Title	Parameters included	Method summary
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key	
U	UKAS accredited
M	MCERTS and UKAS accredited
N	Unaccredited
s	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
T	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation
The results relate only to the items tested
Uncertainty of measurement for the determinands tested are available upon request
None of the results in this report have been recovery corrected
All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Appendix 3 Waste Classification Report	

Waste Classification Report

HazWasteOnline™ classifies waste as either hazardous or non-hazardous based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)
- c) confirm that the list of determinands, results and sampling plan are fit for purpose
- d) select and justify the chosen metal species (Appendix B) e) correctly apply moisture correction and other available corrections
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.

22-001-18 Dalguise

Description/Comments

Project Site 22-001-18 Dalguise

Classified by

Name: Company: **Austin Hynes** Date:

17 May 2022 10:43 GMT Telephone:

+353 (0)21 4345366

O'Callaghan Moran & Associates Unit 15 Melbourne Business Park,

Model Farm Road

Cork

HazWasteOnline™ Certification:

Course

Hazardous Waste Classification

Date

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
1	BH01	1.0	Non Hazardous		3
2	BH01[2]	2.0	Non Hazardous		6
3	BH02A	1.00	Non Hazardous		9
4	BH02A[2]	2.0	Non Hazardous		12
5	BH02A[3]	3.0	Non Hazardous		15
6	BH03	1.0	Non Hazardous		18
7	BH03[2]	2.00	Non Hazardous		21
8	BH03[3]	3.0	Non Hazardous		24
9	BH04	1.0	Non Hazardous		27
10	BH04[2]	2.0	Non Hazardous		30
11	BH05	1.00	Non Hazardous		33
12	BH05[2]	2.0	Non Hazardous		36
13	BH05[3]	3.0	Non Hazardous		39
14	BH06	1.0	Non Hazardous		42
15	BH06[2]	2.0	Non Hazardous		45
16	TP21	0.75	Non Hazardous		48
17	TP21[2]	1.5	Non Hazardous		51
18	TP21[3]	3.0	Non Hazardous		54
19	TP22	0.6	Non Hazardous		57
20	TP22[2]	1.5	Non Hazardous		60
21	TP22[3]	3.3	Non Hazardous		63
22	TP23	0.3	Non Hazardous		66
23	TP23[2]	1.2	Non Hazardous		69
24	TP23[3]	2.4	Non Hazardous		72
25	TP24	0.5	Non Hazardous		75
26	TP24[2]	2.0	Non Hazardous		78
27	TP25	0.6	Non Hazardous		81
28	TP25[2]	1.5	Non Hazardous		84
29	TP26	0.5	Non Hazardous		87
30	TP26[2]	1.6	Non Hazardous		90

environmental management for business

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
31	WS01	0.0-1.0	Non Hazardous		93
32	WS01[2]	1.0-2.0	Non Hazardous		96
33	WS02	0.0-1.0	Non Hazardous		99
34	WS02[2]	1.0-2.0	Non Hazardous		102
35	WS03	0.0-1.0	Non Hazardous		105
36	WS03[2]	1.0-2.0	Non Hazardous		108
37	WS03[3]	2.0-3.0	Non Hazardous		111
38	WS04	0.0-1.0	Non Hazardous		114
39	WS04[2]	1.0-2.0	Non Hazardous		117
40	WS05	0.0-1.0	Non Hazardous		120
41	WS05[2]	1.0-2.0	Non Hazardous		123
42	WS05[3]	2.0-3.0	Non Hazardous		126

Related documents

# Name	Description
1 OCM Waste Stream Updated 2021	waste stream template used to create this Job

Report

Created by: Austin Hynes Created date: 17 May 2022 10:43 GMT

Appendices	Page
Appendix A: Classifier defined and non EU CLP determinands	129
Appendix B: Rationale for selection of metal species	130
Appendix C: Version	131

Classification of sample: BH01

Non Hazardous Waste
Classified as 17 05 04
in the List of Waste

Sample details

Sample name: LoW Code:

BH01 Chapter:

Sample Depth: from contaminat

1.0 m Entry: 17 05 04 (Soil ar

Moisture content:

16% (no correction)

er: 17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
17 05 04 (Soil and stones other than those mentioned in 17 05

03)

Hazard properties

None identified

Determinands

Moisture content: 16% No Moisture Correction applied (MC)

#			Determinand		CLP Note	User entere	d data	Conv.	Compound	conc.	Classification value	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			ractor			value	MC /	Used
1	d	antimony { antimor	ny trioxide }			<2	ma/ka	1.197	<2.394	ma/ka	<0.000239 %		<lod< td=""></lod<>
	-	051-005-00-X	215-175-0	1309-64-4	1		mg/kg	1.157	2.004	Ingray	-0.000203 N		
2	4	arsenic { arsenic tr	rioxide }			14	mg/kg	1.32	18.485	mg/kg	0.00185 %		
_		033-003-00-0	215-481-4	1327-53-3	1		mg/kg	1.02	10.400	mg/kg	0.00100 %		
3	4	boron { diboron trie	oxide }			0.66	mg/kg	3.22	2.125	mg/kg	0.000213 %		
٠		005-008-00-8	215-125-8	1303-86-2	1	0.00	mg/kg	U.ZZ	2.120	mg/kg	0.000210 %		
4	4	cadmium { cadmiu	m oxide }			1.1	ma/ka	1.142	1.257	mg/kg	0.000126 %		
7		048-002-00-0	215-146-2	1306-19-0	1		mg/kg	1,142	1.207	mg/kg	0.000120 %		
5	4	chromium in chromoxide (worst case)		ds { * chromium(III)		14	mg/kg	1.462	20.462	mg/kg	0.00205 %		
			215-160-9	1308-38-9	1		No.						
6	4		he exception of ba	nds { chromium (VI) arium chromate and in this Annex }		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
_		copper { dicopper oxide; copper (I) oxide }			+								
7	4	029-002-00-X	215-270-7	1317-39-1	-	1200	mg/kg	1.126	1351.066	mg/kg	0.135 %		
_		lead { lead chroma		1317-39-1	+							+	
8	•	082-004-00-2	231-846-0	7758-97-6	1	130	mg/kg	1.56	202.776	mg/kg	0.013 %		
_		082-004-00-2 [231-846-0 [7758-97-6] mercury { mercury dichloride }									+		
9	*	080-010-00-X	231-299-8	7487-94-7	1	0.11	mg/kg	1.353	0.149	mg/kg	0.0000149 %		
					+	NUMBER OF						+	
10	*	042-001-00-9	215-204-7	1313-27-5	1	2.7	mg/kg	1.5	4.051	mg/kg	0.000405 %		
	A	nickel { nickel chro		10.10.2.	+		TENE					+	
11	~	028-035-00-7	238-766-5	14721-18-7	1	32	mg/kg	2.976	95.24	mg/kg	0.00952 %		
	B	selenium { nickel s		1	T		Thus Co.						
12	~	028-031-00-5	239-125-2	15060-62-5	1	0.37	mg/kg	2.554	0.945	mg/kg	0.0000945 %		
	A	zinc { zinc chroma	te }										
13		024-007-00-3	236-878-9	13530-65-9	1	290	mg/kg	2.774	804.502	mg/kg	0.0805 %		
		TPH (C6 to C40) p	etroleum group						VICE SUPPLY	The same			
14				TPH	1	<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
15		tert-butyl methyl et 2-methoxy-2-meth	ylpropane			<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4					100	3/35/3			

HazWasteOnline™ Report created by Austin Hynes on 17 May 2022

#			Determinand			User entered data		Conv.	Compound conc.		Classification value		Conc. No
		EU CLP index number	EC Number	CAS Number	CLP Note			dotoi			value	MC Applied	0000
6		benzene 601-020-00-8	200-753-7	71-43-2		<0.001 mg	/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		toluene	200-133-1	11-45-2	+	-0.004			-0.004		-0.0000001.8/		-I OD
7			203-625-9	108-88-3		<0.001 mg	/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
18	0	ethylbenzene				<0.001 mg	/ka		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
10		601-023-00-4	202-849-4	100-41-4		40.001 mg	rky		-0.001	mg/kg	-0.0000001 70		
19			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001 mg	/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	cyanides { salts exception of complete ferricyanides and management specified elsewhere 006-007-00-5	ex cyanides such nercuric oxycyanic	as ferrocyanides,		<0.5 mg	ı/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
21		naphthalene				<0.01 mg	/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	0	601-052-00-2 acenaphthylene	202-049-5	91-20-3	+				<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
22			205-917-1	208-96-8	1	<0.01 mg	/kg		-0.01	mg/kg	3.00001 76		-202
23		acenaphthene	201-469-6	83-32-9	-	<0.01 mg	j/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
24	0	fluorene		86-73-7	1	<0.01 mg	g/kg		<0.01	mg/kg	<0.000001 %		<loe< td=""></loe<>
	_	phenanthrene	201-695-5	00-73-7	+								
25			201-581-5	85-01-8		0.11 mg	g/kg		0.11	mg/kg	0.000011 %		
26	0	anthracene	204-371-1	120-12-7	-	0.06 mg	g/kg		0.06	mg/kg	0.000006 %		
27	0	fluoranthene		206-44-0	1	0.13 mg	g/kg		0.13	mg/kg	0.000013 %		
28	0	pyrene	205-912-4	129-00-0	+	0.12 mg	g/kg		0.12	mg/kg	0.000012 %		
29		benzo[a]anthracen	е	56-55-3		0.1 mg	g/kg		0.1	mg/kg	0.00001 %		
		601-033-00-9 chrysene	200-280-6	po-55-5	+	0.11	- Ilea		0.11	ma/ka	0.000011 %	T	
30		601-048-00-0	205-923-4	218-01-9		0.11 mg	g/kg		0.11	mg/kg	0.000011 %		
31		benzo[b]fluoranthe				0.13 mg	g/kg		0.13	mg/kg	0.000013 %		
	_	601-034-00-4	205-911-9	205-99-2	+							+	
32		benzo[k]fluoranthe 601-036-00-5	ne 205-916-6	207-08-9	-	0.13 mg	g/kg		0.13	mg/kg	0.000013 %		
33		benzo[a]pyrene; be		0.18 mg	g/kg		0.18	mg/kg	0.000018 %				
JJ		601-032-00-3	200-028-5	50-32-8		0.10 mg	y ny		0.10		2.2300.070	-	
34	0	indeno[123-cd]pyre	ene 205-893-2	193-39-5	_	0.11 mg	g/kg		0.11	mg/kg	0.000011 %		
35		dibenz[a,h]anthrac 601-041-00-2		53-70-3		0.11 mg	g/kg		0.11	mg/kg	0.000011 %		
36	0	benzo[ghi]perylene	e			0.13 mg	g/kg		0.13	mg/kg	0.000013 %		
	+	phenol	205-883-8	191-24-2	+				THE PARTY NAMED IN	Contract of	-0.00004.0/		-1.0
37		604-001-00-2	203-632-7	108-95-2		<0.1 mg	g/kg		<0.1	mg/kg	<0.00001 %		<loi< td=""></loi<>
38	0	polychlorobiphenyl	ls; PCB			<0.001 mg	g/kg		<0.001	mg/kg	<0.0000001 %		<loi< td=""></loi<>
		602-039-00-4	215-648-1	1336-36-3					No. of Concession, Name of Street, or other Designation, or other	Total	0.244 %	1	

Key	
	User supplied data
3333	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
-	0 11 10 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 5 1 1 1 1

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration 4

<LOD Below limit of detection ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: BH01[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:
BH01[2] Chapter:
Sample Depth:
2.0 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
17 05 04 (Soil and stones other than those mentioned in 17 05

03)

2.0 m Moisture content:

12% (no correction)

Hazard properties

None identified

Determinands

Moisture content: 12% No Moisture Correction applied (MC)

omium in chro	215-175-0 rioxide } 215-481-4 oxide } 215-125-8 Im oxide } 215-146-2 mium(III) compour }} 215-160-9 mium(VI) compour the exception of b	parium chromate and	CLP Note	<2 14 0.51 1.4	mg/kg mg/kg mg/kg	1.32	<2.394 18.485 1.642 1.599	mg/kg mg/kg mg/kg mg/kg	value <0.000239 % 0.00185 % 0.000164 % 0.00016 %	MC Applied	<lod< th=""></lod<>
-005-00-X enic { arsenic -003-00-0 on { diboron tr -008-00-8 lmium { cadmi -002-00-0 omium in chro de (worst case	215-175-0 rioxide } 215-481-4 oxide } 215-125-8 Im oxide } 215-146-2 mium(III) compour }} 215-160-9 mium(VI) compour the exception of b	1327-53-3 1303-86-2 1306-19-0 nds { ** chromium(III) 1308-38-9 nds { chromium (VI) arium chromate and		14 0.51 1.4	mg/kg mg/kg	1.32	18.485	mg/kg	0.00185 %		<lod< th=""></lod<>
enic { arsenic to 003-00-0 on { diboron tr 0-008-00-8 or 0-002-00-0 or 009-00-0 or 009-00-00-0 or 009-00-00-0 or 009-00-00-0 or 009-00-00-0 or 009-00-0 or 009-00-0 or 009-00-0 or 009-00-0 or 009-00-0 or 009-00-	rioxide } 215-481-4 oxide } 215-125-8 um oxide } 215-146-2 mium(III) compour }) 215-160-9 mium(VI) compour the exception of b	1327-53-3 1303-86-2 1306-19-0 nds { ** chromium(III) 1308-38-9 nds { chromium (VI) arium chromate and		14 0.51 1.4	mg/kg mg/kg	1.32	18.485	mg/kg	0.00185 %		
-003-00-0 on { diboron tr -008-00-8 Imium { cadmi -002-00-0 omium in chro de (worst case omium in chro onpounds, with	215-481-4 oxide } 215-125-8 um oxide } 215-146-2 mium(III) compour }} 215-160-9 mium(VI) compour the exception of b	1303-86-2 1306-19-0 Inds { ** chromium(III) 1308-38-9 Inds { chromium (VI) Parium chromate and		0.51	mg/kg	3.22	1.642	mg/kg	0.000164 %		
-003-00-0 on { diboron tr -008-00-8 Imium { cadmi -002-00-0 omium in chro de (worst case omium in chro onpounds, with	215-481-4 oxide } 215-125-8 um oxide } 215-146-2 mium(III) compour }} 215-160-9 mium(VI) compour the exception of b	1303-86-2 1306-19-0 Inds { ** chromium(III) 1308-38-9 Inds { chromium (VI) Parium chromate and		0.51	mg/kg	3.22	1.642	mg/kg	0.000164 %		
-008-00-8 Imium { cadmi -002-00-0 omium in chro de (worst case omium in chro npounds, with	215-125-8 215-125-8	1306-19-0 Inds { * chromium(III) 1308-38-9 Inds { chromium (VI) parium chromate and		1.4	mg/kg						
-008-00-8 Imium { cadmi -002-00-0 omium in chro de (worst case omium in chro npounds, with	215-125-8 215-125-8	1306-19-0 Inds { * chromium(III) 1308-38-9 Inds { chromium (VI) parium chromate and		1.4	mg/kg				0.00016 %		
omium in chro	mium(III) compour) } [215-146-2 mium(III) compour) } [215-160-9 mium(VI) compour the exception of b	nds { * chromium(III) 1308-38-9 Inds { chromium (VI) chromate and				1.142	1.599	mg/kg	0.00016 %		
omium in chro de (worst case omium in chro npounds, with	mium(III) compour) } 215-160-9 mium(VI) compour the exception of b	nds { * chromium(III) 1308-38-9 Inds { chromium (VI) chromate and				1.142	1.000	mgmg	0.0001070		1
omium in chro	215-160-9 mium(VI) compou the exception of b	1308-38-9 inds (chromium (VI) parium chromate and		13	ma/ka						
npounds, with	mium(VI) compou the exception of b	nds { chromium (VI) parium chromate and	1		mg/kg	1.462	2 19	mg/kg	0.0019 %		
npounds, with	the exception of b	parium chromate and		Assessment of the second						_	
chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }			<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>	
-017-00-8			1				A STATE OF THE STA	30		-	
copper { dicopper oxide; copper (I) oxide }				52	mg/kg	1.126	58.546	mg/kg	0.00585 %		
-002-00-X	215-270-7	1317-39-1	+		100				7.	+	
lead { lead chromate }			1	51	mg/kg	1.56	79.551	mg/kg	0.0051 %		
082-004-00-2 231-846-0 7758-97-6			\perp							+	
mercury { mercury dichloride }				0.1	mg/kg	1.353	0.135	mg/kg	0.0000135 %		
-010-00-X	231-299-8	7487-94-7								+	
molybdenum { molybdenum(VI) oxide }				3.1	mg/kg	1.5	4.651 mg/kg	mg/kg	0.000465 %		
-001-00-9	215-204-7	1313-27-5					(2.10/0.0)			+	
nickel { nickel chromate }				35	ma/ka	2.976	104,169	mg/kg	0.0104 %		
-035-00-7	238-766-5	14721-18-7								\perp	
enium { nickel	selenate }			0.56	mg/kg	2.554	1.43	mg/kg	0.000143 %		
-031-00-5	239-125-2	15060-62-5			gg					\perp	
zinc { zinc chromate }				110	ma/ka	2.774	305.156	ma/ka	0.0305 %		
zinc { zinc chromate } 024-007-00-3					mgmg					\perp	
A STATE OF THE PARTY OF THE PAR	petroleum group			<10	ma/ka		<10	ma/ka	<0.001 %		<lod< td=""></lod<>
-007-00-3		TPH			9.49						
-007-00-3				<0.001	ma/ka		<0.001	ma/ka	<0.0000001 %		<lod< td=""></lod<>
-	{ zinc chroma 007-00-3	{ zinc chromate } 007-00-3 236-878-9 (C6 to C40) petroleum group	{ zinc chromate } 007-00-3 236-878-9 13530-65-9 (C6 to C40) petroleum group TPH	{ zinc chromate } 007-00-3	{ zinc chromate } 007-00-3 236-878-9 13530-65-9 (C6 to C40) petroleum group TPH butyl methyl ether; MTBE;	{ zinc chromate } 007-00-3 236-878-9 13530-65-9 (C6 to C40) petroleum group TPH	{ zinc chromate }	{ zinc chromate }	{ zinc chromate }	{ zinc chromate } 110 mg/kg 2.774 305.156 mg/kg 0.0305 % 1007-00-3 236-878-9 13530-65-9 10 mg/kg 10 mg/kg <0.001 %	{ zinc chromate } 110 mg/kg 2.774 305.156 mg/kg 0.0305 % 007-00-3 236-878-9 13530-65-9 <10

HazWasteOnline[™]
Report created by Austin Hynes on 17 May 2022

		Determinand	AS Number	e c			Commercial	Classification	polied	Conc. No
#		EU CLP index EC Number CAS Number		User entered data		Conv. Factor	Compound conc.	value	MC Applied	Used
6		benzene		<0.001	mg/kg		<0.001 mg/k	g <0.0000001 %	П	<lod< td=""></lod<>
		601-020-00-8 200-753-7 71-43	-2						\vdash	
7		toluene 601-021-00-3 203-625-9 108-8	8.3	<0.001	mg/kg		<0.001 mg/k	g <0.0000001 %		<lod< td=""></lod<>
-		ethylbenzene	0-0						-	
8	•	601-023-00-4 202-849-4 100-4	1.4	<0.001	mg/kg		<0.001 mg/k	g <0.0000001 %		<lod< td=""></lod<>
+	Н		1-4							
9		203-576-3 [3] 108-3	2-6 [1] 2-3 [2] 8-3 [3] 20-7 [4]	<0.001	mg/kg		<0.001 mg/k	g <0.0000001 %		<loi< td=""></loi<>
0	4	cyanides (* salts of hydrogen cyanide with exception of complex cyanides such as ferroferricyanides and mercuric oxycyanide and the specified elsewhere in this Annex) 006-007-00-5	cyanides,	<0.5	mg/kg	1.884	<0.942 mg/k	g <0.0000942 %		<l00< td=""></l00<>
1		naphthalene		<0.01	mg/kg		<0.01 mg/k	g <0.000001 %		<loe< td=""></loe<>
		601-052-00-2 202-049-5 91-20	-3				AVERE EN LA			
2	0	acenaphthylene 205-917-1 208-9	6.8	<0.01	mg/kg		<0.01 mg/k	g <0.000001 %		<loi< td=""></loi<>
3	0	acenaphthene		<0.01	mg/kg		<0.01 mg/k	g <0.000001 %		<l0[< td=""></l0[<>
-	H	201-469-6 83-32	-9					A SECOND	-	
4		fluorene 201-695-5 86-73	7	<0.01	mg/kg		<0.01 mg/k	g <0.000001 %		<loi< td=""></loi<>
+			1-7		-		National State of the last	STATE OF THE OWNER, TH	-	
5		phenanthrene 201-581-5 85-01	0	0.11	mg/kg		0.11 mg/k	g 0.000011 %		
-		anthracene	-0						+	
6	9	204-371-1 120-1	2-7	0.089	mg/kg		0.089 mg/k	g 0.0000089 %		
_		fluoranthene			1000					
7		205-912-4 206-4	4-0	0.12	mg/kg		0.12 mg/k	g 0.000012 %		
		pyrene		0.45						
8		204-927-3 129-0	10-0	0.15	mg/kg		0.15 mg/k	g 0.000015 %		
		benzo[a]anthracene		0.44			0.44	0.000044.00		
9		601-033-00-9 200-280-6 56-55	-3	0.14	mg/kg		0.14 mg/k	g 0.000014 %		
0		chrysene		0.47			0.17 mg/k	g 0.000017 %		
٠		601-048-00-0 205-923-4 218-0	1-9	0.17	mg/kg		0.17 mg/k	g 0.000017%		
1		benzo[b]fluoranthene		0.15	malka		0.15 mg/k	g 0.000015 %		
•		601-034-00-4 205-911-9 205-9	9-2	0.15	mg/kg		0.15 Hig/k	9 0.000013 %		
2		benzo[k]fluoranthene		0.093	mg/kg		0.093 mg/k	g 0.0000093 %	\Box	
-		601-036-00-5 205-916-6 207-0	8-9	0.053	mg/kg		0.095 Hig/k	9 0.0000093 %		
3		benzo[a]pyrene; benzo[def]chrysene		0.11	mg/kg		0.11 mg/k	g 0.000011 %	\Box	
_		601-032-00-3 200-028-5 50-32	-8	0.11	mg/kg		o.ii iiig/k	9 0.00001170		
4		indeno[123-cd]pyrene 205-893-2 193-3	9-5	<0.01	mg/kg		<0.01 mg/k	g <0.000001 %		<l0[< td=""></l0[<>
5		dibenz[a,h]anthracene		<0.01	mg/kg		<0.01 mg/k	g <0.000001 %		<l0[< td=""></l0[<>
-		601-041-00-2 200-181-8 53-70	-3	40.01	mg/kg		-U.U. mg/k	0.000001 %		LUL
6		benzo[ghi]perylene		<0.01	mg/kg		<0.01 mg/k	q <0.000001 %		<l0[< td=""></l0[<>
_		205-883-8 191-2	4-2	-0.01	iliging		U.U. Ilig/k	5.00001 %		-201
7		phenol		<0.1	mg/kg		<0.1 mg/k	g <0.00001 %		<loi< td=""></loi<>
		604-001-00-2 203-632-7 108-9	5-2		g/ng		liig/k	0.000		
8	0	polychlorobiphenyls; PCB 602-039-00-4 215-648-1 1336-	26.2	<0.001	mg/kg		<0.001 mg/k	g <0.0000001 %		<loi< td=""></loi<>
		UUE-U39-UU-4 E13-040-1 1336	JU-J	The second secon				The second secon	400	

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 9 of 131

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: BH02A

Sample details

Sample name: BH02A LoW Code:

Chapter: Sample Depth:

from contaminated sites) Entry: 1.00 m 17 05 04 (Soil and stones other than those mentioned in 17 05

Moisture content:

18% (no correction)

Hazard properties

None identified

Determinands

Moisture content: 18% No Moisture Correction applied (MC)

#			Determinand		Note	User entere	Conv.		Compound conc.		Classification value		Conc. No
		EU CLP index number	EC Number	CAS Number	CLP			actor			value		Oseu
1	4	antimony { antimo	ny trioxide }		Г	<2	ma/ka	1.197	<2.394	ma/ka	<0.000239 %		<lod< td=""></lod<>
_		051-005-00-X	215-175-0	1309-64-4	1		mg/kg	1.101	2.004	mgmg	~0.000239 76		LOD
2	4	arsenic { arsenic t	rioxide }			6	mg/kg	1.32	7.922	mg/kg	0.000792 %		
_		033-003-00-0	215-481-4	1327-53-3	L		mgrkg	1.02	7.022	mg/ng	0.000752 70		
3	4	boron { diboron trioxide }				0.67	mg/kg	3.22	2.157	mg/kg	0.000216 %		
		005-008-00-8 215-125-8 1303-86-2								gr.vg	0.000210 /0		
4	4	cadmium { cadmium oxide }				0.6	ma/ka	1.142	0.685	mg/kg	0.0000685 %		
•		048-002-00-0	215-146-2	1306-19-0	1	0.0	mg/kg	1.172	0.000	mg/kg	0.0000000 76		
5	4	chromium in chror oxide (worst case)	}	ds { • chromium(III)		9.8	mg/kg	1.462	14.323	mg/kg	0.00143 %		
			215-160-9	1308-38-9	L		1100						
6	4	compounds, with t		rium chromate and		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
	_	024-017-00-8			1_					-			
7	4	copper { dicopper oxide; copper (I) oxide }				15	mg/kg	1 126	16.888 mg/	mg/kg	0.00169 %		
_	_	029-002-00-X	215-270-7	1317-39-1	1_		mgrkg	1.120	10.000	mg/ng	0.00105 %		
8	4	lead { lead chromate }				26	mg/kg	1 56	40.555	mg/kg	0.0026 %		
	_	082-004-00-2	231-846-0	7758-97-6	1	-	9.49	1.00	40.000	mgmg	0.0020 %		
9	4	mercury { mercury dichloride }				<0.1	ma/ka	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>	
_		080-010-00-X	231-299-8	7487-94-7			1.000	-0.100 mg/ng	mgrkg	0.0000133 /6		LOD	
10	4	molybdenum { molybdenum(VI) oxide }				<2	mg/kg	1.5	<3 ma/ka	ma/ka	<0.0003 %		<lod< td=""></lod<>
	-	042-001-00-9	215-204-7	1313-27-5			g.ng	1.0		mg/kg	0.0000		-200
11	4	nickel { nickel chro	mate }			21	mg/kg	2 976	62.502	mg/kg	0.00625 %		
-	_	028-035-00-7	238-766-5	14721-18-7	1		mgmg	2.010	02.002	mg/ng	0.00020 /0		
12	4	selenium { nickel s	selenate }			0.2	mg/kg	2 554	0.511	mg/kg	0.0000511 %		
	_	028-031-00-5	239-125-2	15060-62-5		-	mg/ng	2.001	0.011	mg/kg	0.0000011 70		
13	4	zinc { zinc chroma	te }			37	mg/kg	2 774	102.643	mg/kg	0.0103 %		
		024-007-00-3	236-878-9	13530-65-9		31	mg/kg	2.777	102.043	mg/kg	0.0103 76		
14	9	TPH (C6 to C40) p	etroleum group			<10	mg/kg	1	<10	ma/ka	<0.001 %		<lod< td=""></lod<>
				TPH		-10	mg/kg			mg/kg	0.501 /6		LOD
15		tert-butyl methyl et 2-methoxy-2-meth				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4									

HazWasteOnline™ Report created by Austin Hynes on 17 May 2022

#		Determinand		CLP Note			Conv.	Compound conc.		Classification value		Conc. No	
		EU CLP index number	EC Number	CAS Number	CLP			ractor			value	MC Applied	Osed
16		benzene 601-020-00-8	200-753-7	71-43-2	-	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
17		toluene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
`		601-021-00-3	203-625-9	108-88-3		7575			9000				
18	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4	-	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		xylene		1100	+		V 50 V		2000	100	-		
19		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	exception of com ferricyanides and specified elsewhe	s of hydrogen cyar plex cyanides such mercuric oxycyan ere in this Annex }	as ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5			+				- 100 100 100	dest	No. of the second		_
21		naphthalene 601-052-00-2	202-049-5	91-20-3	4	0.43	mg/kg		0.43	mg/kg	0.000043 %		
22		acenaphthylene			+	0.048	mg/kg		0.048	mg/kg	0.0000048 %	t	
23		acenaphthene	205-917-1	208-96-8	+	0.092	mg/kg		0.092	mg/kg	0.0000092 %	T	
-		fluorene	201-469-6	83-32-9	+							+	
24		lidorene	201-695-5	86-73-7	+	0.04	mg/kg	9	0.04	mg/kg	0.000004 %		
		phenanthrene		pr	†						0.00000.00		
25		prioritations	201-581-5	85-01-8	+	0.2	mg/kg	3	0.2	mg/kg	0.00002 %		
~		anthracene				0.038	malle		0.038	mg/kg	0.0000038 %		
26			204-371-1	120-12-7		0.036	mg/kg	,	0.030	mg/kg	0.0000000 /0		
27	9	fluoranthene				0.31	mg/kg	,	0.31	mg/kg	0.000031 %		
			205-912-4	206-44-0	1							-	
28		pyrene	204-927-3	129-00-0	4	0.34	mg/kg	,	0.34	mg/kg	0.000034 %		
		benzo[a]anthrace		0.24					0.000004.0/				
29		601-033-00-9	200-280-6	56-55-3		0.31	mg/kg	3	0.31	mg/kg	0.000031 %		
30		chrysene				0.3	mg/kg		0.3	mg/kg	0.00003 %		
30		601-048-00-0	205-923-4	218-01-9		0.5	mg/kg		0.5	mg/kg	0.00003 %		
31		benzo[b]fluoranth	nene			0.6	mg/kg	1	0.6	mg/kg	0.00006 %		
31		601-034-00-4		0.0	mg/mg		U.U mg/kg	0.00000 %	_				
32		benzo[k]fluoranth		607.00		0.24	mg/kg	9	0.24	mg/kg	0.000024 %		
_	\vdash	601-036-00-5	205-916-6	207-08-9	+							+	+
33		601-032-00-3	benzo[def]chrysen 200-028-5	50-32-8	-	0.58	mg/kg	9	0.58	mg/kg	0.000058 %		
	-	indeno[123-cd]py		00-02-0	+		1000			2000	0.000010.00		
34		dono[120-0d]p)	205-893-2	193-39-5	-	0.46	mg/kg	9	0.46	mg/kg	0.000046 %		
35		dibenz[a,h]anthra		50.70.0		0.13	mg/k	9	0.13	mg/kg	0.000013 %		
_	-	601-041-00-2	200-181-8	53-70-3	+							+	+
36		benzo[ghi]peryle	ne 205-883-8	191-24-2	\dashv	0.55	mg/k	9	0.55	mg/kg	0.000055 %		
	+	phonol	+				S (50,000)	COLE					
37		phenol 604-001-00-2	203-632-7	108-95-2	\dashv	<0.1	mg/k	g	<0.1	mg/kg	<0.00001 %		<loi< td=""></loi<>
20		polychlorobipher	+	c0 004	maller	0	<0.001	mg/kg	<0.0000001 %		<loi< td=""></loi<>		
38	1	602-039-00-4	215-648-1	1336-36-3		<0.001	mg/k	9	-0.001	mg/kg	0.000001 78	1	

CLP: Note 1 Only the metal concentration has been used for classification

HazWasteOnline™ Report created by Austin Hynes on 17 May 2022

Key	
	User supplied data
9300	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: BH02A[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

LoW Code:

Sample name: BH02A[2] Chapter: Sample Depth:

from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 2.0 m Entry:

Moisture content:

18% (no correction)

Hazard properties

None identified

Determinands

Moisture content: 18% No Moisture Correction applied (MC)

#			Determinand		CLP Note	User entered	i data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. No
		EU CLP index number	EC Number	CAS Number	CLP			racio			value	MC	Oscu
1	d	antimony { antimo	ny trioxide }			<2	ma/ka	1.197	<2.394	mg/kg	<0.000239 %		<lod< td=""></lod<>
•		051-005-00-X	215-175-0	1309-64-4	1		mg/kg	1.101		mgmg			
2	d	arsenic { arsenic to	rioxide }			11	mg/kg	1.32	14.524	mg/kg	0.00145 %		
_		033-003-00-0	215-481-4	1327-53-3	1		mg/kg	1.02	14.024	mgmg	0.0011010		
3	æ	boron { diboron tri	oxide }		П	0.41	mg/kg	3.22	1.32	mg/kg	0.000132 %		
3		005-008-00-8	215-125-8	1303-86-2		0.41	mg/kg	5.22	1.02	mg/ng	0.000102 /0		
4	d	cadmium { cadmiu	ım oxide }			0.47	m m/len	1 142	0.537	ma/ka	0.0000537 %		
4		048-002-00-0	215-146-2	1306-19-0		0.47	mg/kg	1.142	0.537	mg/kg	0.0000337 %		
5	4	chromium in chror		ds { * chromium(III)		27	mg/kg	1.462	39.462	mg/kg	0.00395 %		
			215-160-9	1308-38-9			1 304						
6	*		the exception of ba	nds { chromium (VI) arium chromate and n this Annex }		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
	+	024-017-00-8			1								
7	ě	copper { dicopper	oxide; copper (I) o	oxide }		19	ma/ka	1.126	21.392	mg/kg	0.00214 %		
•		029-002-00-X	215-270-7	1317-39-1	1		g.ng	11.120				_	
8	d	lead { lead chroma	ate }		1	22	ma/ka	1.56	34.316	mg/kg	0.0022 %		
0		082-004-00-2	231-846-0	7758-97-6	1		mgmg	1.00	•				
9	A	mercury { mercury	y dichloride }			<0.1	ma/ka	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
3		080-010-00-X	231-299-8	7487-94-7		-0.1	mg/kg	1.000	0.100	mg ng			
10	æ	molybdenum { mo	lybdenum(VI) oxid	ie }	Т	<2	mg/kg	1.5	<3	mg/kg	<0.0003 %		<lod< td=""></lod<>
10	•	042-001-00-9	215-204-7	1313-27-5		-	ilig/kg	1.5		mg/ng	0.0000 70		
11	æ	nickel { nickel chro	omate }		Т	34	ma/ka	2.976	101.193	mg/kg	0.0101 %		
11	•	028-035-00-7	238-766-5	14721-18-7	1	54	mg/kg	2.370	101.130	mg/kg	0.0101 70		
12	B	selenium { nickel s	selenate }		Т	<0.2	ma/lea	2.554	<0.511	mg/kg	<0.0000511 %		<lod< td=""></lod<>
12	•	028-031-00-5	239-125-2	15060-62-5	1	-0.2	mg/kg	2.554	40.511	Hig/kg	40.0000311 70		-202
	À	zinc { zinc chroma	ate }					0.774	152.578	ma allea	0.0153 %		
13	~	024-007-00-3	236-878-9	13530-65-9	1	55	mg/kg	2.774	152.576	mg/kg	0.0155 76		
		TPH (C6 to C40)	petroleum group		T	-10			<10	mallia	<0.001 %		<lod< td=""></lod<>
14		,		TPH	1	<10	mg/kg		10	mg/kg	-0.001 76		-200
15		tert-butyl methyl e 2-methoxy-2-meth				<0.001	mg/kg	,	<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4		-0.001 T	mgrkg						

er	IVI	ronmental management for business	_						_	
#		Determinand	CLP Note	User entered	d data	Conv.	Compound conc.	Classification value	Applied :	Conc. No Used
		EU CLP index EC Number CAS Number number	CL						MC	
16		benzene 601-020-00-8 200-753-7 71-43-2		<0.001	mg/kg		<0.001 mg/k	g <0.000001 %		<lod< td=""></lod<>
17		toluene		-0.004			-0.004/h	0.0000001.9/		<lod< td=""></lod<>
/		601-021-00-3 203-625-9 108-88-3		<0.001	mg/kg		<0.001 mg/k	g <0.0000001 %		LOD
18		ethylbenzene		<0.001	mg/kg		<0.001 mg/k	g <0.0000001 %		<lod< td=""></lod<>
	_	601-023-00-4 202-849-4 100-41-4	+							
19		xylene 601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001	mg/kg		<0.001 mg/k	g <0.0000001 %		<lod< td=""></lod<>
20	4	cyanides { * salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<0.5	mg/kg	1.884	<0.942 mg/k	g <0.0000942 %		<lod< td=""></lod<>
21	T	naphthalene		<0.01	mg/kg		<0.01 mg/k	g <0.000001 %		<lod< td=""></lod<>
_		601-052-00-2 202-049-5 91-20-3	+				The state of the state of			
22		acenaphthylene 205-917-1 208-96-8	4	<0.01	mg/kg		<0.01 mg/k	g <0.000001 %		<lod< td=""></lod<>
23		acenaphthene	+	<0.01	ma/lea		<0.01 mg/k	-0.000001.9/		<lod< td=""></lod<>
دى		201-469-6 83-32-9		~0.01	mg/kg		<0.01 mg/k	g <0.000001 %		\LOD
24	0	fluorene		<0.01	mg/kg		<0.01 mg/k	g <0.000001 %		<lod< td=""></lod<>
_	-	201-695-5 86-73-7	+		1 1 1 1				-	
25	9	phenanthrene 201-581-5 85-01-8	-	0.14	mg/kg		0.14 mg/k	g 0.000014 %		
	-	anthracene	+						+	
26		204-371-1 120-12-7	1	0.036	mg/kg		0.036 mg/k	g 0.0000036 %		
27	9	fluoranthene		0.1	mg/kg		0.1 mg/k	g 0.00001 %		
	L	205-912-4 206-44-0	1							
28		pyrene	_	0.19	mg/kg		0.19 mg/k	g 0.000019 %		
_	-	204-927-3 129-00-0 benzo[a]anthracene	+						+	
29		601-033-00-9 200-280-6 56-55-3	-	0.13	mg/kg		0.13 mg/k	g 0.000013 %		
30	T	chrysene	\top	0.24			0.24	0.000001.00	1	
SU		601-048-00-0 205-923-4 218-01-9		0.21	mg/kg		0.21 mg/k	g 0.000021 %		
31		benzo[b]fluoranthene		0.24	mg/kg		0.24 mg/k	g 0.000024 %		
	L	601-034-00-4 205-911-9 205-99-2	1						+	
32		benzo[k]fluoranthene	4	0.074	mg/kg		0.074 mg/k	g 0.0000074 %		
-	-	601-036-00-5 205-916-6 207-08-9 benzo[a]pyrene; benzo[def]chrysene	+						+	-
33		601-032-00-3 200-028-5 50-32-8	-	0.18	mg/kg		0.18 mg/k	g 0.000018 %		
		indeno[123-cd]pyrene	+						+	
34		205-893-2 193-39-5		0.11	mg/kg		0.11 mg/k	g 0.000011 %		
35		dibenz[a,h]anthracene		0.058	mg/kg		0.058 mg/k	g 0.0000058 %		
	-	601-041-00-2 200-181-8 53-70-3			99		gr		_	
36		benzo[ghi]perylene		0.2	mg/kg		0.2 mg/k	g 0.00002 %		
		205-883-8 191-24-2 phenol	+							-
37		604-001-00-2 203-632-7 108-95-2	-	<0.1	mg/kg		<0.1 mg/k	g <0.00001 %		<lod< td=""></lod<>
20	0		+				No.			
38		602-039-00-4 215-648-1 1336-36-3		<0.001	mg/kg		<0.001 mg/k	g <0.0000001 %		<lod< td=""></lod<>
							Tota	1: 0.0373 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 14 of 131 39PJ2-6JAD9-NHH05 www.hazwasteonline.com

Classification of sample: BH02A[3]

Sample details

Sample name: BH02A[3]

Chapter:

LoW Code:

Sample Depth: 3.0 m

from contaminated sites) Entry:

Moisture content:

17 05 04 (Soil and stones other than those mentioned in 17 05

17: Construction and Demolition Wastes (including excavated soil

17% (no correction)

Hazard properties

None identified

Determinands

Moisture content: 17% No Moisture Correction applied (MC)

#			Determinand		CLP Note	User entere	d data	Conv.	Compound	conc.	Classification value	Applied	Conc. No Used
		EU CLP index number	EC Number	CAS Number	CLP			ractor			value	MC/	Osed
1	4	antimony { antimo	ny trioxide }			<2	ma/ka	1.197	<2.394	ma/ka	<0.000239 %		<lod< td=""></lod<>
_		051-005-00-X	215-175-0	1309-64-4			mgrkg	1.707		mgrag			
2	4	arsenic { arsenic t	rioxide }			5.1	mg/kg	1.32	6.734	mg/kg	0.000673 %		
_		033-003-00-0	215-481-4	1327-53-3	1		9.1.9			99	0.0000.0		
3	4	boron { diboron tri	oxide }			0.56	mg/kg	3.22	1.803	mg/kg	0.00018 %		
_		005-008-00-8	215-125-8	1303-86-2	_	4	99						
4	4	cadmium { cadmiu	um oxide }			0.25	ma/ka	1.142	0.286	mg/kg	0.0000286 %		
		048-002-00-0	215-146-2	1306-19-0	1								
5	4	chromium in chror oxide (worst case)		ids { * chromium(III)		10	mg/kg	1.462	14.616	mg/kg	0.00146 %		
			215-160-9	1308-38-9									
6	4		the exception of ba	nds { chromium (VI) arium chromate and n this Annex }		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
		024-017-00-8			1								
7	4	copper { dicopper	oxide; copper (I) o	oxide }	П	7	ma/ka	1.126	7.881	mg/kg	0.000788 %		
_		029-002-00-X	215-270-7	1317-39-1	1		mg/kg	1.120	7.001	mg/kg	0.000700 %		
8	4	ead { lead chromate }			1	7.2	mg/kg	1 56	11.231	mg/kg	0.00072 %		
_		082-004-00-2	231-846-0	7758-97-6	Ľ	1.5	mgmg	1.00	11.201	mgmg	0.00012 N		
9	4	mercury { mercury	/ dichloride }			<0.1	ma/ka	1.353	<0.135	ma/ka	<0.0000135 %		<lod< td=""></lod<>
_		080-010-00-X	231-299-8	7487-94-7	1	-0.1	mg/ng	1.555	0,100	mgrag	D.SOSSIGS A		-200
10	4	molybdenum { mo	lybdenum(VI) oxid	le }		<2	mg/kg	1.5	<3	ma/ka	<0.0003 %		<lod< td=""></lod<>
		042-001-00-9	215-204-7	1313-27-5	1	100	mgmg	1.0		mgmg			-205
11	4	nickel { nickel chro	omate }			14	ma/ka	2.976	41.668	mg/kg	0.00417 %		
		028-035-00-7	238-766-5	14721-18-7			g.ng	2.5.0	11.000	mgmg	0.00417 /0		
12	4	selenium { nickel s	selenate }			<0.2	ma/ka	2.554	<0.511	ma/ka	<0.0000511 %		<lod< td=""></lod<>
_		028-031-00-5	239-125-2	15060-62-5	1		g.ng	2.00		mg ng			
13	4	zinc { zinc chroma	te }			29	ma/ka	2.774	80.45	mg/kg	0.00805 %		
_		024-007-00-3	236-878-9	13530-65-9	1		g.ng	2	00.10	mgmg	0.00000 //		
14		TPH (C6 to C40) p	petroleum group			<10	mg/kg		<10	ma/ka	<0.001 %		<lod< td=""></lod<>
				ТРН	1		99		B. Carlotte	99			
15		tert-butyl methyl et 2-methoxy-2-meth				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4	1								

environmental	manage	ement for	business

#		Determinand	AS Number	User entere	d data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. No
		EU CLP index EC Number C number	AS Number			T doilo.				MC	
6		benzene 601-020-00-8 200-753-7 71-43	3.2	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		toluene		-0.004			-0.004		<0.0000001 %		<lod< td=""></lod<>
7		601-021-00-3 203-625-9 108-	88-3	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		LOD
18		ethylbenzene		<0.001	mg/kg		<0.001	ma/ka	<0.0000001 %		<lod< td=""></lod<>
0		601-023-00-4 202-849-4 100	41-4	-0.001	mg/ng			mgmg			
19		203-396-5 [2] 106- 203-576-3 [3] 108-	7-6 [1] 42-3 [2] 38-3 [3] 0-20-7 [4]	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	cyanides { * salts of hydrogen cyanide with exception of complex cyanides such as ferriferricyanides and mercuric oxycyanide and specified elsewhere in this Annex }	ocyanides,	<0.5	mg/kg	1.884	<0.942	mg/kg	<0.000942 %		<lod< td=""></lod<>
		naphthalene					-0.04		-0.000001.8/		-1.00
21		601-052-00-2 202-049-5 91-2	0-3	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
22		acenaphthylene		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		205-917-1 208-	96-8		38						
23		acenaphthene		<0.01	mg/kg	3	<0.01	mg/kg	<0.000001 %		<loe< td=""></loe<>
		201-469-6 83-3	2-9					100000			
24	•	fluorene 201-695-5 86-7	2.7	<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %		<loe< td=""></loe<>
-		201-695-5 86-7 phenanthrene	3-1								
25		201-581-5 85-0	1-8	0.096	mg/kg	3	0.096	mg/kg	0.0000096 %		
	_	anthracene							0.000004.0/		
26	•		12-7	0.01	mg/kg	3	0.01	mg/kg	0.000001 %		
		fluoranthene		0.10	malle		0.18	ma/ka	0.000018 %		
27			44-0	0.18	mg/kg	•	0.10	mg/kg	0.000018 %		
28		pyrene		0.13	mg/kg	,	0.13	mg/kg	0.000013 %		
		204-927-3 129-	-00-0					-		+	
29		benzo[a]anthracene		0.089	mg/kg	9	0.089	mg/kg	0.0000089 %		
		601-033-00-9 200-280-6 56-5	55-3							+	
30		chrysene		0.077	mg/kg	9	0.077	mg/kg	0.0000077 %		
	-		-01-9					S407 (00)	NAME OF TAXABLE PARTY.		
31		benzo[b]fluoranthene	-99-2	<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %	5	<l0[< td=""></l0[<>
_	+		-99-2		-1-0						7. 2.
32		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-	-08-9	<0.01	mg/k	9	<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
_	+	benzo[a]pyrene; benzo[def]chrysene	000						-0.000004.00	0	-1.01
33			32-8	<0.01	mg/k	9	<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
		indeno[123-cd]pyrene		-0.01	malle	~	<0.01	malka	<0.000001 %		<loi< td=""></loi<>
34			-39-5	<0.01	mg/k	9	-0.01	mgrkg	0.000001 /8		
35		dibenz[a,h]anthracene		<0.01	mg/k	a	<0.01	ma/ko	<0.000001 %		<loi< td=""></loi<>
33		601-041-00-2 200-181-8 53-7	70-3	0.01	g. K						
36		benzo[ghi]perylene		<0.01	mg/k	g	<0.01	mg/kg	<0.000001 %	2	<lo< td=""></lo<>
		205-883-8 191	-24-2		11/4/19		ST. DOTTO		ORIGINAL SECTION		
37		phenol		<0.1	mg/k	g	<0.1	mg/kg	<0.00001 %		<lo< td=""></lo<>
-	-		-95-2	1-21-2			THE REAL PROPERTY.	THE REAL PROPERTY.			
38		polychlorobiphenyls; PCB		<0.001	mg/k	g	<0.001	mg/kg	<0.0000001 %		<lo< td=""></lo<>
		602-039-00-4 215-648-1 133	6-36-3				THE PARTY	Total	0.018 %	100	

	User supplied data
Males !	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: BH03

Sample details

Sample name: BH03

Entry:

Sample Depth:

1.0 m

Moisture content:

13%

(no correction)

LoW Code: Chapter:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05

Hazard properties

None identified

Determinands

Moisture content: 13% No Moisture Correction applied (MC)

#			Determinand		CLP Note	User entered	i data	Conv.	Compound	conc.	Classification value	Applied	Conc. No
		EU CLP index number	EC Number	CAS Number	CLP			, doto				MC	
1	4	antimony { antimor	ny trioxide }			<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< td=""></lod<>
		051-005-00-X	215-175-0	1309-64-4		- 117/2							
2	2	arsenic { arsenic tr	ioxide }			13	mg/kg	1.32	17.164	mg/kg	0.00172 %		
-		033-003-00-0	215-481-4	1327-53-3			g						
3	4	boron { diboron tric	oxide } 215-125-8	1303-86-2	-	<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< td=""></lod<>
	æ			1,500 55 2	\vdash								
4		048-002-00-0	215-146-2	1306-19-0	1	1.6	mg/kg	1.142	1.828	mg/kg	0.000183 %		
5	4		nium(III) compour	nds { * chromium(III)		13	mg/kg	1.462	19	mg/kg	0.0019 %		
			215-160-9	1308-38-9	L							_	
6	4	of compounds spe	he exception of ba	nds { chromium (VI) arium chromate and in this Annex }		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
		copper { dicopper oxide; copper (I) oxide }			_						SPINAL STATE		-
7	4				1	21	mg/kg	1.126	23.644	mg/kg	0.00236 %		
		029-002-00-X	215-270-7	1317-39-1	\perp							+	
8	4	lead { lead chroma			1	13	mg/kg	1.56	20.278	mg/kg	0.0013 %		
		082-004-00-2	231-846-0	7758-97-6	\perp					Same of the		+	-
9	4	mercury { mercury	dichloride }			<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %	8	<lod< td=""></lod<>
_		080-010-00-X	231-299-8	7487-94-7	\perp								_
10	4	molybdenum { mo	lybdenum(VI) oxid	de }		2.6	mg/kg	1.5	3.9	mg/kg	0.00039 %		
_		042-001-00-9	215-204-7	1313-27-5	1							+	
11	4	nickel { nickel chro	omate }			35	ma/ka	2.976	104.169	mg/kg	0.0104 %		
		028-035-00-7	238-766-5	14721-18-7	1							-	
12	4	selenium { nickel s	belenate }	15060-62-5	+	0.22	mg/kg	2.554	0.562	mg/kg	0.0000562 %		
	ھے	zinc { zinc chroma	ite }		T	64		0.774	177 545	ma/!	0.0178 %	T	
13	*	024-007-00-3	236-878-9	13530-65-9	+	64	mg/kg	2.774	177.545	mg/kg	0.0176 %		
3 3		TPH (C6 to C40)		1.222.22	T	-40			-10		-0.001 %		<lod< td=""></lod<>
14	9	(55.15.546)		TPH	+	<10	mg/kg	3	<10	mg/kg	<0.001 %		LOD
15		tert-butyl methyl e 2-methoxy-2-meth		1.00		<0.001	mg/kg	3	<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4			TEN:					8	

er	IVI	ronmental management for business	_	_							_	
#		Determinand EU CLP index	CLP Note	200	User entered da	ta	Conv. Factor	Compound of	onc.	Classification value	2 Applied	Conc. No Used
	L	number	ū	3							MC	
16		benzene 601-020-00-8 200-753-7 71-43-2	-		<0.001 mg	g/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
17		toluene			<0.001 mg	g/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
_	_	601-021-00-3 203-625-9 108-88-3	-							No. of the last		
18	0	ethylbenzene 601-023-00-4 202-849-4 100-41-4	_		<0.001 mg	g/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
-	-	xylene	+	+								
19		601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]			<0.001 mg	g/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }			<0.5 mg	g/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
	-	006-007-00-5 naphthalene	+	+								
21		601-052-00-2 202-049-5 91-20-3	-		<0.01 mg	g/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
22	0	acenaphthylene			<0.01 mc	g/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
_		205-917-1 208-96-8	7			3.1.9			mg/ng			
23	9	acenaphthene 201-469-6 83-32-9			<0.01 mg	g/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
_	-	fluorene	+	+								
24	0	201-695-5 86-73-7	\dashv		<0.01 mg	g/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
25	0	phenanthrene	\top		-0.04					-0.000004.00		
20		201-581-5 85-01-8			<0.01 mg	g/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26		anthracene			<0.01 mg	g/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	_	204-371-1 120-12-7	4			55			3.3			
27		fluoranthene	_		<0.01 mg	g/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
_		205-912-4 206-44-0	+	+				7.0500.00				
28	0	pyrene 204-927-3 129-00-0	\dashv		<0.01 mg	g/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		benzo[a]anthracene	+	1								
29		601-033-00-9 200-280-6 56-55-3	\dashv		<0.01 mg	g/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
30		chrysene			<0.01 mg	g/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
_		601-048-00-0 205-923-4 218-01-9			-0.01	g/ng		-0.01	ilig/kg	-0.000001 %		-200
31		benzo[b]fluoranthene			<0.01 mg	g/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
_		601-034-00-4 205-911-9 205-99-2	+	-				MS-Person		G G G G G G G G G G G G G G G G G G G		
32		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9	_	1	<0.01 mg	g/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		benzo[a]pyrene; benzo[def]chrysene	+	+								
33		601-032-00-3 200-028-5 50-32-8			<0.01 mg	g/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
34	9	indeno[123-cd]pyrene			-0.04	- /!		2000	- 11	-0.00000 st		
		205-893-2 193-39-5			<0.01 mg	g/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
35		dibenz[a,h]anthracene			<0.01 mg	g/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	-	601-041-00-2 200-181-8 53-70-3	-							ALCOHOLD SAND		
36		benzo[ghi]perylene 205-883-8 191-24-2	_		<0.01 mg	g/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		phenol	+	-						TISSAS AND THE		
37		604-001-00-2 203-632-7 108-95-2	-		<0.1 mg	g/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
38	0	polychlorobiphenyls; PCB			<0.001	2/60		<0.004	matte	<0.0000001.9/		<1.0D
		602-039-00-4 215-648-1 1336-36-3			<0.001 mg	g/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
									Total:	0.0377 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: BH03[2]

Sample details

LoW Code:

Sample name: BH03[2] Chapter:

from contaminated sites) Sample Depth: 17 05 04 (Soil and stones other than those mentioned in 17 05 2.00 m Entry:

Moisture content: 14%

(no correction)

Hazard properties

None identified

Determinands

Moisture content: 14% No Moisture Correction applied (MC)

#			Determinand		Note	User entere	d data	Conv.	Compound	conc.	Classification value	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			racioi			value	MC/	Osed
1	4	antimony { antimo	ny trioxide }			<2	ma/ka	1.197	<2.394	ma/ka	<0.000239 %		<lod< td=""></lod<>
•		051-005-00-X	215-175-0	1309-64-4			mg/kg	1.101		mg/kg			
2	4	arsenic { arsenic to	rioxide }			8.1	mg/kg	1.32	10.695	mg/kg	0.00107 %		
_		033-003-00-0	215-481-4	1327-53-3	L								
3	4	boron { diboron trie	oxide }			<0.4	mg/kg	3.22	<1.288	ma/ka	<0.000129 %		<lod< td=""></lod<>
		005-008-00-8	215-125-8	1303-86-2							THE STATE OF THE S		
4	4	cadmium (cadmiu	ım oxide }			1	ma/ka	1.142	1.142	mg/kg	0.000114 %		
_		048-002-00-0	215-146-2	1306-19-0			mgmg		1.1.72	mg/ng	0.000114 10		
5	4	chromium in chror oxide (worst case)		ds { * chromium(III)		7.2	mg/kg	1.462	10.523	mg/kg	0.00105 %		
			215-160-9	1308-38-9									
6	4	compounds, with to of compounds spe	he exception of ba	ds { chromium (VI) rium chromate and n this Annex }		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
_	_	024-017-00-8	24-017-00-8 opper { dicopper oxide; copper (I) oxide }										
7	4	SCIONAL PROPERTY.	Contract Con	Material *		14	mg/kg	1.126	15.762	mg/kg	0.00158 %		
	-	029-002-00-X	215-270-7	1317-39-1	L	1 The 10						\perp	
8	4		The state of the s		1	8	mg/kg	1.56	12.479	mg/kg	0.0008 %		
_		082-004-00-2	231-846-0	7758-97-6	-							_	-
9	4	mercury { mercury		h		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
_		080-010-00-X	231-299-8	7487-94-7	\vdash						3	-	
10	4	molybdenum { mo				<2	mg/kg	1.5	<3	mg/kg	<0.0003 %		<lod< td=""></lod<>
_	-	042-001-00-9	215-204-7	1313-27-5	\vdash		100			Section 1	Ni	-	
11	4	nickel { nickel chro		1/1=2/12		22	mg/kg	2.976	65.478	mg/kg	0.00655 %		
_	-	028-035-00-7	238-766-5	14721-18-7			A PART OF					+	
12	4	selenium { nickel s		1.5000.00.5		0.54	mg/kg	2.554	1.379	mg/kg	0.000138 %		
_	-	028-031-00-5	239-125-2	15060-62-5	H							+	-
13	4	zinc { zinc chroma	ie }	10500.05.0		40	mg/kg	2.774	110.966	mg/kg	0.0111 %		
_	-	024-007-00-3	236-878-9	13530-65-9					-			-	
14		TPH (C6 to C40) p	etroleum group	ben. :		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
				ТРН					Service Control		Maria Company	-	
15		tert-butyl methyl et 2-methoxy-2-meth	ylpropane			<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4					- The section	E 288	K Carlotte Co		

environmental	manac	ement	for	business
CITALL OLINITICATION	III ar iay	Letine 110	100	DUSHIESS

#		Determinand	er CLP Note	User entered	d data	Conv.	Compound conc.	Classification value	MC Applied	Conc. No
		EU CLP index EC Number CAS Number number	er J			i dotoi			MC	
6		benzene 601-020-00-8 200-753-7 71-43-2	-	<0.001	mg/kg		<0.001 mg/	kg <0.0000001 %		<lod< td=""></lod<>
-		toluene		<0.001	malka		<0.001 mg/	kg <0.0000001 %		<lod< td=""></lod<>
7		601-021-00-3 203-625-9 108-88-3		~0.001	mg/kg		40.001 High	kg -0.0000001 70		-202
8	0	ethylbenzene		<0.001	mg/kg		<0.001 mg	kg <0.0000001 %		<lod< td=""></lod<>
-	_	601-023-00-4 202-849-4 100-41-4	_							
9		xylene 601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001	mg/kg		<0.001 mg	kg <0.000001 %		<lod< td=""></lod<>
0	4	cyanides { * salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanide ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<0.5	mg/kg	1.884	<0.942 mg	kg <0.0000942 %	50	<lod< td=""></lod<>
		naphthalene		-0.04			-0.04	'kg <0.000001 %		<lod< td=""></lod<>
1		601-052-00-2 202-049-5 91-20-3		<0.01	mg/kg		<0.01 mg	19 -0.000001 78		LOL
2		acenaphthylene 205-917-1 208-96-8		<0.01	mg/kg		<0.01 mg	/kg <0.000001 %		<loe< td=""></loe<>
23		acenaphthene		<0.01	mg/kg		<0.01 mg	/kg <0.000001 %		<loi< td=""></loi<>
-	_	201-469-6 83-32-9 fluorene	-							
4	0	201-695-5 86-73-7	_	<0.01	mg/kg)	<0.01 mg	/kg <0.000001 %		<loi< td=""></loi<>
5	9	phenanthrene 201-581-5 85-01-8		<0.01	mg/kg	,	<0.01 mg	/kg <0.000001 %		<lo< td=""></lo<>
	-	anthracene	_		-			-0.000004.0/		<loi< td=""></loi<>
26		204-371-1 120-12-7		<0.01	mg/kg	9	<0.01 mg	/kg <0.000001 %		LOI
27	9	fluoranthene 205-912-4 206-44-0		<0.01	mg/kg	9	<0.01 mg	/kg <0.000001 %		<loi< td=""></loi<>
28	0	pyrene		<0.01	mg/kg	,	<0.01 mg	/kg <0.000001 %		<loi< td=""></loi<>
_	-	204-927-3 129-00-0 benzo[a]anthracene	_	<0.01			<0.01 mg	/kg <0.000001 %		<loi< td=""></loi<>
9		601-033-00-9 200-280-6 56-55-3		-0.01	mg/kg	9	-0.01 mg	-0.000001 N		
30		chrysene 601-048-00-0 205-923-4 218-01-9	_	<0.01	mg/kg	9	<0.01 mg	/kg <0.000001 %		<loi< td=""></loi<>
		benzo[b]fluoranthene		<0.01	mg/kg		<0.01 mg	/kg <0.000001 %		<loi< td=""></loi<>
31		601-034-00-4 205-911-9 205-99-2		-0.01	mg/k	9	10.01			
32		benzo[k]fluoranthene		<0.01	mg/kg	g	<0.01 mg	/kg <0.000001 %		<loi< td=""></loi<>
_		601-036-00-5 205-916-6 207-08-9	-							-
33		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5 50-32-8		<0.01	mg/k	9	<0.01 mg	/kg <0.000001 %		<lo< td=""></lo<>
34	0	indeno[123-cd]pyrene		<0.01	mg/k	g	<0.01 mg	/kg <0.000001 %		<lo< td=""></lo<>
25		205-893-2 193-39-5 dibenz[a,h]anthracene	+	<0.01	malle		<0.01 mg	/kg <0.000001 %		<lo< td=""></lo<>
35		601-041-00-2 200-181-8 53-70-3		-0.01	mg/k	9	Contract of the last	0.00000 7/0		
36		benzo[ghi]perylene 191-24-2		<0.01	mg/k	g	<0.01 mg	/kg <0.000001 %		<lo< td=""></lo<>
37	-	phenol		<0.1	mg/k	g	<0.1 mg	/kg <0.00001 %		<l0< td=""></l0<>
		604-001-00-2 203-632-7 108-95-2					The state of the s	79 7		
38		polychlorobiphenyls; PCB 602-039-00-4 215-648-1 1336-36-3	_	<0.001	mg/k	g	<0.001 mg	/kg <0.000001 %		<l0< td=""></l0<>
_	_						To	otal: 0.0243 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration 4

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: BH03[3]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:

BH03[3] Chapter:
Sample Depth:
3.0 m Entry:

from contaminated sites)
Entry: 17 05 04 (Soil and stones other than those mentioned in 17 05

17: Construction and Demolition Wastes (including excavated soil

03)

Moisture content:

(no correction)

Hazard properties

None identified

Determinands

Moisture content: 12% No Moisture Correction applied (MC)

#			Determinand		CLP Note	User entered	i data	Conv.	Compound	conc.	Classification	MC Applied	Conc. No Used
		EU CLP index number	EC Number	CAS Number	CLP			racio			Value	MC	0000
1	ď	antimony { antimor	y trioxide }		Г	<2	mg/kg	1.197	<2.394	ma/ka	<0.000239 %		<lod< td=""></lod<>
'		051-005-00-X	215-175-0	1309-64-4	1	-	mg mg	11.10					
2	4	arsenic { arsenic tr	ioxide }			9.9	mg/kg	1.32	13.071	ma/ka	0.00131 %		
-		033-003-00-0	215-481-4	1327-53-3	1	0.0	mg/ng					_	
3	4	boron { diboron tric	xide } 215-125-8	1303-86-2		0.58	mg/kg	3.22	1.868	mg/kg	0.000187 %		
	æ	cadmium { cadmiu	m oxide)			11		4.440	4.440		0.000114 %		
4		048-002-00-0	215-146-2	1306-19-0	1	1	mg/kg	1.142	1.142	mg/kg	0.000114 %		
5	4		nium(III) compoun }	ds { * chromium(III)		9.9	mg/kg	1.462	14.469	mg/kg	0.00145 %		
			215-160-9	1308-38-9	1							_	
6	4	compounds, with the of compounds spe	he exception of ba	nds { chromium (VI) arium chromate and n this Annex }		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
		024-017-00-8			+				The second second	-150			
7	-	copper { dicopper			1	14	mg/kg	1.126	15.762	mg/kg	0.00158 %		
		029-002-00-X	215-270-7	1317-39-1	+							+	
8	4	lead { lead chroma			1	11	mg/kg	1.56	17.158	mg/kg	0.0011 %		
		082-004-00-2	231-846-0	7758-97-6	+		11200					-	
9	4	mercury { mercury				<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
		080-010-00-X	231-299-8	7487-94-7	+				104 7 4				
10	4	molybdenum { mol				<2	mg/kg	1.5	<3	mg/kg	<0.0003 %		<lod< td=""></lod<>
		042-001-00-9	215-204-7	1313-27-5	\perp						gest to		
11	4	nickel { nickel chro	mate }			24	mg/kg	2.976	71.43	mg/kg	0.00714 %		
•		028-035-00-7	238-766-5	14721-18-7	1				2.750			+	
12	4	selenium { nickel s	elenate }			0.34	mg/kg	2.554	0.868	mg/kg	0.0000868 %		
		028-031-00-5	239-125-2	15060-62-5	1		111					+	
13	4	zinc { zinc chroma	te }			43	mg/kg	2.774	119.288	mg/kg	0.0119 %		
		024-007-00-3	236-878-9	13530-65-9								-	
14	0	TPH (C6 to C40) p	etroleum group			<10	mg/kg	,	<10	mg/kg	<0.001 %		<lod< td=""></lod<>
				TPH			9 "8						
15		tert-butyl methyl e 2-methoxy-2-meth				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %	NO.	<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4						1-1-25	BOSTON OF		

er	IVI	ronmental management for business	_						_	
#		Determinand	CLP Note	User entered of	lata	Conv.	Compound conc.	Classification value	Applied	Conc. No
		EU CLP index number CAS Number	S						MC	
16		benzene		<0.001	ng/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-020-00-8 200-753-7 71-43-2	1		0 0					-
17		toluene 601-021-00-3 203-625-9 108-88-3	4	<0.001	ng/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
_		601-021-00-3 203-625-9 108-88-3 ethylbenzene	+						-	
18		601-023-00-4 202-849-4 100-41-4	+	<0.001 r	ng/kg		<0.001 mg/kg	<0.0000001 %	1	<lod< td=""></lod<>
		xylene	+							
19		601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001 r	ng/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	cyanides { * salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<0.5 r	ng/kg	1.884	<0.942 mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5 naphthalene	+	Value of the					-	
21		601-052-00-2 202-049-5 91-20-3	+	<0.01 r	ng/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
22		acenaphthylene	+	40.04			-0.04	-0.00000		
22		205-917-1 208-96-8		<0.01 r	ng/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
23		acenaphthene	Т	<0.01	ng/kg		<0.01 mg/kg	<0.000001 %	-	<lod< td=""></lod<>
		201-469-6 83-32-9	1	40.01	ilg/kg		-0.01 mg/kg	-0.000001 /6		LOD
24		fluorene		<0.01	ng/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
		201-695-5 86-73-7	\perp					10 1 m 10 m		
25		phenanthrene	4	0.24	ng/kg		0.24 mg/kg	0.000024 %		
		201-581-5 85-01-8 anthracene	+						+	
26		204-371-1 120-12-7	+	0.069	ng/kg		0.069 mg/kg	0.0000069 %		
		fluoranthene	+							
27		205-912-4 206-44-0	1	0.23 r	ng/kg		0.23 mg/kg	0.000023 %		
28		pyrene		0.19	ng/kg		0.19 mg/kg	0.000019 %		
		204-927-3 129-00-0		0.19	ilg/kg		0.19 mg/kg	0.000019 %		
29		benzo[a]anthracene		<0.01 r	ng/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-033-00-9 200-280-6 56-55-3	1		-3 -3					
30		chrysene	1	<0.01	ng/kg		<0.01 mg/kg	<0.000001 %	ı	<lod< td=""></lod<>
		601-048-00-0 205-923-4 218-01-9	+							
31		benzo[b]fluoranthene 601-034-00-4 205-911-9 205-99-2	4	<0.01 r	ng/kg		<0.01 mg/kg	<0.000001 %	1	<lod< td=""></lod<>
		benzo[k]fluoranthene	+							
32		601-036-00-5 205-916-6 207-08-9	+	<0.01 r	ng/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
20		benzo[a]pyrene; benzo[def]chrysene			16					
33		601-032-00-3 200-028-5 50-32-8	1	<0.01 r	ng/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
34		indeno[123-cd]pyrene 205-893-2 193-39-5		<0.01 r	ng/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
		dibenz[a,h]anthracene	+							
35		601-041-00-2 200-181-8 53-70-3	1	<0.01 r	ng/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
36		benzo[ghi]perylene		<0.01 r	na/ke		<0.01 mg/kg	<0.000004.00		<lod< td=""></lod<>
-		205-883-8 191-24-2		-0.01 I	ng/kg		-U.UT mg/kg	<0.000001 %		\LUD
37		phenol		<0.1 r	ng/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
		604-001-00-2 203-632-7 108-95-2	1		5 "8		9/19			
38		polychlorobiphenyls; PCB 602-039-00-4 215-648-1 1336-36-3	-	<0.001 r	ng/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
	_	602-039-00-4 215-648-1 1336-36-3					Total:	0.0267 %	-	

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: BH04

Sample details

LoW Code:

Sample name: BH04 Chapter: Sample Depth:

from contaminated sites) 1.0 m Entry: 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Moisture content:

26% (no correction)

Hazard properties

None identified

Determinands

Moisture content: 26% No Moisture Correction applied (MC)

#			Determinand		Note	User entere	d data	Conv.	Compound	conc.	Classification	MC Applied	Conc. No
		EU CLP index number	EC Number	CAS Number	CLP			racioi			value	MC/	Used
1	4	antimony { antimo	ny trioxide }		Г	<2	ma/ka	1.197	<2.394	ma/ka	<0.000239 %		<lod< td=""></lod<>
_		051-005-00-X	215-175-0	1309-64-4			mgrkg	1.101	2.00	mgrkg	-0.000253 N		LOD
2	4	arsenic { arsenic to	rioxide }			13	mg/kg	1 32	17.164	mg/kg	0.00172 %		
_		033-003-00-0	215-481-4	1327-53-3	1_		mgmg	1.52	17.104	mg/ng	0.00172 %		
3	4	boron { diboron tri	oxide }			<0.4	mg/kg	3.22	<1.288	ma/ka	<0.000129 %	П	<lod< td=""></lod<>
_		005-008-00-8	215-125-8	1303-86-2	1	-0.4	mgrkg	J.ZZ	1.200	Illyrky	-0.000125 %		LOD
4	4	cadmium { cadmiu	ım oxide }			1.7	ma/ka	1.142	1.942	mg/kg	0.000194 %		
_		048-002-00-0	215-146-2	1306-19-0	1	1.7	my/kg	1.142	1.542	mg/kg	0.000194 %		
5	4	chromium in chronoxide (worst case)	. ,	ds { * chromium(III)		23	mg/kg	1.462	33.616	mg/kg	0.00336 %		
			215-160-9	1308-38-9	1								
6	4		he exception of ba	ds { chromium (VI) arium chromate and a this Annex }		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
		024-017-00-8			1_					1	Barrier Street		
7	4	copper { dicopper	oxide; copper (I) o	xide }	П	22	ma/ka	1.126	24.77	mg/kg	0.00248 %		
_		029-002-00-X	215-270-7	1317-39-1	1	22	mg/kg	1.120	24.11	mg/kg	0.00246 %		
8	2	lead { lead chroma	ate }		1	18	ma then	1 50	28.077		0.0018 %		
•		082-004-00-2	231-846-0	7758-97-6	1'	10	mg/kg	1.30	20.077	mg/kg	0.0018 %		
9	2	mercury { mercury	dichloride }			<0.1		4.050	-0.405		-0.0000405.0/		
9		080-010-00-X	231-299-8	7487-94-7	1	~ 0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10	2	molybdenum { mol	lybdenum(VI) oxid	e }		2		4.5	_		0.0000.01		
10		042-001-00-9	215-204-7	1313-27-5	1	2	mg/kg	1.5	3	mg/kg	0.0003 %		
11	æ	nickel { nickel chro	mate }			42		0.076	405.000		0.0405.04		
		028-035-00-7	238-766-5	14721-18-7	1	42	mg/kg	2.976	125.003	mg/kg	0.0125 %		
10	d	selenium { nickel s	elenate }			-0.0	200		11/22/20				
12	•	028-031-00-5	239-125-2	15060-62-5	1	<0.2	mg/kg	2.554	<0.511	mg/kg	<0.0000511 %		<lod< td=""></lod<>
12	æ	zinc { zinc chroma	te }			00			200 52-				
13		024-007-00-3	236-878-9	13530-65-9		86	mg/kg	2.774	238.577	mg/kg	0.0239 %		
14		TPH (C6 to C40) p	etroleum group			-40		- 1		1			
14				TPH		<10	mg/kg	- 1	<10	mg/kg	<0.001 %		<lod< td=""></lod<>
15		tert-butyl methyl et 2-methoxy-2-methy				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4									

Ī		onmental management for business Determinand	ote			Conv.		Classification	Applied	Conc. No
#		EU CLP index EC Number CAS Number	CLP Note	User entered	d data	Factor	Compound conc.	value	MC Ap	Used
	+	benzene	+	<0.001	mg/kg		<0.001 mg/	kg <0.0000001 %		<lod< td=""></lod<>
6		601-020-00-8 200-753-7 71-43-2		40.001	ilig/kg		-0.001 mg	9 0.000000		
7		toluene		<0.001	mg/kg		<0.001 mg/	kg <0.0000001 %		<lod< td=""></lod<>
4		601-021-00-3 203-625-9 108-88-3	+		_ 117 _		E-SEMENTER BOOK			-
8		ethylbenzene	_	<0.001	mg/kg		<0.001 mg/	kg <0.0000001 %	ı	<lod< td=""></lod<>
_		601-023-00-4 202-849-4 100-41-4	+							-
9		xylene 601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4] 95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001	mg/kg		<0.001 mg	kg <0.000001 %		<lod< td=""></lod<>
0	4	cyanides { * salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<0.5	mg/kg	1.884	<0.942 mg	kg <0.0000942 %		<lod< td=""></lod<>
1		006-007-00-5 naphthalene	+	<0.01	mg/kg		<0.01 mg	kg <0.000001 %		<lod< td=""></lod<>
		601-052-00-2 202-049-5 91-20-3	1				20 PONES CONTRACTOR			-
2		acenaphthylene 205-917-1 208-96-8	-	<0.01	mg/kg		<0.01 mg	kg <0.000001 %		<lod< td=""></lod<>
3	0	acenaphthene	1	<0.01	mg/kg		<0.01 mg	kg <0.000001 %		<lod< td=""></lod<>
-		201-469-6 83-32-9	+							
4	0	101-695-5 86-73-7	+	<0.01	mg/kg		<0.01 mg	kg <0.000001 %		<lod< td=""></lod<>
5		phenanthrene 201-581-5 85-01-8	_	<0.01	mg/kg		<0.01 mg	kg <0.000001 %		<lod< td=""></lod<>
6		anthracene	1	<0.01	mg/kg		<0.01 mg	kg <0.000001 %		<lod< td=""></lod<>
_	_	204-371-1 120-12-7	+		3 3		STATE OF THE PARTY			1
27	•	205-912-4 206-44-0	+	<0.01	mg/kg	9	<0.01 mg	kg <0.000001 %	ii.	<loe< td=""></loe<>
28	0	pyrene	1	<0.01	mg/kg	,	<0.01 mg	kg <0.000001 %		<loe< td=""></loe<>
29		204-927-3 129-00-0 benzo[a]anthracene	$^{+}$	<0.01	mg/kg		<0.01 mg	/kg <0.000001 %		<loe< td=""></loe<>
		601-033-00-9 200-280-6 56-55-3								
30		chrysene 601-048-00-0 205-923-4 218-01-9		<0.01	mg/kg	,	<0.01 mg	/kg <0.000001 %		<loe< td=""></loe<>
-			+				-			
31		benzo[b]fluoranthene 601-034-00-4 205-911-9 205-99-2	\dashv	<0.01	mg/kg	9	<0.01 mg	/kg <0.000001 %	8	<loe< td=""></loe<>
-			+		5 5-5-5		The state of the s			
32		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9	\dashv	<0.01	mg/k	9	<0.01 mg	/kg <0.000001 %		<lod< td=""></lod<>
-		benzo[a]pyrene; benzo[def]chrysene	+	1					2	-1.05
33	1	601-032-00-3 200-028-5 50-32-8	\dashv	<0.01	mg/k	9	<0.01 mg	/kg <0.000001 %		<loi< td=""></loi<>
34	0	indeno[123-cd]pyrene 205-893-2 193-39-5	1	<0.01	mg/k	9	<0.01 mg	/kg <0.000001 %	07	<loi< td=""></loi<>
35		dibenz[a,h]anthracene		<0.01	mg/k	g	<0.01 mg	/kg <0.000001 %		<loi< td=""></loi<>
	-	601-041-00-2 200-181-8 53-70-3	+							
36		benzo[ghi]perylene 205-883-8 191-24-2	-	<0.01	mg/k	g	<0.01 mg	/kg <0.000001 %	1	<loi< td=""></loi<>
37		phenol		<0.1	mg/k	g	<0.1 mg	/kg <0.00001 %		<loi< td=""></loi<>
	-	604-001-00-2 203-632-7 108-95-2	+							-
38		polychlorobiphenyls; PCB 602-039-00-4 215-648-1 1336-36-3	\dashv	<0.001	mg/k	9	<0.001 mg	/kg <0.0000001 %		<loi< td=""></loi<>
_		002-039-00-4 K 13-040-1 1330-30-3			11 - 1		T	tal: 0.0479 %		

Key	
	User supplied data
10000	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
_	

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: BH04[2]

Sample details

Sample name:

LoW Code:

BH04[2] Sample Depth: Chapter:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

2.0 m

Entry:

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Moisture content:

14%

(no correction)

Hazard properties

None identified

Determinands

Moisture content: 14% No Moisture Correction applied (MC)

#		Determinand		CLP Note	User entered	l data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. No
		EU CLP index EC Number CAS number	Number	CLP			ractor				MC	
1	ė	antimony { antimony trioxide }			<2	mg/kg	1 197	<2.394	mg/kg	<0.000239 %		<lod< td=""></lod<>
'		051-005-00-X 215-175-0 1309-64	-4		-	mgmg						
2	d	arsenic { arsenic trioxide }			12	mg/kg	1 32	15.844	mg/kg	0.00158 %		
-		033-003-00-0 215-481-4 1327-53	-3	1	"-	mg/ng	1.02	10.011	99			
3	æ	boron { diboron trioxide }			<0.4	mg/kg	3.22	<1.288	ma/ka	<0.000129 %		<lod< td=""></lod<>
3		005-008-00-8 215-125-8 1303-86	-2	1	-0.4	mg/kg	J.ZZ	1.200	IIIgritg			
4	æ	cadmium { cadmium oxide }			1.8	mg/kg	1 142	2.056	mg/kg	0.000206 %		
4		048-002-00-0 215-146-2 1306-19	0-0	1	1.0	myrky	1.142	2.000	mg/kg	0.000200 %		
5	4	chromium in chromium(III) compounds { * chromium (worst case) }	omium(III)		12	mg/kg	1.462	17.539	mg/kg	0.00175 %		
		215-160-9 1308-38	3-9	1							_	
6	4	chromium in chromium(VI) compounds { chromium compounds, with the exception of barium chromof compounds specified elsewhere in this Anne	mate and		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
		024-017-00-8				11		12 10 10				
7	d	copper { dicopper oxide; copper (I) oxide }			21	ma/ka	1.126	23.644	mg/kg	0.00236 %		
•		029-002-00-X 215-270-7 1317-39	9-1	1							-	
8	d	lead { lead chromate }		1	11	ma/ka	1.56	17.158	mg/kg	0.0011 %		
_		082-004-00-2 231-846-0 7758-97	7-6	1							-	-
9	d	mercury { mercury dichloride }			<0.1	ma/ka	1.353	<0.135	ma/ka	<0.0000135 %	1	<lod< td=""></lod<>
		080-010-00-X 231-299-8 7487-94	1-7	1				12000				-
10	4	molybdenum { molybdenum(VI) oxide }			3.2	mg/kg	1.5	4.801	mg/kg	0.00048 %		
	Ĩ	042-001-00-9 215-204-7 1313-27	7-5	1							_	
11	4	nickel { nickel chromate }			40	ma/ka	2.976	119.051	mg/kg	0.0119 %		
''		028-035-00-7 238-766-5 14721-1	18-7	1							_	
12	J.	selenium { nickel selenate }			1.2	ma/ka	2.554	3.065	mg/kg	0.000306 %		
12		028-031-00-5 239-125-2 15060-6	52-5	1				777			_	-
13	e P	zinc { zinc chromate }			61	ma/ka	2.774	169.223	mg/kg	0.0169 %		
13	•	024-007-00-3 236-878-9 13530-6	65-9	1	01	mg/kg	2.774	100.220	mgmg	0.0.100 //		
1.4	0	TPH (C6 to C40) petroleum group			<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
14		TPH		1	0	mg/ Ng		Appel				
15		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane			<0.001	mg/kg	,	<0.001	mg/kg	<0.0000001 %		<loe< td=""></loe<>
		603-181-00-X 216-653-1 1634-04	4-4						100		-	

#		Determinand		Note	User entere	d data	Conv.	Compound	conc.	Classification	Applied	Conc. No
		EU CLP index EC Number number	CAS Number	CLP Note			Factor	Compound		value	MCA	Used
6		benzene			<0.001	mg/kg		<0.001	ma/ka	<0.0000001 %		<lod< td=""></lod<>
		601-020-00-8 200-753-7	71-43-2	1					11313			
7		toluene			<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
4	_	601-021-00-3 203-625-9	108-88-3	+				Market Street		SECTION SECTION		
8	•	ethylbenzene 601-023-00-4 202-849-4	100-41-4	-	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
-			100-41-4	+						Control of the Contro	-	
9		xylene 601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<loe< td=""></loe<>
0	4	cyanides { ** salts of hydrogen cyanides suclear cyanides and ferricyanides and mercuric oxycyan specified elsewhere in this Annex }	as ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<loe< td=""></loe<>
	_	naphthalene		+	THE RESERVE TO				COV. CE			
1		601-052-00-2 202-049-5	91-20-3		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
2	9	acenaphthylene			-0.04			-0.04		-0.00000c.cv		-1
2		205-917-1	208-96-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<loe< td=""></loe<>
3	0	acenaphthene			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<l0[< td=""></l0[<>
		201-469-6	83-32-9		-0.01	mg/kg		40.01	iliging	40.000001 70		LOL
4	0	fluorene 201-695-5	00.70.7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<loe< td=""></loe<>
+		phenanthrene	86-73-7	+				25/10/2015				
5		201-581-5	85-01-8	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<l00< td=""></l00<>
		anthracene	05-01-0	+						20	-	
6	0	204-371-1	120-12-7	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	1	<loe< td=""></loe<>
	0	fluoranthene	100 101	+	Music Color							
7		205-912-4	206-44-0	+	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<loe< td=""></loe<>
8		pyrene			-0.04				N. State of the Local Division in the Local			
8		204-927-3	129-00-0	+	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<l0[< td=""></l0[<>
9		benzo[a]anthracene	•		<0.01	malka		<0.01	malka	-0.000001.94		<l0[< td=""></l0[<>
9		601-033-00-9 200-280-6	56-55-3		20.01	mg/kg		70.01	mg/kg	<0.000001 %		LOL
0		chrysene		Т	<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<l00< td=""></l00<>
		601-048-00-0 205-923-4	218-01-9		-0.01	mg/kg		0.01	mg/kg	-0.000001 X		LOL
1		benzo[b]fluoranthene			<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<loe< td=""></loe<>
		601-034-00-4 205-911-9	205-99-2	1								
2		benzo[k]fluoranthene			<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<loe< td=""></loe<>
4		601-036-00-5 205-916-6	207-08-9	1	H-A-F							
3		benzo[a]pyrene; benzo[def]chrysen		4	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<loe< td=""></loe<>
-		601-032-00-3 200-028-5	50-32-8	+								
4		indeno[123-cd]pyrene 205-893-2	193-39-5	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<loe< td=""></loe<>
5		dibenz[a,h]anthracene	155-55-5	+	-0.04			-0.01		-0.000004.01		
9		601-041-00-2 200-181-8	53-70-3		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
6		benzo[ghi]perylene			<0.01	malka		<0.01	me/ke	<0.000001 %		<lod< td=""></lod<>
		205-883-8	191-24-2		-0.01	mg/kg		10.01	mg/kg	3.000001 76		-LUL
7		phenol			<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<loe< td=""></loe<>
		604-001-00-2 203-632-7	108-95-2			mgrky			mgrkg	3.00031 70		LOL
		polychlorobiphenyls; PCB				126.00		-0.004	1	<0.0000001 %		
8		602-039-00-4 215-648-1	1336-36-3	_	< 0.001	mg/kg	100	< 0.001	mg/kg	<0.0000001 %		<loe< td=""></loe<>

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration 4

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

www.hazwasteonline.com 39PJ2-6JAD9-NHH05 Page 32 of 131

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: BH05

Non Hazardous Waste
Classified as 17 05 04
in the List of Waste

Sample details

Sample name: LoW Code:

BH05 Chapter: Sample Depth:

Sample Depth:

1.00 m Entry: from contaminated sites)
17 05 04 (Soil and stones other than those mentioned in 17 05 03)

(no correction)

Hazard properties

None identified

Determinands

Moisture content: 10% No Moisture Correction applied (MC)

#			Determinand		Note	User entere	d data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			racioi			value	MC/	Osed
1	4	antimony { antimor	The same of the sa			<2	mg/kg	1.197	<2.394	ma/ka	<0.000239 %		<lod< td=""></lod<>
		051-005-00-X	215-175-0	1309-64-4	\perp								
2	4	arsenic { arsenic tr				11	mg/kg	1.32	14.524	mg/kg	0.00145 %		
		033-003-00-0	215-481-4	1327-53-3		Contract Contracts							
3	4	boron { diboron tric	The second secon			<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< td=""></lod<>
		005-008-00-8	215-125-8	1303-86-2	L								10000
4	4	cadmium { cadmiu	ım oxide }			1.3	ma/ka	1.142	1.485	mg/kg	0.000149 %		
		048-002-00-0	215-146-2	1306-19-0									
5	4	chromium in chron oxide (worst case)	}	ds { • chromium(III)		9.2	mg/kg	1.462	13.446	mg/kg	0.00134 %		
			215-160-9	1308-38-9									
6	4	chromium in chron compounds, with t of compounds spe 024-017-00-8	he exception of ba	rium chromate and		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
7	æ	copper { dicopper	oxide; copper (I) o	xide }		04		4.400	00.044		0.00000.00		
1	_	029-002-00-X	215-270-7	1317-39-1		21	mg/kg	1.126	23.644	mg/kg	0.00236 %		
8	A	lead { lead chroma	ite }					4.50	04.040		0.0000.00	T	
۰	•	082-004-00-2	231-846-0	7758-97-6	1	22	mg/kg	1.56	34.316	mg/kg	0.0022 %		
9	4	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
	A	molybdenum { mol	lybdenum(VI) oxide	3		O O LIVE OF	100		To a second		E. Burgos St. (1)		
10	~	042-001-00-9	215-204-7	1313-27-5	1	<2	mg/kg	1.5	<3	mg/kg	<0.0003 %		<lod< td=""></lod<>
	A	nickel { nickel chro	mate }										
11	•	028-035-00-7	238-766-5	14721-18-7	1	29	mg/kg	2.976	86.312	mg/kg	0.00863 %		
12	4	selenium { nickel s	elenate } 239-125-2	15060-62-5		0.43	mg/kg	2.554	1.098	mg/kg	0.00011 %		
		zinc { zinc chroma							alox 250			+	
13	~	024-007-00-3	236-878-9	13530-65-9		87	mg/kg	2.774	241.351	mg/kg	0.0241 %		
4.5		TPH (C6 to C40) p					200		1 2 3 4 50				
14	-	(25 15 5 15) p	T Stock	ТРН		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
15		tert-butyl methyl et 2-methoxy-2-methy 603-181-00-X		1634-04-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>

#		Determinand EU CLP index	CLP Note	User entere	d data	Conv. Factor	Compound of	conc.	Classification value	2 Applied	Conc. Not Used
		EU CLP index EC Number CAS Number number	ರ	5 11 141						MC	
16		benzene 601-020-00-8 200-753-7 71-43-2	4	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
17		toluene	†	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
"		601-021-00-3 203-625-9 108-88-3		0.001	mgmg						
18	0	ethylbenzene		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
_		601-023-00-4 202-849-4 100-41-4	-							-	
19		xylene 601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	cyanides (* salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex)		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
_		006-007-00-5	+							H	
21		naphthalene	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	-	601-052-00-2 202-049-5 91-20-3 acenaphthylene	+					Sec.	A CONTRACTOR OF THE PARTY OF TH		
22	۰	205-917-1 208-96-8	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
23	0	acenaphthene 201-469-6 83-32-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		fluorene	+	THE RESERVE TO	1 7 3			115-321			
24	۰	201-695-5 86-73-7	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
25	0	phenanthrene 201-581-5 85-01-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		anthracene	\top	-0.01	malle		<0.01	mg/kg	<0.000001 %	8	<lod< td=""></lod<>
26		204-371-1 120-12-7		<0.01	mg/kg	,	-0.01	nig/kg	-0.000001 %		
27	0	fluoranthene		<0.01	mg/kg	,	<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
_		205-912-4 206-44-0	4						NEW COLUMN		
28		pyrene 204-927-3 129-00-0	_	<0.01	mg/kg	3	<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		benzo[a]anthracene	+				Means to the				-1.00
29		601-033-00-9 200-280-6 56-55-3		<0.01	mg/kg	3	<0.01	mg/kg	<0.000001 %	-	<lod< td=""></lod<>
30		chrysene		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
30		601-048-00-0 205-923-4 218-01-9		-0.01	mg/kg			mgmg			
31		benzo[b]fluoranthene		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
_		601-034-00-4 205-911-9 205-99-2	\rightarrow							10	-
32		benzo[k]fluoranthene		<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %		<loe< td=""></loe<>
		601-036-00-5 205-916-6 207-08-9	-	2 2001							+
33		benzo[a]pyrene; benzo[def]chrysene	_	<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %	9	<loe< td=""></loe<>
		601-032-00-3 200-028-5 50-32-8 indeno[123-cd]pyrene	+				A COLUMN				
34		205-893-2 193-39-5	-	<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
		dibenz[a,h]anthracene	\top	-0.01	malle		<0.01	malka	<0.000001 %		<loe< td=""></loe<>
35		601-041-00-2 200-181-8 53-70-3		<0.01	mg/kg	9	70.01	mg/kg	-0.000001 /s		LOL
36	0	benzo[ghi]perylene		<0.01	mg/k	9	<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
30		205-883-8 191-24-2		0.01	ig. h						-
37		phenol		<0.1	mg/k	g	<0.1	mg/kg	<0.00001 %		<loi< td=""></loi<>
		604-001-00-2 203-632-7 108-95-2	1				12000				+
38	0	polychlorobiphenyls; PCB 602-039-00-4 215-648-1 1336-36-3	_	<0.001	mg/k	g	<0.001	mg/kg	<0.0000001 %		<loi< td=""></loi<>
_	_	DOZ 000-00-4 E10-010-1						Total	0.0423 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: BH05[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name:

LoW Code:

BH05[2]

15%

Chapter:

Sample Depth:

2.0 m Moisture content:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

Entry:

17 05 04 (Soil and stones other than those mentioned in 17 05

03)

(no correction) **Hazard properties**

None identified

Determinands

Moisture content: 15% No Moisture Correction applied (MC)

#			Determinand		CLP Note	User entered	i data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. No
		EU CLP index number	EC Number	CAS Number	CLP			actor			value	MC	
1	æ	antimony { antimo	ny trioxide }		Г	<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< td=""></lod<>
'	(051-005-00-X	215-175-0	1309-64-4			99	31.70.					
2	4	arsenic { arsenic t	rioxide }			10	mg/kg	1.32	13.203	ma/ka	0.00132 %		
_	(033-003-00-0	215-481-4	1327-53-3	1							_	
3		boron { diboron tri	oxide } 215-125-8	1303-86-2		<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< td=""></lod<>
+		cadmium { cadmiu		1505-00-2	+				-				
4		048-002-00-0	215-146-2	1306-19-0	-	0.84	mg/kg	1.142	0.96	mg/kg	0.000096 %		
5	4		mium(III) compour	nds { * chromium(III)		18	mg/kg	1.462	26.308	mg/kg	0.00263 %		
			215-160-9	1308-38-9	1	1						-	
6	~	compounds, with		nds { chromium (VI) arium chromate and in this Annex }		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
		024-017-00-8			1					33000			_
7	4	copper { dicopper	oxide; copper (I)	oxide }		14	mg/kg	1.126	15.762	mg/kg	0.00158 %		
		029-002-00-X	215-270-7	1317-39-1	1		-					+	
8	ď	lead { lead chrom	ate }		1	10	ma/ka	1.56	15.598	mg/kg	0.001 %		
٥		082-004-00-2	231-846-0	7758-97-6	1							_	
9	d	mercury { mercur	y dichloride }			<0.1	ma/ka	1.353	<0.135	ma/ka	<0.0000135 %		<loi< td=""></loi<>
-		080-010-00-X	231-299-8	7487-94-7	1						THE REAL PROPERTY.		
10	ď.	molybdenum { mo	olybdenum(VI) oxid	de }		<2	mg/kg	1.5	<3	ma/ka	<0.0003 %		<lod< td=""></lod<>
10		042-001-00-9	215-204-7	1313-27-5	1			.,,-			10 (10 (1) L		
11	4	nickel { nickel chr	omate }			30	ma/ka	2.976	89.288	mg/kg	0.00893 %		
"	Ť	028-035-00-7	238-766-5	14721-18-7		55	mg/ng	2.0.0					
12	4	selenium { nickel	selenate }			<0.2	ma/ka	2.554	<0.511	mg/kg	<0.0000511 %		<loi< td=""></loi<>
12		028-031-00-5	239-125-2	15060-62-5			g.n.s		1	•	BOTTON OF THE	0	
13	d	zinc { zinc chroma	ate }			52	ma/ka	2.774	144.256	mg/kg	0.0144 %		
13		024-007-00-3	236-878-9	13530-65-9	1	02	mgrag					_	
14	0	TPH (C6 to C40)	petroleum group		Т	<10	mg/kg		<10	mg/kg	<0.001 %		<loi< td=""></loi<>
14				TPH	1		g/\S			9.19			
15		tert-butyl methyl e 2-methoxy-2-met				<0.001	mg/kg	,	<0.001	mg/kg	<0.0000001 %		<loi< td=""></loi<>
		603-181-00-X	216-653-1	1634-04-4					CONTRACT OF	TERM A	STATE OF THE PARTY		

	management for business
environmental	management for pusiness

#			Determinand		CLP Note	User entered	data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. No
		EU CLP index number	EC Number	CAS Number	CLP			ractor			value	MC /	Used
16		benzene 601-020-00-8	200-753-7	71-43-2	T	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
	-	toluene	200-133-1	1145-2	+	1000			700				
17		-	203-625-9	108-88-3	+	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
	_	ethylbenzene	200 020 0	100-00-0	+	2.40	1			1000	100000000000000000000000000000000000000		
18	•		202-849-4	100-41-4	+	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		xylene	002-010-4	100-41-4	+				ACT COM				
19		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	exception of completerricyanides and me specified elsewhere	ex cyanides such a ercuric oxycyanide	s ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
_		006-007-00-5			+								
21		naphthalene 601-052-00-2	202-049-5	91-20-3	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	-	acenaphthylene	LUZ-043-3	01-20-3	+				Marie Contract	V CONTRACTOR	The second second		
22			205-917-1	208-96-8	+	<0.01	mg/kg	- 1	<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
_	_	acenaphthene	203-917-1	200-90-0	+								
23	•		201-469-6	83-32-9	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	ш	<lod< td=""></lod<>
	_	fluorene	201-403-0	00-02-0	+					- CONTRACTOR OF THE PARTY NAMED IN COLUMN TWO IS NOT THE PARTY NAMED IN COLUMN TWO IS			
24		The state of the s	201-695-5	86-73-7	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	_	phenanthrene	201-030-0	00-70-7	+						District State of the last		-
25			201-581-5	85-01-8	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	_	anthracene			+	-			(E) (S) (S) (S)		with the same of		
26	•		204-371-1	120-12-7	+	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	_	fluoranthene		1.20	+	100	-10.07		S CONTRACT				
27	-		205-912-4	206-44-0	+	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		pyrene			+					The same			
28			204-927-3	129-00-0	+	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20		benzo[a]anthracene			\top	-0.04			-0.04		-0.000004.00		1.00
29		601-033-00-9	200-280-6	56-55-3	1	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
30		chrysene			Т	<0.01	mg/kg		<0.01	malka	<0.000001 %		<lod< td=""></lod<>
30		601-048-00-0	205-923-4	218-01-9		40.01	mg/kg		-0.01	mg/kg	-0.000001 %		LOD
31		benzo[b]fluoranthen	ie		Т	<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
		601-034-00-4	205-911-9	205-99-2	1	-0.01	mg/kg		-0.01	mgrkg	-0.000001 %		LOD
32		benzo[k]fluoranthen	ie			<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
	L	601-036-00-5	205-916-6	207-08-9	1				THE REAL PROPERTY.				
33		benzo[a]pyrene; ber	nzo[def]chrysene			<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
			200-028-5	50-32-8	1				ZIESE.	3 3			
34		indeno[123-cd]pyrei				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	-		205-893-2	193-39-5	+				1613513		No. of Concession, Name of Street, or other Persons, Name of Street, or ot		
35		dibenz[a,h]anthrace		E2 70 2	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			200-181-8	53-70-3	+				AND DESCRIPTION OF THE PERSON	1000			
36		benzo[ghi]perylene	205 983 9	404 24 2	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			205-883-8	191-24-2	+				Total Section 1	10000			
37		phenol 604-001-00-2	203-632-7	108-95-2	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
				100-90-2	+				CARDON STATE	No.	The second second		
38		polychlorobiphenyls 602-039-00-4	215-648-1	1336 36 3	-	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		002-039-00-4	13-040-1	1336-36-3	\perp				ALC: NO ICA	Total:	0.0319 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: BH05[3]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: BH05[3] Chapter:

Sample Depth:
3.0 m Entry:

Moisture content:

14%

(no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 14% No Moisture Correction applied (MC)

#			Determinand		CLP Note	lear antarad data		Conv.	Compound conc.		Classification value	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			1 0000			value	MC	
1	4	antimony { antimo	ny trioxide }		Г	<2	ma/ka	1.197	<2.394	ma/ka	<0.000239 %		<lod< td=""></lod<>
_		051-005-00-X	215-175-0	1309-64-4	1	Maria Bara	g.n.g			mgmg			
2	4	arsenic { arsenic to	rioxide }			12	mg/kg	1.32	15.844	mg/kg	0.00158 %		
_		033-003-00-0	215-481-4	1327-53-3	1	din Start				g.ng	0.00100 10		
3	4	boron { diboron tri	oxide }			<0.4	mg/kg	3.22	<1,288	mg/kg	<0.000129 %		<lod< td=""></lod<>
		005-008-00-8	215-125-8	1303-86-2	1_					99			
4	4	cadmium { cadmiu	ım oxide }			1.6	ma/ka	1.142	1.828	mg/kg	0.000183 %		
_		048-002-00-0	215-146-2	1306-19-0	1_	1.0	mg/kg	1.142	1.020	mg/kg	0.000103 /6		
5	4	chromium in chror oxide (worst case)	}	ds { * chromium(III)		13	mg/kg	1.462	19	mg/kg	0.0019 %		
			215-160-9	1308-38-9									
6	4		mium(VI) compoun the exception of ba ecified elsewhere in	rium chromate and		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
7	æ	copper { dicopper	oxide; copper (I) o	xide }	T	20	malka	1.126	22.518		0.00225 %		
'	•	029-002-00-X	215-270-7	1317-39-1	1	20	mg/kg	1.126	22.510	mg/kg	0.00225 %		
8	d	lead { lead chroma	ate }		1	12	ma/ka	1.56	18.718	m = // c =	0.0012 %		
0		082-004-00-2	231-846-0	7758-97-6	1'	12	mg/kg	1.30	10.710	mg/kg	0.0012 %		
9	4	mercury { mercury 080-010-00-X	/ dichloride } 231-299-8	7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
	A	molybdenum { mo	lybdenum(VI) oxide	e)	\vdash								
10	~	042-001-00-9	215-204-7	1313-27-5	1	3.2	mg/kg	1.5	4.801	mg/kg	0.00048 %		
	A	nickel { nickel chro	omate }										
11	•	028-035-00-7	238-766-5	14721-18-7	1	35	mg/kg	2.976	104.169	mg/kg	0.0104 %		
12	4	selenium { nickel s	selenate } 239-125-2	15060-62-5		0.53	mg/kg	2.554	1.354	mg/kg	0.000135 %		
	,a	zinc { zinc chroma		1.2300 02 0			-13		100.000			+	
13	_	024-007-00-3	236-878-9	13530-65-9	-	56	mg/kg	2.774	155.352	mg/kg	0.0155 %		
14	0	TPH (C6 to C40) p		1355		-10	malke		-10		-0.001.0/		100
14				TPH	1	<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
15		tert-butyl methyl et 2-methoxy-2-meth 603-181-00-X		1634-04-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>

#		Determinand	CLP Note	User entered	d data	Conv.	Compound of	conc.	Classification value		Conc. No Used
		EU CLP index	CLP			racioi			Value	MC Applied	0300
6		benzene		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
-		601-020-00-8 200-753-7 71-43-2	+							-	
7		toluene 601-021-00-3 203-625-9 108-88-3	\dashv	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		ethylbenzene	\top	-0.004			<0.001	/ka	<0.0000001 %		<lod< td=""></lod<>
8		601-023-00-4 202-849-4 100-41-4	_	<0.001	mg/kg		~0.001	mg/kg	~0.0000001 %	9	LOD
		xylene					1	936			
19		601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	cyanides { * saits of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
_	-	006-007-00-5 naphthalene	+	-0.04			-0.01	//	<0.000001 %		<lod< td=""></lod<>
21		601-052-00-2 202-049-5 91-20-3	1	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		LOD
22		acenaphthylene		<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
22		205-917-1 208-96-8		-0.01	mgrkg		0.01	mgrkg	-0.000001 //	8	
23		acenaphthene		<0.01	mg/kg	,	<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
_		201-469-6 83-32-9	+								-
24	•	fluorene 201-695-5 86-73-7	\dashv	<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		phenanthrene	\top						-0.000004.00		-1.05
25	_	201-581-5 85-01-8	\dashv	<0.01	mg/kg	3	<0.01	mg/kg	<0.000001 %		<loe< td=""></loe<>
26		anthracene		<0.01	mg/kg	,	<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
20		204-371-1 120-12-7		0.01	mgrns		A STATE OF				
27		fluoranthene		<0.01	mg/kg	,	<0.01	mg/kg	<0.000001 %	8	<loi< td=""></loi<>
		205-912-4 206-44-0	_								-
28		pyrene		<0.01	mg/kg	,	<0.01	mg/kg	<0.000001 %		<loe< td=""></loe<>
_	-	204-927-3 129-00-0	+	-			Market Street				_
29		benzo[a]anthracene 601-033-00-9 200-280-6 56-55-3	\dashv	<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
-	-	chrysene	+	-	- 5						
30		601-048-00-0 205-923-4 218-01-9	\dashv	<0.01	mg/kg	3	<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
		benzo[b]fluoranthene	\neg	****			-0.01		<0.000001 %		<loi< td=""></loi<>
31		601-034-00-4 205-911-9 205-99-2	\neg	<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %		LOI
_		benzo[k]fluoranthene	\neg	<0.01	ma/k		<0.01	malka	<0.000001 %		<loi< td=""></loi<>
32		601-036-00-5 205-916-6 207-08-9		~0.01	mg/kg	9	-0.01	mg/kg	-0.000001 70		-20.
33		benzo[a]pyrene; benzo[def]chrysene		<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<loi< td=""></loi<>
33		601-032-00-3 200-028-5 50-32-8		-0.01	mg/k	9	-0.01	mgmg			
34		indeno[123-cd]pyrene		<0.01	mg/k	9	<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
		205-893-2 193-39-5	_						December 1		-
35		dibenz[a,h]anthracene		<0.01	mg/k	g	<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
	-	601-041-00-2 200-181-8 53-70-3	-								+
36		benzo[ghi]perylene		<0.01	mg/k	g	<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
	+	205-883-8 191-24-2	+				Ten and the second	-			
37		phenol		<0.1	mg/k	g	<0.1	mg/kg	<0.00001 %		<loi< td=""></loi<>
_	+	604-001-00-2 203-632-7 108-95-2	+					A STATE OF			
38	0	polychlorobiphenyls; PCB 602-039-00-4 215-648-1 1336-36-3	-	<0.001	mg/k	9	<0.001	mg/kg	<0.0000001 %	4	<lo< td=""></lo<>
	_	POE-000-00-4 E10-040-1 1000-00-0	_					Total	0.0353 %		

	User supplied data
-	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: BH06

Non Hazardous Waste
Classified as 17 05 04
in the List of Waste

Sample details

LoW Code: Sample name: Chapter: **BH06** Sample Depth:

from contaminated sites)

Entry: 1.0 m Moisture content:

18%

(no correction)

17: Construction and Demolition Wastes (including excavated soil 17 05 04 (Soil and stones other than those mentioned in 17 05

Hazard properties

None identified

Determinands

Moisture content: 18% No Moisture Correction applied (MC)

1 4 4 4 5	051-005-00-X arsenic { arsenic tr 033-003-00-0 boron { diboron tric 005-008-00-8 cadmium { cadmiu 048-002-00-0	215-175-0 ioxide } 215-481-4 xxide } 215-125-8 m oxide } 215-146-2	1309-64-4 1327-53-3 1303-86-2 1306-19-0	CLP Note	<2 12 <0.4	mg/kg		<2.394 15.844	mg/kg	<0.000239 % 0.00158 %	MC	<lod< th=""></lod<>
2 4 4 4 4	051-005-00-X arsenic { arsenic tr 033-003-00-0 boron { diboron tric 005-008-00-8 cadmium { cadmiu 048-002-00-0 chromium in chron	215-175-0 ioxide } 215-481-4 xxide } 215-125-8 m oxide } 215-146-2	1327-53-3		12	mg/kg						<lod< th=""></lod<>
3 4 4	arsenic { arsenic tr 033-003-00-0 boron { diboron tric 005-008-00-8 cadmium { cadmiu 048-002-00-0 chromium in chron	ioxide } 215-481-4 xxide } 215-125-8 m oxide } 215-146-2	1327-53-3				1.32	15.844	mg/kg	0.00158 %		
3 4 4	033-003-00-0 boron { diboron tric 005-008-00-8 cadmium { cadmiu 048-002-00-0 chromium in chron	215-481-4 xxide } 215-125-8 m oxide } 215-146-2	1303-86-2	-			1.32	15.844	mg/kg	0.00158 %		
4 4	boron { diboron trice 005-008-00-8 cadmium { cadmium 048-002-00-0 chromium in chrom	oxide } 215-125-8 m oxide } 215-146-2	1303-86-2	+	<0.4							
4 4	005-008-00-8 cadmium { cadmiu 048-002-00-0 chromium in chrom	215-125-8 m oxide } 215-146-2		+	<0.4			W. C. C. C. C. C.		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
4	cadmium { cadmiu 048-002-00-0 chromium in chron	m oxide } 215-146-2		+		mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< td=""></lod<>
4	048-002-00-0 chromium in chron	215-146-2	1306.19.0								-	
	chromium in chron		1306-19-0	4	1.3	mg/kg	1.142	1.485	mg/kg	0.000149 %		
	ornorman in ornor	ikum/III) composito	1300-13-0	_		100					+	
			ds { * chromium(III)		21	mg/kg	1.462	30.693	mg/kg	0.00307 %		
		215-160-9	1308-38-9								_	
6	compounds, with t		rium chromate and		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
	024-017-00-8							New York			_	
7 4	copper { dicopper	oxide; copper (I) ox	xide }		23	ma/ka	1.126	25.895	mg/kg	0.00259 %		
1	029-002-00-X	215-270-7	1317-39-1	1		mgrag	1.120	20.000				
. 4	lead { lead chroma	ead { lead chromate }		_ 1	19	malka	1.56	29.636	mg/kg	0.0019 %		
8	082-004-00-2	231-846-0	7758-97-6	1'	19	mg/kg	1.50	25.000	mg/kg	0.0019 %		
0	(manage distribute)					malka	4.252	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>	
9	080-010-00-X	231-299-8	7487-94-7	1	<0.1	mg/kg	1.353	40.135	mg/kg	-0.0000133 %		LOD
10	molybdenum { mo	lybdenum(VI) oxide	e }	T			4.5	3.15		0.000315 %		
10	042-001-00-9	215-204-7	1313-27-5	+	2.1	mg/kg	1.5	3.15	mg/kg	0.000313 %		
-	nickel { nickel chro			+		10 1425						
11	028-035-00-7	238-766-5	14721-18-7	+	43	mg/kg	2.976	127.979	mg/kg	0.0128 %		
-	4 - 1 - 1 - 1 - 1 - 1 - 1		14121 101	+	1 4 20							
12	028-031-00-5	239-125-2	15060-62-5	+	0.42	mg/kg	2.554	1.073	mg/kg	0.000107 %		
-			13000-02-3	+		7					\top	
13	zinc { zinc chroma 024-007-00-3	236-878-9	13530-65-9	-	74	mg/kg	2.774	205.287	mg/kg	0.0205 %		
+			13530-65-9	+						PROPERTY OF PROPER		
14 °	TPH (C6 to C40)	petroleum group	Trou	4	<10 mg/k	mg/kg	9	<10	mg/kg	<0.001 %	0	<lod< td=""></lod<>
15		tert-butyl methyl ether; MTBE;		+	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<loe< td=""></loe<>
15	2-methoxy-2-meth 603-181-00-X	216-653-1	1634-04-4	-	-0.001	mg/kg	1	<0.001 mg	mg kg		3	

-		ronmental management for business								
#		Determinand	S Number	User entere	d data	Conv.	Compound conc.	Classification value	Applied	Conc. No
		EU CLP index	S Number			, actor		Value	MC	0000
6		benzene		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-020-00-8 200-753-7 71-43	2	Land to the same						
7		toluene		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
-		601-021-00-3 203-625-9 108-8	5-3			-				
8		ethylbenzene 601-023-00-4 202-849-4 100-4		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
-		xylene	1-4					The second second		
9	×	601-022-00-9 202-422-2 [1] 95-47 203-396-5 [2] 106-4 203-576-3 [3] 108-3	6 [1] 2-3 [2] 3-3 [3] 20-7 [4]	<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
0	4	exception of complex cyanides such as ferro ferricyanides and mercuric oxycyanide and t specified elsewhere in this Annex }	yanides,	<0.5	mg/kg	1.884	<0.942 mg/kg	<0.0000942 %		<lod< td=""></lod<>
1		006-007-00-5 naphthalene		<0.01	malka		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
'		601-052-00-2 202-049-5 91-20	3	-0.01	mg/kg		<0.01 mg/kg	-0.000001 %		-200
2		acenaphthylene		<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
		205-917-1 208-9	5-8							
3		acenaphthene 201-469-6 83-32	9	<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
		0	_					RO MICH SHOW		
4		201-695-5 86-73	7	<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
5		phenanthrene		<0.01	malka		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
3		201-581-5 85-01	-8	~0.01	mg/kg		<0.01 mg/kg	<0.000001 %		\LOL
6		anthracene		<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
		204-371-1 120-1	2-7							
7		fluoranthene		<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
-		205-912-4 206-4	1-0						-	
8		pyrene 204-927-3 129-0	0-0	<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
		benzo[a]anthracene								
9		601-033-00-9 200-280-6 56-55	3	<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
0		chrysene		-0.01	ma/ka		-0.01 maller	<0.000001 %		-1.05
u		601-048-00-0 205-923-4 218-0	1-9	<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
1		benzo[b]fluoranthene		<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<l00< td=""></l00<>
		601-034-00-4 205-911-9 205-9	9-2							
2		benzo[k]fluoranthene		<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
_		601-036-00-5 205-916-6 207-0	3-9							
3		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5 50-32		<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
	-	indeno[123-cd]pyrene	0							
4		205-893-2 193-3	9-5	<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
5		dibenz[a,h]anthracene		-0.04						
3		601-041-00-2 200-181-8 53-70	3	<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
6	D	benzo[ghi]perylene		<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
_		205-883-8 191-2	1-2	0.01	mg/kg		ilig/kg	0.000001 70		-200
7		phenol		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
		604-001-00-2 203-632-7 108-9	5-2		39					
8	0	polychlorobiphenyls; PCB	0.0	<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
- 1		602-039-00-4 215-648-1 1336-	36-3	Marie San	-			0.0447 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 44 of 131 39PJ2-6JAD9-NHH05 www.hazwasteonline.com

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: BH06[2]

Sample details

Sample name: LoW Code:

BH06[2] Chapter: Sample Depth:

from contaminated sites) 2.0 m 17 05 04 (Soil and stones other than those mentioned in 17 05 Entry: 03)

Moisture content:

(no correction)

Hazard properties

None identified

Determinands

Moisture content: 16% No Moisture Correction applied (MC)

#			Determinand		Note	User entere	d data	Conv.	Compound conc.		Classification	MC Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			Factor			value	MC A	Used
1	4	antimony { antimor	ny trioxide }		Г	<2	ma/ka	1.197	<2.394	malka	<0.000239 %		<lod< td=""></lod<>
		051-005-00-X	215-175-0	1309-64-4		-2	mg/kg	1.157	-2.334	mg/kg	~0.000239 %		LOD
2	4	arsenic { arsenic tr	rioxide }			9.8	mg/kg	1.32	12.939	mg/kg	0.00129 %		
		033-003-00-0	215-481-4	1327-53-3	1		mgmg	1.02	12.000	mg/kg	0.00120 %		
3	4	boron { diboron tric	oxide }			0.73	mg/kg	3.22	2.351	mg/kg	0.000235 %		
		005-008-00-8	215-125-8	1303-86-2	1	All share	mgrkg	U.LL	2.001	mg/kg	0.000200 %		
4	4	cadmium { cadmiu	m oxide }			0.75	ma/ka	1.142	0.857	mg/kg	0.0000857 %		
		048-002-00-0	215-146-2	1306-19-0	1	0.70	mg/kg	1.142	0.007	mg/kg	0.0000007 76		
5	4	chromium in chron oxide (worst case)		ds { • chromium(III)		26	mg/kg	1.462	38	mg/kg	0.0038 %		
			215-160-9	1308-38-9			5 442						
6	4		he exception of ba	nds { chromium (VI) arium chromate and n this Annex }		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
_	A	copper { dicopper	oxide: copper (I) o	oxide }									
7	~	029-002-00-X	215-270-7	1317-39-1	1	18	mg/kg	1.126	20.266	mg/kg	0.00203 %		
8	A	lead { lead chroma	te }		1.						2.0000000	T	
0	•	082-004-00-2	231-846-0	7758-97-6	1	15	mg/kg	1.56	23.397	mg/kg	0.0015 %		
9	4	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10	A	molybdenum (mol	ybdenum(VI) oxid	e }			TO SELECT		5.000				
10	•		215-204-7	1313-27-5		<2	mg/kg	1.5	<3	mg/kg	<0.0003 %		<lod< td=""></lod<>
11	A	nickel { nickel chro	mate }					0.070	440.400				
"	•		238-766-5	14721-18-7		37	mg/kg	2.976	110.122	mg/kg	0.011 %		
12	4		elenate }	15060-62-5		<0.2	mg/kg	2.554	<0.511	mg/kg	<0.0000511 %		<lod< td=""></lod<>
		zinc { zinc chromat		15000-02-5	\vdash				A CONTRACTOR	Call Service		-	
13	~		236-878-9	13530-65-9		53	mg/kg	2.774	147.03	mg/kg	0.0147 %		
		TPH (C6 to C40) p		13330-03-9	H		Seeding.						
14		11 11 (CO 10 C40) p	en oleum group	ТРН		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
15		tert-butyl methyl et 2-methoxy-2-methy		_ jren		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4									

environmental	-	amont	for	hucinoss
environmental	manay	ement	IUI	DOZILIESS

en	vir	onmental manag	ement for busin	ess									
#			Determinand		CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value		Conc. Not Used
		EU CLP index number	EC Number	CAS Number	2							MC Applied	
16		benzene 601-020-00-8	200-753-7	71-43-2	-	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
	Н	toluene	200-100-1	71.40.2	+					-			
17		601-021-00-3	203-625-9	108-88-3	+	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		ethylbenzene		100000	+	-0.004			-0.004		<0.0000001 %		<lod< td=""></lod<>
18		601-023-00-4	202-849-4	100-41-4	1	<0.001	mg/kg		<0.001	mg/kg	~0.0000001 %		LOD
		xylene			T					TO PASS			
19		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	cyanides { salts exception of compl ferricyanides and r specified elsewher	lex cyanides such mercuric oxycyanic	as ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5			+		200			I STATE OF THE PARTY OF T			
21		naphthalene 601-052-00-2	202-049-5	91-20-3	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
22	0	acenaphthylene	202-049-5	91-20-3	†	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			205-917-1	208-96-8	1								
23		acenaphthene	201-469-6	83-32-9	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
-		fluorene	201-409-6	03-32-9	+		Tylo			(4,55,5)			
24	9	liuorene	201-695-5	86-73-7	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		phenanthrene	20, 000 0	pe	+						-0.000004.04		-1.00
25		prioritaritariorio	201-581-5	85-01-8	+	<0.01	mg/kg	3	<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
~		anthracene			\top	<0.01	malke		<0.01	malka	<0.000001 %		<lod< td=""></lod<>
26			204-371-1	120-12-7		-0.01	mg/kg		-0.01	Iliging	40.000001 70		-200
27		fluoranthene				<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
21			205-912-4	206-44-0		-0.01	mgras						
28	0	pyrene	204-927-3	129-00-0	4	<0.01	mg/kg	,	<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		benzo[a]anthracer	-	125-00-0	+				100000				4.00
29		601-033-00-9	200-280-6	56-55-3	\dashv	<0.01	mg/kg	3	<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		chrysene			\top	-0.04			<0.01		<0.000001 %		<lod< td=""></lod<>
30		601-048-00-0	205-923-4	218-01-9	_	<0.01	mg/kg	3	-0.01	myrky	40.000001 %		-200
31		benzo[b]fluoranthe	ene			<0.01	mg/kg	,	<0.01	ma/ka	<0.000001 %	10	<lod< td=""></lod<>
31		601-034-00-4	205-911-9	205-99-2		-0.01	mg/m				STATE OF THE PARTY	6	
32		benzo[k]fluoranthe	ene			<0.01	mg/kg	,	<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
-		601-036-00-5	205-916-6	207-08-9	1				ESTATE OF	51050	THE REAL PROPERTY.		
33		benzo[a]pyrene; b				<0.01	mg/k	9	<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	-	601-032-00-3	200-028-5	50-32-8	+								
34		indeno[123-cd]pyr	ene 205-893-2	193-39-5		<0.01	mg/k	9	<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	+	dibenz[a,h]anthrac		130-03-0	+		N AND				-0.000004.01		-1 0C
35		601-041-00-2	200-181-8	53-70-3	\dashv	<0.01	mg/k	9	<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
-		benzo[ghi]perylen				-0.01	matte		<0.01	malke	<0.000001 %		<lod< td=""></lod<>
36	-	10 11 7	205-883-8	191-24-2		<0.01	mg/k	9	<0.01 mg/kg	0.000001 78		200	
37		phenol				<0.1	mg/k	0	<0.1	ma/ke	<0.00001 %		<lod< td=""></lod<>
3/		604-001-00-2	203-632-7	108-95-2		-0.1	mg/k	9	CO STATE	, mg/mg			
38	0	polychlorobipheny		1226.26.2		<0.001	mg/k	9	<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
-		602-039-00-4	215-648-1	1336-36-3					NAME OF TAXABLE PARTY.	Total	0.0365 %		

Key	User supplied data
CONTRACTOR OF THE PARTY OF THE	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
•	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: TP21

Sample details

Sample name:

LoW Code:

TP21

Sample Depth: 0.75 m

Chapter:

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05

03)

Moisture content: 15%

(no correction)

Hazard properties

None identified

Determinands

Moisture content: 15% No Moisture Correction applied (MC)

#			Determinand		CLP Note	User entered	l data	Conv.	Compound	conc.	Classification	MC Applied	Conc. No
		EU CLP index number	EC Number	CAS Number	CLP			T dolor				MC	
1	ď	antimony { antimor	ny trioxide }		Г	<2	mg/kg	1 197	<2.394	ma/ka	<0.000239 %		<lod< td=""></lod<>
'		051-005-00-X	215-175-0	1309-64-4	1_		mgmg						
2	æ	arsenic { arsenic tr	rioxide }			11	mg/kg	1 32	14.524	mg/kg	0.00145 %		
-		033-003-00-0	215-481-4	1327-53-3	1_		mg/ng	1.02		99			
3	A	boron { diboron trie	oxide }		Т	0.69	mg/kg	3.22	2.222	mg/kg	0.000222 %		
3		005-008-00-8	215-125-8	1303-86-2		0.00	mgrag	J.LL		99			
	A	cadmium { cadmiu	ım oxide }			0.97	mg/kg	1 142	1.108	mg/kg	0.000111 %		
4		048-002-00-0	215-146-2	1306-19-0	1	0.57	mg/kg	1.142	1.100	mg/ng	0.000111.70		
5	4	chromium in chror oxide (worst case)		nds { * chromium(III)		20	mg/kg	1.462	29.231	mg/kg	0.00292 %		
			215-160-9	1308-38-9	1	ne like							
6	4	compounds, with to of compounds spe	the exception of b	nds { chromium (VI) arium chromate and in this Annex }		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
		024-017-00-8			+		-						-
7	_	copper { dicopper	The state of the s			24	mg/kg	1.126	27.021	mg/kg	0.0027 %		
		029-002-00-X	215-270-7	1317-39-1	\perp							+	
8	4	lead { lead chroma	•		1	39	mg/kg	1.56	60.833	mg/kg	0.0039 %		
		082-004-00-2	231-846-0	7758-97-6	1		100					+-	
9	4	mercury { mercury	y dichloride }			0.1	mg/kg	1.353	0.135	mg/kg	0.0000135 %		
-		080-010-00-X	231-299-8	7487-94-7	1							+	
10	4	molybdenum { mo	olybdenum(VI) oxid	de }		<2	mg/kg	1.5	<3	mg/kg	<0.0003 %		<loi< td=""></loi<>
		042-001-00-9	215-204-7	1313-27-5	1	175000							
11	4	nickel { nickel chro	omate }			36	ma/ka	2.976	107,146	mg/kg	0.0107 %		
		028-035-00-7	238-766-5	14721-18-7	1							-	
12	d	selenium { nickel :	selenate }			0.46	ma/ka	2.554	1.175	mg/kg	0.000117 %		
		028-031-00-5	239-125-2	15060-62-5	1	0.10	mgmg	2.00		99		_	
42	æ	zinc { zinc chroma	ate }			84	ma/ka	2.774	233.028	mg/kg	0.0233 %		
13	-	024-007-00-3	236-878-9	13530-65-9		0,	mgrag	2.77	200.020			_	
		TPH (C6 to C40)	petroleum group			<10	mg/kg		<10	ma/ka	<0.001 %		<loi< td=""></loi<>
14				TPH		-10	mg/kg			mg.kg		i.	
15		tert-butyl methyl e 2-methoxy-2-meth				<0.001	mg/kg	,	<0.001	mg/kg	<0.0000001 %		<loi< td=""></loi<>
		603-181-00-X	216-653-1	1634-04-4		44					Maria African		

			T	Total Control	1111				-	
#		Determinand CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. No Used
		EU CLP index EC Number CAS Number number	딩						MC	
6		benzene		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
_	_	601-020-00-8 200-753-7 71-43-2	+							
7		toluene 601-021-00-3 203-625-9 108-88-3	_	<0.001	mg/kg		<0.001 mg/k	<0.0000001 %		<lod< td=""></lod<>
_		ethylbenzene	+							
В		601-023-00-4 202-849-4 100-41-4	\dashv	<0.001	mg/kg		<0.001 mg/k	<0.0000001 %		<lod< td=""></lod<>
_		xylene		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			C Y CONTRACTOR	NAME OF THE OWNER, OF THE OWNER, OF THE OWNER, OF THE OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER,		
9		601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001	mg/kg		<0.001 mg/k	g <0.0000001 %		<lod< td=""></lod<>
0	4	exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<0.5	mg/kg	1.884	<0.942 mg/k	g <0.0000942 %		<loe< td=""></loe<>
1		006-007-00-5 naphthalene		<0.01	ma/ka		<0.01 mg/k	<0.000001 %		<lod< td=""></lod<>
•		601-052-00-2 202-049-5 91-20-3		-0.01	mg/kg		<0.01 mg/k	-0.000001 %		LUL
2		acenaphthylene		<0.01	mg/kg		<0.01 mg/k	<0.000001 %		<loe< td=""></loe<>
		205-917-1 208-96-8	_							
3		acenaphthene 201-469-6 83-32-9		<0.01	mg/kg		<0.01 mg/k	<0.000001 %		<loe< td=""></loe<>
-	-	fluorene p3-32-9	+							
4	•	201-695-5 86-73-7	_	<0.01	mg/kg		<0.01 mg/k	9 <0.000001 %		<l0[< td=""></l0[<>
_		phenanthrene	+				N/97/250 T			
5	•	201-581-5 85-01-8		<0.01	mg/kg		<0.01 mg/k	<0.000001 %		<loi< td=""></loi<>
6	9	anthracene		<0.01	malka		<0.01 mg/k	<0.000001 %		<l0[< td=""></l0[<>
0		204-371-1 120-12-7		~0.01	mg/kg		<0.01 mg/k	9 <0.000001 %		\LUL
7		fluoranthene		<0.01	mg/kg		<0.01 mg/k	<0.000001 %		<loe< td=""></loe<>
		205-912-4 206-44-0	_							
8		pyrene		<0.01	mg/kg		<0.01 mg/k	<0.000001 %		<l0[< td=""></l0[<>
		204-927-3 129-00-0	+		- 5 /					
9		benzo[a]anthracene	_	<0.01	mg/kg		<0.01 mg/k	<0.000001 %		<loe< td=""></loe<>
-	H	601-033-00-9 200-280-6 56-55-3	+							
0		chrysene 601-048-00-0 205-923-4 218-01-9	_	<0.01	mg/kg		<0.01 mg/k	0.000001 %		<l0[< td=""></l0[<>
		benzo[b]fluoranthene	+	10.70	700			Consultation of		
1		601-034-00-4 205-911-9 205-99-2	-	<0.01	mg/kg		<0.01 mg/k	<0.000001 %		<l0[< td=""></l0[<>
_		benzo[k]fluoranthene					DE TON ASSESSED.			100
2		601-036-00-5 205-916-6 207-08-9		<0.01	mg/kg		<0.01 mg/k	<0.000001 %		<loe< td=""></loe<>
3		benzo[a]pyrene; benzo[def]chrysene		-0.01			-0.04	-0.000004.00		-1.05
3		601-032-00-3 200-028-5 50-32-8		<0.01	mg/kg		<0.01 mg/k	<0.000001 %		<loi< td=""></loi<>
4		indeno[123-cd]pyrene		<0.01	mg/kg		<0.01 mg/k	<0.000001 %		<l0[< td=""></l0[<>
_		205-893-2 193-39-5			mgmg		o.or mg/k	-0.000001 70		
5		dibenz[a,h]anthracene		<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<loe< td=""></loe<>
	_	601-041-00-2 200-181-8 53-70-3	+					6-77		
6		benzo[ghi]perylene		<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
		205-883-8 191-24-2 phenol		THE PERSON NAMED IN						
7		604-001-00-2 203-632-7 108-95-2	_	<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
		polychlorobiphenyls; PCB	+	A Property of the				1		
8		602-039-00-4 215-648-1 1336-36-3	-	<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<loe< td=""></loe<>
_	_						Tota	: 0.0472 %	1	

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 50 of 131 39PJ2-6JAD9-NHH05 www.hazwasteonline.com

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: TP21[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:

TP21[2] Chapter: Sample Depth:

Sample Depth:

1.5 m

Entry: from contaminated sites)

1.7 05 04 (Soil and stones other than those mentioned in 17 05

Moisture content: 5%

(no correction)

Hazard properties

None identified

Determinands

Moisture content: 5% No Moisture Correction applied (MC)

#			Determinand		Note	User entere	d data	Conv.	Compound	conc.	Classification value	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			racio			value	MC,	Osed
1	4	antimony { antimo	ny trioxide }			<2	ma/ka	1.197	<2.394	ma/ka	<0.000239 %		<lod< td=""></lod<>
_	+	051-005-00-X	215-175-0	1309-64-4		and the first							
2	4	arsenic { arsenic to	CONTRACTOR OF THE PARTY OF THE			5.7	mg/kg	1.32	7.526	mg/kg	0.000753 %		
		033-003-00-0	215-481-4	1327-53-3	1					3 3		1	
3	4	boron { diboron tri	oxide }			0.42	mg/kg	3.22	1.352	mg/kg	0.000135 %		
_		005-008-00-8	215-125-8	1303-86-2									
4	4	cadmium { cadmiu	ım oxide }			0.85	ma/ka	1.142	0.971	mg/kg	0.0000971 %		
		048-002-00-0	215-146-2	1306-19-0			99				0.000007. 10		
5	4	chromium in chror oxide (worst case)		ds { * chromium(III)		5.6	mg/kg	1.462	8.185	mg/kg	0.000818 %		
			215-160-9	1308-38-9	1	E. Sand	1						
6		of compounds spe 024-017-00-8	the exception of baccified elsewhere in			<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
7	4	copper { dicopper	oxide; copper (I) o	xide }		11	mg/kg	1.126	12.385	mg/kg	0.00124 %		
_	-	029-002-00-X	215-270-7	1317-39-1	\vdash							-	
8	4	lead { lead chroma	The second secon		1	5.5	mg/kg	1.56	8.579	mg/kg	0.00055 %		
	-	082-004-00-2	231-846-0	7758-97-6	\vdash								
9	4	mercury { mercury				<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
	-	080-010-00-X	231-299-8	7487-94-7	\vdash		Upage 15					_	
10	4	molybdenum (mo	lybdenum(VI) oxid	e }	1	<2	mg/kg	1.5	<3	mg/kg	<0.0003 %		<lod< td=""></lod<>
		042-001-00-9	215-204-7	1313-27-5	\vdash		1						
11	4	nickel { nickel chro			1	19	mg/kg	2.976	56.549	mg/kg	0.00565 %		
		028-035-00-7	238-766-5	14721-18-7	\vdash	100000000000000000000000000000000000000						-	
12		selenium { nickel s				0.2	mg/kg	2.554	0.511	mg/kg	0.0000511 %		
	-	028-031-00-5	239-125-2	15060-62-5								-	
13		zinc { zinc chroma				31	mg/kg	2.774	85.999	mg/kg	0.0086 %		
		024-007-00-3	236-878-9	13530-65-9									
14	0	TPH (C6 to C40) p	petroleum group			<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
				TPH									
15		tert-butyl methyl et 2-methoxy-2-meth	and the same of th			<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4	1				The State of the S				

#		Determinand	Number S	User entered	i data	Conv.	Compound	conc.	Classification value	0	nc. No Jsed
		EU CLP index EC Number CAS number	Number 5			racioi			value	MC	300
6		benzene 601-020-00-8 200-753-7 71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %	<	LOD
+	-										
7		toluene 601-021-00-3 203-625-9 108-88-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %	<	LOD
-		ethylbenzene		ASSESSED NO.				100 M	Part of the last of		
8	0	601-023-00-4 202-849-4 100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %	<	LOD
-		xylene		1000				100000			
19		202-422-2 [1] 95-47-6 203-396-5 [2] 106-42-3 203-576-3 [3] 108-38-3 215-535-7 [4] 1330-20	[2] [3]	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %	<	LOD
20	4	exception of complex cyanides such as ferrocyal ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }	nides,	<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %	<	LOD
-		006-007-00-5	-					A CHICAGO			_
21		naphthalene 601-052-00-2 202-049-5 91-20-3		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	<	LOD
							AND DESCRIPTION OF THE PARTY OF		Table 100		
22	0	acenaphthylene 205-917-1 208-96-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	<	LOD
23	0	acenaphthene	,	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	<	LOD
		201-469-6 83-32-9			1000			Office Street			_
24		fluorene		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	<	LOD
		201-695-5 86-73-7					A Property of				_
25		phenanthrene		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	<	LOD
-	_	201-581-5 85-01-8									
26	0	anthracene 204-371-1 120-12-7	7	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	<	LOD
-								N. F. Carrier			
27		fluoranthene 205-912-4 206-44-1		<0.01	mg/kg)	<0.01	mg/kg	<0.000001 %	<	LOD
-	-		,					1000			
28		pyrene 204-927-3 129-00-		<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %	<	LOD
-							E LOS COLORS				
29		benzo[a]anthracene 601-033-00-9 200-280-6 56-55-3		<0.01	mg/kg	3	<0.01	mg/kg	<0.000001 %	<	LOD
_	-							27.7	A consideration		
30		chrysene 601-048-00-0 205-923-4 218-01-		<0.01	mg/kg	3	<0.01	mg/kg	<0.000001 %	<	LOE
_	_		-			-	The same of the sa	40.00	THE RESERVE OF THE		7.00
31		benzo[b]fluoranthene 601-034-00-4 205-911-9 205-99-:	2	<0.01	mg/kg	3	<0.01	mg/kg	<0.000001 %	*	LOD
-			2				A 100	Para	Challenge		
32		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-	0	<0.01	mg/kg	3	<0.01	mg/kg	<0.000001 %	· ·	<lo[< td=""></lo[<>
-		benzo[a]pyrene; benzo[def]chrysene						ALC: UNITED BY			
33		601-032-00-3 200-028-5 50-32-8		<0.01	mg/kg	3	<0.01	mg/kg	<0.000001 %	\ \ \ \	<lo[< td=""></lo[<>
		indeno[123-cd]pyrene						-			
34	0	205-893-2 193-39-	5	<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<loi< td=""></loi<>
_	-	dibenz[a,h]anthracene	-	The State of							
35		601-041-00-2 200-181-8 53-70-3		<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %	1	<loi< td=""></loi<>
	-	benzo[ghi]perylene		The state of the s	TE E			10000		1	
36		205-883-8 191-24-	2	<0.01	mg/k	3	<0.01	mg/kg	<0.000001 %	1	<lo[< td=""></lo[<>
	-	phenol [191-24-			Per Tar		25 (08 5 B	A REGISTER			
37		604-001-00-2 203-632-7 108-95-	2	<0.1	mg/k	3	<0.1	mg/kg	<0.00001 %	1	<loi< td=""></loi<>
	-	polychlorobiphenyls; PCB					Name Land	110000			
38			3	<0.001	mg/k	9	<0.001	mg/kg	<0.0000001 %	•	<loi< td=""></loi<>
		602-039-00-4 215-648-1 1336-36	-3				The second second	Total	0.0197 %		_

Key		
	User supplied data	
5000	Determinand values ignored for classification, see column 'Conc. Not Used' for reason	
	Determinand defined or amended by HazWasteOnline (see Appendix A)	

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

concentration **LOD** Below limit of detection

ND Not detected

Classification of sample: TP21[3]

Sample details

LoW Code: Sample name:

TP21[3] Chapter: Sample Depth: 3.0 m

Entry:

Moisture content: 7.9% (no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 7.9% No Moisture Correction applied (MC)

#		Determinand	CLP Note	User entered	i data	Conv.	Compound	conc.	Classification value	Applied	Conc. No Used
		EU CLP index	CLP			racioi			Value	MC	Used
1	4	antimony { antimony trioxide }		<2	mg/kg	1,197	<2.394	mg/kg	<0.000239 %		<lod< td=""></lod<>
•		051-005-00-X 215-175-0 1309-64-4									
2	d	arsenic { arsenic trioxide }		12	mg/kg	1.32	15.844	mg/kg	0.00158 %		
-		033-003-00-0 215-481-4 1327-53-3								_	
3	À	boron { diboron trioxide }		<0.4	mg/kg	3 22	<1.288	ma/ka	<0.000129 %		<lod< td=""></lod<>
3	_	005-008-00-8 215-125-8 1303-86-2		-0.4	mg/kg	5.22	1200	mgmg			
	Ĥ	cadmium { cadmium oxide }		1.7	malka	1.142	1.942	mg/kg	0.000194 %		
4		048-002-00-0 215-146-2 1306-19-0		1.7	mg/kg	1.142	1.542	ilig/kg	0.000134 70		
5	4	chromium in chromium(III) compounds { * chromium(oxide (worst case))	III)	10	mg/kg	1.462	14.616	mg/kg	0.00146 %		
		215-160-9 1308-38-9								-	
6	4	chromium in chromium(VI) compounds { chromium (V compounds, with the exception of barium chromate ar of compounds specified elsewhere in this Annex }		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
		024-017-00-8	_	bearing in the				19.50			
7	ď,	copper { dicopper oxide; copper (I) oxide }		22	mg/kg	1.126	24.77	mg/kg	0.00248 %		
		029-002-00-X 215-270-7 1317-39-1								+	
8	4	lead { lead chromate }	1	13	mg/kg	1.56	20.278	mg/kg	0.0013 %		
_		082-004-00-2 231-846-0 7758-97-6		W. The state of th							
9	d	mercury { mercury dichloride }		<0.1	ma/ka	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
•		080-010-00-X 231-299-8 7487-94-7		La Company							
10	4	molybdenum { molybdenum(VI) oxide }		3.5	mg/kg	1.5	5.251	mg/kg	0.000525 %		
		042-001-00-9 215-204-7 1313-27-5								_	
11	d	nickel { nickel chromate }		42	ma/ka	2.976	125.003	mg/kg	0.0125 %		
' '		028-035-00-7 238-766-5 14721-18-7		i -	mg mg	,	300000			_	
12	4	selenium (nickel selenate) 028-031-00-5 239-125-2 15060-62-5		3.1	mg/kg	2.554	7.917	mg/kg	0.000792 %		
	A	zinc { zinc chromate }		63		2.774	174.771	mg/kg	0.0175 %		
13	~	024-007-00-3 236-878-9 13530-65-9		63	mg/kg	2.114	174.771	mg/kg	0.0175 %		
	-	TPH (C6 to C40) petroleum group		-40			<10	mallia	<0.001 %		<lod< td=""></lod<>
14	-	ТРН	\neg	<10	mg/kg	1	710	mg/kg	0.001 76		-200
15		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<l00< td=""></l00<>
		603-181-00-X 216-653-1 1634-04-4						(2)			

eı	ive	ronmental management for business	_							_	
#		Determinand EU CLP index	CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. No Used
	L	number	ō							Ž	
16		benzene 601-020-00-8 200-753-7 71-43-2	+	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %	L	<lod< td=""></lod<>
17		toluene	†	<0.001	mg/kg		<0.001	ma/ka	<0.0000001 %		<lod< td=""></lod<>
	L	601-021-00-3 203-625-9 108-88-3	1	-0.001	mgrag		-0.001	mg/rg	-0.000001 %	_	LOD
18		ethylbenzene	4	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
-	+	601-023-00-4 202-849-4 100-41-4 xylene	+							Н	
19		601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	cyanides { * salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
21		naphthalene	t	<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
	_	601-052-00-2 202-049-5 91-20-3	1	-0.01	mg/kg		0.01	mgrkg	-0.000001 78		-200
22		acenaphthylene 205-917-1 208-96-8	4	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
23	0	acenaphthene	+	-0.04			-0.01		-0.00000101		
23		201-469-6 83-32-9	1	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
24		fluorene		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
_		201-695-5 86-73-7	+				A COLOR				
25		phenanthrene 201-581-5 85-01-8	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26		anthracene	+	-0.04			-0.04		-0.000004.04		
20		204-371-1 120-12-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
27		fluoranthene		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		205-912-4 206-44-0 pyrene	+								
28		204-927-3 129-00-0	+	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
29		benzo[a]anthracene	+	-0.04				1 2000			
29		601-033-00-9 200-280-6 56-55-3	1	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
30		chrysene 601-048-00-0 205-923-4 218-01-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		benzo[b]fluoranthene	+						Property and the last	Н	
31		601-034-00-4 205-911-9 205-99-2	+	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	ш	<lod< td=""></lod<>
22		benzo[k]fluoranthene	†	-0.04			-0.01				
32		601-036-00-5 205-916-6 207-08-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
33		benzo[a]pyrene; benzo[def]chrysene		<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
		601-032-00-3 200-028-5 50-32-8	1					99	O.C.C.C.C.	ш	
34		indeno[123-cd]pyrene 205-893-2 193-39-5	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		205-893-2 193-39-5 dibenz[a,h]anthracene	+				A CONTRACTOR OF THE PARTY OF TH		A CONTRACTOR OF THE PARTY OF TH	Н	
35		601-041-00-2 200-181-8 53-70-3	+	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
36		benzo[ghi]perylene		<0.01	mg/kg		<0.01	malka	<0.000001 %		<lod< td=""></lod<>
_		205-883-8 191-24-2	1	3.01	mg/kg		0.01	mg/kg	3.000001 %		LOD
37		phenoi		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		604-001-00-2 203-632-7 108-95-2 polychlorobiphenyls; PCB	+				A CONTRACTOR				
38		602-039-00-4 215-648-1 1336-36-3	1	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
								Total:	0.0399 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration 4

<LOD Below limit of detection

ND Not detected

17: Construction and Demolition Wastes (including excavated soil

17 05 04 (Soil and stones other than those mentioned in 17 05

Classification of sample: TP22

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

from contaminated sites)

Sample details

Sample name: LoW Code:

TP22 Chapter: Sample Depth:

0.6 m Entry:
Moisture content:

16%

(no correction)

Hazard properties

None identified

Determinands

Moisture content: 16% No Moisture Correction applied (MC)

#			Determinand		Note	User entere	d data	Conv.	Compound	conc.	Classification	MC Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			Factor			value	MCA	Used
1	4	antimony { antimony			Г	<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< td=""></lod<>
	L		5-175-0	1309-64-4	_								
2	4	arsenic { arsenic triox	Additional to the same of the			9.9	mg/kg	1.32	13.071	mg/kg	0.00131 %		
	-		5-481-4	1327-53-3	╄							-	
3	4		SEAL.			0.68	mg/kg	3.22	2.19	mg/kg	0.000219 %		
	H		5-125-8	1303-86-2	\vdash							-	
4	4		MEAN THE PARTY OF			1.4	mg/kg	1.142	1.599	mg/kg	0.00016 %		
	_	048-002-00-0 21	5-146-2	1306-19-0	╀							_	
5	4	chromium in chromiu oxide (worst case) }	m(III) compound	ls { * chromium(III)		16	mg/kg	1.462	23.385	mg/kg	0.00234 %		
		21	5-160-9	1308-38-9	1		100						
6	4	chromium in chromiu compounds, with the of compounds specifi	exception of bar	ium chromate and		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
		024-017-00-8				Water Samuel							
7	4	copper { dicopper oxi	de; copper (I) ox	ide }	Г	22	ma/ka	1.126	24.77	mg/kg	0.00248 %		
		029-002-00-X 21	5-270-7	1317-39-1	1		mg/kg	1.120	24.11	mg/kg	0.00240 /6		
8	d	lead { lead chromate	}		1	17	mg/kg	1.56	26.517	mg/kg	0.0017 %		
_		082-004-00-2 23	1-846-0	7758-97-6	1		mg/kg	1.50	20.517	ilig/kg	0.0017 76		
9	4	mercury { mercury die	chloride }			<0.1	mg/kg	1 353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
_			1-299-8	7487-94-7	1	-0.1	mg/kg	1.000	-0.100	mg/kg	-0.0000 135 /k		LOD
10	4	molybdenum (molyb	denum(VI) oxide	}		<2	mg/kg	1.5	<3	mg/kg	<0.0003 %		<lod< td=""></lod<>
			5-204-7	1313-27-5				1.0		mgritg			
11	4	nickel { nickel chroma	ite }			37	mg/kg	2 976	110.122	mg/kg	0.011 %		
			8-766-5	14721-18-7			99	2.0.0		mgmg	0.011 70		
12	4	selenium { nickel sele	nate }			0.3	mg/kg	2.554	0.766	mg/kg	0.0000766 %		
			9-125-2	15060-62-5									
13	4	zinc { zinc chromate }				78	mg/kg	2.774	216.383	mg/kg	0.0216 %		
			6-878-9	13530-65-9						mgmg	0.0210 %		
14	0	TPH (C6 to C40) petr	oleum group			<10	mg/kg		<10	ma/ka	<0.001 %		<lod< td=""></lod<>
				TPH						mg/mg			
15		tert-butyl methyl ether 2-methoxy-2-methylpr				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X 21	6-653-1	1634-04-4	1								

en	vir	onmental management for business			_	_			_	
#		Determinand	CLP Note	User entered data	Cor		Compound conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index	5			4			M	
16		benzene 501-020-00-8 200-753-7 71-43-2	+	<0.001 mg/k	g		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
17		toluene		<0.001 mg/l	g		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-021-00-3 203-625-9 108-88-3	+		_	-		A C C C C C C C	-	
18	0	ethylbenzene 601-023-00-4 202-849-4 100-41-4	-	<0.001 mg/k	g		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
19		xylene 601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001 mg/l	(g		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	cyanides (salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex)		<0.5 mg/l	(g 1.8	884	<0.942 mg/kg	<0.0000942 %		<lod< td=""></lod<>
21		naphthalene 601-052-00-2 202-049-5 91-20-3	1	<0.01 mg/	(g		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
22	0	acenaphthylene 205-917-1 208-96-8	+	<0.01 mg/	cg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
23	0	acenaphthene 201-469-6 83-32-9	+	<0.01 mg/	(g		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
24	0	fluorene 201-695-5 86-73-7	_	<0.01 mg/	<g< td=""><td></td><td><0.01 mg/kg</td><td><0.000001 %</td><td></td><td><lod< td=""></lod<></td></g<>		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
25		phenanthrene 201-581-5 85-01-8	+	<0.01 mg/	kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
26	0	anthracene 204-371-1 120-12-7	+	<0.01 mg/	kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
27		fluoranthene 205-912-4 206-44-0	+	<0.01 mg/	kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
28		pyrene 204-927-3 129-00-0	+	<0.01 mg/	kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
29		benzo[a]anthracene 601-033-00-9 200-280-6 56-55-3	1	<0.01 mg/	kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
30		chrysene 601-048-00-0 205-923-4 218-01-9	1	<0.01 mg/	kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
31		benzo[b]fluoranthene 601-034-00-4 205-911-9 205-99-2	1	<0.01 mg/	kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
32		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9	+	<0.01 mg/	kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
33		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5 50-32-8	+	<0.01 mg/	kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
34	0	indeno[123-cd]pyrene 205-893-2 193-39-5	1	<0.01 mg/	kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
35		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3	-	<0.01 mg/	kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
36		benzo[ghi]perylene 205-883-8 191-24-2	-	<0.01 mg/	'kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
37		phenol 604-001-00-2 203-632-7 108-95-2	-	<0.1 mg/	'kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
38		polychlorobiphenyls; PCB 602-039-00-4 215-648-1 1336-36-3	-	<0.001 mg	'kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
	_	POZ-000-00-4 E10-040-1 1000-00-3	_	The same published			Total	: 0.0427 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: TP22[2]

Non Hazardous Waste Classified as 17 05 04

Sample details

Sample name: LoW Code:

TP22[2] Chapter:

Sample Depth: 1.5 m from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 Entry: 03)

Moisture content:

10% (no correction)

Hazard properties

None identified

Determinands

Moisture content: 10% No Moisture Correction applied (MC)

#			Determinand		CLP Note	User entered	data	Conv.	Compound	conc.	Classification value	Applied	Conc. No
		EU CLP index number	EC Number	CAS Number	CLP			actor			Value	MC	0000
1	d	antimony { antimo	ony trioxide }		Г	<2	mg/kg	1.197	<2.394	ma/ka	<0.000239 %		<lod< td=""></lod<>
	i	051-005-00-X	215-175-0	1309-64-4						• •	BUILDING SALE		
2	4	arsenic (arsenic t	trioxide }			12	mg/kg	1.32	15.844	mg/kg	0.00158 %		
-		033-003-00-0	215-481-4	1327-53-3	1							_	
3	-	boron (diboron tr	ioxide } 215-125-8	1303-86-2	-	<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< td=""></lod<>
	æ	cadmium { cadmi			T				4.740		0.000171 %		
4	-	048-002-00-0	215-146-2	1306-19-0	1	1.5	mg/kg	1.142	1.713	mg/kg	0.00017176		
5	4	chromium in chro		ds { * chromium(III)		9.7	mg/kg	1.462	14.177	mg/kg	0.00142 %		
			215-160-9	1308-38-9	1							-	
6	4	compounds, with of compounds sp		ds { chromium (VI) arium chromate and n this Annex }		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
		024-017-00-8			1				The second			1	
7	4	copper { dicopper	oxide; copper (I) o	xide }		18	mg/kg	1.126	20.266	mg/kg	0.00203 %		
		029-002-00-X	215-270-7	1317-39-1	1							+	
8	4	lead { lead chrom	ate }		1	11	mg/kg	1.56	17.158	mg/kg	0.0011 %		
_	_	082-004-00-2	231-846-0	7758-97-6	1							-	
9	4	mercury { mercur	y dichloride }			<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %	1	<lod< td=""></lod<>
		080-010-00-X	231-299-8	7487-94-7	1								
10	4	molybdenum { mo	olybdenum(VI) oxid	le }		2.8	mg/kg	1.5	4.201	mg/kg	0.00042 %		
		042-001-00-9	215-204-7	1313-27-5	1							+	_
11	4	nickel { nickel chr	romate }			34	ma/ka	2.976	101.193	mg/kg	0.0101 %		
		028-035-00-7	238-766-5	14721-18-7	1							-	
12	2	selenium { nickel	selenate }			0.34	ma/ka	2.554	0.868	mg/kg	0.0000868 %		
		028-031-00-5	239-125-2	15060-62-5						-		+	
13	4	zinc { zinc chrom	ate }			57	ma/ka	2.774	158.126	mg/kg	0.0158 %		
13		024-007-00-3	236-878-9	13530-65-9	1							_	
14	0	TPH (C6 to C40)	petroleum group			<10	mg/kg	1	<10	mg/kg	<0.001 %		<lod< td=""></lod<>
17				TPH							SOUND A		
15		tert-butyl methyl c 2-methoxy-2-met				<0.001	mg/kg	,	<0.001	mg/kg	<0.0000001 %	100	<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4					A TON OF STREET	To See	Service Control of		

en	VII	ronmental management for b	usiness	_								
#		Determina		CLP Note	User entere	d data	Conv.	Compound	conc.	Classification value	Applied	Conc. N Used
		EU CLP index EC Numb number	er CAS Number	CLF							MC	
6		benzene			<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-020-00-8 200-753-7	71-43-2	1	7.55				-		_	
7		toluene		4	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
4	_	601-021-00-3 203-625-9	108-88-3	+							Н	
8		ethylbenzene 601-023-00-4 202-849-4	400.44.4	-	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<l0[< td=""></l0[<>
+	-	xylene 202-049-4	100-41-4	+								
9		601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	106-42-3 [2] 108-38-3 [3]		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<loi< td=""></loi<>
0	4	exception of complex cyanides s ferricyanides and mercuric oxycy specified elsewhere in this Anne	uch as ferrocyanides, vanide and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<loi< td=""></loi<>
4	H	006-007-00-5		+							-	
1		naphthalene 601-052-00-2 202-049-5	91-20-3	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
-		acenaphthylene	p1-20-3	+					NAME OF TAXABLE			
2		205-917-1	208-96-8	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	1	<loi< td=""></loi<>
		acenaphthene	20000	+					7			
3	-	201-469-6	83-32-9	+	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lo< td=""></lo<>
		fluorene			-0.04			-0.04		-0.000001.00		-10
4		201-695-5	86-73-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lo< td=""></lo<>
5		phenanthrene			<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<lo< td=""></lo<>
_		201-581-5	85-01-8		-0,01	mg/kg		-0.01	mg/kg	-0.000001 A		
6		anthracene			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lo< td=""></lo<>
		204-371-1	120-12-7	1						The state of the s		
7		fluoranthene			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	1	<lo< td=""></lo<>
4	-	205-912-4	206-44-0	+				NEW STATE			-	
В		pyrene	400.00.0	4	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lo< td=""></lo<>
+	H	204-927-3	129-00-0	+				No. of the last of				
9		benzo[a]anthracene 601-033-00-9 200-280-6	56-55-3	4	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lo< td=""></lo<>
		chrysene	po-55-3	+						The second second		
0		601-048-00-0 205-923-4	218-01-9	+	<0.01	mg/kg	1	<0.01	mg/kg	<0.000001 %		<lo< td=""></lo<>
		benzo[b]fluoranthene	F10-01-0						1000			
1		601-034-00-4 205-911-9	205-99-2	+	<0.01	mg/kg	1 1	<0.01	mg/kg	<0.000001 %	8	<lo< td=""></lo<>
		benzo[k]fluoranthene		+					16.50			
2		601-036-00-5 205-916-6	207-08-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
		benzo[a]pyrene; benzo[def]chrys	sene	\top	-0.01			-0.01	12.00	-0.000001.0/		-10
3		601-032-00-3 200-028-5	50-32-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
4		indeno[123-cd]pyrene			<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<lo< td=""></lo<>
1		205-893-2	193-39-5	1		g. ng		No. of Parks				
5		dibenz[a,h]anthracene			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lo< td=""></lo<>
		601-041-00-2 200-181-8	53-70-3	+				A STATE OF THE PARTY OF THE PAR		CONTRACTOR OF THE PARTY OF THE		
6		benzo[ghi]perylene			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lo< td=""></lo<>
-		205-883-8	191-24-2	+						Section of the last	-	
7		phenol ph	400.05.0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lo< td=""></lo<>
+	_	604-001-00-2 203-632-7	108-95-2	+				The latest the same of the sam	TO SERVICE		-	
_		polychlorobiphenyls; PCB			< 0.001	mg/kg		<0.001	ma/ka	<0.0000001 %		<lo< td=""></lo<>
8		602-039-00-4 215-648-1	1336-36-3	_	1		1 1	The state of the s		The state of the s		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

Classification of sample: TP22[3]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: TP22[3] Sample Depth:

Chapter:

LoW Code:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)17 05 04 (Soil and stones other than those mentioned in 17 05

3.3 m Moisture content: Entry:

03)

9.9%

(no correction)

Hazard properties

None identified

Determinands

Moisture content: 9.9% No Moisture Correction applied (MC)

#			Determinand		Note	User entere	d data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. No Used
		EU CLP index number	EC Number	CAS Number	CLP			racioi			value	MC/	Osed
1	4	antimony { antimo	ny trioxide }		Г	<2	ma/ka	1.197	<2.394	mg/kg	<0.000239 %		<lod< td=""></lod<>
_		051-005-00-X	215-175-0	1309-64-4	1_		mg/kg	1.107	2.004	mg/kg	-0.000255 %		LOD
2		arsenic { arsenic to	rioxide }	1327-53-3		5.8	mg/kg	1.32	7.658	mg/kg	0.000766 %		
	-	boron { diboron trie		1021-00-0	\vdash							+	
3		005-008-00-8	215-125-8	1303-86-2	1	0.44	mg/kg	3.22	1.417	mg/kg	0.000142 %		
_	-	cadmium { cadmiu		1303-00-2	\vdash							+	
4		048-002-00-0	215-146-2	1306-19-0	1	0.81	mg/kg	1.142	0.925	mg/kg	0.0000925 %		
5	4		nium(III) compoun	ds { * chromium(III)		5.5	mg/kg	1.462	8.039	mg/kg	0.000804 %		
			215-160-9	1308-38-9	1	Mary to							
6	4	compounds, with to of compounds spe	he exception of ba	ds { chromium (VI) rium chromate and n this Annex }		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
_		024-017-00-8					21/45						
7		copper { dicopper 029-002-00-X	oxide; copper (I) o 215-270-7	xide }		10	mg/kg	1.126	11.259	mg/kg	0.00113 %		
_	-	lead { lead chroma		1317-39-1	\vdash			-				-	
8		082-004-00-2	231-846-0	7758-97-6	1	9.8	mg/kg	1.56	15.286	mg/kg	0.00098 %		
	-	mercury { mercury		1130-91-0							Marie Company		
9		080-010-00-X	231-299-8	7487-94-7	1	<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
		molybdenum { mol					17-15-55						
10		042-001-00-9	215-204-7	1313-27-5	-	<2	mg/kg	1.5	<3	mg/kg	<0.0003 %		<lod< td=""></lod<>
		nickel { nickel chro		1010 21 0							and the second		
11		028-035-00-7	238-766-5	14721-18-7	1	19	mg/kg	2.976	56.549	mg/kg	0.00565 %		
	A	selenium { nickel s		121									
12		028-031-00-5	239-125-2	15060-62-5	1	0.51	mg/kg	2.554	1.302	mg/kg	0.00013 %		
13	A	zinc { zinc chromat				NEW TOWN							
13		024-007-00-3	236-878-9	13530-65-9		37	mg/kg	2.774	102.643	mg/kg	0.0103 %		
14	9	TPH (C6 to C40) p	etroleum group					1					1 22
14		, , , , ,		TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
15		tert-butyl methyl et 2-methoxy-2-methy				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4						-			

#		Determinand	CLP Note	User entered	d data	Conv.	Compound con	c.	Classification value	Applied	Conc. Not
		EU CLP index EC Number CAS Number number	CLP			racioi			value	MC	Used
6		benzene 601-020-00-8 200-753-7 71-43-2		<0.001	mg/kg		<0.001 m	g/kg	<0.0000001 %		<lod< td=""></lod<>
7		toluene	\dagger	<0.001	mg/kg		<0.001 m	g/kg	<0.0000001 %		<lod< td=""></lod<>
'		601-021-00-3 203-625-9 108-88-3									
18	0	ethylbenzene		<0.001	mg/kg		<0.001 m	g/kg	<0.0000001 %		<lod< td=""></lod<>
-		601-023-00-4 202-849-4 100-41-4	+								
19		xylene 601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4] 95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001	mg/kg		<0.001 m	g/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	cyanides { ** salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<0.5	mg/kg	1.884	<0.942 m	g/kg	<0.000942 %		<lod< td=""></lod<>
		006-007-00-5 naphthalene	+	-0.04			-0.01	-0-	<0.000001.9/		<lod< td=""></lod<>
21		601-052-00-2 202-049-5 91-20-3	\dashv	<0.01	mg/kg		<0.01 m	gukg	<0.000001 %		LOD
22		acenaphthylene		<0.01	mg/kg		<0.01 m	g/kg	<0.000001 %		<lod< td=""></lod<>
23	0	205-917-1 208-96-8 acenaphthene	+	<0.01	mg/kg		<0.01 m	a/ka	<0.000001 %		<lod< td=""></lod<>
23		201-469-6 83-32-9								1	
24	0	fluorene 201-695-5 86-73-7	1	<0.01	mg/kg		<0.01 m	g/kg	<0.000001 %		<lod< td=""></lod<>
		phenanthrene	+								
25	۰	201-581-5 85-01-8	1	<0.01	mg/kg	9	<0.01 m	ig/kg	<0.000001 %		<lod< td=""></lod<>
26	0	anthracene		<0.01	mg/kg	,	<0.01 m	ıg/kg	<0.000001 %		<lod< td=""></lod<>
	H	204-371-1 120-12-7	+								
27		fluoranthene 205-912-4 206-44-0	+	<0.01	mg/kg	3	<0.01 m	ng/kg	<0.000001 %		<lod< td=""></lod<>
28	0	pyrene 204-927-3 129-00-0		<0.01	mg/kg	9	<0.01 m	ng/kg	<0.000001 %		<lod< td=""></lod<>
29		benzo[a]anthracene		<0.01	mg/kg		<0.01 n	ng/kg	<0.000001 %		<lod< td=""></lod<>
		601-033-00-9 200-280-6 56-55-3	+				NEW COLUMN	-			
30		chrysene 601-048-00-0 205-923-4 218-01-9	-	<0.01	mg/kg	9	<0.01 n	ng/kg	<0.000001 %		<lod< td=""></lod<>
	\vdash	benzo[b]fluoranthene		<0.01			<0.01 n	ng/kg	<0.000001 %	22	<lod< td=""></lod<>
31		601-034-00-4 205-911-9 205-99-2		20.01	mg/kg	9	-0.01 II	iging	40.000001 78		-200
22	Т	benzo[k]fluoranthene		<0.01	mg/kg		<0.01 n	na/ka	<0.000001 %		<lod< td=""></lod<>
32		601-036-00-5 205-916-6 207-08-9		-0.01	mg/kg	9		33			
33	Г	benzo[a]pyrene; benzo[def]chrysene		<0.01	mg/kg	0	<0.01 n	ng/kg	<0.000001 %		<lod< td=""></lod<>
		601-032-00-3 200-028-5 50-32-8	4								
34		indeno[123-cd]pyrene 205-893-2 193-39-5	_	<0.01	mg/kg	g	<0.01 n	ng/kg	<0.000001 %		<lod< td=""></lod<>
35		dibenz[a,h]anthracene		<0.01	mg/k	g	<0.01 n	ng/kg	<0.000001 %		<lod< td=""></lod<>
	+	601-041-00-2 200-181-8 53-70-3	+				1		100000000000000000000000000000000000000		1
36		benzo[ghi]perylene	\dashv	<0.01	mg/k	9	<0.01 r	ng/kg	<0.000001 %	8	<lod< td=""></lod<>
	+	phenol	+		The last		-0.4		-0.00004.0/		<lod< td=""></lod<>
37		604-001-00-2 203-632-7 108-95-2		<0.1	mg/k	9	<0.1 r	ng/kg	<0.00001 %		LOD
38	0		-	<0.001	mg/k	g	<0.001 r	ng/kg	<0.000001 %		<lod< td=""></lod<>
		602-039-00-4 215-648-1 1336-36-3					STATE OF THE OWNER, WHEN THE PARTY OF THE PA	Total	0.0217 %		

CLP: Note 1 Only the metal concentration has been used for classification

HazWasteOnline[™]
Report created by Austin Hynes on 17 May 2022

Key	
	User supplied data
10318	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected

Classification of sample: TP23

Sample details

Sample name:

LoW Code:

TP23

Chapter:

Sample Depth:

0.3 m

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05

03)

Moisture content: 16%

(no correction)

Hazard properties

None identified

Determinands

Moisture content: 16% No Moisture Correction applied (MC)

#			Determinand		CLP Note	User entered	l data	Conv.	Compound	conc.	Classification value	Applied	Conc. No
		EU CLP index number	EC Number	CAS Number	CLP			actor			Value	MC/	Used
1	ď	antimony { antimony	trioxide }		Г	<2	mg/kg	1.197	<2.394	ma/ka	<0.000239 %		<lod< td=""></lod<>
'	Ĭ	051-005-00-X	215-175-0	1309-64-4	1	La Talleton	mg/ng	1.101		11191119			-
2	æ	arsenic { arsenic tric	oxide }			9.4	mg/kg	1 32	12.411	mg/kg	0.00124 %		
-		033-003-00-0	215-481-4	1327-53-3	1		g.ng					_	
3	æ	boron { diboron triox	ride }			0.75	mg/kg	3.22	2.415	mg/kg	0.000241 %		
3			215-125-8	1303-86-2	1	0.15	mg/kg	J.LL	2.410	mgmg	0.00021110		
4	æ	cadmium { cadmium	oxide }			0.88	malka	1.142	1.005	mg/kg	0.000101 %		
4		048-002-00-0	215-146-2	1306-19-0	1	0.00	ilig/kg	1.142	1.000	mgmg	0.000101 /0		
5	4	chromium in chromi oxide (worst case) }		ds { * chromium(III)		16	mg/kg	1.462	23.385	mg/kg	0.00234 %		
			215-160-9	1308-38-9	1	No.	1					_	
6	4	chromium in chromi compounds, with the of compounds spec	e exception of ba	rium chromate and		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
_		024-017-00-8			+				Party States	The Barrier		-	_
7	4	copper { dicopper o			4	24	mg/kg	1.126	27.021	mg/kg	0.0027 %		
			215-270-7	1317-39-1	+							+	_
8	4	lead { lead chromat		h	1	44	mg/kg	1.56	68.632	mg/kg	0.0044 %		
			231-846-0	7758-97-6	+					SAMORE	The same of the sa		_
9	4	mercury (mercury		h	1	<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %	4	<lod< td=""></lod<>
			231-299-8	7487-94-7	+								_
10	4	molybdenum (moly			1	<2	mg/kg	1.5	<3	mg/kg	<0.0003 %		<loi< td=""></loi<>
			215-204-7	1313-27-5	+					A State		+	-
11	4	nickel { nickel chron				29	mg/kg	2.976	86.312	mg/kg	0.00863 %		
			238-766-5	14721-18-7	1							+	-
12	4	selenium { nickel se 028-031-00-5	elenate } 239-125-2	15060-62-5	-	0.37	mg/kg	2.554	0.945	mg/kg	0.0000945 %		
	A	zinc { zinc chromate	9 }		Т	00	man floor	2 774	244.125	mg/kg	0.0244 %		
13	~		236-878-9	13530-65-9	1	88	mg/kg	2.774	244.125	mg/kg	0.0244 76		
		TPH (C6 to C40) pe	etroleum group		\top	-110			<10	malka	<0.001 %		<loi< td=""></loi<>
14				TPH	+	<10	mg/kg		<10	mg/kg	-0.001 %		LOL
15		tert-butyl methyl eth 2-methoxy-2-methy				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<loi< td=""></loi<>
		603-181-00-X	216-653-1	1634-04-4									

er	IVI	ronmental management for business	_						_	
#		Determinand EU CLP index	CLP Note	User entere	d data	Conv. Factor	Compound conc.	Classification value	Applied :	Conc. No Used
		number CAS Number CAS Number	ರ						MC	
16		benzene		<0.001	mg/kg		<0.001 mg	kg <0.0000001 %		<lod< td=""></lod<>
_		601-020-00-8 200-753-7 71-43-2						12 17238		
7		toluene		<0.001	mg/kg		<0.001 mg	kg <0.0000001 %		<lod< td=""></lod<>
_		601-021-00-3 203-625-9 108-88-3								
18		ethylbenzene		<0.001	mg/kg		<0.001 mg	kg <0.0000001 %		<lod< td=""></lod<>
		601-023-00-4 202-849-4 100-41-4	1					Sales A		
19		xylene 202-422-2 [1] 95-47-6 [1]		<0.001	mg/kg		<0.001 mg	kg <0.000001 %		<lod< td=""></lod<>
20	4	cyanides (salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex)		<0.5	mg/kg	1.884	<0.942 mg	kg <0.0000942 %		<lod< td=""></lod<>
1		naphthalene	1	<0.01	mg/kg		<0.01 mg	/kg <0.000001 %		<lod< td=""></lod<>
_		601-052-00-2 202-049-5 91-20-3	+							
2		acenaphthylene 205-917-1 208-96-8	_	<0.01	mg/kg	,	<0.01 mg	kg <0.000001 %		<lod< td=""></lod<>
_		acenaphthene	+						-	
3		201-469-6 83-32-9	-	<0.01	mg/kg	,	<0.01 mg	kg <0.000001 %		<lod< td=""></lod<>
	0	fluorene	+		A TOTAL			The second second second		10.00
4		201-695-5 86-73-7	-	<0.01	mg/kg		<0.01 mg	'kg <0.000001 %		<lod< td=""></lod<>
		phenanthrene		TO THE STREET	100		10 St. 10 St.	of Contract of the		
5	-	201-581-5 85-01-8	\dashv	<0.01	mg/kg	1	<0.01 mg	kg <0.000001 %		<lod< td=""></lod<>
_		anthracene		-0.04			-0.04	-0.000004.0/		-1.00
6		204-371-1 120-12-7		<0.01	mg/kg		<0.01 mg	/kg <0.000001 %		<lod< td=""></lod<>
7	0	fluoranthene		<0.01	mg/kg		<0.01 mg	/kg <0.000001 %		<lod< td=""></lod<>
		205-912-4 206-44-0		-0.01	mg/kg		-0.01 IIIg	kg -0.000001 /8		LOD
8		pyrene		<0.01	mg/kg	.	<0.01 mg	kg <0.00001 %		<lod< td=""></lod<>
_		204-927-3 129-00-0			mg ng					
9		benzo[a]anthracene		<0.01	mg/kg	,	<0.01 mg	kg <0.000001 %		<lod< td=""></lod<>
	-	601-033-00-9 200-280-6 56-55-3	-		111					
0		chrysene		<0.01	mg/kg	,	<0.01 mg	/kg <0.000001 %		<lod< td=""></lod<>
_	-	601-048-00-0 205-923-4 218-01-9	+							
1		benzo[b]fluoranthene	_	<0.01	mg/kg	3	<0.01 mg	/kg <0.000001 %		<lod< td=""></lod<>
-	-	601-034-00-4 205-911-9 205-99-2	+				A 18 18 18 18 18 18 18 18 18 18 18 18 18			-
2		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9	-	<0.01	mg/kg	,	<0.01 mg	/kg <0.000001 %		<lod< td=""></lod<>
	-	benzo[a]pyrene; benzo[def]chrysene	+							
3		601-032-00-3 200-028-5 50-32-8	\dashv	<0.01	mg/kg	,	<0.01 mg	/kg <0.000001 %		<lod< td=""></lod<>
,					NO.		10 To			
4		205-893-2 193-39-5		<0.01	mg/kg		<0.01 mg	/kg <0.000001 %		<lod< td=""></lod<>
5		dibenz[a,h]anthracene		<0.01	malle		<0.04	/kg <0.000001 e/		<lod< td=""></lod<>
2		601-041-00-2 200-181-8 53-70-3		<0.01	mg/kg	1	<0.01 mg	/kg <0.000001 %		LOD
6		benzo[ghi]perylene		<0.01	mg/kg		<0.01 mg	/kg <0.000001 %		<lod< td=""></lod<>
_		205-883-8 191-24-2		0.01	mgrkg		and my			
7		phenol		<0.1	mg/kg		<0.1 mg	/kg <0.00001 %		<lod< td=""></lod<>
_	L	604-001-00-2 203-632-7 108-95-2		Marie San	98		(0)			
88				<0.001	mg/kg		<0.001 mg	kg <0.000001 %		<lod< td=""></lod<>
		602-039-00-4 215-648-1 1336-36-3			5 .5					
							To	tal: 0.0459 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: TP23[2] .--

> Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

LoW Code: Sample name:

TP23[2] Chapter:

from contaminated sites) Sample Depth: 1.2 m Entry: 17 05 04 (Soil and stones other than those mentioned in 17 05

Moisture content: 12%

(no correction)

Hazard properties

None identified

Determinands

Moisture content: 12% No Moisture Correction applied (MC)

#			Determinand		CLP Note	User entere	d data	Conv.	Compound	conc.	Classification value	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			actor			value	MC	Cacc
1	4	antimony { antimo	DOMESTIC OF THE PARTY OF T			<2	ma/ka	1.197	<2.394	ma/ka	<0.000239 %		<lod< td=""></lod<>
_	_	051-005-00-X	215-175-0	1309-64-4	\perp	La State Control							
2	4	arsenic { arsenic t	rioxide }			12	mg/kg	1.32	15.844	mg/kg	0.00158 %		
	_	033-003-00-0	215-481-4	1327-53-3	\perp					3 3			
3	4	boron { diboron tri	oxide }			<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< td=""></lod<>
_		005-008-00-8	215-125-8	1303-86-2	1								
4	4	cadmium { cadmiu	um oxide }			1.5	ma/ka	1.142	1.713	mg/kg	0.000171 %		
7		048-002-00-0	215-146-2	1306-19-0	1	1.0	mg/kg	1	1.710	mgmg	0.000171 70		
5	4	chromium in chro)}	nds { • chromium(III)		12	mg/kg	1.462	17.539	mg/kg	0.00175 %		
			215-160-9	1308-38-9	1								
6	4	compounds, with		nds { chromium (VI) arium chromate and n this Annex }		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
			/d(I)		+							-	
7		copper { dicopper 029-002-00-X	215-270-7	1317-39-1	-	16	mg/kg	1.126	18.014	mg/kg	0.0018 %		
		lead { lead chrom		1317-39-1	+							+	
8		082-004-00-2	231-846-0	7758-97-6	1	13	mg/kg	1.56	20.278	mg/kg	0.0013 %		
	_			1/30-97-0	\vdash				- V T - 20 C P - 1	170000000000000000000000000000000000000	AND THE RESERVE		
9	4	mercury { mercury	231-299-8	7487-94-7	1	<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %	1	<lod< td=""></lod<>
_					+				ACTUAL VIEW	WE STATE			
10		molybdenum { mo	215-204-7		1	2	mg/kg	1.5	3	mg/kg	0.0003 %		
_	_			1313-27-5	⊢					_		+	
11		nickel { nickel chro		44704 40 7	1	27	mg/kg	2.976	80.359	mg/kg	0.00804 %		
_		028-035-00-7	238-766-5	14721-18-7	⊢		and the same					+	
12	_	selenium { nickel :	NAME OF TAXABLE PARTY.		1	0.23	mg/kg	2.554	0.587	mg/kg	0.0000587 %		
	-	028-031-00-5	239-125-2	15060-62-5	⊢							+	-
13		zinc { zinc chroma			1	61	mg/kg	2.774	169.223	mg/kg	0.0169 %		
	_	024-007-00-3	236-878-9	13530-65-9	\vdash		0 (5.5)					\vdash	
14		TPH (C6 to C40)	petroleum group		1	<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
				TPH	L				100000	"In less			
15		tert-butyl methyl e 2-methoxy-2-meth	ylpropane			<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4		San March				No.			

environmental	managaman	4 for business

Т	П		T	Т					-	
#		Determinand	per 0	NOIG	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. No Used
		EU CLP index	per C	3					MC	
6		benzene 601-020-00-8 200-753-7 71-43-2			<0.001 mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
+	-	toluene		+			-0.004	-0.0000004.0/		-1.00
7	L	601-021-00-3 203-625-9 108-88-3			<0.001 mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
	-	ethylbenzene		1	<0.001 mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
8		601-023-00-4 202-849-4 100-41-4			<0.001 mg/kg		-0.001 mg/kg	-0.0000001 76		-200
19		xylene 601-022-00-9			<0.001 mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	cyanides (salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanide ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex)	s,		<0.5 mg/kg	1.884	<0.942 mg/kg	<0.0000942 %		<lod< td=""></lod<>
	-	naphthalene	_	+	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			0.000004.00		-1.00
21		601-052-00-2 202-049-5 91-20-3			<0.01 mg/kg	3	<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
22		acenaphthylene 205-917-1 208-96-8			<0.01 mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
23		acenaphthene 201-469-6 83-32-9			<0.01 mg/kg	,	<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
24	0	fluorene			<0.01 mg/kg	,	<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
-		201-695-5 86-73-7 phenanthrene	-	-				S2455		
25	9	201-581-5 85-01-8			<0.01 mg/kg	3	<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
26		anthracene 204-371-1 120-12-7			<0.01 mg/kg	,	<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
27	0	fluoranthene 205-912-4 206-44-0			<0.01 mg/kg	9	<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
28	9	pyrene 204-927-3 129-00-0			<0.01 mg/kg	9	<0.01 mg/kg	<0.000001 %		<l00< td=""></l00<>
29		benzo[a]anthracene 601-033-00-9 200-280-6 56-55-3			<0.01 mg/kg	9	<0.01 mg/kg	<0.000001 %		<l00< td=""></l00<>
30		chrysene 601-048-00-0 205-923-4 218-01-9			<0.01 mg/kg	9	<0.01 mg/kg	9 <0.000001 %		<l00< td=""></l00<>
31		benzo[b]fluoranthene			<0.01 mg/kg	9	<0.01 mg/kg	g <0.000001 %		<lod< td=""></lod<>
32		601-034-00-4 205-911-9 205-99-2 benzo[k]fluoranthene			<0.01 mg/kg	9	<0.01 mg/kg	g <0.000001 %		<lod< td=""></lod<>
		601-036-00-5 205-916-6 207-08-9		_			A DESCRIPTION OF THE PARTY OF T			
33		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5 50-32-8			<0.01 mg/kg	9	<0.01 mg/kg	g <0.000001 %		<loi< td=""></loi<>
34	0	indeno[123-cd]pyrene			<0.01 mg/k	9	<0.01 mg/k	g <0.000001 %		<l00< td=""></l00<>
35		dibenz[a,h]anthracene			<0.01 mg/k	g	<0.01 mg/k	g <0.000001 %		<l0[< td=""></l0[<>
36	0	601-041-00-2 200-181-8 53-70-3 benzo[ghi]perylene			<0.01 mg/k	9	<0.01 mg/k	g <0.00001 %		<loi< td=""></loi<>
37		205-883-8 191-24-2 phenol			<0.1 mg/k	g	<0.1 mg/k	g <0.00001 %		<loi< td=""></loi<>
_	0	604-001-00-2 203-632-7 108-95-2 polychlorobiphenyls; PCB						g <0.0000001 %		<l0[< td=""></l0[<>
38	1	602-039-00-4 215-648-1 1336-36-3			<0.001 mg/k	9	-0.001 Hig/K	9 -0.0000001 76		-236

Key		
	User supplied data	
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason	
•	Determinand defined or amended by HazWasteOnline (see Appendix A)	
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration	
<lod< td=""><td>Below limit of detection</td><td></td></lod<>	Below limit of detection	
ND	Not detected	
CLP: Note 1	Only the metal concentration has been used for classification	

Classification of sample: TP23[3]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:

TP23[3] Chapter: Sample Depth:

2.4 m Entry: Moisture content:

13% (no correction)

.....

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 13% No Moisture Correction applied (MC)

#		Determinand	CLP Note	User entered	l data	Conv.	Compound	conc.	Classification	MC Applied	Conc. No Used
		EU CLP index EC Number CAS Number number	CLP			racioi			Value	MC	0000
1	ď,	antimony { antimony trioxide }		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< td=""></lod<>
		051-005-00-X 215-175-0 1309-64-4	\perp				150		10 F		
2	2	arsenic { arsenic trioxide }		8.2	mg/kg	1.32	10.827	mg/kg	0.00108 %		
-		033-003-00-0 215-481-4 1327-53-3	1					-			
3	R	boron { diboron trioxide }		<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %	1	<lod< td=""></lod<>
3	_	005-008-00-8 215-125-8 1303-86-2							100		
4	d	cadmium { cadmium oxide }		0.36	ma/ka	1.142	0.411	mg/kg	0.0000411 %		
4		048-002-00-0 215-146-2 1306-19-0		0.00	mg/kg	1.1.12	• • • • • • • • • • • • • • • • • • • •				
5	4	chromium in chromium(III) compounds { * chromium(III) oxide (worst case) })	25	mg/kg	1.462	36.539	mg/kg	0.00365 %		
		215-160-9 1308-38-9	_							-	
6	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
		024-017-00-8	1					7 2 12			
7	4	copper { dicopper oxide; copper (I) oxide }		15	ma/ka	1.126	16.888	mg/kg	0.00169 %		
'		029-002-00-X 215-270-7 1317-39-1								-	
8	2	lead { lead chromate }	_ 1	11	ma/ka	1.56	17.158	mg/kg	0.0011 %		
0		082-004-00-2 231-846-0 7758-97-6	1		mgrks	1.00					
9	æ	mercury { mercury dichloride }		<0.1	ma/ka	1.353	<0.135	ma/ka	<0.0000135 %		<lod< td=""></lod<>
9	•	080-010-00-X 231-299-8 7487-94-7		-0.1	ingrag	1.000					
10		molybdenum { molybdenum(VI) oxide }		<2	mg/kg	1.5	<3	mg/kg	<0.0003 %		<lod< td=""></lod<>
10	_	042-001-00-9 215-204-7 1313-27-5			iligrity	1.0					
11	d	nickel { nickel chromate }		34	ma/ka	2.976	101.193	mg/kg	0.0101 %		
11	-	028-035-00-7 238-766-5 14721-18-7		-	mg/ng	2.570	1011100				
12	4	selenium { nickel selenate }		<0.2	ma/ka	2.554	<0.511	mg/kg	<0.0000511 %		<lod< td=""></lod<>
'-		028-031-00-5 239-125-2 15060-62-5						ale Pale			-
13		zinc { zinc chromate }		47	ma/ka	2.774	130.385	mg/kg	0.013 %		
13		024-007-00-3 236-878-9 13530-65-9	1							-	
14		TPH (C6 to C40) petroleum group		<10	mg/kg	,	<10	mg/kg	<0.001 %		<lod< td=""></lod<>
14		ТРН			9.115				THE LABOR		
15		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane		<0.001	mg/kg	9	<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4					Cleus/s	100			

environmental	

$\overline{}$	-	ronmental management for business	_			1					
		Determinand	er CLP Note	User entere	d data	Conv.	Compound	conc.	Classification value	Applied	Conc. N Used
		EU CLP index EC Number CAS Numb number	er 3							MC	
3		benzene		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-020-00-8 200-753-7 71-43-2		40.001	iliging		-0.001	mg/kg	~0.000000 1 <i>1</i> 6		LOL
,		toluene		-0.004			-0.004		-0.0000004.0/		-10
		601-021-00-3 203-625-9 108-88-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<loi< td=""></loi<>
		ethylbenzene					-	N. Dinasi			
3		601-023-00-4 202-849-4 100-41-4	\neg	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %	1	<loi< td=""></loi<>
+		xylene									
		601-022-00-9 202-422-2 [1] 95-47-6 [1]	-					STEEL STEEL			
9		203-396-5 [2] 106-42-3 [2]		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lo< td=""></lo<>
		203-576-3 [3] 108-38-3 [3]						1315			
		215-535-7 [4] 1330-20-7 [4]		Market St.				5 7 15			
	4	cyanias of the second of the s		THE VIEW				4 19			
0		exception of complex cyanides such as ferrocyanides		<0.5	ma/ka	1.884	<0.942	malka	<0.0000942 %		<lo< td=""></lo<>
1		ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }	233	-0.5	mg/kg	1.004	-0.542	iliging	-0.0000542 %		10
		006-007-00-5	_								
+	-		_								
1		naphthalene		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lo< td=""></lo<>
+		601-052-00-2 202-049-5 91-20-3	\rightarrow								
2	•	acenaphthylene		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lo< td=""></lo<>
+	_	205-917-1 208-96-8		Laboration Control							
3	0	acenaphthene		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lo< td=""></lo<>
		201-469-6 83-32-9						mgmg	0.000007		
1	0	fluorene		<0.01	malka		<0.01	ma/ka	<0.000001 %		<lo< td=""></lo<>
'		201-695-5 86-73-7		-0.01	mg/kg		-0.01	mg/kg	~0.000001 %		LLU
	0	phenanthrene		-0.04				NEW YORK			
5 '		201-581-5 85-01-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
		anthracene	\neg				No. of Contract of		100/50		
3		204-371-1 120-12-7	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
1		fluoranthene	$\overline{}$		7.00				8 8 S S S S S S S S S S S S S S S S S S		
'	-	205-912-4 206-44-0	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
+			+							-	
3		pyrene 204-927-3 129-00-0		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lo< td=""></lo<>
+	-		-				1/29E 1179 10E			-	
9		benzo[a]anthracene	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	1	<loi< td=""></loi<>
+		601-033-00-9 200-280-6 56-55-3	-				57945E3000	1000			
)		chrysene		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
+		601-048-00-0 205-923-4 218-01-9		200			14 M M M M M M M M M M M M M M M M M M M				
		benzo[b]fluoranthene		<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<lo< td=""></lo<>
		601-034-00-4 205-911-9 205-99-2						mg ng			
2		benzo[k]fluoranthene		<0.01	ma/ka		<0.01	ma/ka	-0.000001.9/		<lo< td=""></lo<>
		601-036-00-5 205-916-6 207-08-9		-0.01	mg/kg		-0.01	mg/kg	<0.000001 %		LOI
		benzo[a]pyrene; benzo[def]chrysene		-0.04			-0.04		-0.000004.0/		
3	1	601-032-00-3 200-028-5 50-32-8	\neg	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lo< td=""></lo<>
	_	indeno[123-cd]pyrene			V C C		THE PERSON	100			
,		205-893-2 193-39-5		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lo< td=""></lo<>
		dibenz[a,h]anthracene		TO SHOW IN			Control of the last	-			
5	1	601-041-00-2 200-181-8 53-70-3	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lo< td=""></lo<>
+			-							-	
1		benzo[ghi]perylene		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lo< td=""></lo<>
+		205-883-8 191-24-2	_		THE PERSON NAMED IN		ALCOHOL:	1000			
		phenol		<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<loi< td=""></loi<>
1	_	604-001-00-2 203-632-7 108-95-2		DILOTTE DA	, ,			3.3			
1	ŏ	polychlorobiphenyls; PCB		<0.001	mg/kg		<0.001	ma/ka	<0.0000001 %		<loi< td=""></loi<>
		602-039-00-4 215-648-1 1336-36-3		-0.001	mg/kg		0.001	mg/kg	0.000001 %		-20
	_							Total:	0.0327 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: TP24

Non Hazardous Waste
Classified as 17 05 04
in the List of Waste

Sample details

Sample name: LoW Code:

TP24 Chapter: Sample Depth:

from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 0.5 m Entry:

Moisture content: 13%

(no correction)

Hazard properties

None identified

Determinands

Moisture content: 13% No Moisture Correction applied (MC)

#			Determinand		CLP Note	User entere	d data	Conv.	Compound	conc.	Classification value	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			racio			value	MC	Osed
1	4	antimony { antimor	ny trioxide }			<2	ma/ka	1.197	<2.394	ma/ka	<0.000239 %	1	<lod< td=""></lod<>
_	_		215-175-0	1309-64-4	1								
2	4	arsenic { arsenic tr				6.2	mg/kg	1.32	8.186	mg/kg	0.000819 %		
			215-481-4	1327-53-3	\vdash							-	
3		boron { diboron tric				0.47	mg/kg	3.22	1.513	mg/kg	0.000151 %		
	_		215-125-8	1303-86-2	\perp							\perp	
4		cadmium { cadmiu				0.6	mg/kg	1.142	0.685	mg/kg	0.0000685 %		
		048-002-00-0	215-146-2	1306-19-0	1					- 0		_	
5	4	chromium in chromoxide (worst case)		ds { * chromium(III)		7.8	mg/kg	1.462	11.4	mg/kg	0.00114 %		
			215-160-9	1308-38-9	1_								
6	4	of compounds spe	he exception of ba	rium chromate and		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
_	_	024-017-00-8			\vdash				See House			-	
7	_	copper { dicopper of 029-002-00-X	oxide; copper (I) or 215-270-7	ride }	-	12	mg/kg	1.126	13.511	mg/kg	0.00135 %		
\vdash	_	lead { lead chroma		1317-35-1	+							+	
8			231-846-0	7758-97-6	1	9.5	mg/kg	1.56	14.818	mg/kg	0.00095 %		
_	-	mercury { mercury		7100010	+					1			
9			231-299-8	7487-94-7	1	<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10	A	molybdenum { mol	ybdenum(VI) oxide	}	T					-			
10			215-204-7	1313-27-5		<2	mg/kg	1.5	<3	mg/kg	<0.0003 %		<lod< td=""></lod<>
11	æ	nickel { nickel chron	mate }		Т	20		2.076	59.525		0.00595 %		
"		and the second s	238-766-5	14721-18-7	1	20	mg/kg	2.976	59.525	mg/kg	0.00595 %		
12		selenium { nickel selenium { nickel selenium }	elenate } 239-125-2	15060-62-5		0.78	mg/kg	2.554	1.992	mg/kg	0.000199 %		
	_	zinc { zinc chromat		10000-02-0	+							+	
13		Contraction of the Contraction o	236-878-9	13530-65-9	1	31	mg/kg	2.774	85.999	mg/kg	0.0086 %		
14	9	TPH (C6 to C40) p	etroleum group		T	<10	mg/kg		<10	malka	<0.001 %		<lod< td=""></lod<>
				TPH	1	-10	myrky			mg/kg	-0.001 76		LOD
15		tert-butyl methyl et 2-methoxy-2-methy 603-181-00-X		1634-04-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>

environmental	manac	sement fo	or b	usiness

#		Determinand	CLP Note	User entered	i data	Conv.	Compound	conc.	Classification value	Applied	Conc. No
		EU CLP index EC Number CAS Number number	CLP			1 dotor				MC	
6		benzene 601-020-00-8 200-753-7 71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
7	L	toluene		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
_	_	601-021-00-3 203-625-9 108-88-3	+							-	
8		ethylbenzene 601-023-00-4 202-849-4 100-41-4	-	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
9		xylene 601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	*	cyanides (* salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
21		naphthalene		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
22		601-052-00-2 202-049-5 91-20-3 acenaphthylene 205-917-1 208-96-8	+	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
23		acenaphthene 201-469-6 83-32-9	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
24	0	fluorene 201-695-5 86-73-7	1	<0.01	mg/kg	,	<0.01	mg/kg	<0.000001 %		<loe< td=""></loe<>
25	0	phenanthrene 201-581-5 85-01-8	+	<0.01	mg/kg	,	<0.01	mg/kg	<0.000001 %		<loe< td=""></loe<>
26	9	anthracene 204-371-1 120-12-7	1	<0.01	mg/kg	,	<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
27	0	fluoranthene 205-912-4 206-44-0	1	<0.01	mg/kg	,	<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
28	0	pyrene 204-927-3 129-00-0	+	<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %		<loe< td=""></loe<>
29		benzo[a]anthracene 601-033-00-9 200-280-6 56-55-3	7	<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %		<l0[< td=""></l0[<>
30		chrysene 601-048-00-0 205-923-4 218-01-9	7	<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %		<l00< td=""></l00<>
31		benzo[b]fluoranthene 601-034-00-4 205-911-9 205-99-2	-	<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %		<l0[< td=""></l0[<>
32		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9	-	<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %		<l0[< td=""></l0[<>
33		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5 50-32-8		<0.01	mg/k	9	<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
34	0	indeno[123-cd]pyrene 205-893-2 193-39-5		<0.01	mg/k	g	<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
35		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		<0.01	mg/k	g	<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
36		benzo[ghi]perylene 191-24-2		<0.01	mg/k	g	<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
37		phenol 604-001-00-2 203-632-7 108-95-2		<0.1	mg/k	g	<0.1	mg/kg	<0.00001 %		<loi< td=""></loi<>
38	0	- duable schiebender DCB		<0.001	mg/k	g	<0.001	mg/kg	<0.000001 %		<l0< td=""></l0<>
_	_	002-008-00-4 k 10-040-1 1000-00-0						Total	0.021 %		-

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

Classification of sample: TP24[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: TP24[2] Chapter:

Sample Depth:
2.0 m Entry:

Moisture content:

14%

(no correction)

Code: oter: 17: Construction and Demolition Wastes (including excavated soil

from contaminated sites)
17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 14% No Moisture Correction applied (MC)

#			Determinand		CLP Note	User entered	l data	Conv.	Compound	conc.	Classification value	Applied	Conc. No
		EU CLP index number	EC Number	CAS Number	CLP			racio			Value	MC	0300
1	ď,	antimony { antimony tr	ioxide }		Г	<2	mg/kg	1,197	<2.394	mg/kg	<0.000239 %		<lod< td=""></lod<>
			5-175-0	1309-64-4	1		99					4	
2	4	arsenic { arsenic trioxic	de }			4.4	mg/kg	1.32	5.809	mg/kg	0.000581 %		
		033-003-00-0 215	5-481-4	1327-53-3	1							\perp	
3	4	boron { diboron trioxide	e }			<0.4	mg/kg	3.22	<1.288	ma/ka	<0.000129 %		<lod< td=""></lod<>
•		005-008-00-8 215	5-125-8	1303-86-2				5.22	1			L	
4	d	cadmium { cadmium o	xide }		Т	0.15	mg/kg	1 142	0.171	mg/kg	0.0000171 %		
+	_	048-002-00-0 215	5-146-2	1306-19-0		0.15	iliging	1.142	0.171	mgmg	0.000017170		
5	4	chromium in chromium oxide (worst case) }	n(III) compound	ds { * chromium(III)		16	mg/kg	1.462	23.385	mg/kg	0.00234 %		
		215	5-160-9	1308-38-9	1								
6	4	chromium in chromium compounds, with the e of compounds specifie	exception of ba	rium chromate and		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
		024-017-00-8			1		200		10 10 100	STORY		+	
7	d	copper { dicopper oxid	le; copper (I) o	xide }		9.4	ma/ka	1.126	10.583	mg/kg	0.00106 %		
•		029-002-00-X 215	5-270-7	1317-39-1								\perp	
8	d	lead { lead chromate }			1	5.7	mg/kg	1.56	8.891	mg/kg	0.00057 %		
_		082-004-00-2 231	1-846-0	7758-97-6	1							_	
9	d	mercury { mercury dic	hloride }			<0.1	ma/ka	1.353	<0.135	ma/ka	<0.0000135 %		<loi< td=""></loi<>
9	Ť	080-010-00-X 23°	1-299-8	7487-94-7			mg/ng	1.000					
10	A	molybdenum { molybd	lenum(VI) oxid	e }		<2	mg/kg	1.5	<3	mg/kg	<0.0003 %		<loi< td=""></loi<>
	•		5-204-7	1313-27-5			mg/kg	1.0					
11	d	nickel { nickel chromat	te }			20	ma/ka	2.976	59.525	mg/kg	0.00595 %		
11	•		8-766-5	14721-18-7		20	mg/kg	2.570	05.020	mgmg	0.00000 /0		
12	d	selenium { nickel seler	nate }			<0.2	ma/ka	2.554	<0.511	mg/kg	<0.0000511 %		<loi< td=""></loi<>
12	_	028-031-00-5 239	9-125-2	15060-62-5	1	-0.2	mg/kg	2.004	-0.511	mg/kg	-0.0000011 70		
	æ	zinc { zinc chromate }				28	malka	2.774	77.676	mg/kg	0.00777 %		
13	~	TEXAMETER STREET, SALES	6-878-9	13530-65-9	1	28	mg/kg	2.774	77.070	mg/kg	0.00777 78		
		TPH (C6 to C40) petro	oleum group		1	-10			-10	malka	<0.001 %		<loi< td=""></loi<>
14	-	(TPH	1	<10	mg/kg		<10	mg/kg	-0.001 %		-201
15		tert-butyl methyl ether 2-methoxy-2-methylpr				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %	1	<loi< td=""></loi<>
		603-181-00-X 21	6-653-1	1634-04-4								9	

er	nvi	ronmental management for business	_					_	
#		Determinand	Note	User entered data	Conv.	Compound conc.	Classification value	Applied	Conc. No
		EU CLP index EC Number CAS Number number	CLP					MC	-
16		benzene		<0.001 mg/kg	,	<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
_	+	601-020-00-8 200-753-7 71-43-2 toluene	+						
17		601-021-00-3 203-625-9 108-88-3	\dashv	<0.001 mg/kg	,	<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
		ethylbenzene	+			The second second			100
18		601-023-00-4 202-849-4 100-41-4	-	<0.001 mg/kg	3	<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
19		xylene 601-022-00-9 202-422-2 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001 mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<0.5 mg/kg	1.884	<0.942 mg/kg	<0.0000942 %		<lod< td=""></lod<>
21		naphthalene		<0.01 mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
_	-	601-052-00-2 202-049-5 91-20-3	-						
22		acenaphthylene 205-917-1 208-96-8	-	<0.01 mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
23	0	acenaphthene	+	<0.01 mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
	-	201-469-6 83-32-9							
24	0	fluorene 201-695-5 86-73-7	-	<0.01 mg/kg	,	<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
		phenanthrene	+						
25		201-581-5 85-01-8		<0.01 mg/kg	,	<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
26	0	anthracene 204-371-1 120-12-7		<0.01 mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
27	0	fluoranthene		<0.01 mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
	-	205-912-4 206-44-0	-					_	
28	0	204-927-3 129-00-0	-	<0.01 mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
29		benzo[a]anthracene 601-033-00-9 200-280-6 56-55-3		<0.01 mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
		chrysene	+						
30		601-048-00-0 205-923-4 218-01-9	+	<0.01 mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
31		benzo[b]fluoranthene		<0.01 mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
-		601-034-00-4 205-911-9 205-99-2		<0.01 mg/kg		-U.UT mg/kg	-0.000001 %		LOD
32		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9	4	<0.01 mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
22		benzo[a]pyrene; benzo[def]chrysene	+						
33		601-032-00-3 200-028-5 50-32-8		<0.01 mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
34		indeno[123-cd]pyrene 205-893-2 193-39-5		<0.01 mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
		dibenz[a,h]anthracene	-						
35		601-041-00-2 200-181-8 53-70-3		<0.01 mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
36	0	benzo[ghi]perylene		<0.01 mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
_		205-883-8 191-24-2		-0.01 mg/kg		TO.01 Hig/kg	-0.000001 %		LOD
37		phenol 604-001-00-2 203-632-7 108-95-2		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
38	0	polychlorobiphenyls; PCB		<0.001 mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
		602-039-00-4 215-648-1 1336-36-3	7	grkg		The state of the s			_00

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

Classification of sample: TP25

Sample details

Sample name: LoW Code:

TP25 Chapter: Sample Depth:

0.6 m Entry: Moisture content:

14% (no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 14% No Moisture Correction applied (MC)

#			Determinand		Note	User entere	d data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. No
		EU CLP index number	EC Number	CAS Number	CLP			ractor			value	MC /	Used
1	4	antimony { antimon	y trioxide }			<2	ma/ka	1.197	<2.394	mg/kg	<0.000239 %		<lod< td=""></lod<>
			215-175-0	1309-64-4	1								
2	4	arsenic { arsenic tri	ioxide }			4.2	mg/kg	1.32	5.545	mg/kg	0.000555 %		
		033-003-00-0	215-481-4	1327-53-3	1			1.02	0.0.0	mg/kg	0.000000 /0		
3	4	boron { diboron trio	oxide }			1.1	mg/kg	3.22	3.542	mg/kg	0.000354 %		
_			215-125-8	1303-86-2			iligritg	J.ZZ	0.042	mg/kg	0.000304 76		
4	2	cadmium { cadmiur	m oxide }		Г	0.51	malka	1.142	0.583	ma/ka	0.0000583 %		
_		048-002-00-0	215-146-2	1306-19-0		0.51	mg/kg	1.142	0.565	mg/kg	0.0000563 %		
5	*	chromium in chromoxide (worst case)		ds { * chromium(III)		8.5	mg/kg	1.462	12.423	mg/kg	0.00124 %		
			215-160-9	1308-38-9	1			-					
6	4	chromium in chrom compounds, with the of compounds speci	ne exception of ba	rium chromate and		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
		024-017-00-8			1						3 5		
7	4	copper { dicopper o	oxide; copper (I) ox	kide }		8.2	ma/ka	1.126	9.232	mg/kg	0.000923 %		
′		029-002-00-X	215-270-7	1317-39-1	1	0.2	mg/kg	1.120	9.232	mg/kg	0.000923 %		
8	2	lead { lead chromat	te }		1	6.5	malka	1 56	10.139		0.00065 %		
٠		082-004-00-2	231-846-0	7758-97-6	1'	0.5	mg/kg	1.50	10.139	mg/kg	0.00005 %		
9	2	mercury { mercury	dichloride }		Г	-0.4		4.050	-0.405		-0.0000405.00		
9			231-299-8	7487-94-7	1	<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
40	.00	molybdenum { moly	ybdenum(VI) oxide	}		-	FILLWAR		2000				
10	_	042-001-00-9	215-204-7	1313-27-5		<2	mg/kg	1.5	<3	mg/kg	<0.0003 %		<lod< td=""></lod<>
11	æ	nickel { nickel chror	mate }			45		0.070	44.044		0.00440.04		
"			238-766-5	14721-18-7	1	15	mg/kg	2.976	44.644	mg/kg	0.00446 %		
12	4	selenium { nickel se	elenate }			0.23	mg/kg	2 554	0.587	mg/kg	0.0000587 %		
_			239-125-2	15060-62-5	1	5.25	mgrkg	2.004	0.007	mg/kg	0.000001 76		
13	4	zinc { zinc chromate	e }			37	mg/kg	2 774	102.643	ma/ka	0.0103 %		
		024-007-00-3	236-878-9	13530-65-9	1	31	mg/kg	2.774	102.043	mg/kg	0.0103 %		
14	0	TPH (C6 to C40) pe	etroleum group			<10	ma/ka		<10	ma/k=	-0.001 %		<lod< td=""></lod<>
				TPH	1	-10	mg/kg		10	mg/kg	<0.001 %		< LOD
15		tert-butyl methyl eth 2-methoxy-2-methy				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4	1					ST 1950			

	environmental	manag	ement	for	business
--	---------------	-------	-------	-----	----------

#		Determinand	oer OLP Note	User entered	data	Conv.	Compound conc.	Classification value	MC Applied	Conc. No
		EU CLP index EC Number CAS Number	oer 3			racioi		value	MC	Used
6		benzene		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
_		601-020-00-8 200-753-7 71-43-2	\rightarrow						-	
7		toluene		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %	1	<lod< td=""></lod<>
-	_	601-021-00-3 203-625-9 108-88-3	_		-					
8	0	ethylbenzene	_	<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
+	_	601-023-00-4 202-849-4 100-41-4	_				School County	A STATE OF THE REAL PROPERTY.		
19		xylene 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	cyanides { * salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanide ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }	s,	<0.5	mg/kg	1.884	<0.942 mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5	-							
21		naphthalene		<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
22	0	acenaphthylene 205-917-1 208-96-8	\dashv	<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
23	0	acenaphthene		<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
		201-469-6 83-32-9					NAME OF TAXABLE	- Charles Ballette		
4	0	fluorene		<0.01	mg/kg		<0.01 mg/kg	<0.000001 %	Ž.	<lod< td=""></lod<>
_		201-695-5 86-73-7	\rightarrow							_
25	0	phenanthrene 201-581-5 85-01-8		<0.01	mg/kg		<0.01 mg/kg	<0.000001 %	8	<lod< td=""></lod<>
_	-		-							
6	0	anthracene		<0.01	mg/kg		<0.01 mg/kg	<0.000001 %	1	<lod< td=""></lod<>
27		fluoranthene 205-912-4 206-44-0		<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
	0	pyrene 205-912-4 206-44-0						-0.000004.00	1	-1.00
28	-	204-927-3 129-00-0		<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
_		benzo[a]anthracene		<0.01	ma/lea		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
29		601-033-00-9 200-280-6 56-55-3		-0.01	mg/kg		-0.01 Hig/kj	-0.000001 /8	Ø.	LOD
30		chrysene		<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
00		601-048-00-0 205-923-4 218-01-9		-0.01	mg/kg		-0.01 mg/k	0.0000		
31		benzo[b]fluoranthene		<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
'		601-034-00-4 205-911-9 205-99-2					The Real Property lies			
32		benzo[k]fluoranthene		<0.01	mg/kg		<0.01 mg/kg	g <0.000001 %		<lod< td=""></lod<>
_		601-036-00-5 205-916-6 207-08-9		4536314				Contract of		
33		benzo[a]pyrene; benzo[def]chrysene		<0.01	mg/kg		<0.01 mg/k	9 <0.000001 %	n	<lod< td=""></lod<>
		601-032-00-3 200-028-5 50-32-8			200					
34		indeno[123-cd]pyrene 205-893-2 193-39-5		<0.01	mg/kg	9	<0.01 mg/k	g <0.00001 %		<loe< td=""></loe<>
35		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		<0.01	mg/kg	,	<0.01 mg/k	g <0.000001 %		<loe< td=""></loe<>
	-		-				And the second second			
36		benzo[ghi]perylene 205-883-8 191-24-2		<0.01	mg/kg	3	<0.01 mg/k	g <0.000001 %		<lod< td=""></lod<>
		phenol		12-2-1			Carrier Control	-0.00001.01		
37		604-001-00-2 203-632-7 108-95-2		<0.1	mg/kg	9	<0.1 mg/k	g <0.00001 %	1	<lod< td=""></lod<>
38	0	polychlorobiphenyls; PCB		<0.001	mg/kg	,	<0.001 mg/k	g <0.0000001 %		<lod< td=""></lod<>
_		602-039-00-4 215-648-1 1336-36-3					Tota			

CLP: Note 1 Only the metal concentration has been used for classification

HazWasteOnline™ Report created by Austin Hynes on 17 May 2022

Key	
	User supplied data
A STATE	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: TP25[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: TP25[2] LoW Code:

Chapter: Sample Depth:

from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 1.5 m Entry:

Moisture content:

13% (no correction)

Hazard properties

None identified

Determinands

Moisture content: 13% No Moisture Correction applied (MC)

#		Determinand		CLP Note	User entered	data	Conv.	Compound	conc.	Classification value	Applied	Conc. No Used
		EU CLP index EC Number CAS Num number	ber	CLP							MC	
1	d	antimony { antimony trioxide }			<2	mg/kg	1.197	<2.394	ma/ka	<0.000239 %		<lod< td=""></lod<>
'		051-005-00-X 215-175-0 1309-64-4			No. of the last					201		
2	d	arsenic { arsenic trioxide }			4.1	mg/kg	1.32	5.413	mg/kg	0.000541 %		
_		033-003-00-0 215-481-4 1327-53-3				mgmg	1.52			-1		
3	æ	boron { diboron trioxide }			<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< td=""></lod<>
3		005-008-00-8 215-125-8 1303-86-2			-0.7	mg/kg	5.22		mgmg		N.	
4	æ	cadmium { cadmium oxide }			0.33	mg/kg	1 1/12	0.377	mg/kg	0.0000377 %		
4		048-002-00-0 215-146-2 1306-19-0	-		0.55	ilig/kg	1.172	0.011	mg/ng	0.0000077 70		
5	all a	chromium in chromium(III) compounds { * chromium oxide (worst case) }	n(III)		9.8	mg/kg	1.462	14.323	mg/kg	0.00143 %		
		215-160-9 1308-38-9			Mary Millian						1	
6	4	chromium in chromium(VI) compounds { chromium (compounds, with the exception of barium chromate of compounds specified elsewhere in this Annex }			<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
		024-017-00-8								A PARTY NAME OF TAXABLE PARTY.	1	
7	d	copper { dicopper oxide; copper (I) oxide }			7.8	ma/ka	1.126	8.782	mg/kg	0.000878 %		
′		029-002-00-X 215-270-7 1317-39-1									_	
8	d	lead { lead chromate }		1	8.3	mg/kg	1.56	12.946	mg/kg	0.00083 %		
٥		082-004-00-2 231-846-0 7758-97-6		Ľ.	0.0						_	
9	æ	mercury { mercury dichloride }			<0.1	ma/ka	1.353	<0.135	ma/ka	<0.0000135 %		<lod< td=""></lod<>
9	•	080-010-00-X 231-299-8 7487-94-7			-0.1	ilig/kg	1.000	-	99		U)	
		molybdenum { molybdenum(VI) oxide }			<2	mg/kg	1.5	<3	mg/kg	<0.0003 %		<lod< td=""></lod<>
10	_	042-001-00-9 215-204-7 1313-27-5			-2	ilig/kg	1.5		mgrag	0.0000		
	A	nickel { nickel chromate }			15	ma/ka	2.976	44.644	mg/kg	0.00446 %		
11	7	028-035-00-7 238-766-5 14721-18-7			13	mg/kg	2.570	44.044	mg/kg	0.00440 %		
	4	selenium { nickel selenate }			<0.2	malka	2.554	<0.511	mg/kg	<0.0000511 %		<lod< td=""></lod<>
12	~	028-031-00-5 239-125-2 15060-62-5			20.2	mg/kg	2.554	-0.511	mg/kg	-0.0000511 //	8	-200
	d	zinc { zinc chromate }		Г	04		2 774	58.257	malka	0.00583 %		
13	~	024-007-00-3 236-878-9 13530-65-9			21	mg/kg	2.774	56.257	mg/kg	0.00565 %		
		TPH (C6 to C40) petroleum group		Г	-10			<10	ma/ka	<0.001 %		<lod< td=""></lod<>
14	1	ТРН		1	<10	mg/kg		110	mg/kg	-0.001 /6	3	-200
15		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane			<0.001	mg/kg	,	<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4		1					-	图 图 图 图		

#			Determinand		CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. No
		EU CLP index number	EC Number	CAS Number	CLP			ractor			value	MC /	Used
16		benzene 601-020-00-8	200-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		toluene	200-700-7	11-40-2	+				B 500 105 105	A CONTRACTOR	District Control		
17		601-021-00-3	203-625-9	108-88-3	-	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
	0	ethylbenzene	200 020 0	100 00 0	+								
18		601-023-00-4	202-849-4	100-41-4	+	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		xylene		1									
19		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	exception of comp ferricyanides and specified elsewhe	of hydrogen cyaniolex cyanides such mercuric oxycyanides in this Annex }	as ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
_		naphthalene			+		1				NOT THE SECOND		
21		601-052-00-2	202-049-5	91-20-3	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	-	acenaphthylene	202-043-0	01-20-0									
22	-	dooriapiiaiyiono	205-917-1	208-96-8	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
23		acenaphthene				<0.01	malka		-0.01	malka	-0.000001.9/		<lod< td=""></lod<>
23			201-469-6	83-32-9		~0.01	mg/kg		<0.01	mg/kg	<0.000001 %		\LOD
24	0	fluorene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			201-695-5	86-73-7		-0.01	шулу		0.01	mg/kg	-0.000001 70		LOD
25	0	phenanthrene	201-581-5	85-01-8	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26		anthracene				<0.01	malka		<0.01	malka	<0.000001 %		<lod< td=""></lod<>
20			204-371-1	120-12-7		-0.01	mg/kg		-0.01	mg/kg	~0.000001 %		LOD
27		fluoranthene			Т	<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
			205-912-4	206-44-0		-0.01	iligray		40.01	Iligrky	40.000001 78		-200
28	٥	pyrene	204-927-3	129-00-0	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		benzo[a]anthrace		1.20 00 0	+	100	10						
29		601-033-00-9	200-280-6	56-55-3	+	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20		chrysene				-0.04			-0.04		-0.000004.00		-1.00
30		601-048-00-0	205-923-4	218-01-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
31		benzo[b]fluoranthe	ene		T	<0.01	malka		<0.01	malka	<0.000001 %		<lod< td=""></lod<>
31		601-034-00-4	205-911-9	205-99-2		20.01	mg/kg		20.01	mg/kg	<0.000001 %		LOD
32		benzo[k]fluoranthe	ene			<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
		601-036-00-5	205-916-6	207-08-9		40.01	ilig/kg		10.01	mg/kg	40.000001 78		LOD
33		benzo[a]pyrene; b	enzo[def]chrysene			<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
		601-032-00-3	200-028-5	50-32-8		0.01	mg/ng		-0.01	mgrkg	-5.555557 75		-205
34		indeno[123-cd]pyr		400.22.5		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	-	dibenefe bloom	205-893-2	193-39-5	+						H		
35		dibenz[a,h]anthrae 601-041-00-2	-	62.70.2	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
-	-		200-181-8	53-70-3	+								
36		benzo[ghi]perylen		101.24.2	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		phenol	205-883-8	191-24-2	+				A COLUMN TO SERVICE OF THE PARTY OF THE PART	COPPE CO			
37		604-001-00-2	bos 632 7	109.05.3	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			203-632-7 de: PCB	108-95-2	-					NO GENERAL			
38	0	polychlorobipheny 602-039-00-4	215-648-1	1336-36-3	-	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
	_	002-039-00-4	£13-040-1	1330-30-3	_				No. of Concession, Name of Street, or other Persons, Name of Street, or ot	Total:	0.016 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: TP26

© Non Hazardous Waste
Classified as 17 05 04
in the List of Waste

Sample details

Sample name: LoW Code:

TP26 Chapter: Sample Depth:

Sample Depth: from contaminated sites)
0.5 m Entry: 17 05 04 (Soil and stones other than those mentioned in 17 05

Moisture content: 19%

(no correction)

Hazard properties

None identified

Determinands

Moisture content: 19% No Moisture Correction applied (MC)

#			Determinand		Note	User entere	d data	Conv.	Compound	conc.	Classification	MC Applied	Conc. No Used
		EU CLP index number	EC Number	CAS Number	CLP			acioi			value	MC/	Osed
1	4	antimony { antimon	y trioxide }		Г	<2	ma/ka	1.197	<2.394	mg/kg	<0.000239 %		<lod< td=""></lod<>
_	_		215-175-0	1309-64-4	L		99	1.10		mgmg			
2	4	arsenic (arsenic tri	ioxide }			2.9	mg/kg	1.32	3.829	mg/kg	0.000383 %		
-		033-003-00-0	215-481-4	1327-53-3	1	2.0	mg/kg	1.02	0.025	mg/ng	0.000000 /0		
3	4	boron { diboron trio	xide }		П	0.58	mg/kg	3.22	1.868	mg/kg	0.000187 %		
3		005-008-00-8	215-125-8	1303-86-2	1	0.55	mg/kg	3.22	1.000	mg/kg	0.000187 76		
4	æ	cadmium { cadmiur	m oxide }		П	0.29	malka	1 142	0.331	ma/ka	0.0000331 %		
4	•		215-146-2	1306-19-0	1	0.29	mg/kg	1.142	0.331	mg/kg	0.0000331 %		
5	4	chromium in chromoxide (worst case)		ds { * chromium(III)		8	mg/kg	1.462	11.692	mg/kg	0.00117 %		
			215-160-9	1308-38-9	1								
6	4	chromium in chrom compounds, with the of compounds specific	ne exception of ba	rium chromate and		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
		024-017-00-8			1_		_						
7	4	copper { dicopper o	oxide; copper (I) o	xide }		7.7	ma/ka	1.126	8.669	mg/kg	0.000867 %		
•		029-002-00-X	215-270-7	1317-39-1	1_	"."	mg/kg	1.120	0.003	mg/kg	0.000007 %		
8	æ	lead { lead chroma	te }		1	9.9	mg/kg	1 56	15.442	mg/kg	0.00099 %		
٥		082-004-00-2	231-846-0	7758-97-6	1'	5.5	mg/kg	1.30	15.442	mg/kg	0.00099 %		
9	À	mercury { mercury	dichloride }		Т	-0.4		4 252	-0.405		-0.0000405.00		
9			231-299-8	7487-94-7	1	<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
	æ	molybdenum { moly	ybdenum(VI) oxide	e }	Т	-0		4.5		-	-0.0000.01		
10	•		215-204-7	1313-27-5	1	<2	mg/kg	1.5	<3	mg/kg	<0.0003 %		<lod< td=""></lod<>
	æ	nickel { nickel chron	mate }					0.070	44.000				
11	•	028-035-00-7	238-766-5	14721-18-7	1	14	mg/kg	2.976	41.668	mg/kg	0.00417 %		
40	æ	selenium { nickel se	elenate }			-0.0		0.554	0.00				
12			239-125-2	15060-62-5	1	<0.2	mg/kg	2.554	<0.511	mg/kg	<0.0000511 %		<lod< td=""></lod<>
	æ	zinc { zinc chromat	e }	1									
13			236-878-9	13530-65-9	1	24	mg/kg	2.774	66.58	mg/kg	0.00666 %		
	0	TPH (C6 to C40) p	etroleum group			-				10000			
14	-	.,//		TPH	1	<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
15		tert-butyl methyl eth 2-methoxy-2-methy				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4	1					PARTIE .			

#		Determinand	CLP Note	User entered	l data	Conv. Factor	Compound of	onc.	Classification value	Applied :	Conc. No Used
		EU CLP index EC Number CAS Number number	2							MC	
16		benzene 601-020-00-8 200-753-7 71-43-2	-	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
7		toluene		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-021-00-3 203-625-9 108-88-3	+								_
8		ethylbenzene 601-023-00-4 202-849-4 100-41-4	-	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
-	_		+		100		No. of Concession, Name of Street, or other party of the Concession, Name of Street, or other pa				
19		xylene 601-022-00-9		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	cyanides { * salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5	+				100000000000000000000000000000000000000	195.00			
21		naphthalene		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	1	<lod< td=""></lod<>
	_	601-052-00-2 202-049-5 91-20-3	+					A CONTRACT			
22	•	acenaphthylene 205-917-1 208-96-8	+	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
23	0	acenaphthene		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		201-469-6 83-32-9	+							-	-
24		fluorene 201-695-5 86-73-7	+	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
25	0	phenanthrene		<0.01	mg/kg	,	<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		201-581-5 85-01-8	+				3/35/50			-	
26		anthracene 204-371-1 120-12-7	4	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	_	fluoranthene	+								-1.05
27	ľ	205-912-4 206-44-0	\dashv	<0.01	mg/kg	,	<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
28		pyrene 204-927-3 129-00-0	1	<0.01	mg/kg	,	<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
29		benzo[a]anthracene	\dagger	<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
29		601-033-00-9 200-280-6 56-55-3		-0.01	mg/ng			mgmg			
30		chrysene		<0.01	mg/kg	3	<0.01	mg/kg	<0.000001 %		<loe< td=""></loe<>
		601-048-00-0 205-923-4 218-01-9	+						100000000000000000000000000000000000000		
31		benzo[b]fluoranthene		<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
	_	601-034-00-4 205-911-9 205-99-2	+						E STATE		+
32		benzo[k]fluoranthene	_	<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %		<loe< td=""></loe<>
_	-	601-036-00-5 205-916-6 207-08-9	+				Martin Control of the				
33		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5 50-32-8	\dashv	<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
34		indeno[123-cd]pyrene		<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
_	-	205-893-2 193-39-5	+		STATE OF			Delega			
35		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3	-	<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %	1	<loi< td=""></loi<>
36		benzo[ghi]perylene	1	<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<loi< td=""></loi<>
30		205-883-8 191-24-2	1	-0.01	, mg/ ki		3098	grad			+
37		phenol		<0.1	mg/kg	9	<0.1	mg/kg	<0.00001 %		<loi< td=""></loi<>
_	-	604-001-00-2 203-632-7 108-95-2	+				THE RESERVE	STATE OF THE PARTY			
38		polychlorobiphenyls; PCB 602-039-00-4 215-648-1 1336-36-3	\dashv	<0.001	mg/k	9	<0.001	mg/kg	<0.0000001 %		<loi< td=""></loi<>
_	_	P10 010 1	_					Total	0.0163 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

Classification of sample: TP26[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name:

LoW Code:

TP26[2] Sample Depth: Chapter:

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

1.6 m Moisture content: 17 05 04 (Soil and stones other than those mentioned in 17 05

13% (no correction)

Hazard properties

None identified

Determinands

Moisture content: 13% No Moisture Correction applied (MC)

#		Determinand		CLP Note	User entered da	ata	Conv.	Compound of	conc.	Classification value	Applied	Conc. No Used
		EU CLP index EC Number CAS Numb number	er	SP			racion			value	MC	0000
1	4				<2 m	g/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< td=""></lod<>
_		051-005-00-X 215-175-0 1309-64-4	-	-							-	
2	4		_		8.5 m	g/kg	1.32	11.223	mg/kg	0.00112 %		
_	_	033-003-00-0 215-481-4 1327-53-3	-	-					100000000000000000000000000000000000000	Control of All		-
3	4				<0.4 m	ıg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< td=""></lod<>
		005-008-00-8 215-125-8 1303-86-2	_	_		1000			TO STATE OF		-	
4	4				1.3 m	ıg/kg	1.142	1.485	mg/kg	0.000149 %		
		048-002-00-0 215-146-2 1306-19-0			120122-19	1					+	
5	4	chromium in chromium(III) compounds { * chromium oxide (worst case) }	n(III)		11 m	ng/kg	1.462	16.077	mg/kg	0.00161 %		
		215-160-9 1308-38-9										
6	4	chromium in chromium(VI) compounds { chromium (\) compounds, with the exception of barium chromate a of compounds specified elsewhere in this Annex }			<0.5 m	ng/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
		024-017-00-8				-		III- III CARE				
7	4	copper { dicopper oxide; copper (I) oxide }			20 m	na/ka	1.126	22.518	mg/kg	0.00225 %		
'		029-002-00-X 215-270-7 1317-39-1				.55					_	
8	2	lead { lead chromate }		1	12 m	na/ka	1.56	18.718	mg/kg	0.0012 %		
٥		082-004-00-2 231-846-0 7758-97-6		•	,2 "	ig/ng	1.00	10.1110	99			
_	A	mercury { mercury dichloride }			<0.1 m	aa/ka	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
9	•	080-010-00-X 231-299-8 7487-94-7			20.1	ig/kg	1.555	-0.155	ilig/kg	-0.0000100 %		
		molybdenum { molybdenum(VI) oxide }			2 m	ng/kg	1.5	3	mg/kg	0.0003 %		
10	_	042-001-00-9 215-204-7 1313-27-5			2 11	ig/kg	1.5	3	ilig/kg	0.0003 70		
	A	nickel { nickel chromate }			33 m	- //r-	2.976	98.217	mg/kg	0.00982 %		
11	7	028-035-00-7 238-766-5 14721-18-7			33 II	ig/kg	2.976	90.217	mg/kg	0.00502 /6		
	4	selenium { nickel selenate }			0.33 m	//-	2 554	0.843	mg/kg	0.0000843 %		
12	~	028-031-00-5 239-125-2 15060-62-5			0.33 H	ng/kg	2.554	0.643	mg/kg	0.0000043 76		
	4				66		0.774	192.004	malle	0.0183 %		
13	~	024-007-00-3 236-878-9 13530-65-9			66 m	ng/kg	2.774	183.094	mg/kg	0.0163 %		
		TPH (C6 to C40) petroleum group			-40			-10	mall.	<0.001 %		<lod< td=""></lod<>
14		TPH			<10 n	ng/kg		<10	mg/kg	-0.00176	9	-200
15		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane			<0.001 m	ng/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4										

		ronmental management for business	_	1000	_				1	
#		Determinand	CLP Note	User entered data		Conv.	Compound conc.	Classification value	Applied	Conc. No Used
		EU CLP index EC Number CAS Number number	CLF						MC	
16		benzene	T	<0.001 mg/	kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
-	\vdash	601-020-00-8 200-753-7 71-43-2 toluene	+			-				
7		601-021-00-3 203-625-9 108-88-3	+	<0.001 mg/	kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
8	0	ethylbenzene	T	<0.001 mg/	kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
_	H	601-023-00-4 202-849-4 100-41-4	+			-				
19		xylene 601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001 mg/	kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	cyanides { * salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<0.5 mg/	kg 1	1.884	<0.942 mg/kg	<0.0000942 %		<lod< td=""></lod<>
1		naphthalene	+	<0.01 mg/	ka		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-052-00-2 202-049-5 91-20-3	1	-0.01 mg/	ng.		-0.01 mg/kg	-0.000001 x		
2		acenaphthylene 205-917-1 208-96-8		<0.01 mg/	kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
3		acenaphthene	†	<0.01 mg/	ka		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
		201-469-6 83-32-9	1		9		u.c, mg/ng			
4	0	fluorene 201-695-5 86-73-7	-	<0.01 mg/	kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
5		phenanthrene	1	<0.01 mg/	kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
6	0	201-581-5 85-01-8 anthracene	+	-0.04			-0.01	-0.000004.04		
٥		204-371-1 120-12-7		<0.01 mg/	kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
7		fluoranthene		<0.01 mg/	ka		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
		205-912-4 206-44-0	1		-					
8	0	pyrene hou con a	4	<0.01 mg/	kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
9		204-927-3 129-00-0 benzo[a]anthracene	+	<0.01 mg/			<0.01 mg/kg	<0.000001 %		4.00
•		601-033-00-9 200-280-6 56-55-3	1	<0.01 mg/	Ny		-0.01 mg/kg	~0.000001 %		<lod< td=""></lod<>
0		chrysene 601-048-00-0 205-923-4 218-01-9	-	<0.01 mg/	kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
		benzo[b]fluoranthene	+							
1		601-034-00-4 205-911-9 205-99-2	-	<0.01 mg/	kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
2		benzo[k]fluoranthene		<0.01 mg/	ka		<0.01 mg/kg	-0.000001 e/		-1.05
-		601-036-00-5 205-916-6 207-08-9		<0.01 mg/	kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
3		benzo[a]pyrene; benzo[def]chrysene		<0.01 mg/	ka		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
	_	601-032-00-3 200-028-5 50-32-8	-		_					
4		indeno[123-cd]pyrene 205-893-2	-	<0.01 mg/	kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
5		dibenz[a,h]anthracene	-	<0.01 mg/	kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
-		601-041-00-2 200-181-8 53-70-3	+					description of the second		
6		benzo[ghi]perylene 205-883-8 191-24-2	-	<0.01 mg/	kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
		phenol	+				Second and the second			
7		604-001-00-2 203-632-7 108-95-2	-	<0.1 mg/	kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
8	0	polychlorobiphenyls; PCB		<0.001 mg/	kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
		602-039-00-4 215-648-1 1336-36-3					Total:	0.0365 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 92 of 131 39PJ2-6JAD9-NHH05 www.hazwasteonline.com

Classification of sample: WS01

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:

WS01 Chapter:

 Sample Depth:
 from

 0.0-1.0 m
 Entry:
 17 000

 Moisture content:
 03)

18% (no correction) 17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 18% No Moisture Correction applied (MC)

#		Determinand	CLP Note	User entere	d data	Conv.	Compound	conc.	Classification value	Applied	Conc. No Used
		EU CLP index EC Number CAS Number number	CLP			actor			value	MC	Osed
1		antimony { antimony trioxide }		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< td=""></lod<>
		051-005-00-X 215-175-0 1309-64-4	\perp						2000		
2	4			21	mg/kg	1.32	27.727	mg/kg	0.00277 %		
		033-003-00-0 215-481-4 1327-53-3	_							-	
3		boron { diboron trioxide }		0.76	mg/kg	3.22	2.447	mg/kg	0.000245 %		
-		005-008-00-8 215-125-8 1303-86-2				-					
4	4	cadmium { cadmium oxide }		1.7	ma/ka	1.142	1.942	mg/kg	0.000194 %		
•		048-002-00-0 215-146-2 1306-19-0							0.000,01		
5	4	chromium in chromium(III) compounds { * chromium(II oxide (worst case) }	1)	29	mg/kg	1.462	42.385	mg/kg	0.00424 %		
		215-160-9 1308-38-9									
6	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
	_	024-017-00-8					E 23 364	3000	No.		
7	4	copper { dicopper oxide; copper (I) oxide }		40	ma/ka	1.126	45.036	mg/kg	0.0045 %		
	_	029-002-00-X 215-270-7 1317-39-1				20			0.00.0		
8	4	lead { lead chromate }	1	87	ma/ka	1.56	135.704	mg/kg	0.0087 %		
•		082-004-00-2 231-846-0 7758-97-6			mgmg	1.00	100.704	mg/ng	0.0001 70		
9	d	mercury { mercury dichloride }		0.22	ma/ka	1.353	0.298	mg/kg	0.0000298 %		
•		080-010-00-X 231-299-8 7487-94-7		0.22	myrky	1.555	0.230	mg/kg	0.0000230 /6		
10	æ	molybdenum { molybdenum(VI) oxide }		4.5	mg/kg	1.5	6.751	mg/kg	0.000675 %	П	
10	Ť	042-001-00-9 215-204-7 1313-27-5		4.5	myrky	1.5	0.751	mg/kg	0.000075 /6		
11	æ	nickel { nickel chromate }		54	malka	2.976	160.718	malka	0.0161 %	П	
"		028-035-00-7 238-766-5 14721-18-7		34	mg/kg	2.976	100.710	mg/kg	0.0161 76		
12		selenium (nickel selenate)		0.9	mg/kg	2.554	2.298	mg/kg	0.00023 %		
	_	028-031-00-5 239-125-2 15060-62-5	-	4 14 14						+	
13	•	zinc { zinc chromate }		160	mg/kg	2.774	443.863	mg/kg	0.0444 %		
	_	024-007-00-3 236-878-9 13530-65-9	+							-	
14		TPH (C6 to C40) petroleum group		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
		ТРН	-						ELITA PARTIES		
15		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4		Michael Albandar							

		onmental management for business Determinand	ote			Conv. Compound conc.		Classification	pelido	Conc. Not
#		EU CLP index EC Number CAS Number	CLP Note	User entered	data	Factor	Compound conc.	value	MC Applied	Used
6	- 1	benzene	+	<0.001	mg/kg		<0.001 mg/k	<0.0000001 %		<lod< td=""></lod<>
-	-	601-020-00-8 200-753-7 71-43-2	+						-	
17		toluene 601-021-00-3 203-625-9 108-88-3	-	<0.001	mg/kg		<0.001 mg/k	<0.0000001 %	8	<lod< td=""></lod<>
+	_	ethylbenzene	+	-				The second second		
18	_	601-023-00-4 202-849-4 100-41-4	-	<0.001	mg/kg		<0.001 mg/k	<0.0000001 %		<lod< td=""></lod<>
		xylene 601-022-00-9 202-422-2 [1] 95-47-6 [1]	+							
9		203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001	mg/kg		<0.001 mg/k	<0.0000001 %		<lod< td=""></lod<>
20	4	cyanides (* salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex)		<0.5	mg/kg	1.884	<0.942 mg/k	g <0.0000942 %		<lod< td=""></lod<>
		006-007-00-5	1	1 1	11/15		Washington.	1350000000000		-
21		naphthalene		<0.01	mg/kg		<0.01 mg/k	g <0.000001 %		<lod< td=""></lod<>
		601-052-00-2 202-049-5 91-20-3	+							
22	9	acenaphthylene 205-917-1 208-96-8	-	<0.01	mg/kg		<0.01 mg/k	g <0.000001 %		<lod< td=""></lod<>
23	6	acenaphthene 201-469-6 83-32-9	T	<0.01	mg/kg		<0.01 mg/k	g <0.000001 %		<lod< td=""></lod<>
		fluorene	+				200			<lod< td=""></lod<>
24		201-695-5 86-73-7	\dashv	<0.01	mg/kg		<0.01 mg/k	g <0.000001 %		<lod< td=""></lod<>
25	0	phenanthrene 201-581-5 85-01-8	1	0.08	mg/kg		0.08 mg/k	g 0.000008 %		
26		anthracene		0.03	mg/kg		0.03 mg/k	g 0.000003 %		
		204-371-1 120-12-7	1					-	+	-
27		fluoranthene		0.07	mg/kg		0.07 mg/k	g 0.000007 %		
28	0	205-912-4 206-44-0 pyrene	+	0.09	mg/kg	,	0.09 mg/k	g 0.000009 %	+	
_		204-927-3 129-00-0	+							
29		benzo[a]anthracene 601-033-00-9 200-280-6 56-55-3	\dashv	<0.01	mg/kg	3	<0.01 mg/k	g <0.000001 %		<lod< td=""></lod<>
		chrysene	+				-204	-0.000004.00	8	<lod< td=""></lod<>
30		601-048-00-0 205-923-4 218-01-9	\dashv	<0.01	mg/kg	3	<0.01 mg/l	g <0.000001 %		LOD
31		benzo[b]fluoranthene	\top	<0.01	mg/kg		<0.01 mg/k	g <0.000001 %		<lod< td=""></lod<>
31		601-034-00-4 205-911-9 205-99-2		40.01	my/kg		-0.01 mg/	9 -0.000001 10		
32		benzo[k]fluoranthene		<0.01	mg/kg	,	<0.01 mg/k	g <0.000001 %		<lod< td=""></lod<>
_		601-036-00-5 205-916-6 207-08-9	4							-
33		benzo[a]pyrene; benzo[def]chrysene	_	<0.01	mg/kg	9	<0.01 mg/l	g <0.000001 %	10	<lod< td=""></lod<>
		601-032-00-3 200-028-5 50-32-8	+						20	
34	0	indeno[123-cd]pyrene 205-893-2 193-39-5	4	<0.01	mg/k	9		g <0.000001 %		<loe< td=""></loe<>
35		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3	_	<0.01	mg/k	9	<0.01 mg/l	g <0.000001 %		<loe< td=""></loe<>
	-	601-041-00-2 200-181-8 53-70-3 benzo[ghi]perylene	+							
36		205-883-8 191-24-2	\dashv	<0.01	mg/k	9	<0.01 mg/l	<g %<="" <0.000001="" td=""><td></td><td><loe< td=""></loe<></td></g>		<loe< td=""></loe<>
		phenol	+				-01	<0.00001.00		<loe< td=""></loe<>
37		604-001-00-2 203-632-7 108-95-2	\dashv	<0.1	mg/k	9	<0.1 mg/l	(g <0.00001 %		~LUL
38	0	polychlorobiphenyls; PCB 602-039-00-4 215-648-1 1336-36-3	_	<0.001	mg/k	g	<0.001 mg/	<g %<="" <0.000001="" td=""><td></td><td><l0[< td=""></l0[<></td></g>		<l0[< td=""></l0[<>
_	_	002-000-00-4 E10-010-1 1000-00-0	_				Tot	al: 0.0835 %		

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: WS01[2]

Sample details

Sample name: WS01[2]

LoW Code:

Sample Depth: 1.0-2.0 m

Chapter:

Entry:

from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05

Moisture content:

16%

(no correction)

Hazard properties

None identified

Determinands

Moisture content: 16% No Moisture Correction applied (MC)

#			Determinand		CLP Note	User entered	d data	Conv.	Compound of	conc.	Classification value	Applied	Conc. No Used
		EU CLP index number	EC Number	CAS Number	CLP			, doice				¥	
1	4	antimony { antimo	ny trioxide }			<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< td=""></lod<>
		051-005-00-X	215-175-0	1309-64-4								-	
2	4	arsenic { arsenic t	rioxide }			17	ma/ka	1.32	22,446	mg/kg	0.00224 %		
		033-003-00-0	215-481-4	1327-53-3	1							-	
3	d	boron { diboron tri	ioxide }			<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< td=""></lod<>
٦		005-008-00-8	215-125-8	1303-86-2	1						44.5		
4	æ	cadmium { cadmiu	um oxide }			1.2	ma/ka	1.142	1.371	mg/kg	0.000137 %		
7		048-002-00-0	215-146-2	1306-19-0	1							+	
5	4	chromium in chro)}	nds { * chromium(III)		23	mg/kg	1.462	33.616	mg/kg	0.00336 %		
			215-160-9	1308-38-9	1							-	-
6	~	compounds, with of compounds spe		nds { chromium (VI) arium chromate and in this Annex }		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
		024-017-00-8			\perp				THE STATE OF THE S		to the second	8	
7	4	copper { dicopper				31	mg/kg	1.126	34.903	mg/kg	0.00349 %		
		029-002-00-X	215-270-7	1317-39-1	\perp		The Par					+	
8	4	lead { lead chrom	ate }		1	32	mg/kg	1.56	49.914	mg/kg	0.0032 %		
_		082-004-00-2	231-846-0	7758-97-6								+	-
9	d	mercury { mercur	y dichloride }			0.1	ma/ka	1.353	0.135	mg/kg	0.0000135 %		
-		080-010-00-X	231-299-8	7487-94-7	1							+	
10	4	molybdenum { mo	olybdenum(VI) oxid	de }		2.6	mg/kg	1.5	3.9	mg/kg	0.00039 %		
		042-001-00-9	215-204-7	1313-27-5	1							+	
11	d	nickel { nickel chr	omate }			45	ma/ka	2.976	133.932	mg/kg	0.0134 %		
		028-035-00-7	238-766-5	14721-18-7	1				300000			+	_
12	d	selenium { nickel	selenate }			0.32	mg/kg	2.554	0.817	mg/kg	0.0000817 %		
		028-031-00-5	239-125-2	15060-62-5	1	-						+	
12	d	zinc { zinc chroma	ate }			94	mg/kg	2.774	260.77	mg/kg	0.0261 %		
13	ľ	024-007-00-3	236-878-9	13530-65-9	1							-	-
14		TPH (C6 to C40)	petroleum group			<10	mg/kg		<10	mg/kg	<0.001 %	3	<loi< td=""></loi<>
14				TPH						-	The state of the s		
15		tert-butyl methyl e 2-methoxy-2-met				<0.001	mg/kg	,	<0.001	mg/kg	<0.0000001 %		<l0[< td=""></l0[<>
		603-181-00-X	216-653-1	1634-04-4	1					18 1			

environmental	 f bi

#		Determinand	CLP Note	User entere	d data	Conv.	Compound conc.	Classification value	MC Applied	Conc. No Used
		EU CLP index EC Number CAS Numb number	를 라			ractor		value	MC	Used
6		benzene		<0.001	mg/kg		<0.001 mg/k	g <0.0000001 %		<lod< td=""></lod<>
_	-	601-020-00-8 200-753-7 71-43-2	-						-	
7		toluene	_	<0.001	mg/kg		<0.001 mg/k	g <0.0000001 %		<lod< td=""></lod<>
-		601-021-00-3 203-625-9 108-88-3	+		-				-	
8	9	ethylbenzene 601-023-00-4 202-849-4 100-41-4	_	<0.001	mg/kg		<0.001 mg/k	g <0.0000001 %	0	<lod< td=""></lod<>
-	Н	xylene	+							
9		601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001	mg/kg		<0.001 mg/l	g <0.0000001 %		<lod< td=""></lod<>
20	4	exception of complex cyanides such as ferrocyanides ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<0.5	mg/kg	1.884	<0.942 mg/k	g <0.0000942 %		<lod< td=""></lod<>
-	\vdash	006-007-00-5	-							
21		naphthalene 601-052-00-2 202-049-5 91-20-3	_	<0.01	mg/kg		<0.01 mg/l	g <0.000001 %		<lod< td=""></lod<>
		acenaphthylene	+		100					
22		205-917-1 208-96-8	_	<0.01	mg/kg		<0.01 mg/l	g <0.000001 %		<lod< td=""></lod<>
-		acenaphthene	\rightarrow	-0.04			-0.04	-0.000004.00		-1.00
23		201-469-6 83-32-9		<0.01	mg/kg		<0.01 mg/k	g <0.000001 %		<lod< td=""></lod<>
4		fluorene		<0.01	malka		<0.01 mg/k	g <0.000001 %		<lod< td=""></lod<>
*		201-695-5 86-73-7		-0.01	mg/kg		<0.01 mg/l	g <0.000001 %		LOD
25		phenanthrene		0.06	mg/kg		0.06 mg/k	0.000006 %		
		201-581-5 85-01-8		0.00	mg/kg		0.00 mg/r	g 0.000000 %		
6		anthracene		0.02	mg/kg		0.02 mg/l	g 0.000002 %		
_		204-371-1 120-12-7						9 0.000002 //		
27		fluoranthene		0.16	mg/kg		0.16 mg/l	0.000016 %		
	_	205-912-4 206-44-0	_	11.11.2000					+	
28		pyrene		0.17	mg/kg		0.17 mg/k	g 0.000017 %		
_	-	204-927-3 129-00-0	_		- 2				+	
29		benzo[a]anthracene	_	0.09	mg/kg		0.09 mg/l	g 0.000009 %		
_	-	601-033-00-9 200-280-6 56-55-3	_						+	
80		chrysene 601-048-00-0 205-923-4 218-01-9	_	0.06	mg/kg		0.06 mg/l	g 0.000006 %		
-	۰	benzo[b]fluoranthene	_						+	
1		601-034-00-4 205-911-9 205-99-2	-	0.15	mg/kg		0.15 mg/l	g 0.000015 %		
		benzo[k]fluoranthene		1000	The same				+	
2		601-036-00-5 205-916-6 207-08-9	_	0.1	mg/kg		0.1 mg/l	g 0.00001 %		
_		benzo[a]pyrene; benzo[def]chrysene							+	
3		601-032-00-3 200-028-5 50-32-8		0.13	mg/kg		0.13 mg/k	g 0.000013 %		
4		indeno[123-cd]pyrene		0.07			0.07	0.000007.0/	T	
*		205-893-2 193-39-5		0.07	mg/kg		0.07 mg/l	g 0.000007 %		
15	Г	dibenz[a,h]anthracene		0.04	mg/kg		0.04 mg/l	g 0.000004 %		
_		601-041-00-2 200-181-8 53-70-3		0.04	mg/kg		0.04 mg/i	9 0.000004 /8		
36		benzo[ghi]perylene		0.11	mg/kg		0.11 mg/l	g 0.000011 %		
_		205-883-8 191-24-2		0.11	grkg		o mg/r	0.00001170		
37		phenol		<0.1	mg/kg		<0.1 mg/k	g <0.00001 %		<lod< td=""></lod<>
		604-001-00-2 203-632-7 108-95-2					The state of the s			
8		polychlorobiphenyls; PCB		<0.001	mg/kg		<0.001 mg/k	g <0.0000001 %		<lod< td=""></lod<>
		602-039-00-4 215-648-1 1336-36-3		LEQ ESTIMA	9 .5					
							Tota	1: 0.0541 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: WS02

Non Hazardous Waste
Classified as 17 05 04
in the List of Waste

Sample details

Sample name: WS02 LoW Code:

Chapter: Sample Depth:

from contaminated sites) 0.0-1.0 m 17 05 04 (Soil and stones other than those mentioned in 17 05 Entry:

Moisture content: 18%

(no correction)

Hazard properties

None identified

Determinands

Moisture content: 18% No Moisture Correction applied (MC)

#			Determinand		CLP Note	User entere	d data	Conv.	Compound	conc.	Classification	MC Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			ractor			value	MC /	Used
1	4	antimony { antimo	ny trioxide }		Г	<2	ma/ka	1.197	<2.394	ma/ka	<0.000239 %	1	<lod< td=""></lod<>
L	-	051-005-00-X	215-175-0	1309-64-4	\perp								
2	4	arsenic { arsenic to	The state of the s			18	mg/kg	1.32	23,766	mg/kg	0.00238 %		
_	L	033-003-00-0	215-481-4	1327-53-3	\perp							\perp	
3	4	boron { diboron tri				0.97	mg/kg	3.22	3.123	mg/kg	0.000312 %		
	L	005-008-00-8	215-125-8	1303-86-2	_							\perp	
4	4	cadmium (cadmiu	ım oxide }			1.6	ma/ka	1.142	1.828	mg/kg	0.000183 %		
L		048-002-00-0	215-146-2	1306-19-0	1								
5	4	chromium in chror oxide (worst case)		ds { * chromium(III)		25	mg/kg	1.462	36.539	mg/kg	0.00365 %		
			215-160-9	1308-38-9	1								
6	4	of compounds spe		rium chromate and		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
		024-017-00-8			1				CONTRACT	9000	LYNCHID		
7	4	copper { dicopper	oxide; copper (I) or	xide }		38	ma/ka	1.126	42.784	mg/kg	0.00428 %		
Ľ		029-002-00-X	215-270-7	1317-39-1	1		mg ng	1.120	42.704	mg/ng	0.00420 %		
8	4	lead { lead chroma	ate }		1	100	mg/kg	1.56	155.982	mg/kg	0.01 %		
		082-004-00-2	231-846-0	7758-97-6	1		99		100.002	mgmg	0.0170		
9	4	mercury { mercury	dichloride }			0.21	ma/ka	1.353	0.284	mg/kg	0.0000284 %		
_		080-010-00-X	231-299-8	7487-94-7	1	0.2.	mg/ng	1.555	0.204	mg/ng	0.0000204 70		
10	4	molybdenum { mo	lybdenum(VI) oxide	9 }		3.9	mg/kg	1.5	5.851	mg/kg	0.000585 %		
		042-001-00-9	215-204-7	1313-27-5	1		mg/ng	1.0	0.001	mg/kg	0.000000 70		
11	4	nickel { nickel chro	mate }			46	mg/kg	2 976	136.908	mg/kg	0.0137 %		
		028-035-00-7	238-766-5	14721-18-7	1	The Roll of the		2.0.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	mgmg	0.010170		
12	4	selenium { nickel s	selenate }			0.79	mg/kg	2 554	2.018	mg/kg	0.000202 %		
		028-031-00-5	239-125-2	15060-62-5			mgmg	2.007	2.010	mg/kg	0.000202 /0		
13	4	zinc { zinc chroma	te }			150	mg/kg	2 774	416.122	mg/kg	0.0416 %		
	L	024-007-00-3	236-878-9	13530-65-9	1	100	mg/kg	4	410.122	mg/kg	0.0410 /0		
14	0	TPH (C6 to C40) p	etroleum group			<10	mg/kg		<10	ma/ka	<0.001 %		<lod< td=""></lod<>
				TPH	1	710	mg/kg		Mary Land	mg/kg	0.301 %		LOD
15		tert-butyl methyl et 2-methoxy-2-meth				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4	1								

en	vir	onmental management for business	_							_	
#		Determinand EU CLP index	CLP Note	User entered	d data	Conv. Factor	Compound or	onc.	Classification value	S Applied	Conc. Not Used
		EU CLP index	ರ							MC	
16		benzene 601-020-00-8 200-753-7 71-43-2	-	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
17		toluene		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-021-00-3 203-625-9 108-88-3	1								
18	0	ethylbenzene 601-023-00-4 202-849-4 100-41-4	-	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %	1	<lod< td=""></lod<>
-		xylene	+								
19		202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	cyanides (salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex)		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
_	_	006-007-00-5	+								
21		naphthalene 601-052-00-2 202-049-5 91-20-3	-	0.35	mg/kg		0.35	mg/kg	0.000035 %		
20		acenaphthylene	t	0.07	ma/ka		0.07	mg/kg	0.000007 %	T	
22		205-917-1 208-96-8	1	0.07	mg/kg		0.07	mg/kg	0.000007 70	+	
23	0	acenaphthene 201-469-6 83-32-9	+	0.04	mg/kg		0.04	mg/kg	0.000004 %		
	_	fluorene	+							\top	
24		201-695-5 86-73-7	+	0.05	mg/kg		0.05	mg/kg	0.000005 %		
25		phenanthrene 201-581-5 85-01-8		0.12	mg/kg		0.12	mg/kg	0.000012 %		
	-	anthracene	+	0.00			0.00		0.000003 %	†	
26	-	204-371-1 120-12-7		0.03	mg/kg		0.03	mg/kg	0.000003 %		
27		fluoranthene		0.1	mg/kg		0.1	mg/kg	0.00001 %		
		205-912-4 206-44-0	1							-	
28		pyrene 204-927-3 129-00-0	4	0.1	mg/kg		0.1	mg/kg	0.00001 %		
		benzo[a]anthracene	+				201		0.000004.00	+	
29		601-033-00-9 200-280-6 56-55-3	+	0.04	mg/kg	3	0.04	mg/kg	0.000004 %		
30		chrysene	Т	0.05	mg/kg		0.05	mg/kg	0.000005 %		
30		601-048-00-0 205-923-4 218-01-9	1	0.00	mg ne	1				+	
31		benzo[b]fluoranthene		0.06	mg/kg	,	0.06	mg/kg	0.000006 %		
	-	601-034-00-4 205-911-9 205-99-2	+							+	-
32		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9	4	0.05	mg/kg	3	0.05	mg/kg	0.000005 %		
_	\vdash	benzo[a]pyrene; benzo[def]chrysene	+	4.00						+	
33		601-032-00-3 200-028-5 50-32-8	\dashv	0.08	mg/kg	3	0.08	mg/kg	0.000008 %		
34		indeno[123-cd]pyrene 205-893-2 193-39-5	1	<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
35		dibenz[a,h]anthracene	+	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	L	601-041-00-2 200-181-8 53-70-3	1								
36	0	benzo[ghi]perylene	_	<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
_	+	205-883-8 191-24-2 phenol	+					m-1	<0.00004.0/		<lod< td=""></lod<>
37		604-001-00-2 203-632-7 108-95-2		<0.1	mg/kg	3	<0.1	mg/kg	<0.00001 %		LOD
38	0	polychlorobiphenyls; PCB		<0.001	mg/kg	9	<0.001	mg/kg	<0.000001 %	77	<lod< td=""></lod<>
_	_	602-039-00-4 215-648-1 1336-36-3					Street Street Street	Total	0.0785 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

Classification of sample: WS02[2]

Non Hazardous Waste

Sample details

Sample name: WS02[2] LoW Code:

Chapter: Sample Depth: 1.0-2.0 m

Entry: Moisture content:

17% (no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05

Hazard properties

None identified

Determinands

Moisture content: 17% No Moisture Correction applied (MC)

#			Determinand		CLP Note	User entered	d data	Conv.	Compound	conc.	Classification value	Applied	Conc. No
		EU CLP index number	EC Number	CAS Number	CLP			aciol			Tuiuc	MC	0300
1	d	antimony { antimor	ny trioxide }		Г	<2	ma/ka	1.197	<2.394	ma/ka	<0.000239 %		<lod< td=""></lod<>
'		051-005-00-X	215-175-0	1309-64-4	1_	The second second	mgmg	1.101					
2	d	arsenic { arsenic tr	rioxide }			15	mg/kg	1 32	19.805	mg/kg	0.00198 %		
-		033-003-00-0	215-481-4	1327-53-3	1		mg/ng					_	
3	4	boron { diboron tric 005-008-00-8	oxide } 215-125-8	1303-86-2	-	2.8	mg/kg	3.22	9.016	mg/kg	0.000902 %		
	æ	cadmium { cadmiu	ım oxide)		T				-0.444		-0.0000444.0/		<lod< td=""></lod<>
4	_	048-002-00-0	215-146-2	1306-19-0	1	<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
5	4	chromium in chron		nds { * chromium(III)		13	mg/kg	1.462	19	mg/kg	0.0019 %		
			215-160-9	1308-38-9	1								
6	4	compounds, with to of compounds spe	he exception of ba	nds { chromium (VI) arium chromate and in this Annex }		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
		024-017-00-8			╀	150	-			Steadill			
7	ď,	copper { dicopper	_			3.9	mg/kg	1.126	4.391	mg/kg	0.000439 %		
		029-002-00-X	215-270-7	1317-39-1	\perp							+	
8	•	lead { lead chroma			1	6.4	mg/kg	1.56	9.983	mg/kg	0.00064 %		
		082-004-00-2	231-846-0	7758-97-6	\perp								
9	4	mercury { mercury				<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
		080-010-00-X	231-299-8	7487-94-7	1	The Bolling Rail							
10	4					<2	mg/kg	1.5	<3	mg/kg	<0.0003 %		<lod< td=""></lod<>
		042-001-00-9	215-204-7	1313-27-5	\perp	10 - 10 - 10 A	19.41						
11	4		The state of the s			10	mg/kg	2.976	29.763	mg/kg	0.00298 %		
		028-035-00-7	238-766-5	14721-18-7	1							-	
12	4	selenium { nickel s	Control of State of Control of Co			<0.2	mg/kg	2.554	<0.511	mg/kg	<0.0000511 %		<lod< td=""></lod<>
_		028-031-00-5	239-125-2	15060-62-5	1					100000			
13	4	zinc { zinc chroma	ite }			12	ma/ka	2.774	33.29	mg/kg	0.00333 %		
		024-007-00-3	236-878-9	13530-65-9	1					-		-	-
14	0	TPH (C6 to C40)	petroleum group			<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
				TPH	1				The state of the s				
15		tert-butyl methyl e 2-methoxy-2-meth				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4						NAME OF THE OWNER, OWNE	The state of the		

e	All	ronmental management for business	_							Т	
#		Determinand EU CLP index	CLP Note	User entered	data	Conv. Factor	Compound co	onc.	Classification value	MC Applied	Conc. No Used
		number	ō				-			Ž	
6		benzene 601-020-00-8 200-753-7 71-43-2	+	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %	ı	<lod< td=""></lod<>
7		toluene		<0.001	mg/kg		<0.001	ma/ka	<0.0000001 %	Г	<lod< td=""></lod<>
_		601-021-00-3 203-625-9 108-88-3	1								
8	9	ethylbenzene		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %	ı	<lod< td=""></lod<>
	-	601-023-00-4 202-849-4 100-41-4	+				SOME STATE			-	-
9		xylene 601-022-00-9		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
0	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
1		naphthalene	1	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-052-00-2 202-049-5 91-20-3 acenaphthylene	+					WEST.	Contraction of		
2		205-917-1 208-96-8	\dashv	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<loe< td=""></loe<>
3		acenaphthene 201-469-6 83-32-9	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<loe< td=""></loe<>
4	9	fluorene 201-695-5 86-73-7	+	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<l00< td=""></l00<>
5	0	phenanthrene 201-581-5 85-01-8	1	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<l00< td=""></l00<>
6		anthracene	1	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	ı	<l00< td=""></l00<>
		204-371-1 120-12-7	+			-		1000			
7	9	205-912-4 206-44-0	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
_				-0.04			-0.04		-0.000001.00		-1.05
8		204-927-3 129-00-0		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<loe< td=""></loe<>
9		benzo[a]anthracene 601-033-00-9 200-280-6 56-55-3	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<l00< td=""></l00<>
0		chrysene 601-048-00-0 205-923-4 218-01-9	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<l00< td=""></l00<>
1		benzo[b]fluoranthene 601-034-00-4 205-911-9 205-99-2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<loe< td=""></loe<>
2		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<l00< td=""></l00<>
3		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5 50-32-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
4	0	indeno[123-cd]pyrene	+	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<l00< td=""></l00<>
5		205-893-2 193-39-5 dibenz[a,h]anthracene	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
	-	601-041-00-2 200-181-8 53-70-3	1								
6		benzo[ghi]perylene	\dashv	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lo< td=""></lo<>
_		phenol	+				The second		Const		
7		604-001-00-2 203-632-7 108-95-2	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lo< td=""></lo<>
8			_	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<l00< td=""></l00<>
_	1	Process Process	_			-		Total:	0.014 %		-

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration 4

<LOD Below limit of detection

ND Not detected

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: WS03

Sample details

Sample name: WS03 LoW Code:

Chapter:

Sample Depth: 0.0-1.0 m from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 Entry:

Moisture content: 12%

(no correction)

Hazard properties

None identified

Determinands

Moisture content: 12% No Moisture Correction applied (MC)

#			Determinand		Note	User entere	d data	Conv.	Compound	conc.	Classification	MC Applied	Conc. No
		EU CLP index number	EC Number	CAS Number	CLP			autoi			value	MC	Osed
1	4	antimony { antimony	/ trioxide }			<2	mg/kg	1 197	<2.394	mg/kg	<0.000239 %		<lod< td=""></lod<>
_		051-005-00-X	215-175-0	1309-64-4		Marie Land	mgmg	1.107	S TO SEE	mgrkg	0.000200 /0		-202
2	4	arsenic { arsenic tric	oxide }			14	mg/kg	1.32	18.485	mg/kg	0.00185 %		
_		033-003-00-0	215-481-4	1327-53-3	1		mg/kg	1.02	10.400	mg/kg	0.00100 %		
3	4	boron { diboron triox	(ide }			<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< td=""></lod<>
_		005-008-00-8	215-125-8	1303-86-2	1		mgmg	5.22		mgmg	0.000120 %		-205
4	4	cadmium { cadmium	n oxide }		П	1.2	ma/ka	1.142	1.371	mg/kg	0.000137 %	П	
_		048-002-00-0	215-146-2	1306-19-0	1	1.2	mg/kg	1.142	1.571	mg/kg	0.000137 76		
5	4	chromium in chromi oxide (worst case) }		ds { * chromium(III)		15	mg/kg	1.462	21.923	mg/kg	0.00219 %		
			215-160-9	1308-38-9	1								
6	4	chromium in chromi compounds, with the of compounds spec	e exception of ba	rium chromate and		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
		024-017-00-8			\vdash					- 1		_	
7	4	copper { dicopper or		xide }		21	ma/ka	1.126	23.644	mg/kg	0.00236 %		
			215-270-7	1317-39-1	\perp							-	
8	4	lead { lead chromate			1	30	mg/kg	1.56	46.794	mg/kg	0.003 %		
			231-846-0	7758-97-6		177	0 0						
9	4	mercury { mercury o	dichloride }			<0.1	ma/ka	1.353	<0.135	ma/ka	<0.0000135 %		<lod< td=""></lod<>
			231-299-8	7487-94-7									
10	4	molybdenum { moly	bdenum(VI) oxide	9 }		<2	mg/kg	1.5	<3	mg/kg	<0.0003 %	1	<lod< td=""></lod<>
_			215-204-7	1313-27-5									
11	4	nickel { nickel chrom	nate }			32	mg/kg	2 976	95.24	mg/kg	0.00952 %		
			238-766-5	14721-18-7	1			2.5,0		mana	0.00002 /0		
12	4	selenium { nickel se	lenate }			0.64	mg/kg	2 554	1.634	mg/kg	0.000163 %		
<u> </u>		028-031-00-5	239-125-2	15060-62-5		0.01	mg/kg	2.004	1.004	mg/kg	0.000100 70		
13	d	zinc { zinc chromate	}			54	mg/kg	2 774	149.804	mg/kg	0.015 %		
13		024-007-00-3	236-878-9	13530-65-9	1	34	mg/kg	2.774	149.004	mg/kg	0.015 %		
14	0	TPH (C6 to C40) pe	troleum group			<10	malka		<10	ma(ka	-0.001.94		<lod< td=""></lod<>
-				TPH	1	-10	mg/kg			mg/kg	<0.001 %		LOD
15		tert-butyl methyl eth 2-methoxy-2-methyl				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X	16-653-1	1634-04-4	1		10.3			1			

#		Determinand	Note	User entered	i data	Conv.	Compound of	conc.	Classification	Applied	Conc. No
		EU CLP index	CLP			aotoi			Talac	MC	
6		benzene 601-020-00-8 200-753-7 71-43-2	-	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
7		toluene		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-021-00-3 203-625-9 108-88-3	_	1200					-	-	
8	0	ethylbenzene 601-023-00-4 202-849-4 100-41-4	4	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
-			+				Total Control	THE REAL PROPERTY.			
19		xylene		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	cyanides (* salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex)		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5									
21		naphthalene		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-052-00-2 202-049-5 91-20-3									
22	0	acenaphthylene 205-917-1 208-96-8	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
23	9	acenaphthene		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		201-469-6 83-32-9	+				P. Carlotte			-	
4	0	fluorene 201-695-5 86-73-7	+	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
25	0	phenanthrene		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
_	-		+								
26		anthracene	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
-			+								
27	•	fluoranthene	\dashv	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
28	0	pyrene	1	<0.01	mg/kg	,	<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
-		204-927-3 129-00-0 benzo[a]anthracene	+	*0.01	ma/les		<0.01	malka	<0.000001 %		<lod< td=""></lod<>
29		601-033-00-9 200-280-6 56-55-3	\dashv	<0.01	mg/kg		20.01	mg/kg	~0.000001 %		LOL
30		chrysene		<0.01	mg/kg	,	<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-048-00-0 205-923-4 218-01-9	_		ALK T		DESCRIPTION OF THE PERSON OF T	UF 20/2019			_
31		benzo[b]fluoranthene		<0.01	mg/kg	3	<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
		601-034-00-4 205-911-9 205-99-2	+								_
32		benzo[k]fluoranthene	_	<0.01	mg/kg	3	<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
	_	601-036-00-5 205-916-6 207-08-9	+		414						-
33		benzo[a]pyrene; benzo[def]chrysene	_	<0.01	mg/kg	3	<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
		601-032-00-3 200-028-5 50-32-8	+					-			
34	0	indeno[123-cd]pyrene 205-893-2 193-39-5		<0.01	mg/kg	3	<0.01	mg/kg	<0.000001 %	1	<loi< td=""></loi<>
35		dibenz[a,h]anthracene		<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
_	+	601-041-00-2 200-181-8 53-70-3	+								
36		benzo[ghi]perylene 205-883-8 191-24-2	\dashv	<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %		<lo< td=""></lo<>
		phenol	+						-0.00004.0/		-1.0
37		604-001-00-2 203-632-7 108-95-2	-	<0.1	mg/kg	9	<0.1	mg/kg	<0.00001 %		<loi< td=""></loi<>
38	0	polychlorobiphenyls; PCB		<0.001	mg/kg	9	<0.001	mg/kg	<0.0000001 %		<loi< td=""></loi<>
		602-039-00-4 215-648-1 1336-36-3		1 - 18 7 19	TIP IN			Total	: 0.0361 %	4	

	User supplied data
CHEST STATE	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
•	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS03[2]

Non Hazardous Waste Classified as 17 05 04

Sample details

Sample name: WS03[2] LoW Code: Chapter:

17: Construction and Demolition Wastes (including excavated soil Sample Depth: 1.0-2.0 m from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 Entry:

12%

(no correction)

03) Moisture content:

Hazard properties

None identified

Determinands

Moisture content: 12% No Moisture Correction applied (MC)

#			Determinand		CLP Note	User entered	d data	Conv.	Compound	conc.	Classification	Applied	Conc. No Used
		EU CLP index number	EC Number	CAS Number	CLP			ractor			value	MC	Osed
1	d	antimony { antimor	ny trioxide }		Г	<2	mg/kg	1.197	<2.394	ma/ka	<0.000239 %		<lod< td=""></lod<>
•		051-005-00-X	215-175-0	1309-64-4	1							_	
2	4	arsenic (arsenic tr	ioxide }			18	ma/ka	1.32	23.766	mg/kg	0.00238 %		
-		033-003-00-0	215-481-4	1327-53-3	1		99						
3	-	boron (diboron tric 005-008-00-8	oxide } 215-125-8	1303-86-2	-	<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< td=""></lod<>
	æ	cadmium { cadmiu	m oxide }			4.0		4.440	4.000		0.000183 %		
4	-	048-002-00-0	215-146-2	1306-19-0	1	1.6	mg/kg	1.142	1.828	mg/kg	0.000183 %		
5	4		}	ds { * chromium(III)		13	mg/kg	1.462	19	mg/kg	0.0019 %		
			215-160-9	1308-38-9	┸							-	
6	4	compounds, with to of compounds spe	he exception of ba	nds { chromium (VI) arium chromate and n this Annex }		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
		024-017-00-8			\perp					339	A STATE OF THE PARTY	-	
7	_	copper { dicopper				24	mg/kg	1.126	27.021	mg/kg	0.0027 %		
		029-002-00-X	215-270-7	1317-39-1	\perp							+	
8	_	lead { lead chroma			1	15	mg/kg	1.56	23.397	mg/kg	0.0015 %		
		082-004-00-2	231-846-0	7758-97-6	+							-	
9	4	mercury { mercury				<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
		080-010-00-X	231-299-8	7487-94-7	\perp				E SESSION S	-			
10	4	molybdenum { mo	lybdenum(VI) oxid	ie }		2.3	mg/kg	1.5	3.45	mg/kg	0.000345 %		
		042-001-00-9	215-204-7	1313-27-5	1			-				+	
11	4	nickel { nickel chro	omate }			37	ma/ka	2.976	110.122	mg/kg	0.011 %		
		028-035-00-7	238-766-5	14721-18-7	1							_	
12	4	selenium { nickel s	selenate }			0.33	mg/kg	2.554	0.843	mg/kg	0.0000843 %		
-		028-031-00-5	239-125-2	15060-62-5						0 0		+	
13	d	zinc { zinc chroma	te }			57	ma/ka	2.774	158.126	mg/kg	0.0158 %		
13		024-007-00-3	236-878-9	13530-65-9	1	0,	mg/mg		1001120			_	
14		TPH (C6 to C40)	petroleum group			<10	mg/kg		<10	ma/ka	<0.001 %		<lod< td=""></lod<>
14				TPH	1	-10	iligi kg						
15		tert-butyl methyl e 2-methoxy-2-meth				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4		4			THE CHANGE		ESSENDED AND		

en	vir	onmental management for business	_						_	
#		Determinand EU CLP index	CLP Note	User entered	data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. No Used
16		number benzene	0	<0.001	mg/kg		<0.001 mg	kg <0.000001 %	2	<lod< th=""></lod<>
_		601-020-00-8 200-753-7 71-43-2	1					9 5.555557.70	_	
7		toluene 601-021-00-3 203-625-9 108-88-3	-	<0.001	mg/kg		<0.001 mg	kg <0.0000001 %		<lod< td=""></lod<>
8		ethylbenzene 601-023-00-4 202-849-4 100-41-4		<0.001	mg/kg		<0.001 mg	kg <0.0000001 %		<lod< td=""></lod<>
9		xylene 601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4] 108-38-3 [3] 215-535-7 [4]		<0.001	mg/kg		<0.001 mg	/kg <0.000001 %		<lod< td=""></lod<>
0	4	cyanides (salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex)		<0.5	mg/kg	1.884	<0.942 mg	/kg <0.000942 %		<lod< td=""></lod<>
1		naphthalene 601-052-00-2 202-049-5 91-20-3	1	<0.01	mg/kg		<0.01 mg	/kg <0.000001 %		<loe< td=""></loe<>
2		acenaphthylene 205-917-1 208-96-8	+	<0.01	mg/kg		<0.01 mg	/kg <0.000001 %		<lod< td=""></lod<>
3		acenaphthene 201-469-6 83-32-9	+	<0.01	mg/kg		<0.01 mg	/kg <0.000001 %		<loe< td=""></loe<>
4		fluorene	+	<0.01	mg/kg		<0.01 mg	/kg <0.000001 %		<l0[< td=""></l0[<>
5		201-695-5 86-73-7	+	<0.01	mg/kg		<0.01 mg	/kg <0.00001 %		<loi< td=""></loi<>
6		anthracene 204-371-1 120-12-7	+	<0.01	mg/kg		<0.01 mg	/kg <0.000001 %		<loi< td=""></loi<>
7		fluoranthene 205-912-4 206-44-0	+	<0.01	mg/kg		<0.01 mg	/kg <0.000001 %		<loi< td=""></loi<>
В		pyrene 204-927-3 129-00-0	+	<0.01	mg/kg		<0.01 mg	/kg <0.000001 %		<l0[< td=""></l0[<>
9		benzo[a]anthracene 601-033-00-9 200-280-6 56-55-3	+	<0.01	mg/kg		<0.01 mg	/kg <0.000001 %		<loe< td=""></loe<>
0		chrysene 601-048-00-0 205-923-4 218-01-9	+	<0.01	mg/kg		<0.01 mg	/kg <0.000001 %		<loi< td=""></loi<>
1		benzo[b]fluoranthene 601-034-00-4 205-911-9 205-99-2	+	<0.01	mg/kg		<0.01 mg	/kg <0.000001 %		<l0[< td=""></l0[<>
2		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9	+	<0.01	mg/kg		<0.01 mg	/kg <0.000001 %		<loe< td=""></loe<>
3		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5 50-32-8	1	<0.01	mg/kg		<0.01 mg	/kg <0.000001 %		<loi< td=""></loi<>
4	0	indeno[123-cd]pyrene 205-893-2 193-39-5	1	<0.01	mg/kg		<0.01 mg	/kg <0.000001 %		<l00< td=""></l00<>
5		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		<0.01	mg/kg		<0.01 mg	kg <0.000001 %		<loi< td=""></loi<>
6	0	benzo[ghi]perylene 205-883-8 191-24-2		<0.01	mg/kg		<0.01 mg	kg <0.000001 %		<loe< td=""></loe<>
7		phenol 604-001-00-2 203-632-7 108-95-2		<0.1	mg/kg		<0.1 mg	kg <0.00001 %		<loe< td=""></loe<>
8	0	polychlorobiphenyls; PCB 602-039-00-4 215-648-1 1336-36-3	-	<0.001	mg/kg		<0.001 mg	kg <0.000001 %		<l0[< td=""></l0[<>
			_				То	tal: 0.0375 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

Classification of sample: WS03[3]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Entry:

Sample details

Sample name: WS03[3] LoW Code:

Chapter: Sample Depth: 2.0-3.0 m

Moisture content:

9.6%

(no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05

Hazard properties

None identified

Determinands

Moisture content: 9.6% No Moisture Correction applied (MC)

#			Determinand		Note	User entere	d data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. No
		EU CLP index number	EC Number	CAS Number	CLP			actor			value	MC.	Oseu
1	4	antimony { antimo	ny trioxide }		Г	<2	ma/ka	1.197	<2.394	ma/ka	<0.000239 %		<lod< td=""></lod<>
		051-005-00-X	215-175-0	1309-64-4			mgrkg	1.107		mgrkg	0.000200		
2	4	arsenic { arsenic t	rioxide }			17	mg/kg	1.32	22,446	mg/kg	0.00224 %		
_		033-003-00-0	215-481-4	1327-53-3			g.ng			mg ng	0.002217		
3	4	boron { diboron tri	oxide }			<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< td=""></lod<>
_		005-008-00-8	215-125-8	1303-86-2			mgmg	0.22		gg			
4	2	cadmium { cadmiu	um oxide }			1.8	malka	1.142	2.056	mg/kg	0.000206 %		
-		048-002-00-0	215-146-2	1306-19-0	1	1.0	mg/kg	1.142	2.000	mg/kg	0.000200 /0		
5	4	chromium in chroroxide (worst case)	}	ds { * chromium(III)		16	mg/kg	1.462	23.385	mg/kg	0.00234 %		
			215-160-9	1308-38-9	\perp								
6	4			rium chromate and		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
7	æ	copper { dicopper	oxide; copper (I) o	xide }	T	27	malka	1.126	30.399	mg/kg	0.00304 %		
'	-	029-002-00-X	215-270-7	1317-39-1	1	21	mg/kg	1.120	30.399	mg/kg	0.00304 %		
8	A	lead { lead chroma	ate }		1	45	ma/ka	1 56	70.192		0.0045 %	Т	
٥		082-004-00-2	231-846-0	7758-97-6	1'	45	mg/kg	1.50	70.192	mg/kg	0.0045 %		
9	4	mercury { mercury	/ dichloride } 231-299-8	7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
		molybdenum { mo			\vdash								
10	*	042-001-00-9	215-204-7	1313-27-5	1	2.9	mg/kg	1.5	4.351	mg/kg	0.000435 %		
	A	nickel { nickel chro	omate 3	1.0.00	\vdash		100				2.2022.20		
11	~	028-035-00-7	238-766-5	14721-18-7	1	43	mg/kg	2.976	127.979	mg/kg	0.0128 %		
12	4	selenium { nickel s		1		0.86	mg/kg	2.554	2.196	mg/kg	0.00022 %		
		028-031-00-5	239-125-2	15060-62-5	L				71111				
13	4	zinc { zinc chroma				75	ma/ka	2.774	208.061	mg/kg	0.0208 %		
		024-007-00-3	236-878-9	13530-65-9									
14		TPH (C6 to C40)	petroleum group			<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
				TPH	L		9						
15		tert-butyl methyl e 2-methoxy-2-meth				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4	1					E 62 (6)		4	

environmental	managemen	f for husiness

	VIII	onmental management for business Determinand	e	F. Hali					Classification	pelled	Conc. No
#		EU CLP index	CLP Note	User entered	data	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Used
4	_	number	ō							Σ	
6	- L	benzene 601-020-00-8 200-753-7 71-43-2	+	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
7		toluene	\top	<0.001	mg/kg		<0.001	ma/ka	<0.0000001 %		<lod< td=""></lod<>
1		601-021-00-3 203-625-9 108-88-3	1	0.001	mg/ng						
8	- 1	ethylbenzene		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
-		601-023-00-4 202-849-4 100-41-4	+								
9	- L	xylene 601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
0	4	cyanides { * salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
-		006-007-00-5	+								
1		naphthalene 601-052-00-2 202-049-5 91-20-3	\dashv	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		acenaphthylene	+	-0.01	//co		<0.01	malka	<0.000001 %		<lod< td=""></lod<>
2		205-917-1 208-96-8		<0.01	mg/kg		20.01	mg/kg	40.000001 70		LOL
23		acenaphthene 201.469-6 83-32-9		<0.01	mg/kg	,	<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
-		201-469-6 83-32-9 fluorene	+				The second				
4	•	201-695-5 86-73-7	+	<0.01	mg/kg	3	<0.01	mg/kg	<0.000001 %	8	<loi< td=""></loi<>
5		phenanthrene		<0.01	mg/kg	,	<0.01	mg/kg	<0.000001 %		<l0[< td=""></l0[<>
_		201-581-5 85-01-8	7								
26	0	anthracene	4	<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %	ı.	<loi< td=""></loi<>
-		204-371-1 120-12-7	+	-						-	
27	۰	205-912-4 206-44-0	+	<0.01	mg/kg	3	<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
28	0	pyrene	\top	<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<l0[< td=""></l0[<>
20		204-927-3 129-00-0	1	-0.01	mg/kg		0.01	mgmg			
29		benzo[a]anthracene		<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
		601-033-00-9 200-280-6 56-55-3	+	-							
30		chrysene 601-048-00-0 205-923-4 218-01-9	\dashv	<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
		benzo[b]fluoranthene	+					P E I	-0.000004.0/	9	<loi< td=""></loi<>
31		601-034-00-4 205-911-9 205-99-2	\dashv	<0.01	mg/kg	9	<0.01	mg/kg	<0.000001 %		<lui< td=""></lui<>
2		benzo[k]fluoranthene		<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<loi< td=""></loi<>
32		601-036-00-5 205-916-6 207-08-9		-0.01	mg/k	9	-0.01 mg				
33		benzo[a]pyrene; benzo[def]chrysene		<0.01	mg/kg	g	<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
		601-032-00-3 200-028-5 50-32-8	+					12000	Participation of		
34		indeno[123-cd]pyrene 205-893-2 193-39-5	\dashv	<0.01	mg/k	g	<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
35		dibenz[a,h]anthracene		<0.01	mg/k	g	<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
_	_	601-041-00-2 200-181-8 53-70-3	1				MICHEL S	A PARTY	Description of the last		
36	0	benzo[ghi]perylene	-	<0.01	mg/k	g	<0.01	mg/kg	<0.000001 %		<loi< td=""></loi<>
	-	205-883-8 191-24-2 phenol	+				No. of Concession, Name of Street, or other Persons, Name of Street, or ot	The state of			
37		604-001-00-2 203-632-7 108-95-2	\dashv	<0.1	mg/k	9	<0.1	mg/kg	<0.00001 %		<loi< td=""></loi<>
20	0	polychlorobiphenyls; PCB	+	<0.001	mg/k		<0.001	ma/ka	<0.0000001 %		<lo< td=""></lo<>
38		602-039-00-4 215-648-1 1336-36-3		40.001	mg/k	9	0.001	g.ve			

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
•	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected

Classification of sample: WS04

Sample details

Sample name:

WS04

Sample Depth:

0.0-1.0 m

Moisture content: 11%

(no correction)

LoW Code: Chapter:

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05

03)

Hazard properties

None identified

Determinands

Moisture content: 11% No Moisture Correction applied (MC)

#			Determinand		CLP Note	User entered	i data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. No
		EU CLP index number	EC Number	CAS Number	CLP			dotor				MC	
1	æ	antimony { antimo	ny trioxide }		Г	<2	mg/kg	1.197	<2.394	ma/ka	<0.000239 %		<lod< td=""></lod<>
'		051-005-00-X	215-175-0	1309-64-4	1		mgmg	1.101			15 11 11 11		
2	æ	arsenic { arsenic t	rioxide }			31	mg/kg	1.32	40.93	mg/kg	0.00409 %		
-		033-003-00-0	215-481-4	1327-53-3	1	-	mg/kg	1.02	40.00	mgmg	0.00.00		
3	-	boron { diboron tri	oxide }	1303-86-2		<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< td=""></lod<>
	-	cadmium { cadmiu		1000	\vdash						0.000054.00		
4	-	048-002-00-0	215-146-2	1306-19-0	1	2.2	mg/kg	1.142	2.513	mg/kg	0.000251 %		
5	4		mium(III) compour	nds { * chromium(III)		25	mg/kg	1.462	36.539	mg/kg	0.00365 %		
			215-160-9	1308-38-9	\perp	and the same						-	-
6	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }			<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>	
		024-017-00-8			1				Contraction of the last	2			
7	d	copper { dicopper		36	ma/ka	1.126	126 40.532	mg/kg	0.00405 %				
'		029-002-00-X	215-270-7	1317-39-1		Mary Talk Mark						_	
	ď	lead { lead chrom	ate }		1	32	mg/kg	1.56	49.914	mg/kg	0.0032 %		
0	Ť	082-004-00-2	231-846-0	7758-97-6	1			1.00	10.011	mgmg	0.0002 70		
22 ° 33 ° 44 ° 55 ° 66 ° 7 ° 10 ° 110 ° 111 ° 112 ° 113 ° 11	d	mercury { mercury	y dichloride }			<0.1	mg/kg	1 353	1.353 <0.135 mg	ma/ka	<0.0000135 %		<loi< td=""></loi<>
9		080-010-00-X	231-299-8	7487-94-7		-0.1		1.000		mg/kg			<lod <lod="" <lod<="" td=""></lod>
40	H	molybdenum { mo	olybdenum(VI) oxid	de)	T	3.2	mg/kg	1.5	4.801	mg/kg	0.00048 %		
10	~	042-001-00-9	215-204-7	1313-27-5		3.2	mg/kg	1.5	4.001	mg/kg	0.00040 70		
	H	nickel { nickel chr	omate }		Т	50	malka	2.976	148.813	mg/kg	0.0149 %		<lod< td=""></lod<>
11	~	028-035-00-7	238-766-5	14721-18-7	1	30	mg/kg	2,970	140.015	mg/kg	0.0140 %		
40	H	selenium { nickel	selenate }			0.53	ma/ka	2.554	1.354	mg/kg	0.000135 %		
12	~	028-031-00-5	239-125-2	15060-62-5	1	0.55	mg/kg	2.554	1.554	mg/kg	0.000100 70		
	À	zinc { zinc chroma	ate }		Т	97	malle	2.774	269.092	mg/kg	0.0269 %		
13	~	024-007-00-3	236-878-9	13530-65-9	1	97	mg/kg	2.//4	209.092	mg/kg	0.0203 /0		
	0	TPH (C6 to C40)	petroleum group		T	-10			<10	malka	<0.001 %		<1.01
14		,		TPH	1	<10	mg/kg	•	-10	mg/kg	5.551 76		<lul< td=""></lul<>
15		tert-butyl methyl e 2-methoxy-2-meth				<0.001	mg/kg	,	<0.001	mg/kg	<0.0000001 %		<loi< td=""></loi<>
		603-181-00-X	216-653-1	1634-04-4							March Co.		

#		Determinand	CLP Note	User entered	data	Conv.	Compound conc.	Classification value	MC Applied	Conc. No
		EU CLP index	CLP			ractor		value	MC /	Used
16		benzene 601-020-00-8 200-753-7 71-43-2		<0.001	mg/kg		<0.001 mg/k	<0.0000001 %		<lod< td=""></lod<>
17		toluene	+	<0.001	mg/kg		<0.001 mg/k	<0.0000001 %		<lod< td=""></lod<>
'		601-021-00-3 203-625-9 108-88-3	1	40.001	mg/kg		-0.001 mg/k	-0.0000001 %		LOD
18				<0.001	mg/kg		<0.001 mg/k	<0.0000001 %		<lod< td=""></lod<>
		601-023-00-4 202-849-4 100-41-4	+							
19		xylene 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001	mg/kg		<0.001 mg/k	<0.0000001 %		<lod< td=""></lod<>
20	4	cyanides { ** salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<0.5	mg/kg	1.884	<0.942 mg/k	o <0.0000942 %		<lod< td=""></lod<>
		naphthalene	+				ACCRECATION AS			
21		601-052-00-2 202-049-5 91-20-3	-	<0.01	mg/kg		<0.01 mg/k	<0.000001 %		<lod< td=""></lod<>
22		acenaphthylene		<0.01	mg/kg		<0.01 mg/k	<0.000001 %		<lod< td=""></lod<>
		205-917-1 208-96-8		-0.01	mg/kg		-0.01 High	3 -0.000001 %		LOD
23		acenaphthene	_	<0.01	mg/kg		<0.01 mg/k	<0.000001 %		<lod< td=""></lod<>
	-	fluorene	+				20.00		8	
24	•	201-695-5 86-73-7	-	<0.01	mg/kg		<0.01 mg/k	<0.000001 %		<lod< td=""></lod<>
25		phenanthrene		0.40			0.46	0.000046.00		
25		201-581-5 85-01-8		0.16	mg/kg		0.16 mg/k	0.000016 %		
26		anthracene		0.064	mg/kg		0.064 mg/k	0.0000064 %		
		204-371-1 120-12-7	+						-	
27		The state of the s	_	0.25	mg/kg		0.25 mg/k	0.000025 %		
		205-912-4 206-44-0 pyrene	+						+	
28		204-927-3 129-00-0	+	0.23	mg/kg		0.23 mg/k	0.000023 %		
20		benzo[a]anthracene	+	242			0.40	0.000040.00	+	
29		601-033-00-9 200-280-6 56-55-3		0.13	mg/kg		0.13 mg/k	0.000013 %		
30		chrysene	Т	0.11	mg/kg		0.11 mg/k	0.000011 %	Т	
_		601-048-00-0 205-923-4 218-01-9	1						_	
31		benzo[b]fluoranthene	_	0.14	mg/kg		0.14 mg/k	0.000014 %		
_	-	601-034-00-4 205-911-9 205-99-2	+						+	
32		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9	\dashv	0.065	mg/kg		0.065 mg/k	0.0000065 %		
		benzo[a]pyrene; benzo[def]chrysene	+						+	
33		601-032-00-3 200-028-5 50-32-8	\dashv	0.12	mg/kg		0.12 mg/k	0.000012 %		
34		indeno[123-cd]pyrene	\top	0.061	malka		0.064 ma/k	0.0000061.0/		
34		205-893-2 193-39-5		0.061	mg/kg		0.061 mg/k	0.0000061 %		
35		dibenz[a,h]anthracene		0.049	mg/kg		0.049 mg/k	0.0000049 %		
		601-041-00-2 200-181-8 53-70-3	+	2 C		-			+	
36		benzo[ghi]perylene		0.085	mg/kg		0.085 mg/k	0.0000085 %		
		205-883-8 191-24-2 phenol	+							
37		604-001-00-2 203-632-7 108-95-2	-	<0.1	mg/kg		<0.1 mg/k	<0.00001 %		<lod< td=""></lod<>
	0		+		100					4.4-
38		602-039-00-4 215-648-1 1336-36-3		<0.001	mg/kg		<0.001 mg/k	<0.0000001 %		<lod< td=""></lod<>
	-		_				Tota	0.0594 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: WS04[2]

Non Hazardous Waste

Sample details

LoW Code:

Sample name: WS04[2] Sample Depth: 1.0-2.0 m Chapter:

from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 Entry: 03)

Moisture content:

9.5% (no correction)

Hazard properties

None identified

Determinands

Moisture content: 9.5% No Moisture Correction applied (MC)

#		Determinand		Note	User entere	d data	Conv.	Compound	conc.	Classification	MC Applied	Conc. Not	
		EU CLP index number	EC Number	CAS Number	CLP			racioi			value	MC/	Oseu
1		antimony { antimo				<2	ma/ka	1.197	<2.394	mg/kg	<0.000239 %		<lod< td=""></lod<>
	_	051-005-00-X	215-175-0	1309-64-4									
2	4	arsenic { arsenic tr	rioxide }			24	mg/kg	1.32	31,688	mg/kg	0.00317 %		
	_	033-003-00-0	1							_			
3	4 4	boron { diboron trie		<0.4	mg/kg	3.22	<1.288	ma/ka	<0.000129 %		<lod< td=""></lod<>		
_		005-008-00-8	215-125-8	1303-86-2	1			0.22					
4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	cadmium { cadmiu	m oxide }			2	ma/ka	1.142	2.285	mg/kg	0.000228 %	П	
7		048-002-00-0	215-146-2	1306-19-0	1		mgrkg	142	2.200	mgrag	0.000220 %		
5	4	chromium in chronoxide (worst case)	}	ds { * chromium(III)		26	mg/kg	1.462	38	mg/kg	0.0038 %		
			215-160-9	1308-38-9	L								
6	4	of compounds spe	nium(VI) compoun he exception of ba cified elsewhere in	rium chromate and		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
_	-	024-017-00-8			⊢		-		ALC: NO	3/00		Ψ.	
7	4	copper { dicopper oxide; copper (I) oxide }				31	mg/kg	1.126	34.903	mg/kg	0.00349 %		
	-	029-002-00-X	215-270-7	1317-39-1	⊢							+	
8	4	lead { lead chromate }				19	mg/kg	1.56	29.636	mg/kg	0.0019 %		
	-	082-004-00-2	231-846-0	7758-97-6	-							-	
9	4 4 4	mercury { mercury				<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
		080-010-00-X	231-299-8	7487-94-7	⊢						HARRIE WALL		
10		molybdenum { mo				3.3	mg/kg	1.5	4.951	mg/kg	0.000495 %		
	_	042-001-00-9	215-204-7	1313-27-5	\perp							\perp	
11	4	nickel { nickel chro	mate }			53	ma/ka	2.976	157,742	mg/kg	0.0158 %		
		028-035-00-7	238-766-5	14721-18-7	L								
12	4	selenium { nickel s	elenate }			0.32	ma/ka	2.554	0.817	mg/kg	0.0000817 %		
-		028-031-00-5	239-125-2	15060-62-5	1	0.02	mgrag	2.004	0.017	mgmg	0.0000011 /0		
13	4	zinc { zinc chroma	te }			89	ma/ka	2.774	246.899	mg/kg	0.0247 %		
,5	L	024-007-00-3	236-878-9	13530-65-9	1	03	mg/kg	2.774	240.000	mg/kg	0.0247 76		
14		TPH (C6 to C40) p	etroleum group			<10	ma/ka	- 1	<10	ma/k-	<0.001 %		<lod< td=""></lod<>
14				TPH	1	-10	mg/kg		10	mg/kg	-0.001 %		LOD
15		tert-butyl methyl et 2-methoxy-2-meth				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4	1								

environmental manag	ement for business
---------------------	--------------------

1	_	onmental management for business	T						L	
#		Determinand	CLP Note	User entered	l data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. No Used
		EU CLP index	2						×	
6		benzene 601-020-00-8 200-753-7 71-43-2	+	<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
7		toluene		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
-	-	601-021-00-3 203-625-9 108-88-3	+	(45-41-						
8	0	ethylbenzene 601-023-00-4 202-849-4 100-41-4	-	<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
19		xylene 601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4] 95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	cyanides { * salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<0.5	mg/kg	1.884	<0.942 mg/kg	<0.0000942 %		<lod< td=""></lod<>
21		naphthalene 601-052-00-2 202-049-5 91-20-3	+	<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
22	0	acenaphthylene 205-917-1 208-96-8	+	<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
23	0	acenaphthene 201-469-6 83-32-9	+	<0.01	mg/kg	,	<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
24	0	fluorene	+	<0.01	mg/kg	,	<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
25	0	201-695-5 86-73-7 phenanthrene	+	<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
26	0	201-581-5 85-01-8 anthracene	+	<0.01	mg/kg	,	<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
27	0	204-371-1 120-12-7 fluoranthene	+	<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
28	0	205-912-4 206-44-0 pyrene 204-927-3 129-00-0	+	<0.01	mg/kg	9	<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
29		benzo[a]anthracene 601-033-00-9 200-280-6 56-55-3	+	<0.01	mg/kg	9	<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
30		chrysene 601-048-00-0 205-923-4 218-01-9	+	<0.01	mg/kg	9	<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
31		benzo[b]fluoranthene 601-034-00-4 205-911-9 205-99-2	1	<0.01	mg/kg	9	<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
32		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9	1	<0.01	mg/kg	9	<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
33		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5 50-32-8		<0.01	mg/kg	9	<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
34	0	indeno[123-cd]pyrene 205-893-2 193-39-5	1	<0.01	mg/kg	g	<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
35		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		<0.01	mg/kg	g	<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
36	0	benzo[ghi]perylene 191-24-2		<0.01	mg/kg	g	<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
37		phenol 604-001-00-2 203-632-7 108-95-2		<0.1	mg/k	g	<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
38	0	polychlorobiphenyls; PCB 602-039-00-4 215-648-1 1336-36-3	-	<0.001	mg/k	9	<0.001 mg/kg	<0.0000001 %		<l0[< td=""></l0[<>
_		P02-033-00-4 K13-040-1 1330-30-3					Tota	0.0552 %		

Not detected

ND

Key		
	User supplied data	
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason	
•	Determinand defined or amended by HazWasteOnline (see Appendix A)	
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration	
<lod< td=""><td>Relow limit of detection</td><td></td></lod<>	Relow limit of detection	

HazWasteOnline™ Report created by Austin Hynes on 17 May 2022

Classification of sample: WS05

Sample details

Sample name:

WS05

Sample Depth:

0.0-1.0 m

Moisture content:

15%

(no correction)

LoW Code: Chapter:

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05

03)

Hazard properties

None identified

Determinands

Moisture content: 15% No Moisture Correction applied (MC)

#			Determinand		CLP Note	User entered	i data	Conv.	Compound	conc.	Classification	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			ractor					Osed
1	4	antimony { antimor	ny trioxide }		П	<2	ma/ka	1.197	<2.394	mg/kg	<0.000239 %		<lod< td=""></lod<>
		051-005-00-X	215-175-0	1309-64-4	1							4	
2	4	arsenic { arsenic tr	rioxide }			28	mg/kg	1.32	36.969	mg/kg	0.0037 %		
		033-003-00-0	215-481-4	1327-53-3	1							-	
3	4	boron { diboron tric	oxide }			<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< td=""></lod<>
•		005-008-00-8	215-125-8	1303-86-2	1						E SECTION AND ADDRESS OF THE PARTY OF THE PA		
4	ď	cadmium { cadmiu	m oxide }			1.8	ma/ka	1.142	2.056	mg/kg	0.000206 %		
•		048-002-00-0	215-146-2	1306-19-0	1		0 0					-	
5	4	chromium in chron		ds { * chromium(III)		23	mg/kg	1.462	33.616	mg/kg	0.00336 %		
		215-160-9 1308-38-9			1							_	
6	4	chromium in chron compounds, with to of compounds spe	he exception of ba	rium chromate and		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
		024-017-00-8				Marine Total					THE RESERVE		
7	d	copper { dicopper	oxide; copper (I) o	xide }	Т	35	ma/ka	1.126	39,406	mg/kg	0.00394 %		
'		029-002-00-X	215-270-7	1317-39-1	1	00	mg/ng	1.120	557,155				
8	d	lead { lead chroma	ate }		1	29	ma/ka	1.56	45.235	mg/kg	0.0029 %		
0	•	082-004-00-2	231-846-0	7758-97-6	1	25	mg/kg	1.00	40.200	marka	0.0020 70		
9	æ	mercury { mercury dichloride }				<0.1	ma/ka	1.353	<0.135	ma/ka	<0.0000135 %		<lod< td=""></lod<>
9	•	080-010-00-X	231-299-8	7487-94-7		-0.1	mgrkg	1.555	-0.100	mgrkg	0.0000100		
10	æ	molybdenum { mo	lybdenum(VI) oxid	e }	Т	2.8	mg/kg	1.5	4.201	mg/kg	0.00042 %		
10	•	042-001-00-9	215-204-7	1313-27-5		2.0	Highky	1.5	4.201	mg/kg	0.00012 /0		
11	B	nickel { nickel chro	omate }		Т	48	ma/ka	2.976	142.861	mg/kg	0.0143 %		
11	•	028-035-00-7	238-766-5	14721-18-7		40	mg/kg	2.570	142.001	mg/kg	0.011070		
	A	selenium { nickel s	selenate }			0.5	ma/ka	2.554	1.277	mg/kg	0.000128 %		
12	_	028-031-00-5	239-125-2	15060-62-5	1	0.5	mg/kg	2.554	1.277	mg/kg	0.000120 70		
	a	zinc { zinc chroma	ite }			110	ma/ke	2.774	305.156	mg/kg	0.0305 %		
13	_	024-007-00-3	236-878-9	13530-65-9	1	110	mg/kg	2.114	303.130	mg/kg	0.0303 70		
		TPH (C6 to C40)	petroleum group			<10	made		<10	ma/ka	<0.001 %		<lod< td=""></lod<>
14				TPH	\vdash	-10	mg/kg	•		mg/kg	3.001 /6	9	-235
15		tert-butyl methyl e 2-methoxy-2-meth			1	<0.001	mg/kg	,	<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4	-					10000			

HazWasteOnline[™]
Report created by Austin Hynes on 17 May 2022

#		Determin	and	Note	User entere	d data	Conv.	Compound	conc.	Classification	MC Applied	Conc. No
		EU CLP index EC Num number	ber CAS Number	CLP Note			Factor			value	MC A	Used
6		benzene 601-020-00-8 200-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
+		toluene	11-43-2	+				The same of				
7		601-021-00-3 203-625-9	108-88-3	+	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		ethylbenzene	1.00.00	+								
8		601-023-00-4 202-849-4	100-41-4	1	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
9		xylene 601-022-00-9 202-422-2 [1 203-396-5 [2 203-576-3 [2 215-535-7 [4	106-42-3 [2] 108-38-3 [3]		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	cyanides { ** salts of hydrogen exception of complex cyanides ferricyanides and mercuric oxyo specified elsewhere in this Anno 006-007-00-5	such as ferrocyanides, yanide and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
1	Ī	naphthalene			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-052-00-2 202-049-5	91-20-3	+				TOTAL CALL		May 18 The State of the State o		-
2		acenaphthylene		4	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
3		205-917-1 acenaphthene	208-96-8	+	<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
.3		201-469-6	83-32-9		~0.01	mg/kg		70.01	mg/kg	~0.000001 %	4	LOD
4		fluorene			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		201-695-5	86-73-7		30.01	mgrkg			mgrag	0.0000		
5		phenanthrene			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		201-581-5	85-01-8	1						A STATE OF THE STA		
6		anthracene			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
-	_	204-371-1	120-12-7	+						Carried Carlo	-	
7		fluoranthene	000.44.0	4	0.05	mg/kg		0.05	mg/kg	0.000005 %		
-	_	205-912-4	206-44-0	+							+	
8	۰	pyrene 204-927-3	129-00-0	4	0.078	mg/kg		0.078	mg/kg	0.0000078 %		
		benzo[a]anthracene	125-00-0	+								
9		601-033-00-9 200-280-6	56-55-3	+	<0.01	mg/kg	1 1	<0.01	mg/kg	<0.000001 %	1	<lod< td=""></lod<>
		chrysene	, , , , , , , , , , , , , , , , , , ,	+					Town St.			
0		601-048-00-0 205-923-4	218-01-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	и.	<lod< td=""></lod<>
1		benzo[b]fluoranthene		\top	<0.01	malle		<0.01	malka	<0.000001 %	1	<lod< td=""></lod<>
'		601-034-00-4 205-911-9	205-99-2		~0.01	mg/kg		~0.01	mg/kg	~0.000001 %		LOD
2		benzo[k]fluoranthene		Т	<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
2		601-036-00-5 205-916-6	207-08-9		-0.01	grkg			mgrky	3.00001 70		200
3		benzo[a]pyrene; benzo[def]chry			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-032-00-3 200-028-5	50-32-8	1		39						
4		indeno[123-cd]pyrene	less of a	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
-		205-893-2	193-39-5	+								
5		dibenz[a,h]anthracene 601-041-00-2 200-181-8	53-70-3	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
+	-		p3-70-3	+				SECTION SECTION	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Direction of the last	-	
6		benzo[ghi]perylene 205-883-8	191-24-2	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		phenol	101-24-2	+				THE REAL PROPERTY.	-	No Contractor		
7		604-001-00-2 203-632-7	108-95-2	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
_	0		1.00 30 2	+	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
8		602-039-00-4 215-648-1	1336-36-3	_	0.001	ingring		0.001	IIIgrag	0.000001 /0		

HazWasteOnline™ Report created by Austin Hynes on 17 May 2022

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: WS05[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

LoW Code:

Sample name: WS05[2] Sample Depth: 1.0-2.0 m Chapter:

from contaminated sites) Entry: 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Moisture content: 11%

(no correction)

Hazard properties

None identified

Determinands

Moisture content: 11% No Moisture Correction applied (MC)

#			Determinand		Note	User entere	d data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. No Used
		EU CLP index number	EC Number	CAS Number	CLP			ractor			value	MC/	Osed
1	4	antimony { antimor	ny trioxide }		Г	<2	ma/ka	1.197	<2.394	ma/ka	<0.000239 %		<lod< td=""></lod<>
_	_	051-005-00-X	215-175-0	1309-64-4	1		marka			mgmg			
2	4	arsenic { arsenic tr	rioxide }			38	mg/kg	1.32	50,172	mg/kg	0.00502 %		
-	_	033-003-00-0	215-481-4	1327-53-3	1		mgmg	1.02	00.112	mgmg	0.00002 //		
3	2	boron { diboron tric	oxide }		Г	<0.4	mg/kg	3.22	<1.288	ma/ka	<0.000129 %		<lod< td=""></lod<>
٦		005-008-00-8	215-125-8	1303-86-2	1	-0.4	mg/kg	5.22	1.200	IIIgrag	-0.000 125 %		LOD
4	-8	cadmium { cadmiu	ım oxide }		Т	1.7	ma/ka	1 142	1.942	ma/ka	0.000194 %		
4		048-002-00-0	215-146-2	1306-19-0	1	1.7	mg/kg	1.142	1.942	mg/kg	0.000194 %		
5	4	chromium in chron oxide (worst case)		ds { * chromium(III)		24	mg/kg	1.462	35.077	mg/kg	0.00351 %		
			215-160-9	1308-38-9	1_								
6	4	chromium in chron compounds, with to of compounds spe	he exception of ba	rium chromate and		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
	_	024-017-00-8			1				THE PL				
7	4	copper { dicopper	oxide; copper (I) o	xide }		29	ma/ka	1.126	32,651	mg/kg	0.00327 %		
•		029-002-00-X	215-270-7	1317-39-1	1		mgrkg	1.120	02.001	mgrag	0.00027 70		
8	4	lead { lead chroma	ate }		1	17	mg/kg	1.56	26.517	mg/kg	0.0017 %		
۰		082-004-00-2	231-846-0	7758-97-6	1'	"	mg/kg	1.50	20.517	mg/kg	0.0017 %		
9	4	mercury { mercury	dichloride }		Г	<0.1	malka	1.353	<0.135	malka	<0.0000135 %		<lod< td=""></lod<>
7		080-010-00-X	231-299-8	7487-94-7	1	~0.1	nig/kg	1.555	-0.135	mg/kg	-0.0000135 %		LOD
10	æ	molybdenum { mol	lybdenum(VI) oxid	e }	Т	3	ma/ka	1.5	4.501		0.00045 %		
10	•	042-001-00-9	215-204-7	1313-27-5	1	3	mg/kg	1.5	4.501	mg/kg	0.00045 %		
44	2	nickel { nickel chro	mate }			45		2.076	133.932		0.0134 %		
11	_	028-035-00-7	238-766-5	14721-18-7	1	45	mg/kg	2.976	133.932	mg/kg	0.0134 %		
12	A	selenium { nickel s	elenate }			0.44		2554	1.124		0.000112 %		
12		028-031-00-5	239-125-2	15060-62-5	1	0.44	mg/kg	2.554	1.124	mg/kg	0.000112 %		
	a	zinc { zinc chromat	te }			70		0.774	200.00		0.0000.01		
13		024-007-00-3	236-878-9	13530-65-9	1	75	mg/kg	2.774	208.061	mg/kg	0.0208 %		
		TPH (C6 to C40) p	etroleum group	1									
14		, , , , , , , , , , , , , , , , , , , ,		TPH	1	<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
15		tert-butyl methyl et 2-methoxy-2-methy				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4	1								

HazWasteOnline™ Report created by Austin Hynes on 17 May 2022

#		Determinand	CLP Note	User entered data		conv.	Compound conc.	Classification value	MC Applied	Conc. No
		EU CLP index EC Number CAS Number number	CLP						MC	
6		benzene 601-020-00-8 200-753-7 71-43-2	_	<0.001 mg/	kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
		toluene	+							
7		601-021-00-3 203-625-9 108-88-3	-	<0.001 mg/	kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
		ethylbenzene		-0.004			-0.004	<0.0000001 %		<lod< td=""></lod<>
8		601-023-00-4 202-849-4 100-41-4		<0.001 mg/	kg		<0.001 mg/kg	<0.0000001 %		\LUL
19		xylene 601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001 mg/	kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	*	cyanides (salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex)		<0.5 mg/	kg 1	.884	<0.942 mg/kg	<0.0000942 %		<loe< td=""></loe<>
21		naphthalene	1	<0.01 mg/	ka		<0.01 mg/kg	<0.000001 %		<loe< td=""></loe<>
• •		601-052-00-2 202-049-5 91-20-3		s.s. mg						
22		acenaphthylene 205-917-1 208-96-8		<0.01 mg/	kg		<0.01 mg/kg	<0.000001 %		<loe< td=""></loe<>
23		acenaphthene	+	<0.01 mg/	kg		<0.01 mg/kg	<0.000001 %		<l0[< td=""></l0[<>
	_	201-469-6 83-32-9	+			-				-
24	0	fluorene	\dashv	<0.01 mg	kg		<0.01 mg/kg	<0.000001 %		<loi< td=""></loi<>
25		phenanthrene 201-581-5 85-01-8		<0.01 mg	/kg		<0.01 mg/kg	<0.000001 %		<l00< td=""></l00<>
26		anthracene		<0.01 mg	/kg		<0.01 mg/kg	<0.000001 %		<loi< td=""></loi<>
27		fluoranthene	+	<0.01 mg	/kg		<0.01 mg/kg	<0.000001 %		<loi< td=""></loi<>
28		205-912-4 206-44-0 pyrene	+	<0.01 mg	/kg		<0.01 mg/kg	<0.000001 %		<loi< td=""></loi<>
_		204-927-3 129-00-0 benzo[a]anthracene	+	-0.04			-0.04	-0.000001.0/		-10
29		601-033-00-9 200-280-6 56-55-3	\dashv	<0.01 mg	kg		<0.01 mg/kg	<0.000001 %		<loi< td=""></loi<>
30		chrysene 601-048-00-0 205-923-4 218-01-9		<0.01 mg	/kg		<0.01 mg/kg	<0.000001 %		<loi< td=""></loi<>
31		benzo[b]fluoranthene		<0.01 mg	/kg		<0.01 mg/kg	<0.000001 %		<loi< td=""></loi<>
		601-034-00-4 205-911-9 205-99-2	_				MARINE STATE			-
32		benzo[k]fluoranthene		<0.01 mg	/kg		<0.01 mg/kg	<0.000001 %		<loi< td=""></loi<>
	-	601-036-00-5 205-916-6 207-08-9	+					Windle State of State	0	
33		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5 50-32-8	-	<0.01 mg	/kg		<0.01 mg/kg	<0.000001 %		<lo< td=""></lo<>
34		indeno[123-cd]pyrene		<0.01 mg	/kg		<0.01 mg/kg	<0.000001 %		<lo< td=""></lo<>
	+	205-893-2 193-39-5 dibenz[a,h]anthracene	+				-004	-0.000004.0/		
35		601-041-00-2 200-181-8 53-70-3		<0.01 mg	/kg		<0.01 mg/kg	<0.000001 %		<loi< td=""></loi<>
36		benzo[ghi]perylene		<0.01 mg	/kg		<0.01 mg/kg	<0.000001 %		<lo< td=""></lo<>
_	-	205-883-8 191-24-2	+	7			Property of the Land			
37		phenol 604-001-00-2 203-632-7 108-95-2		<0.1 mg	/kg		<0.1 mg/kg	<0.00001 %		<lo< td=""></lo<>
38	0	polychlorobiphenyls; PCB		<0.001 mg	/kg		<0.001 mg/kg	<0.0000001 %		<l0< td=""></l0<>
		602-039-00-4 215-648-1 1336-36-3					Total	0.0501 %		

	User supplied data
CHEST STATE	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
•	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

www.hazwasteonline.com 39PJ2-6JAD9-NHH05 Page 125 of 131

Classification of sample: WS05[3]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: Ws05[3] Chapter: Sample Depth: 2.0-3.0 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
17.05.04 (Soil and stones other than those mentioned in 17.05.

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Moisture content:

9.4%

(no correction)

Hazard properties

None identified

Determinands

Moisture content: 9.4% No Moisture Correction applied (MC)

#			Determinand		CLP Note	User entered	l data	Conv.	Compound	conc.	Classification	MC Applied	Conc. No
		EU CLP index number	EC Number	CAS Number	CLP			actor			value	MC	
1	ď	antimony { antimo	ny trioxide }		П	<2	mg/kg	1.197	<2.394	ma/ka	<0.000239 %		<lod< td=""></lod<>
'	i	051-005-00-X	215-175-0	1309-64-4	1_	13/11							
2	æ	arsenic { arsenic t	rioxide }			55	mg/kg	1 32	72.618	mg/kg	0.00726 %		
2	i	033-003-00-0	215-481-4	1327-53-3	1		mgmg	1.02	72.0.10				
3	æ	boron { diboron tri	oxide }			<0.4	mg/kg	3.22	<1.288	ma/ka	<0.000129 %		<lod< td=""></lod<>
3		005-008-00-8	215-125-8	1303-86-2	1		mgmg	5.22					
4	H	cadmium { cadmiu	um oxide }		Г	1.9	mg/kg	1 142	2.17	mg/kg	0.000217 %		
4		048-002-00-0	215-146-2	1306-19-0	1	1.5	ilig/kg	1.142	2.17	mgmg	0.000217 7.0		
5	4	chromium in chroi		nds { * chromium(III)		24	mg/kg	1.462	35.077	mg/kg	0.00351 %		
			215-160-9	1308-38-9	1							_	
6	4	compounds, with of compounds spe	the exception of b	nds { chromium (VI) arium chromate and in this Annex }		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
		024-017-00-8			+					The same of			_
7	_	copper { dicopper			1	36	mg/kg	1.126	40.532	mg/kg	0.00405 %		
		029-002-00-X	215-270-7	1317-39-1	+		1					+	_
8		lead { lead chrom			1	29	mg/kg	1.56	45.235	mg/kg	0.0029 %		
		082-004-00-2	231-846-0	7758-97-6	+					APPRICATE OF THE PARTY OF THE P			_
9		mercury { mercur			1	<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<loi< td=""></loi<>
		080-010-00-X	231-299-8	7487-94-7	+					ALC: LANG		-	_
10	4	molybdenum { mo	olybdenum(VI) oxid	de }		2.6	mg/kg	1.5	3.9	mg/kg	0.00039 %		
		042-001-00-9	215-204-7	1313-27-5	╀							+	
11	4	nickel { nickel chr	omate }			51	mg/kg	2.976	151.79	mg/kg	0.0152 %		
		028-035-00-7	238-766-5	14721-18-7	1							+	-
12	4	selenium { nickel	selenate }			0.54	mg/kg	2.554	1.379	mg/kg	0.000138 %		
		028-031-00-5	239-125-2	15060-62-5	1							+	-
12	d	zinc { zinc chroma	ate }			100	ma/ka	2.774	277.415	mg/kg	0.0277 %		
13	Ĭ	024-007-00-3	236-878-9	13530-65-9								-	-
14		TPH (C6 to C40)	petroleum group			<10	mg/kg		<10	mg/kg	<0.001 %		<loi< td=""></loi<>
14				TPH	1		9.118				Up to the second		
15		tert-butyl methyl e 2-methoxy-2-met	and the same of th			<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lo< td=""></lo<>
		603-181-00-X	216-653-1	1634-04-4					CONTRACTOR OF THE PARTY OF THE				

HazWasteOnline™ Report created by Austin Hynes on 17 May 2022

er	IVI	ronmental management for bu	siness	_			_				_	_
#		Determinal		CLP Note	User entered	d data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. No
		EU CLP index EC Number	er CAS Number	CLF							MC	
16		benzene 601-020-00-8 200-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		toluene	71402	+					-			
17		601-021-00-3 203-625-9	108-88-3	+	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %	1	<lod< td=""></lod<>
		ethylbenzene		\top	-0.004				3 10 10			
18		601-023-00-4 202-849-4	100-41-4	+	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		xylene										
19		601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	cyanides { * salts of hydrogen cy exception of complex cyanides su ferricyanides and mercuric oxycys specified elsewhere in this Annex 006-007-00-5	ich as ferrocyanides, anide and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
_	-	naphthalene		+								
21		601-052-00-2 202-049-5	91-20-3	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
22	0	acenaphthylene	208-96-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	_	acenaphthene	200-30-0	+		1000						
23		201-469-6	83-32-9	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		fluorene		1				100000				
24		201-695-5	86-73-7	\dashv	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	1	<lod< td=""></lod<>
25		phenanthrene						100000000000000000000000000000000000000		N. C. C. C. C.		
25		201-581-5	85-01-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	1	<lod< td=""></lod<>
26	0	anthracene			<0.01	malka		<0.01		<0.000001 %		<lod< td=""></lod<>
20		204-371-1	120-12-7		~0.01	mg/kg		-0.01	mg/kg	~0.000001 %		\LOD
27	0	fluoranthene		Т	<0.01	mg/kg		<0.01	malka	<0.000001 %	1	<lod< td=""></lod<>
		205-912-4	206-44-0		-0.01	ilig/kg		-0.01	mg/kg	-0.000001 %		LOD
28		pyrene			<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
	_	204-927-3	129-00-0	1					-			
29		benzo[a]anthracene			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	1	<lod< td=""></lod<>
_		601-033-00-9 200-280-6	56-55-3	+					30.000			
30		chrysene 601-048-00-0 205-923-4	218-01-9	4	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		benzo[b]fluoranthene	k 10-01-9	+				A STATE OF THE PARTY.				-
31		601-034-00-4 205-911-9	205-99-2	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		benzo[k]fluoranthene	200 00 2						and local	THE STREET STREET		
32		601-036-00-5 205-916-6	207-08-9	+	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
33		benzo[a]pyrene; benzo[def]chryse	ene		-0.04							
33		601-032-00-3 200-028-5	50-32-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
34	0	indeno[123-cd]pyrene			<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
		205-893-2	193-39-5		70.01	mg/kg		-0.01	mg/kg	~0.000001 %		LOD
35		dibenz[a,h]anthracene			<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
		601-041-00-2 200-181-8	53-70-3						mgmg			
36		benzo[ghi]perylene			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		205-883-8	191-24-2			,		E Const	3.3	Table 1986		
37		phenol	line as		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		604-001-00-2 203-632-7	108-95-2	+				100000000000000000000000000000000000000				
38	0	polychlorobiphenyls; PCB 602-039-00-4 215-648-1	1336-36-3	_	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		1047-11-2M-101-4 212-048-1	11.3.30303									

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound 4

concentration

<LOD

Below limit of detection

Not detected ND

CLP: Note 1 Only the metal concentration has been used for classification

Appendix A: Classifier defined and non EU CLP determinands

* chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H332 , Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Resp. Sens. 1; H334 , Skin Sens. 1; H317 , Repr. 1B; H360FD , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

* TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2;

H411

ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

EU CLP index number: 601-023-00-4

Description/Comments:

Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

EU CLP index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide

Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s):

14 Dec 2015 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H302, Acute Tox. 1; H330, Acute Tox. 1; H310, Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Aquatic Acute 1; H400, Aquatic Chronic 1; H410, Aquatic Chronic 2;

H411

fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

* phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Carc. 2; H351 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Skin Irrit. 2; H315

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Acute Tox. 4; H302 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

polychlorobiphenyls; PCB (EC Number: 215-648-1, CAS Number: 1336-36-3)

EU CLP index number: 602-039-00-4

Description/Comments: Worst Case: IARC considers PCB Group 1; Carcinogenic to humans; POP specific threshold from ATP1 (Regulation 756/2010/EU) to POPs Regulation (Regulation 850/2004/EC). Where applicable, the calculation method laid down in European standards EN 12766-1 and EN 12766-2 shall be applied.

Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s):

29 Sep 2015 - Carc. 1A; H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

Appendix B: Rationale for selection of metal species

antimony {antimony trioxide}

Worst case CLP species based on hazard statements/molecular weight and low solubility. Industrial sources include: flame retardants in electrical apparatus, textiles and coatings (edit as required)

arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds (edit as required)

boron (diboron trioxide)

Reasonable case CLP species based on hazard statements/ molecular weight, physical form and low solubility. Industrial sources include: fluxing agent for glass/enamels; additive for fibre optics, borosilicate glass (edit as required)

cadmium {cadmium oxide}

Reasonable case CLP species based on hazard statements/molecular weight, very low solubility in water. Industrial sources include: electroplating baths, electrodes for storage batteries, catalysts, ceramic glazes, phosphors, pigments and nematocides. (edit as required) Worst case compounds in CLP: cadmium sulphate, chloride, fluoride & iodide not expected as either very soluble and/or compound's industrial usage not related to site history (edit as required)

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass (edit as required)

chromium in chromium(VI) compounds {chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex}

Worst case species based on hazard statements/molecular weight (edit as required)

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Industrial sources include: oxidised copper metal, brake pads, pigments, antifouling paints, fungicide. (edit as required) Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected. (edit as required)

lead {lead chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

mercury (mercury dichloride)

Worst case CLP species based on hazard statements/molecular weight (edit as required)

molybdenum (molybdenum(VI) oxide)

Worst case CLP species based on hazard statements/molecular weight (edit as required)

nickel {nickel chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

selenium (nickel selenate)

Worst case CLP species based on hazard statements/molecular weight (edit as required)

zinc {zinc chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Harmonised group entry used as most reasonable case as complex cyanides and those specified elsewhere in the annex are not likely to be present in this soil: [Note conversion factor based on a worst case compound: sodium cyanide] (edit as required)

Appendix C: Version

HazWasteOnline Classification Engine: EU WM3 1st Edition v1.1.NI using the EU LoW

HazWasteOnline Classification Engine Version; 2022, 103, 5089, 9622 (13 Apr 2022)

HazWasteOnline Database: 2022.103.5089.9622 (13 Apr 2022)

This classification utilises the following guidance and legislation:

WM3 v1.1.NI - Waste Classification - 1st Edition v1.1.NI - Jan 2021

CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013

6th ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014

Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

10th ATP - Regulation (EU) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

14th ATP - Regulation (EU) 2020/217 of 4 October 2019 15th ATP - Regulation (EU) 2020/1182 of 19 May 2020

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)

Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020

The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:

2020 No. 1540 of 16th December 2020

17th ATP - Regulation (EU) 2021/849 of 11 March 2021

EIA SCREENING REPORT

In respect of

Lands at Dalguise House, Monkstown Road, Monkstown

Prepared by

John Spain Associates

On behalf of

Lulani Dalguise Ltd.

March 2020

39 Fitzwilliam Place, Dublin 2 Telephone: (01) 662 5803 E-mail info@johnspainassociates.com

1.0 INTRODUCTION

- 1.1 On behalf of the applicant, Lulani Dalguise Ltd., 20 Upper Mount Street, Dublin 2, we hereby submit this Environmental Impact Assessment Screening Report to assess the potential impacts on the environment of the proposed SHD residential development and associated creche at Dalguise House, Monkstown Road, Monkstown, County Dublin.
- 1.2 The purpose of this report is to provide An Bord Pleanala with the information required under Schedule 7A of the Planning and Development Regulations 2001, as amended, to enable the Board to determine in light of the criteria set out under Schedule 7 of these regulations whether the proposed development is likely to have significant effects on the environment, the application can be determined without an Environmental Impact Assessment Report (EIAR) having being submitted.
- 1.3 The development will consist of a residential development on the lands at Dalguise House (Protected Structure RPS No. 870). The proposed development will comprise of 300 dwelling units, including the conversion of 'Dalguise House' into two dwellings and a creche, 8 new apartment blocks of 276 units, ranging in height from 5 to 9 storeys and 22 houses, (including the conversion of stable yard and refurbishment of an existing gate lodge), within a site area of circa 3.66 hectares, with a gross floor area of 30,587 sqm. The proposal includes:
 - the demolition of an existing modern dwelling, known as the White Lodge, located on the entrance avenue;
 - the demolition of a modern swimming pool structure adjoining the East wing of Dalguise House and the removal of a non-original, residential garage structure adjoining the walled garden to the South-West of Dalguise House and the removal of a number of structures to the South of the Walled Garden and creation of new openings in the wall;
 - the conversion of Dalguise House to 2 no. houses and a crèche (195sqm) in the basement;
 - the demolition of some structures and conversion of other existing structures within the Stable Yard to the South-West of the site to 1 no. 3-bed house and a garden pavilion;
 - the refurbishment of the existing single storey brick gate lodge for use as a single dwelling; the change of use of the existing two storey gate lodge on Monkstown Road to a Concierge / Site Manager's office:
 - 276 apartments in a mix of 1, 2 and 3-bed units arranged in 8 no. blocks around a series of landscaped communal amenity spaces;
 - Block A will be 7 storeys (6 storeys over podium) and consists of 23 no. 1 bed units and a communal room;
 - Block B will be 8 storeys (7 storeys over podium) and consist of 13 no. 1 bed units,17 no. 2-beds and 2 no. 3 beds;
 - Block C will be 8 storeys (7 storeys over podium) and consist of 13 no. 1 bed units, 17 no. 2-beds and 2 no. 3 beds;

Dalguise House

- Block D will be 7 storeys (6 storeys over podium) and consist of 4 no. 1 bed units, 19 no. 2-beds and 3 no. 3 beds;
- Block E will be 9 storeys (8 storeys over podium) and consist of 11 no. 1 bed units, 19 no. 2-bed units and 2 no. 3-bed units with communal facilities located at podium level including residents' Leisure Suite, Residents Business Centre and Multi-function Room;
- Block F will be 6 storeys and consist of 20 no. 1 beds, 27 no. 2-beds and 4 no. 3 bed units;
- Block G will be 6 storeys and consist of 16 no. 1-bed units, 24 no. 2-bed units and 4 no. 3 bed units;
- Block H will be 5 storeys and consist of 5 no. 1-bed units, 27 no. 2-bed units and 4 no. 3-bed units:
- All apartments will have balconies or terraces, and the balconies or terraces are on all elevations:
- 20 no. terrace/semi-detached houses (3 no. 3-bed houses located to the North- West of the site and 9 no. 3-bed houses and 8 no. 4-bed houses located to the South and South-West of the site);
- the relocation and refurbishment of an existing glasshouse/vinery within the site and the removal of an existing greenhouse off site;
- a total of circa. 314 no. car parking spaces (244 no. car parking spaces located in basement & under croft locations, with 70 no. surface parking spaces) and 14 no. motorcycle spaces;
- a total of circa 654 no. bicycle parking spaces (502 residential spaces and 146 visitors' spaces);
- amendments to car parking arrangements granted under Reg. Ref.: D16A/0724, ABP Ref: 248219;
- associated site works including 2 no. ESB substations, plant areas & communal refuse storage facilities.

Vehicular and pedestrian access and egress is facilitated at two points on the Monkstown Road, through the existing Dalguise entrance and Purbeck Lodge, where a new bridge crossing will be provided over the Stradbrook stream. Future pedestrian accesses are also indicated at boundaries with Arundel, Richmond Park, and the former Cheshire Home site, subject to agreement. The proposed development includes all ancillary site works.

1.4 The subject lands are comprised of the lands of Dalguise House, which is a protected structure (RPS No. 870). The site, extending to circa 3.66 hectares, is accessed from Monkstown Road. A second access is proposed via the internal access road serving the residential development of Purbeck Lodge, which adjoins the site to the north east. The development at Purbeck Lodge (DRLCC Reg. Ref.: D16A/0724) is in the control of the applicant and the access route is included in the proposals as a wayleave. The proposals include a slight reconfiguration of the surface car parking arrangement at Purbeck Lodge to allow access to the subject lands.

- 1.5 From Monkstown Road, the site falls to the Stradbrook Stream which forms the northern edge of the main body of the site and then rises to a high point where Dalguise House is located (circa 12 metre difference). It then falls to the south. The site is surrounded by two storey, residential housing estates.
- 1.6 Purbeck is a recently developed site consisting of Purbeck Lodge and seven other residential units. It is noted that planning permission was granted by An Bord Pleanála on 7th January 2019 under DRLCC Ref: D17A/0590 (ABP Ref: 301203) for a residential development comprising 56 units over 2 no. blocks extending to 4-storeys, at Cheshire Home, Richmond Park, which adjoins the site to the east. There is currently an appeal before An Bord Pleanála ABP 305843-19 on the same site for a proposed four storey development of 72 units. Should this be permitted, the combined number of units would be 372 units plus the existing 8 units at Purbeck.

Dalguise House

2.0 EIA SCREENING METHODOLOGY

Legislation & Guidance

- 2.1 This EIA Screening exercise has been carried out in accordance with the following legislation and guidance documents:
- Planning and Development Act 2000 (as amended);
- European Union (Planning & Development) (Environmental Impact Assessment)
 Regulations 2018;
- Planning and Development Regulations 2001 (as amended);
- Planning and Development (Housing) and Residential Tenancies Act 2016;
- Directive 2011/92/EU as amended by Directive 2014/52/EU;
- Environmental Impact Assessment of Projects Guidance on Screening (EU Commission, 2017)
- Transposition of 2014 EIA Directive (2014/52/EU) in the Land Use Planning and EPA Licensing Systems – Key Issues Consultation Paper (2017:DoHPCLG)
- Guidelines on the information to be contained in Environmental Impact Assessment Reports (draft) (EPA 2017);
- Environmental Impact Assessment Guidelines for Planning Authorities and An Bord Pleanála on carrying out Environmental Impact Assessment (2018; DoECLG);
- Preparation of guidance documents for the implementation of EIA directive (Directive 2011/92/EU as amended by 2014/52/EU) – Annex I to the Final Report (COWI, Milieu; April 2017);
- Guidance for Consent Authorities regarding Sub-threshold Development (2003; DoEHLG).
- 2.2 Using the above documentation it has been possible to carry out a desktop EIAR Screening using the best available guidance while operating within the applicable legislation. It is noted that Directive 2014/52/EU has been transposed into Irish Legislation through the Planning & Development (Amended) Act and Planning and Development Regulations 2001, as amended. The methodology employed in this screening exercise is in accordance with the EIA Guidelines published in August 2018 by the DoHPLG and the contents of Schedule 7 and 7A of the Planning and Development Regulations 2001, as amended.
- 2.3 Mitigation measures for the proposed development during the construction phase are set out in various reports including, the Site Specific Outline Construction Management Plan (CMP), in the Construction and Operational Waste Management Plan by Benchmark, the Ecological Impact Assessment Report by Openfield, the Bat Impact Assessment Report by Wildlife Surveys and Arborist Impact Assessment Report by the Treefile. A list of the main mitigation measures is contained in Appendix 2.
- 2.4 In the event that the screening determination carried out by the Board reaches the conclusion that the proposed development is not likely to have significant effects on the environment, the Board's attention is specifically drawn to the requirement that the Board's screening determination must comply with the requirements of Article 299C(2) of the Planning and Development Regulations, as amended, which provides:
 - "(2) (a) Paragraph (b) applies where the screening determination is that the proposed development would not be likely to have significant effects on the environment and the applicant has provided, under article 299B(1)(c), a

description of the features, if any, of the proposed development and the measures, if any, envisaged to avoid or prevent what might otherwise have been significant adverse effects on the environment of the development.

- (b) The Board shall specify such features, if any, and such measures¹, if any, in the screening determination."
- 2.5 This EIA Screening Statement and the proposed development has been informed by accompanying application documents including the following:
 - Site Specific Outline Construction Management Plan prepared by Benchmark Property;
 - Construction and Operational Waste Management Plan prepared by Benchmark
 - Engineering Services Report & Drawings prepared by Benchmark Property
 - Site Specific Flood Risk Assessment by McCloy Consulting;
 - Property;
 - Site Investigation Report prepared by Benchmark Property:
 - Transport Impact Assessment prepared by TPS Consulting;
 - AA Screening and Ecological Impact Statement by Openfield Ecological Services;
 - Hydrological and Hydrogeological Quantitative Risk Assessment by AWN
 - Bat Impact Assessment by Wildlife Surveys;
 - Arborist Impact Assessment by the Treefile;
 - Landscape Design Rational by Dermot Foley Landscape Architects
 - Visual Impact Assessment, Architectural Impact Assessment and Sunlight and Daylight Analysis by Arc Architectural Consulting Ltd.

EIA Study Team and Guarantee of Competency and Independence

2.6 This Environment Impact Assessment Screening Statement was completed by John Spain Associates (JSA) with the assistance of a project team led by JSA. The project team are:

Topic	Consultancy
Population and Human Health	JSA and others
Biodiversity	Openfield Ecological Services
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Wildlife Surveys
	The Treefile
	Dermot Foley Landscape Architects
Lands and soils	Benchmark Property Services
	Ground Investigations Ireland
Water	Benchmark Property Services
	AWN Consulting
	McCloy Consulting
Air and Climate, Microclimate	Benchmark Property Services
	Arc Architecture Consulting
Landscape	Arc Architecture Consulting
	Dermot Foley Landscape Architects
Material Assets	Benchmark Property Services
	TPS Consulting
	JSA

¹ Commonly referred to as mitigation measures.

Archaeology, Heritage	Architecture	and	Cultural	Archaeology and Built Heritage Arc Architecture Consulting
Vulnerability of	of the Project			McCloy Consulting Benchmark Property Services TPS, Roadplan
Interactions				JSA

- 2.7 This EIAR Screening Statement has been prepared by Mary Mac Mahon, Executive Director with John Spain Associates, and approved by John Spain, Managing Director. Mary Mac Mahon is a qualified town planner since 1992, with qualifications including a Pg. Dip. in EIA/SEA Mgt. (UCD, 201), Postgraduate Diploma in Environmental Engineering (TCD 2013) and Diploma Environmental and Planning Law (LSI 2014). She was previously a board member of An Bord Pleanála. John Spain (BBS, MRUP, MSCS, MRTPI, MIPI) has 30 years' experience of planning and development consultancy in Ireland and the UK.
- 2.8 Both are experienced in the preparation of screening reports and EIARs in the context of large scale SID and SHD projects.

FIA Thresholds

- 2.9 Schedule 5 of the Planning and Development Regulations 2001 (as amended) sets out the thresholds for which if a project exceeds, must be subject to an Environmental Impact Assessment.
- 2.10 Part 2 of Schedule 5 lists the following that may be relevant to the proposal:
 - 10. Infrastructure projects -
 - (b) (i) Construction of more than 500 dwelling units;
 - (iv) Urban development which would involve an area greater than 2 hectares in the case of a business district, 10 hectares in the case of other parts of a built-up area and 20 hectares elsewhere;

(In this paragraph, 'business district' means a district within a city or town in which the predominant land use is retail or commercial use).'

- 15. Any project listed in this Part which does not exceed a quantity, area or other limit specified in this Part in respect of the relevant class of development but which would be likely to have significant effects on the environment, having regard to the criteria set out in Schedule 7.'
- 2.11 The proposal relates to the provision of 300 no. residential units. The proposed development is therefore below the threshold of a mandatory EIAR requirement relative to unit numbers. Taking account of Purbeck (8 no. units) the permitted development east of the site at the former Richmond Cheshire Home site of 56 units, the combined total of 364 units remains well below the 500 unit threshold. If permission is granted for the proposed 72 units at the former Richmond Cheshire Home site, the combined total is 380 residential units instead. Again, this remains well below the 500 unit threshold, which is of particular relevance in the context of cumulative impact.
- 2.12 The application site area is circa 3.72 hectares which is significantly below the threshold for an urban context of 10ha.
- 2.13 The application is accompanied by the series of reports in Paragraph 2.5. These reports consider the perceived environmental impact of the proposed 300 no. unit development.
- 2.14 Section No. 15, above, relates to projects likely to have significant effects on the environment having regard to Schedule 7. The following section and basis of this screening is to screen for the requirement of EIAR on a sub-threshold project as the proposal does not exceed any other threshold in Schedule 5.

Sub Threshold Projects Requiring an Environmental Impact Assessment Report

2.15 An Environmental Impact Assessment Report (EIAR) is required to accompany an application for permission for strategic housing development of a class set out in Schedule 5 of the Planning and Development Regulations 2001 (as amended) which equals or exceeds, as the case may be, a limit, quantity or threshold set for that class of development. As seen above, the relevant thresholds have not been exceeded in the present case.

- 2.16 An EIAR will be required in respect of sub-threshold strategic housing development where the Board considers that the proposed development would be likely to have significant effects on the environment².
- 2.17 Sub-threshold development means 'development of a type set out in Part 2 of Schedule 5 [in the Planning and Development Regulations, 2001 (as amended)] which does not equal or exceed, as the case may be, a quantity, area or other limit specified in that Schedule in respect of the relevant class of development'.
- 2.18 Schedule 7A of the Planning and Development Regulations 2001 (as amended) requires the information to be provided by the applicant or developer for the purposes of screening sub-threshold development for environmental impact assessment, as set out below:
 - A description of the proposed development, including in particular—
 - (a) a description of the physical characteristics of the whole proposed development and, where relevant, of demolition works, and
 - (b) a description of the location of the proposed development, with particular regard to the environmental sensitivity of geographical areas likely to be affected.
 - 2. A description of the aspects of the environment likely to be significantly affected by the proposed development.
 - A description of any likely significant effects, to the extent of the information available on such effects, of the proposed development on the environment resulting from—
 - (a) the expected residues and emissions and the production of waste, where relevant, and
 - (b) the use of natural resources, in particular soil, land, water and biodiversity.
 - 4. The compilation of the information at paragraphs 1 to 3 shall take into account, where relevant, the criteria set out in Schedule 7.
- 2.19 Schedule 7A (4) refers to Schedule 7 which provides a list of criteria for determining whether development listed in part 2 of schedule 5 should be subject to an environmental impact assessment.
- 2.20 The criteria under Schedule 7 is grouped under three broad headings:
 - Characteristics of proposed development;
 - Location of proposed development; and
 - Types and characteristics of potential impacts.
- 2.21 Section 3 below provides the information required by Schedule 7A for the purposes of screening sub-threshold development for environmental impact assessment and takes into account, where relevant, the criteria outlined in Schedule 7.
- 2.22 The information to be provided by the applicant or developer for the purposes of screening sub-threshold development for environmental impact assessment is set out under Schedule 7A of the Planning and Development Regulations 2001, as amended (in particular by the 2018 European Union (Planning and Development) (Environment Impact Assessment) Regulations for present purposes). Paragraph 4 of Schedule 7A

² See S172 (1)(b) of the Planning and Development Act, 2000, as amended.

requires that: `The compilation of the information at paragraphs 1 to 3 shall take into account, where relevant, the criteria set out in Schedule 7.'

3.0 EIA SCREENING STATEMENT

3.1 The following sections provide the information as required by Schedule 7A for the purposed of screening sub-threshold development for environmental impact assessment.

Site Description

- 3.2 The subject site is located in the Monkstown area of south county Dublin and falls within the administrative area of Dun Laoghaire Rathdown County Council. The greenfield site extends to circa 3.72 ha and forms part of the wider curtilage of Dalguise House, a protected structure which is located approximately 80 metres south of the boundary of the subject site. The site is currently accessed via a driveway from an existing point of entry from the R119 Monkstown Road. The site adjoins the new development at Purbeck Lodge on Monkstown Road, which will provide a new road access to the site. Residential development is the predominant land use in the surrounding area.
- 3.3 The site comprises Dalguise House, 2 gate lodges and a dwelling house, walled garden and associated buildings and garden lands, extends to approximately 3.72 hectares and is in the control of the applicant. There is significant tree coverage and the site benefits from visual screening from the surrounding area.
- 3.4 The site is highly accessible (from a public transport perspective) and lies within 400m of Salthill & Monkstown Train Station, 200m from Monkstown village and 1.5km west of Dun Laoghaire town centre. Blackrock is located approximately 1.5km to the west. Bus stops on Monkstown Road are located within 200 metres of the site, served by routes 7, 7a, 7d and 703, providing links to Brides Glen and Loughlinstown Park to the south, as well as Mountjoy Square, and Dublin airport to the north.
- 3.5 The site also benefits from nearby recreational facilities including seafront parks, walkways and cycleways and Seapoint sea bathing facility as well as playing fields at Blackrock RFC to the south west and DLR Leisure Services at Monkstown located approximately 500 metres to the south. The site location is marked in red in Figure 1.

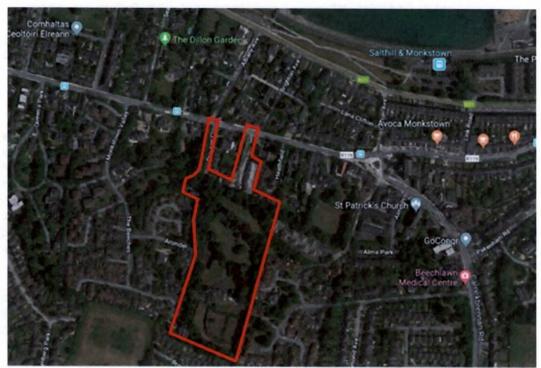


Figure 1: Aerial photograph of application site outlined in red and surrounding area (Google Maps)

Figure 2: Section through site (HR Architect's Design Statement)

3.6 The subject lands are greenfield in nature and currently occupied by woodland tree belts which define the perimeters of the main body of the site. The site branches to the north, incorporating a strip of land within the Purbeck Lodge development (D16A/0724). This has been included for access purposes to link to the R119 Monkstown Road and is included as wayleave within the proposals.

Description of Proposed Development

3.7 The purpose of the description of development provided here is to relate the proposed development to the baseline conditions present on site. The proposed development will comprise of 300 no. residential units and a creche. It includes the demolition of one dwelling and conversion of Dalguise House into two residential units with the creche located in the basement. There will be some demolition, including the swimming pool annex and garage structures (921 tonnes of material in total). A number of small sheds located on the southern side of the walled gardens will also be removed. The gate lodge at the entrance to the site will be converted to a concierge / site manager's office and the structures in the stable yard will be converted to a dwelling. A vinery will be relocated within the walled garden.

- 3.8 In terms of new build, 276 apartments will be provided in 8 blocks, largely concentrated in the northern half of the site, with one block located behind Dalguise House. Twenty dwellings are located on the southern part of the site. Most of these dwellings back onto existing dwellings.
- 3.9 Access to the site will be by two entrances. The existing entrance to Dalguise House will provide for an ingress access only. Egress will be taken through the residential development at Purbeck Lodge. Purbeck Lodge will remain two way but only residents of Blocks A, B and C can use this access for entrance. A one way connection will link to the main Dalguise Avenue. This will enable a point of entry to the site from Monkstown Road to the north, with a bridge proposed across the Stradbrook Stream, which divides the main body of the site from the development at Purbeck Lodge. A minor reconfiguration of the car parking layout at Purbeck Lodge is included within proposals in order to provide access to the site.
- 3.10 The proposed development was heavily influenced by the desire to preserve original site feature and maximise tree retention. The natural topography is used to conceal basement and under-croft car parking while minimising excavation works. The site is divided into three character areas. The first is around the Stradbrook Stream. The second area is to the front of Dalguise House and the third area includes the house and lands to the south.

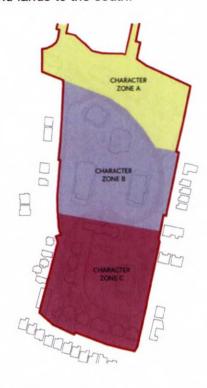


Figure 3: Character Areas Source: HR Architect's Design Statement

3.11 The Stradbrook Stream area (Character Area Zone 1) consists of three blocks of 87 units. Two of the blocks are seven storeys and one is 8 storeys. The height includes podium parking at base. There is visitor parking opposite the blocks and a potential connection to the adjoining site (Cheshire Homes, which has a permission to redevelop the existing nursing home to 56 no. residential units under D17A/0590). A new bridge will traverse the Stradbrook Stream. The access and apartment blocks are outside the flood zone associated with the stream. Block A will provide for social

- housing specifically designed for older people under as required under section 96 of the Planning & Development Act 2000, as amended.
- 3.12 The main body of the site, south of Purbeck Lodge, Character Area Zone B, is currently bounded by a line of trees. It is proposed to retain a significant number of trees within the site, as well as removing a number of trees including a significant number of poor quality trees to facilitate the proposals. The proposed development will incorporate substantial compensatory planting to help consolidate and provide continuity with the existing character of the site, with an overall net gain of trees on site.
- 3.13 The second character area contains Blocks D, E, F and G. Blocks D and E are on podium (7 and 9 storeys, respectively). Blocks F and G, are located closer to Dalguise House and are lower (6 storeys over basement).
- 3.14 The third character area contains Dalguise House and creche, Block H (5 storeys) and the remainder of the housing (Character Zone C).
- 3.15 Public and communal open space will be provided through the scheme. A woodland walk, formal open space and the walled garden will provide for different experiences. Site coverage is 19%, While there will be some tree removal, replacement planting will be provided so the current 364 trees on site will increase to 405 trees.
- 3.16 Connections to the wider area can be made, subject to agreement with adjoining landowners. These are indicated on the Site Plan accompanying this application.
- 3.17 This application is accompanied by detailed drawings and a design statement, prepared by Horan Rainsford Architects, which provides a rationale for the design of the proposed scheme and the dwelling types proposed. The proposed residential apartment units are considered to be of a high quality contemporary design, with an appropriate palette of materials for this location, which will ensure that the scheme makes a positive contribution to the area.
- 3.18 For further detail on the design rationale, please refer to the architectural drawings, design statement and the landscape drawings which accompany this application.

4.0 EIA SCREENING STATEMENT

Introduction

4.1 The following sections provide the information as required by Schedule 7A for the purposes of screening sub-threshold development for environmental impact assessment.

(A) A description of the proposed development, including in particular:

- (a) a description of the physical characteristics of the whole proposed development and, where relevant, of demolition works, and
- (b) a description of the location of the proposed development, with particular regard to the environmental sensitivity of geographical areas likely to be affected.

Physical Characteristics of the Proposed Development

- 4.2 A full description of the proposed development is provided at Paragraph 1.5 above. The proposed development will comprise of 300 no. residential units across 7 apartment blocks and dwelling units, 314 no. car parking spaces, 14 no. Motor bike spaces and 652 no. bicycle parking spaces. The height varies from single storey to 9 storeys. The gross floor area is 30,681 sqm. The site coverage is 19%, plot ratio is 1:0.83 and density is circa 81 units per hectare. This is not a large-scale project or overly dense in an urban context. The proposed development involves the demolition of an existing dwelling, swimming pool annex and garden structures (649 square metres).
- 4.3 The proposed development is compatible with its surrounding land uses and compliant with the site's zoning Objective A within the *Dun Laoghaire Rathdown Development Plan 2016-2022*, which seeks to protect and improve residential amenity.
- 4.4 In zoning the land for residential use under the Dun Laoghaire Rathdown County Development Plan 2016 - 2022, the Planning Authority have assessed the nature of the site to ascertain its capacity to accommodate residential development and merit a zoning as designated. A Strategic Environmental Assessment (SEA) was carried out in relation to the Development Plan. The zoning was unchanged following the SEA review.
- 4.5 Water supply and wastewater will be provided via the public mains network. Water supply will be via a new Irish Watermain 160 dia. MDPE Irish Water pipe in Monkstown Road. This will be connected through an existing 150 dia MDPE in Purbeck Lodge which will be extended through the site. The disposal of foul water from the site is separated from that of surface water and the required connection point has been approved by Irish Water and DLRCC. This comprises connecting to the existing sewer system implemented as part of the Purbeck Lodge development which adjoins the site to the north.

Demolition and Excavation

4.6 There is limited demolition involved (649 square metres). The volume of excavation is of the order of 31,620 cubic metres for the purposes of building a basement. This will give rise to circa 55,661.45 tonnes of waste from the site.

Use of natural resources

- 4.7 A Site Investigation Report has been undertaken by Ground Investigations Ireland. Laboratory Testing has been carried out on samples of the ground/soil on the site and the results have found that the soil material is above the inert limits as outlined within the European Council Directive 1999 131/EC Article 16 Annex II.
- 4.8 An estimation of the soil to be removed from the site has been calculated in the Construction and Operational Waste Management Plan prepared by Benchmark. Some 55,572 tonnes of Stones and Soil will be removed from the site to a licenced disposal site.
- 4.9 The proposed development will require 161,274 litres of drinking water per day. The source of the potable water is Poulaphouca reservoir.

Pollution and Nuisances

- 4.10 The risk of pollution has been considered in Section 4 of the Site Specific Outline Construction Management Plan, the Hydrological and Hydrogeological Quantitative Riak Assessment and the AA Screening Report. The Stradbrook Stream is located to the north of the site and this will be protected during construction, by double silt fences and other measures.
- 4.11 For further detail on the physical characteristics of the proposed development please refer to the architectural drawings, design statement and the landscape drawings which accompany this planning application. Figure 4, below, notes the proposed layout of the scheme. Please see the Proposed Site Layout Plan for details.

Figure 4 – Proposed Site layout plan

Location of Proposed Development

4.12 The site is located in the Monkstown area of south county Dublin and falls within the administrative area of Dun Laoghaire Rathdown County Council. The greenfield site extends to circa 3.72 ha and forms part of the wider curtilage of Dalguise House, a protected structure which is located approximately 80 metres south of the red

EIA Screening Report Dalguise House

boundary of the subject site. The site is currently accessed via a narrow laneway from an existing point of entry from the R119 Monkstown Road. The site is bounded by a series of walls and fences, with a tree line behind the boundary. These trees are of various quality and include Leyland cyprus trees. Residential development is the predominant land use in the surrounding area.

- 4.13 The site is highly accessible (from a public transport perspective) and lies within of 400m of Salthill & Monkstown Train Station, 200m from Monkstown village and 1.5km west of Dun Laoghaire town centre. Blackrock is located approximately 1.5km to the west. Bus stops on Monkstown Road are located within 200 metres of the site, served by routes 7, 7a, 7d and 703, providing links to Brides Glen and Loughlinstown Park to the south, as well as Mountjoy Square, and Dublin airport to the north.
- 4.14 The main body of the site, south of Purbeck Lodge, is currently bounded by a line of trees. The site branches to the north, incorporating a strip of land within the Purbeck Lodge to gain access to the R119 Monkstown Road.
- 4.15 The site falls in elevation moving south from Monkstown Road, with the Stradbrook Stream marking the northern boundary of the main body of the site, south of the Purbeck Lodge development which is close to completion. The elevation of the site then rises from the temporary hollow associated with the body of water, moving south towards Dalguise House.
- 4.16 The proposed development is in a suburban environment on land zoned for residential development. In this regard the proposed residential accommodation use is considered wholly appropriate with adjoining residential land use.
- 4.17 There is an objective on the site to protect trees and woodlands. This objective has been carefully considered during design stage, to minimise impacts on trees and make certain trees a feature on the site. There are 364 no. trees on site at present. Of these, 174 no. trees will be retained and 246 no. new trees will be planted. A significant proportion of trees are 51 no. are Category 'U' trees, suitable for removal. One hundred and thirty-nine trees will be removed for the proposed development.
- 4.18 The site contains a Protected Structure, Dalguise House. The house is situated at the summit of the site. The layout of the proposed development has been designed to ensure that the protected structure is not adversely affected by the proposed development. Part of the access road to the site is located in the Monkstown Architectural Conservation Area. Please see the Architectural Heritage Impact Assessment and Visual Impact Assessment for further details.

Biodiversity

- 4.19 An Ecological Impact Assessment and Bat Impact Assessment Report have been prepared to accompany this application. There are no habitats present on the site that are listed under Annex 1 of the Habitats Directive. However, bats are using the site for foraging and mating purposes. The site was surveyed for winter bird use and none were recorded.
- 4.20 The site is not located within or directly adjacent to any Natura 2000 areas. There are two Natura areas within a 2km radius of the site: the main body of the site is approximately 350m from the boundary of the South Dublin Bay and River Tolka Estuary (site code: 4024) and the South Dublin Bay SAC (site code: 0210). The Poulaphouca Reservoir SPA, from which drinking water supply for this development

- will originate, is also considered to fall within the zone of influence of this project, as drinking water is abstracted from this source.
- 4.21 As noted within the accompanying reports prepared Openfield Ecological Consultants, while the site is within 350m of the SPA/SAC of Dublin Bay and River Tolka Estuary, there is intervening residential development and the DART line. There is a direct pathway from the site by way of the Stradbrook Stream. There are indirect pathways to Natura 2000 sites in the Dublin Bay via foul and surface water sewers.
- 4.22 These potential impacts are addressed further below where reference is also made to the Hydrological and Hydrogeological Quantitative Risk Assessment prepared by AWN and to the AA Screening report prepared by Openfield, both of which reports accompany this application.
- 4.23 The proposed development will utilise two existing road accesses. The original entrance to Dalguise House will become a one way entrance and the access at Purbeck Lodge will operate as the main egress from the site. Purbeck Lodge will remain two way to facilitate access to the existing dwellings and Blocks B and C.
- 4.24 In terms of the 'relative abundance, quality and regenerative capacity of natural resources in the area', the proposed development will not, individually or in combination with other projects, significantly impact on the integrity of the natural resources in the area, having regard to the nature and extent of the proposed development and the character of the receiving environment and the surrounding area. The area in the immediate vicinity of the proposed development has absorption capacity in terms of any environmental effects of the proposed scheme.
- (B) A description of the aspects of the environment likely to be significantly affected by the proposed development.
- 4.25 This section is intended to provide a clear statement on the aspects of the environment that are likely to be affected by the proposed development. The likely significant impacts of the proposed development on the aspects of the environment will be addressed later in this report.

Population & Human Health

- 4.26 European Commission guidance relating to the implementation of the 2014 Directive, in reference to Human Health, states, 'Human health is a very broad factor that would be highly project dependent. The notion of human health should be considered in the context of other factors in Article 3(1) of the EIA Directive and thus environmentally related health issues (such as health effects caused by the release of toxic substances to the environment, health risks arsing from major hazards associated with the project, effects caused by changes in disease vectors caused by the project, changes in living conditions, effects on vulnerable groups, exposure to traffic noise or air pollutants) are obvious aspects to study.³
- 4.27 The Draft EPA Guidelines on the information to be contained in environmental impact assessment reports states that 'in an EIAR, the assessment of impacts on population and human health should refer to the assessments of those factors under which

³ Environmental Impact Assessment of Projects: Guidance on the preparation of the Environmental Impact Assessment Report, European Commission, 2017 http://ec.europa.eu/environment/eia/riasupport.htm

- human health effects might occur, as addressed elsewhere in the EIAR e.g. under the environmental factors of air, water, soil etc4.
- The subject site is located in an area zoned for residential development, proximate to 4.28 high quality public transport services. The subject site is zoned for residential use, as set out in the Dun Laoghaire County Development Plan, 2016-2022.
- In terms of Core Strategy, the site comes within the Major Centre of Dun Laoghaire. 4.29 The plan notes that housing supply has failed to meet targets set in the Regional Planning Guidelines. While a key strand of the overall Settlement Strategy focuses on the continued promotion of sustainable development through positively encouraging infill development thereby maximizing efficiencies from already established physical and social infrastructure, targets are provided for areas outside of Dun Laoghaire Rathdown.
- Section 8.2.12.1 of the plan deals with childcare provision and how applications will 4.30 be assessed. The application will generate a requirement for child care. There is a requirement for 42 no. childcare spaces to be provided within the proposed development.
- There may be possible short-term nuisances to human beings from noise, vibration 4.31 and dust during construction and from construction related traffic. The construction works include ground preparation works, development of site infrastructure, construction of buildings and hardstanding areas and landscaping of the site including open soft landscaped areas. There will be increased traffic arising from the proposed development. This may adversely affect the road network in the area. There may be a risk of traffic accident.
- There will be a short term increase on construction employment during the 4.32 construction period. There will employment associated with the management of the state and in the childcare facility in the long term.

Biodiversity

- The proposed development will involve the felling of the trees on site. The number of 4.33 trees to be felled relating to the proposed development are 139, plus another 51 trees will be removed due to their condition. The Ecological Impact Assessment (ECIA) prepared by Openfield Ecological Consultants finds that the site is generally grasslands with trees and artificial habitats within a built-up area. The tree lines are high value and provide habitat for birds and bats. However overall, the site is of low, local ecological value. Mitigation measures are proposed to deal with habitat loss, disturbance to birds' nests and bats.
- 4.33 The area of woodland along the stream is to be retained although some trees in this area are to be removed due to poor condition. There will be a walkway installed along the Stradbrook Stream. The loss of these habitats is considered to be minor negative.
- A new vehicle crossing will pass over the Stradbrook Stream This will be installed as 4.34 a single span box culvert and will be fully fish passable (although it should be noted that the Stradbrook Stream is not of salmonid quality). There will also be two additional outfalls for the discharge of surface water. The loss of habitat will result in impacts to biodiversity however as so many of the trees are non-native, and the site has been

⁴ Guidelines on the information to be contained in environmental impact assessment reports, EPA, 2017 (draft)

- assessed as of low local ecological value, the effect on flora and fauna will be minor negative.
- 4.35 The direct mortality of species during demolition. This impact is most acute during the bird breeding season which can be assumed to last from March to August inclusive. This may affect a number of locally common countryside birds and trees or buildings being used as bat roosts. At least one tree was confirmed as a roost for Leisler's Bat and this is scheduled for removal.
- 4.36 Pollution of water courses through the ingress of silt, oils and other toxic substances is considered. Run-off during the construction phase may enter the Stradbrook Stream. This could arise from movement of soil during construction as well as the installation of a new vehicle crossing. While this is not a watercourse of fisheries significance, silt fencing, settlement ponds will prevent run-off entering the water course. The storage of hydrocarbons will not be located within 10 metres of the watercourse.
- 4.37 A Bat Impact Assessment Report has been carried out at the subject lands. This report, prepared by Wildlife Surveys, notes that bats are foraging in the site, but activity levels are low. There is a mating roost in close proximity to the entrance to Dalguise House, and there are number of large, mature trees have good potential for bat roosting and feeding and outbuildings.
- 4.38 Separately an AA Screening Report has been prepared, informed by a Hydrological and Hydrogeological Quantitative Risk Assessment. The pathways to Natura 2000 sites from sources on site and the in-combination effects on Ringsend Waste Water Treatment Plant are also considered. The AA Screening Report finds that in the absence of mitigation measures, the possibility of any significant impacts on any European Sites, whether arising from the project itself or in combination with other plans and projects, can be excluded beyond a reasonable scientific doubt on the basis of the best scientific knowledge available.
- 4.39 A specific local objective to protect trees and woodland exists at the site. A tree survey prepared by the Tree File notes the proposed retention of a significant number of trees existing on site at present. There are 364 no. trees on site at present. Of these, 174 no. trees will be retained and 246 no. new trees will be planted. It should be noted that there are 2 no Category A trees on the site. These have been retained and are important features in the landscaping plan. A compensatory planting scheme is proposed within the application site, as noted by the Landscaping Drawings and Report as prepared by Dermot Foley Landscape Architects.

Lands and Soils

- 4.40 The subject lands are generally undeveloped at present. The Stradbrook Stream runs west to east across the northern part of the main body of the site.
- 4.41 A site investigation by Ground Investigations Ireland was undertaken in September 2018. This found that the subsoil is relatively shallow and there are pockets of rock close to the surface.
- 4.42 Bulk excavation of the basement will occur, should planning permission be granted. This will involve the excavation of 31,620 cubic metres. These will give rise to circa 55,661.45 tonnes of waste from the site. Borehole samples have been sent for classification and have been found inert.

Water

- 4.43 The proposed development is not located adjacent to any significant watercourse. The Stradbrook Stream bisects the site on the east-west axis towards its outfall at Dun Laoghaire and into Dublin Bay. There is a risk of pollution to the stream arising from construction works. The increase is flood levels arising from climate change will also be addressed.
- 4.44 The proposed development has been designed in order to comply with the Greater Dublin Drainage Study (GDDS), as well as other relevant guidance. This is detailed further within the accompanying Engineering Services Report prepared by Benchmark Property.
- 4.45 The disposal of foul water from the site is separated from that of surface water and the required connection point has been approved by Irish Water and DLRCC. This comprises a 150mm diameter pipe connecting to the existing sewer system implemented as part of the Purbeck Lodge development which adjoins the site to the north.
- 4.46 During the operational phase there is an indirect pathway from the site to Dublin Bay via the foul sewer and Ringsend Wastewater Treatment Plant.
- 4.47 Part of the site comes within an area that is subject to flooding. Most of the site is located within Flood Zone C, for the purposes of the *Flood Risk Management Guidelines*, 2009. However, part of the site by the Stradbrook Stream is within Zones A and B.

Air & Climate

4.48 The EPA maintain an air quality monitoring station at Glenageary in Dun Laoghaire. The air quality is listed Index 1 – Good. There are no air quality issues on the site at present. The issue of dust arising from construction will be addressed under the next section.

Noise & Vibration

4.49 There may be noise and vibration during the construction phase. Shallow pockets of rock have been found on site. These will generate some noise during rock breaking.

Landscape

- 4.50 The northern part of the site falls within the Coastal Fringe Zone a 500 metre buffer from the coast. Blocks A, B and C would come within this zoning. The *Dun Laoghaire-Rathdown Development Plan 2016-2022* recommends that where buildings would exceed the prevailing height in its immediate surroundings, an urban design statement and impact assessment may be required. This should assess views from the sea. The Monkstown Architectural Conservation Area also affects the entrance roads to the site
- 4.51 An objective to protect trees and woodland exists at Dalguise. The nature of the current tree presence has been detailed within the accompanying Tree Survey Report prepared by the Tree File. A number of trees in poor condition and of lesser biodiversity value are proposed to be removed as part of the development. Some trees are being removed to improve the quality of aspect of surrounding housing, which have been adversely affected by leylandii trees at boundary locations.

Material Assets

- 4.52 The land on which the site is situated is a material asset. It has been zoned for residential development through the appropriate process, and as such, the use of this material asset in a manner compatible with the zoning designation, is entirely appropriate.
- 4.53 The accompanying Transport Impact Assessment (TIA) prepared by TPS Consulting identifies that the Monkstown Road is operating at circa 65% capacity and that there will be sufficient practical reserve capacity at the junctions with Monkstown Road and Purbeck Lodge to accommodate the traffic associated with the 300 no. residential units. The proposed peak levels of departure in the morning are anticipated to be 52 and the peak levels of arrivals will be 46 no. vehicles.

Archaeology, Architecture and Cultural Heritage

- 4.54 Archaeology and Built Heritage have undertaken a desk study and a review the ground investigations report.
- 4.55 The subject site is Dalguise House, a Protected Structure (RPS No. 870). A small portion of the northern part of the subject site, comprising the main entrance and access road within the Purbeck Lodge development falls within the Monkstown Road part of the Monkstown Architectural Conservation Area.
- 4.56 An Architectural Heritage Impact Assessment and a Visual Impact Assessment by ARC Architectural Consulting are included.

Vulnerability of the project to risks of major accidents and/ or disasters

- 4.57 The subject lands are not proximate to any Seveso/COMAH designated sites.
- 4.58 The ECFRAMS and ICPSS indicates that part of the subject site is within Flood Zone A and B. The lands are zoned residential under the 2016 county development plan, following a strategic flood risk assessment. Once this test is passed, the Guidelines refer to the need to focus on siting and design issues that minimise residual risk and do not add to risk elsewhere.
- 4.59 A series of modelling and flood risk scenarios have been carried out in collaboration and consultation with Dun Laoghaire Rathdown County Council and the proposed flood risk strategy has been approved by the local authority. This is assessed in greater detail within the accompanying SSFRA prepared by McCloy Consulting which accompanies this submission.
- 4.60 The SSFRA finds the proposed development is safe from flooding and the measures to make it safe do not add to the flood risk elsewhere.
- 4.61 The site benefits from two accesses, from the original entrance to Dalguise House as well as the new access from Purbeck Lodge. This increases the resilience of the proposed development in any emergency event.
- 4.62 In regard to traffic safety, the site has been subject to a road safety audit, which finds the accesses to the site provide safe access.
- 4.63 The physical characteristics of the site do not require specialist construction methods. The SSOCMP describes standard construction practices.

EIA Screening Report Dalguise House

The inter-relationship between the above factors

4.64 The above demonstrates that the interrelationship between different aspects of the environment have been considered in assessing the proposed development. The relationship between construction, dust, noise, and threat of pollution has been considered in terms of biodiversity and human health. The issue of flooding, climate change and human health has been considered. The interrelationship between architectural heritage, landscape assessment and retention of trees have been assessed. Traffic safety and human health has been considered. No impacts are likely to exacerbate the impacts on the environment from this proposed development.

- (C) A description of any likely significant effects, to the extent of the information available on such effects, of the proposed development on the environment resulting from -
 - (a) the expected residues and emissions and the production of waste, where relevant, and
 - (b) the use of natural resources, in particular soil, land, water and biodiversity.
- Assessment Reports 2017 require that the direct, indirect, cumulative and residual impacts of the proposed development for both the construction and operational stages are described. The identified quality, significance and duration of effects for each aspect are categorised, as set out below. Quality refers to the nature of the impact, significance of effects refers to the degree that these will impact on the site and surrounding area and duration refers to how long the effects are likely to last for. A direct impact is an impact the development will give rise to. An indirect impact is similar to a secondary impact it may result in consequences not in the immediate vicinity of the site. Cumulative impacts are impacts that arise in conjunction with other consented developments. Residual impacts are those which remain after mitigation measures have been applied. Where relevant, impacts arising from the proposed development will assessed on this basis.

Table 1.1 Quality of Potential Effects

Quality of Effects	Definition
Negative	A change which reduces the quality of the environment
Neutral	No effects or effects that are imperceptible, within the normal bounds of variation or within the margin of forecasting error.
Positive	A change that improves the quality of the environment

The significance of an effect on the receiving environment are described as follows:

Table 1.2 Significance of Effects

Significance of Effects on the Receiving Environment	Description of Potential Effects
Imperceptible	An effect capable of measurement but without significant consequences.
Not Significant	An effect which causes noticeable changes in the character of the environment but without significant consequences.
Slight	An effect which causes noticeable changes in the character of the environment without affecting its sensitivities.
Moderate	An effect that alters the character of the environment in a manner that is consistent with existing and emerging baseline trends.
Significant	An effect which, by its character, magnitude, duration or intensity alters a sensitive aspect of the environment.
Very Significant	An effect which, by its character, magnitude, duration or intensity significantly alters a sensitive aspect of the environment.
Profound	An effect which obliterates sensitive characteristics.

The duration of effects as described in the Draft EPA Guidelines are:

Table 1.3 Duration of Effects

Duration of Impact	Definition
Momentary	Effects lasting from seconds to minutes
Brief	Effects lasting less than a day
Temporary	Effects lasting one year or less
Short-term	Effects lasting one to seven years
Medium-term	Effects lasting seven to fifteen years
Long-term	Effects lasting fifteen to sixty years
Permanent	Effects lasting over sixty years
Reversible	Effects that can be undone, for example through remediation or restoration

- 4.66 The proposed development is located in a suburban context, surrounded by other residential uses. The proposed use is therefore consistent and compatible with land in such a location. The works during the construction phase are likely to have a minor impact on the immediate area.
- 4.67 Having regard to the necessity to take into account the criteria under Schedule 7, where relevant for the purposes of compiling the relevant information on the likely effects of the proposed development, reference should be made to "the likely significant effects on the environment of proposed development in relation to criteria set out under paragraphs 1 and 2, with regard to the impact of the project on the factors specified in paragraph (b)(i)(l) to (V) of the definition of 'environmental impact assessment report' in section 171A of the Act, taking into account" and the characteristics of the impacts, which are addressed further below. Under Section 171A of the Planning and Development Act 2000, as amended, the effects of the proposed development on the following factors needs to be evaluated in an "environmental impact assessment":
 - i. "population and human health;
 - ii. biodiversity, with particular attention to species and habitats protected under the Habitats Directive and the Birds Directive;
 - iii. land, soil, water, air and climate:
 - iv. material assets, cultural heritage and the landscape;

- v. the interaction between the factors mentioned in clauses (I) to (IV)"
- 4.68 The above topics are considered below.

Population & Human Health

- 4.69 The proposed development will provide much needed housing. A range of units are proposed from one bed units to three bed apartments and houses. The range of housing provided will help meet different housing demands in the county. The long term impact is considered positive, moderate and long term in duration.
- 4.70 A childcare facility will be provided on site. The facility will cater for up to 52 children, which exceeds the childcare requirements of the site. This will enable the wider community benefit from this facility. The long term impact is considered positive, moderate and long term in duration.
- 4.71 The proposed development provides for an extensive area of open space, woodland walks and play areas. This will encourage active use, with consequential health benefits. The long term impact is considered positive, moderate and long term in duration.
- 4.72 A Traffic Impact Assessment has been carried out by TPS. This found that there is sufficient capacity in the road network to accommodate the increase in traffic arising from the development, as currently Monkstown Road is operating at circa 65% capacity. The proposed peak levels of departure in the morning are anticipated to be 52 and the peak levels of arrivals will be 46 no. vehicles. The impact is estimated to be long term, slight, negative in effect.
- 4.73 Roadplan Consulting carried out a Quality Audit, which includes a walking and road safety audit; access and cycle non-motorised User Audit. This identifies any road safety issues within the site. The scheme has been designed to slow traffic speeds down within the site. The impact is estimated to long term, moderate and positive in effect.
- 4.74 The site is in walking distance of the Dart Station and public transport. This will reduce the reliance on private vehicular use. The long term impact is considered positive, moderate and long term in duration.
- 4.75 There will be short term, slight negative impacts during the construction period arising from noise, vibration dust and construction traffic, but these can be mitigated, as set out in the construction management plan. A site specific construction traffic management plan will be prepared by the contractor and submitted to the planning authority. Appendix 2.

Biodiversity

- 4.75 The impact on Biodiversity has been considered in the Ecological Impact Assessment Report (EcIA). The report states that the site is not part of the Natura 2000 network. It does not contain any Annex 11 habitats. A survey was carried out for invasive plant species and none were found. The application site is grassland with trees and artificial habitats within a built-up area. High value treelines and woodland provide habitat for common breeding birds and foraging areas for bats.
- 4.76 The EcIA notes that a Bat Impact Assessment had been carried out and that while four bat species were found to use the site, (Common Pipistrelle, Soprano Pipistrelle, Leisler's Bat and Brown Long-eared Bat), they were not found in large numbers. One

mating roost was found. In terms of impacts, some loss of feeding will occur for individual bats (possibly no greater than two to three individuals of each species) when the mature vegetation is removed or greatly reduced. This will have a moderate long-term negative effect on individual bats but no measurable impact upon any bat species. Mitigation measures proposed are:

All mature trees shall be checked for bat usage immediately prior to felling.

If bats are found at any stage of the tree felling or building work, work must cease, and the bat specialist assigned to the project and NPWS ranger must be contacted.

The mating perch tree shall be inspected thoroughly by a bat specialist in line with the derogation approved by NPWS

and any resident bats taken into protective care until the tree has been removed. The bat(s) if any are present, will be released once all tree felling has been completed. A minimum of one bat box shall be in place prior to this procedure. All buildings shall be checked for the presence of bats by a bat specialist prior to demolition. Should bats be noted within any building, the building is thus a bat roost and a derogation must be acquired from NPWS.

NPWS shall be notified immediately and no demolition may proceed for such a building until a licence is acquired and a conservation plan is in place to ensure that bats are excluded or removed to safety until the buildings have been removed.

14 bat boxes shall be placed on any remaining trees, mature re-located trees or new buildings to compensate for the loss of a mating perch and any other potential loss of roost. Schwegler type 2FN bat boxes are proposed and these can be purchased from sites such as www.wildcare.co.uk
The bat boxes should be placed at least 3 metres high. The trees chosen should have no underlying branches as bats need to drop to fly out. Where these are unavailable, equivalent bat boxes shall be installed.

Lighting shall be kept from any bat boxes and remaining mature tree canopies to allow bat feeding, commuting and roosting.

4.77 The BIA report states:

"Bat activity did not indicate large numbers of bats and it is probable that individual bats are here for extended periods rather than a large number of bats. One mating roost was found in a tree close to the pedestrian path at the main entrance leading to Dalguise House. A number of mature trees have good potential for roosting bats including the mating perch beech, an oak tree and other beech trees. Large conifers within the site offer good cover but are much less suitable as roosts. The loss of the mating roost is considered a long term, slight negative impact, prior to mitigation. Post mitigation, the impact is considered to be long term, negligible, neutral.

4.78 Some loss of feeding will occur for individual bats including common pipistrelles and Leisler's bats (possibly no greater than two to three individuals of each species) when the mature vegetation is removed or greatly reduced. This will have a moderate longterm negative effect on individual bats following mitigation but no measurable impact upon any bat species.

Dalguise House

- 4.79 One of the buildings showed evidence of bats but are considered to offer the highest potential within this area.
- 4.80 A derogation licence been obtained in relation to the mating roost located in a beech tree. In the event that further roosts are discovered following pre-felling / predemolition examination, a further derogation licence will be obtained".
- 4.81 The EclA states that the proposed development will remove trees on the site. The removal of habitats including buildings, amenity grassland, treelines and individual trees. These are predominantly of negligible or low local value. Following an arboricultural assessment 364 trees and 14 groups or lines of trees were identified. This is made up of 2 category 'A' trees, 149 category 'B' trees, 165 category 'C' trees and 52 category 'U' trees (unsuitable for retention). Following consideration of the condition of the trees and the design implications the following trees are to be removed: 1 of the category 'A' trees (a Dawn Redwood Metasequoia glyptostroboides); 67 category 'B' trees, 70 category 'C' trees and all of the category 'U' trees in addition to sections of treeline.
- 4.82 The area of woodland along the stream is to be retained although some trees in this area are to be removed due to poor condition. There will be a walkway installed along the Stradbrook Stream. The loss of these habitats is considered to be minor negative.
- 4.83 The new vehicle crossing will pass over the Stradbrook Stream will be installed as a single span box culvert and will be fully fish passable (although it should be noted that the Stradbrook Stream is not of salmonid quality). There will also be two additional outfalls for the discharge of surface water. The loss of habitat will result in impacts to biodiversity however as so many of the trees are non-native, and the site has been assessed as of low local ecological value, the effect on flora and fauna will be minor negative.
- 4.84 There will be direct mortality of species during demolition. This impact is most acute during the bird breeding season which can be assumed to last from March to August inclusive. This may affect a number of locally common countryside birds and trees or buildings being used as bat roosts. At least one tree was confirmed as a roost for Leisler's Bat and this is scheduled for removal. Refer to above regarding the mitigation measures.
- 4.85 Mitigation measures are provided. These relate to loss of vegetation (which is predominantly non-native and so providing fewer resources to native biodiversity) will result in some loss of feeding areas for and and/or nesting areas for birds. New planting has been proposed which will reinforce existing treelines and clusters of trees within areas of open space. This will include approximately 230 new trees including stand-alone, parkland style Scots Pine and Beech as well as native and/or pollinator-friendly species including Hawthorn, Strawberry Tree and Hazel. This will be supplemented with stretches of native hedgerow and extensive meadow grassland areas where grass will be cut only once or twice a year. These measures will retain the wildlife character of the site and are predicted to offset any loss of habitat which will occur during the construction phase.
- 4.86 Pollution of water courses through the ingress of silt, oils and other toxic substances. Run-off during the construction phase may enter the Stradbrook Stream. This will arise from movement of soil during construction as well as the installation of a new vehicle crossing. While this is not a water course of fisheries significance, best practice will be followed to ensure that pollution does not occur.

- 4.87 Deliberate disturbance of a bird's nest is prohibited unless under licence from the National Parks and Wildlife Service. If possible, site clearance works should proceed outside the nesting season, i.e. from September to February inclusive. If this is not possible, vegetation must first be inspected by a suitably qualified ecologist. If a nest is encountered then works must stop, until such time as nesting has ceased. Otherwise, a derogation licence must be sought from the NPWS to allow the destruction of the nest.
- 4.77 In relation to Herons to avoid disturbance, the developer has agreed that no site clearance works will commence during the nesting and pre-nesting season. This can normally be presumed to last from March to August but in February birds are choosing and defending nest sites in preparation for egg laying. Works will therefore only commence after nesting has ceased (which normally happens in July but is something which should be confirmed by an ecologist) and no later than January.
- 4.78 An exclusion zone will be established around the trees with robust hoarding. This will ensure that heavy good vehicles do not approach the trees within the site boundary. It will also prevent the use of this area for storage of materials or equipment. These measures are included in the root zone protection plan for trees to be retained as part of the development. These have been incorporated into Benchmark's SSOCMP in Section 4.0 concerning Ecologicial and Environmental considerations.
- 4.79 A suitably qualified ecologist will inspect the site prior to the commencement of works to ensure these mitigation measures are fulfilled. A further inspection will be carried out during the following nesting season to evaluate the use of the trees. The ecologist will liaise with site personnel to address day-to-day issues which may arise and propose further mitigation as required.
- 4.80 Pollution prevention during construction: Construction will follow guidance from Inland Fisheries Ireland (IFI, 2016) for the protection of fish habitat. Surface run off from the site will only be discharged to the Stradbrook Stream via a settlement pond so that only silt-free water will enter the environment. Elsewhere the stream will be protected by a robust silt fence. Again, this has been incorporated into Benchmarls' SSOCMP dealing with works in proximity to the Stradbrook Stream.
- A.81 Dangerous substances, such as oils, fuels etc., will be stored in a bunded zone a minimum of 10 metres from the stream. Emergency contact numbers for the Local Authority Environment Section, Inland Fisheries Ireland, the Environmental Protection Agency and the National Parks and Wildlife Service will be displayed in a prominent position within the site compound. These agencies will be notified immediately in the event of a pollution incident.
- 4.82 The installation of the vehicle crossing of the Stradbrook will be undertaken 'in the dry', i.e. stream water will be pumped around the works area to avoid scouring of loss of excessive sediment.
- 4.83 The installation of surface water headwalls will not be undertaken in wet weather. Concrete will be quick-curing and will be poured behind a temporary bunded areas. Under no circumstances should water contaminated with concrete be allowed to enter the Stradbrook Stream.
- 4.84 Site personnel will be trained in the importance of preventing pollution and the mitigation measures described here to ensure same.

4.85 The site manager will be responsible for the implementation of these measures. They will be inspected on at least a daily basis for the duration of works, and a record of these inspections will be maintained. See section 11 of the SSOCMP by Benchmark Property under separate cover.

Lands and Soils

- 4.86 The proposed development will require the excavation and removal of 55,661.45 tonnes of soil from the site. The impact will be long term, slight and negative. The removal will give rise to noise and dust as part of the construction. These emissions will be controlled to an acceptable level through the construction management plan. The impact will be short term
- 4.87 Some rock breaking will be required. This will be carried out by stone crushers. This will give rise to noise and dust. The impact will be temporary, slight and negative.

Water

- 4.88 The proposed development will be served by potable water from a public water supply. The impact will be long term, moderate and positive.
- 4.89 Foul water from the proposed development will flow to the West Pier treatment plant / pumping station and on the Ringsend Wastewater Treatment Plant. The Ringsend Wastewater Treatment Plant. The AWN report demonstrates that the proposed development will not have a negative impact in the receiving waters in Dublin. The report states:
 - "This WWTP is required to operate under an EPA licence (D0034-01) and to meet environmental legislative requirements. The plant has received planning (2019) and will be upgraded with increased treatment capacity over the next five years. The peak foul discharge calculated for the proposed development is well within the capacity of the WWTP. Even without treatment at the Ringsend WWTP, the peak effluent discharge, calculated for the proposed development, would equate to 0.096% of the licensed discharge (peak hydraulic capacity) at Ringsend WWTP and would not impact on the overall water quality within Dublin Bay and therefore would not have an impact on the current Water Body Status (as defined within the Water Framework Directive). (Note: the average effluent discharge equates to approx. 0.023% of the licensed discharge (peak hydraulic capacity) at Ringsend WWTP). Recent water quality assessment of Dublin Bay also shows that Dublin Bay on the whole, currently has an 'unpolluted' water quality status (EPA, 2019)".(Page 12:2020)
- 4.90 The AA screening report by Openfield notes that there has been no negative impacts on biodiversity arising from exceedances in the Ringsend Wastewater Treatment Plant. The impacts will be long term, slight and neutral.
- 4.91 In terms of surface water, the drainage from the site has been designed to accommodation a 1% AEP /100 year event plus an allowance for climate change. the proposed SUDS method of water disposal at the site will ensure that no negative impacts to surface water leaving the site will arise due to the attenuation measures planned. This is confirmed in the AWN report and Natura Impact Statement prepared by Openfield. The impacts will be long term, slight and positive.

- 4.92 During construction, the risk of pollution to the Stradbrook Stream will be minimised by the use of silt fences to prevent contaminants from entering the stream. A settlement pond will ensure the surface run off during construction will ensure that pollutant will be captured before discharge to the Stradbrook Stream. Mitigation measures are proposed in the site specific construction management plan. AWN note that in the event of any failure, the suspended solids will naturally settle within 0.5 km of the site, which is before the outfall to Dublin Bay. The impact would be negative, imperceptible and brief.
- 4.93 At operation stage, an oil/petrol interceptor within the sealed basement car park will prevent pollution from vehicles in the proposed development. There would no effects.
- 4.94 A Site Specific Flood Risk Assessment prepared by McCloy Consulting accompanies this request, detailing an appropriate strategy for the attenuation and disposal of storm waters in the event of flooding. A Justification Test was undertaken in accordance with the said Guidelines. Furthermore the SUDS strategy employed will attenuate storm flows across the site, thereby reducing flood risk downstream of the site. Swales have been incorporated into the landscape design.
- 4.95 The assessment of flooding has taken climate change into account. The siting of development on the site has taken account of the Stradbrook Stream and greater flows arising from climate change, as can be seen in the Site Specific Flood Risk Assessment by McCloy Consulting. Furthermore, the SUDS strategy employed on site will attenuate rainfall, thus reducing surface water flows across the site during storm events.
- 4.96 Both the proposed drainage and flooding strategies have been discussed with by Dun Laoghaire Rathdown County Council prior to the submission of this request.
- 4.97 Water quality is not likely to be significantly affected by the proposed development.

Air and Climate

- 4.98 During construction the proposed development will give rise to dust. Mitigation measures proposed in the accompanying construction management plan will ensure dust suppression techniques so as to remain within acceptable levels. These include road sweeping, wheels washing and covered vehicles. The impact will be short term, slight and negative.
- 4.99 During operation, the proposed development will not give rise to impacts on air.
- 4.100 The volume of traffic generated by the proposed development during peak hour times is low and unlikely to add to air pollution. The site is proximate to high quality public transport services reduce the need for travel by vehicle.
- 4.101 A Sunlight and Daylight Assessment has been prepared by Arc Architectural Consultants Limited. It finds the proposed development will give rise to imperceptible or moderate impacts on access to sunlight outside the site, save for two dwellings on Heathfield, which are also impacted in terms of daylight (letters of support for the development are provided by the owners of these dwellings, as the removal of the evergreen trees are considered favourably). The open space in the proposed development performs well within the site, giving access to sunlight at different times during the day.

Noise & Vibration

- 4.102 During the construction phase, it is anticipated that there will be a number of HGV's to and from the site. Excavators will be employed to move existing ground and piling rigs will be used for foundation work following which standard construction tools and methods will be employed for general construction and landscaping. All works on site shall comply with the relevant standard which gives detailed guidance on the control of noise and vibration from construction activities.
- 4.103 A vibration monitoring scheme will be deployed for the duration of the works. Baseline levels will be monitored for vibration prior to any works commencing on site and will continue through demolition phase to completion. Vibrations monitors will be continuous throughout the process.
- 4.104 It is considered that there will be no significant noise or vibration effects on the environment during the operational phase and construction phase subject to standard construction mitigation measures. These mitigation measures are set out in the SSOCMP prepared by Benchmark.
- 4.105 Any impacts from noise and vibration will be temporary and slight, subject of implementation of the construction mitigation measures,

Landscape

- 4.106 The landscape has been a formative influence on the design of the proposed development. The Architectural Design Statement prepared by Horan Rainsford Architects provide a rational for the layout of the proposed development, taking into account the protected structure on the site, the need to maintain heritage features, the topography of the site and the preservation of trees.
- 4.107 The loss of tress will be mitigated by replacement and additional planting implemented as part of the development. This tree retention and planting plan is detailed within the Landscaping Design Rationale and Drawings prepared by Dermot Foley Landscape Architects.
- 4.108 Cranes will be visible from the site during construction. This will have a temporary negative impact.
- 4.109 Arc Architectural Consultants Ltd have prepared a visual impact assessment, which also considers the impact on the Monkstown Architectural Conservation Area. It finds that the visual impacts of the scheme is are long term in duration and none to moderate in terms of impact even from the protected view from Dun Laoghaire Pier.

Material Assets

4.110 There will be some waste materials produced in the construction of the proposed scheme which will be disposed of using licensed waste disposal facilities and contractors. The scale of the waste production in conjunction with the use of licensed waste disposal facilities and contractors does not cause concern for likely significant effects on the environment. The accompanying COWMP details the methodologies employed for the control, management, monitoring and disposal of waste from the site. The plan sets out the measures used is to maximise the quantity of waste recycled by providing sufficient waste recycling infrastructure, waste reduction initiatives and waste collection and waste management information to the residents of the development.

- 4.111 There will be no large scale use of natural resources. The main use of natural resources will be land. The subject lands are greenfield lands which are zoned for residential. The proposed development involves a land take of 3.66 hectares.
- 4.112 Other resources used will be construction materials which will be typical raw materials used in construction of residential developments. The scale and quantity of the materials used will not be such that would cause concern in relation to significant effects on the environment.
- 4.113 Operational Waste management at the development is to be carried out in accordance with all relevant statutory requirements, including where applicable, the requirements of DLRCC Waste Bye-Laws, Waste Management Act 1996, as amended, and Regulations made thereunder, Protection of the Environment Act 2003 as amended, Litter Pollution Act 2003, as amended Full details of the proposed waste management strategy are set out in the COWMP and the Life Cycle Report prepared by Benchmark submitted with this application.
- 4.114 The following mitigation measures are proposed:
 - Dedicated communal waste storage areas have been allocated for the residents within the development design.
 - The waste storage area has been/will be appropriately sized to accommodate the estimated waste arisings.
 - Waste will be collected from the designated temporary waste collection areas by permitted waste contractors and removed off-site for re-use, recycling, recovery and/or disposal.
 - A strategy for segregation at source, storage and collection of wastes generated within the development during the operational phase has been prepared.
 - 4.115 Provided the COWMP is implemented and a high rate of reuse, recycling and recovery is achieved, the predicted effect of the operational phase on the environment will be long-term, neutral and imperceptible
 - 4.116 Likely haul routes are identified in the SSOCMP, to be agreed with DLRCC upon a grant of permission. A Traffic Management Plan will be prepared by the contractor, dealing with pinch points on the site. This plan will deal with the private vehicles of site workers, construction vehicles and material delivery vehicles.
 - 4.117 The construction phase of the proposed development will provide for the temporary employment of construction workers which is likely to provide benefits for local businesses providing retail or other services to construction workers and potentially could create some additional employment in the area.
 - 4.118 Upon completion, the operational phase will provide an important material asset for the area in terms of high quality residential units with an element of social housing. It will also provide for a childcare facility, which will benefit the wide community. The long impacts are significant and positive.

Cultural Heritage

4.119 The report prepared by ABH concludes that the risk of encountering archaeological deposits during construction is moderate to low. Test trenching is recommended, should permission for the proposed development be granted.

Dalguise House

4.120 Dalguise House is a Protected Structure (RPS 870). A small portion of the northern part of the subject site, comprising the main entrance and access road within the Purbeck Lodge development falls within the Monkstown Road part of the Monkstown Architectural Conservation Area. Arc Architectural Consulting Ltd note that the architectural features of value on the site are being retained. Views of the site from the Monkstown ACA are generally of limited visibility, oblique and intermittent. Protected structures external to the site will not be adversely affected by the proposed development. While the change to the setting of Dalguise House will be significant, but in line with emerging policy to densify development in the existing built envelope.

4.121 The Architectural Heritage Impact Assessment concludes:

"The loss of any original fabric from the Dalguise House, however small, will be give rise to negative effects of the architectural heritage of the house, but the removal of non-original fabric may give rise to positive effects. The change in the setting of the house will be considerable, giving rise to 'moderate' effects on the architectural heritage of the house, if the subject proposed development is regarded as consistent with emerging local and national policy. The demolition of White Lodge and of a modern swimming pool structure beside Dalguise House will give rise to 'slight' positive effects on Dalguise House and its setting. Works to the gate lodges, the wall of the walled garden, the buildings in the stable yard and the glasshouse / vinery will give rise to 'moderate' positive effects on the architectural heritage of these structures themselves and on the heritage of the Dalguise lands. The providing of long term sustainable use for Dalguise House and the other retained structures will also give rise to 'moderate' positive effects architectural heritage."

Vulnerability of the project to risks of major accidents and/ or disasters

- 4.122 Part of the subject site is located within Flood Zone A/B and the rest is in Flood Zone C. Due to the location of part of the site within the flood zone, flooding is potential risk.
- 4.123 A Site Specific Flood Risk Assessment (FRA) prepared by McCloy Consulting Engineers included with this planning application has concluded that the development meets the requirements of the FRA Guidelines and that the proposed development is appropriate to this flood zoning. The residences have been located in Flood Zone C, so there is not risk to the units. The access roads are in Flood Zone C, save for the bridge and this is above flood levels. Car parking areas are at 16.20 mOD, so no further mitigation measures are proposed. Only open amenity areas and a pedestrian walkway (which is considered water compatible in the OPW Flood Risk Management Guidelines.
- 4.124 Hydraulic modelling was undertaken as part of the FRA to assess the potential impact of the proposed development downstream of the site. The proposal does not have any downstream effect. The proposed development increases flooding upstream of the proposed bridge but this is contained within the site, after accounting for effects of climate change. The 1% AEP plus CC flood level of the bridge is 15.57 mOD and the 0.1% AEP is 15.60 mOD. The soffit of the bridge is 15.88 mOD. The road embankment and retaining wall rises from 16.49 mOD ot 18.19 mOD. In terms of residual risk, as the FFL of the proposed development is greater than climate change and culvert blockages levels, it is resilient to flood risk scenarios.
- 4.125 In this regard it is considered that vulnerability of the proposed development to the risk of major accidents or disasters is considered to be slight.

The interaction between the factors mentioned in clauses (I) to (IV)"

4.126 It is considered that any of the previously identified relatively minor impacts could not in themselves be considered significant nor would they cumulatively result in a likely significant effect on the environment. The inter-relationship between the above factors are summarised in the table below.

Table of Interactions

Interaction	Population &	Human Health	Biodiversity		Land & Soils		Air & Climate		& esioN	Vibration	Water		Archaeology,	& Cultural Hentage	Landscape	and Visual Impact	Material Assets:	Traffic, Waste, & Utilities
	Constructio	Operation	Constructio	Operation	Constructio	Operation	Constructio	Operation	Constructio	Operation	Constructio	Operation	Constructio	Operation	Constructio	Operation	Constructio	Operation
Population & Human Health					1	1	1	1	1	1	1	1			\	1	1	>
Biodiversity					1		1	1	1		1	1						
Land & Soils							1				1						1	
Air & Climate																	1	1
Noise & Vibration																	1	1
Water																		
Archaeology, Architecture & Cultural Heritage																1		
Landscape																		
Material Assets: Traffic, Waste, & Utilities					i													

4.127 In relation to cumulative impact, the proposed development is located in a regeneration area, which contains a number of ongoing construction projects such as those set out below:

- 4.128 The National Planning Framework is the Government's plan to cater for the extra one million people that will be living in Ireland, the additional two thirds of a million people working in Ireland and the half a million extra homes needed in Ireland by 2040.
- 4.129 National investment planning, the sectoral investment and policy frameworks of departments, agencies and the local government process will be guided by these strategic outcomes in relation to the practical implementation of Ireland 2040. The NPF sets out the importance of development within existing urban areas by "making better use of under-utilised land including 'infill' and 'brownfield' and publicly owned sites together with higher housing and job densities, better services by existing facilities and public transport".
- 4.130 Objective 3a of the NPF states that it is a national policy objective to "deliver at least 40% of all new homes nationally within the built up envelope of existing urban settlements". The proposed development is a strategically located underutilised site in the centre of an existing urban settlement adjacent to a quality bus corridor and in close proximity to the M50 and Dublin Airport. The proposed development is therefore compliant with the objective of the NPF.
- 4.131 There will likely be potential for dust and noise produced during the demolition and construction phases. This will be managed by ensuring construction work largely operates within the approved hours of construction.
- 4.132 Mitigation measures set out in the Specific Outline Construction Management Plan, prepared by Benchmark Properties will be implemented, and attached to this report. Implementation of mitigation measures will be monitored.
- 4.133 It is likely that a minor impact from noise and vibration, dust and pollution during the construction phase will occur. Air and Climate are not likely to be significantly affected by the proposed development.
- 4.134 However construction works in an urban environment are entirely normal and working hours will be limited generally to hours set by condition or as otherwise agreed. The frequency of vehicles accessing the site will vary throughout the construction phase.
- 4.135 The construction impacts will not be of such a quantity significance that would warrant the completion of a sub threshold EIAR. Impacts from construction traffic, noise, vibration and dust will be subject to mitigation measures as set out in the Site Specific Outline Construction Management Plan prepared by Benchmark. The impacts are considered to be short term, local and minor.
- 4.136 In terms of public health, it is considered that the construction and operation of the proposed development will not give rise to operational impacts that would be likely to cause significant effects in terms of population and human health
 - Biodiversity, with particular attention to species and habitats protected under the Habitats Directive and the Birds Directive;
- 4.137 The subject site is not located within or directly adjacent to any SAC or SPA. There a direct hydrological pathway and an indirect pathway via the public sewer etc. However no appropriate assessment issues arise due to distance and in the case of the foul discharge, the volume is insignificant.

- 4.138 The Ecological Impact Assessment Statement concludes that after mitigation, no significant residual effects are likely to arise to biodiversity arising from this project.
- 4.139 There will be some waste materials produced in the construction of the proposed scheme which will be disposed of using licensed waste disposal facilities and contractors. The scale of the waste production in conjunction with the use of licensed waste disposal facilities and contractors does not cause concern for likely significant effects on the environment.
- 4.140 The accompanying Construction & Operational Waste Management Plan, prepared by Benchmark Properties, sets out the measures used in the responsible disposal of waste arising from the construction of the development. The majority of waste generated at the construction phase will be excavated material, with surplus construction materials and cuts also anticipated.
- 4.141 Other resources used will be construction materials which will be typical raw materials used in construction of residential developments. The scale and quantity of the materials used will not be such that would cause concern in relation to significant effects on the environment.
- 4.142 The Waste Management Plan also includes a strategy for the disposal of waste within the operational phase of the development. This is to maximise the quantity of waste recycled by providing sufficient waste recycling infrastructure, waste reduction initiatives and waste collection and waste management information to the residents of the development.
- 4.143 All works carried out will be done so in accordance with the Site Specific Outline Construction Management Plan and Construction Waste Management Plan, prepared by Benchmark Properties, submitted alongside this request for pre-application consultation.
- 4.144 The works during construction or the operational phase are not of such a scale or extent that would be considered to be likely to cause significant effects on the environment in the geographic area or on any considerable quantum of the population in the vicinity.
- (D) The compilation of the information at paragraphs 1 to 3 shall take into account, where relevant, the criteria set out in Schedule 7.
- 4.145 Schedule 7 of the regulations details the criteria for determining whether development listed in part 2 of Schedule 5 should be subject to an environmental impact assessment. The criteria under Schedule 7 is grouped under three broad headings as discussed below.

1. Characteristics of the Proposed Development

The characteristics of proposed development, in particular –	Response
(a) the size and design of the whole of the proposed	The proposed development consists of 300 no. residential units on a site area of 3.66 hectares. The gross floor area is 30,681 sqm.
development	The 5 to 9 storey apartment blocks provide an appropriate and compatible form of development within an urban area on lands close to high quality public transport which are currently zoned for residential purposes.
	The scale and height of the development is designed to make optimum use of the site's topography and size in order to mitigate visual impacts upon the surrounding area.
	The development is considered to be of appropriate density, having regard to the protected structure and existing trees on site. In doing so, the proposal will contribute to achieving compact growth in appropriate urban locations which are accessible to public transport.
	The proposal is considered to be compatible with its immediate adjoining land uses, which are predominantly residential. The suitability of the site for residential development is established by its land use zoning for residential and district centre uses.
	In zoning the land for these uses, the Planning Authority will have thoroughly assessed the nature of the site in order to ascertain its capacity to accommodate such development. The size and design of the proposed development is not likely to cause significant effects on the environment, with comprehensive landscaping and tree planting on site to ensure biodiversity is preserved and enhanced as far as possible.
	The development plan was subject to Strategic Environmental Assessment, which found that all the recommendations of the SEA and AA assessment have been integrated into the plan.
(b) cumulation with other existing development and/or development the subject of a consent for proposed development for the purposes of section 172(1A) (b) of the Act and/or development the subject of any development consent for the purposes of the Environmental Impact Assessment Directive by or under any other enactment	The subject site is greenfield in nature, currently zoned for residential development. A review of the planning history and adjoining planning permissions reveal a number of other residential land uses: at Purbeck Lodge comprising 7 no. residential units (DLRCC Ref: D16A/0724) adjoining the site to the north, and Cheshire Home (DLRCC Ref: D17A/0590, ABP Ref: 301203), comprising 56 no. residential apartment units across 4 no. blocks to the east.
(c) the nature of any associated demolition works	The demolition works are very limited and the buildings being demolished are domestic in scale. Mitigation measures proposed in the SSOCMP address both dust and noise.

(d) the use of natural resources in particular, land, soil, water and biodiversity	There will be no significant use of natural resources. The main use of natural resources will be land. The subject lands are greenfield lands which are zoned for residential use. The proposed development site extends to approximately 3.66 hectares, with the main source of waste anticipated to arise from excavation of the site.
	Some 31,620 cubic metres of soil will be removed from site. Other resource used will be construction materials which will be typical raw materials used in construction of residential developments. The scale and quantity of the materials used will not be such that would cause concern in relation to significant effects on the environment.
	The construction or operation of the scheme would not use such a quantity of water to cause concern in relation to significant effects on the environment.
	Any loss of habitat resulting from the removal of trees will be replaced planting within the associated landscaping scheme, with bat habitats maintained throug the implementation of bat roosting boxes throughout the site.
	The use of natural resources in relation to the proposed development is not likel to cause significant effects on the environment.
(e) the production of waste	There will be waste materials produced in the construction of the propose scheme. Waste will be disposed of in a responsible manner using license waste disposal facilities and contractors. The scale of the waste production is conjunction with the use of licensed waste disposal facilities and contractor does not cause concern for likely significant effects on the environment.
	The accompanying Site Specific Outline Construction and Operational Wast Management Plan prepared by Benchmark Property details the methodologie employed for the control, management, monitoring and disposal of waste from the site.
	This Plan also sets out the measures used during the operational phase of the development to maximise the quantity of waste recycled, by providing sufficient waste recycling infrastructure, waste reduction initiatives and waste collection and waste management information to the residents of the development.
	Having regard to the mitigation measures proposed, the production of waste w be limited in the proposed development.
(f) pollution and nuisances	There will likely be potential for dust and noise and vibration produced during the demolition and construction phases. This will be managed by ensuring construction work largely operates within the approved hours of construction.
	Standard dust and noise prevention mitigation measures as described in the Site Specific Outline Construction Management Plan prepared by Benchma Property will be employed and monitored. As such, pollution and nuisances a not considered likely to have the potential to cause significant effects on the environment. All works on the site will be completed in accordance with the content of the Site Specific Outline Construction Management Plan prepared to Benchmark Property.
	Specific mitigation measures have been put in place to minimise risk to the Stradbrook Stream.

(g) the risk of major accidents and/or disasters which are relevant to the project concerned, including those caused by climate change, in accordance with scientific knowledge Standard construction practices will be employed throughout the construction phase. There are no technologies or substances to be used in the development which may cause concern for having likely significant effects on the environment. The subject lands are not proximate to any Seveso/COMAH designated sites.

The ECFRAMS and ICPSS indicates that the subject site is within Flood Zone A and is therefore 'Highly Vulnerable' to flood risk. A comprehensive Site Specific Flood Risk Assessment has been carried out by Benchmark Property, including a Justification Test. This testing and modelling has been carried out in collaboration with DLRCC and approved by the local authority prior to the submission of this request.

The potential impact of climate change has been allowed for in the design of the surface water drainage network and storage system, with an allowance for a 10% increase in rainfall intensities, as recommended by the GDSDS (Greater Dublin Strategic Drainage Study). All drainage infrastructure will be included within the red line boundary of the site and in accordance with the provision of SUDS.

(h) the risk to human health (for example due to water contamination or air pollution). There is no impact on air pollution expected from the development outside of the potential dust impact during construction, and therefore the risk to human health is considered negligible in this regard.

In terms of potential water contamination, interceptors will prevent pollutants or sediments from discharging into water courses.

Standard mitigation measures will be employed in relation to all potential risks to human health arising during the construction phase as set out in the Site Specific Outline Construction Management Plan prepared by Benchmark Property.

Wastewater will be connected to the existing foul sewer to the north of the site and therefore water contamination leading to a risk to human health will not occur.

2. Location of Proposed Development

The environmental sensitivity of geographical areas likely to be affected by proposed development, with particular regard to:	Response
(a) the existing and approved land use;	The existing use on the site is greenfield lands included in the curtilage of Dalguise House. The proposed use as a residential development is compatible with the land use zoning of the subject lands.
(b) the relative abundance, availability, quality and regenerative capacity of natural resources (including soil, land, water and biodiversity) in the area and its underground.	As stated in the Ecological Impact Assessment, the lands are generally low ecological value, save for the tree line. The perimeter tree line is generally being retained and augmented, adding the ecological value of the site. The AA Screening Report finds thatcan be concluded that the possibility of any significant impacts on any European Sites, whether arising from the project itself or in combination with other plans and projects, can be excluded beyond a reasonable scientific doubt on the basis of the best scientific knowledge available.
	There will be no significant likely effects on the environment in relation to natural resources in the area. This has been addressed further above. The main use of natural resources will be land. The land is zoned for residential and the proposal is considered to be an efficient use of this greenfield land resource in an established residential area. The scale of natural resources used both in construction and operation is not such that it is likely to cause concern in terms of significant likely effects on the environment. Mitigation measures relative to woodland and bat habitats will be implemented in accordance with the accompanying Tree Survey
	Report, Landscaping Report & Drawings, and Bat Impact Assessment Report submitted alongside this request. There will be no significant loss of soil, land, water or biodiversity.
(c) the absorption capacity of the natural environment, paying particular attention to the following areas:	
(i) Wetlands, riparian areas and river mouths;	Part of the proposed development lies within a riparian strip. The proposed development involves some works to ensure that the flood storage capacity of the site is retained while the residential development is confined to Flood Zone C.
(ii) Coastal Zones and the marine environment;	The northern portion of the site of the proposed development is within 500 metres of the coast, within the Coastal Fringe Buffer in the Dun Laoghaire Rathdown Development Plan 2016-2022. However, the impact of the proposed development is visual in nature and considered none to moderate.
	The site is not located within or directly adjacent to any SACs and SPAs.

		There is a direct hydrological connection to the coast. However the HHQRA and AA Screening find that without mitigation measures, the possibility of any significant impacts on any European Sites, whether arising from the project itself or in combination with other plans and projects, can be excluded beyond a reasonable scientific doubt on the basis of the best scientific knowledge available.
(iii)	Mountain and forest areas;	The proposed development is not within or directly connected to any mountain or forest areas. There is no known pathway between the site and mountain or forest areas.
(iv)	Nature reserves and parks;	The proposed development is not within or directly connected to any nature reserves or parks. There is no known pathway between the site and nature reserves or parks.
(v)	Areas classified or protected under legislation, including Natura 2000 areas designated pursuant to the Habitats Directive and the Birds Directive;	The proposed development is not located within or directly adjacent to any SAC or SPA. However, as there are pathways to these sites, an AA Screening Report have been prepared. The AA Screening Report finds thatcan be concluded that the possibility of any significant impacts on any European Sites, whether arising from the project itself or in combination with other plans and projects, can be excluded beyond a reasonable scientific doubt on the basis of the best scientific knowledge available.
(vi)	Areas in which there has already been a failure to meet the environmental quality standards laid down in legislation of the European Union and relevant to the project, or in which it is considered that there is such a failure;	The site is not known to be located within or connected to such an area.
(vii)	Densely populated areas; and	The proposed development is located on zoned lands within an existing built up area, with a primary established residential land use. The proposed land use is compatible with the zoning objectives and existing development and uses in the vicinity. The absorption capacity is not considered to be significantly affected.
(viii)	Landscapes and sites of historical, cultural or archaeological significance.	The subject lands are part of Dalguise House, a Protected Structure (RPS No. 870). A small portion of the northern part of the subject site, comprising the access roads, falls within the Monkstown Road part of the Monkstown Architectural Conservation Area. Reports have been prepared in regard to the archaeological potential of the site. An Architectural Heritage Impact Assessment and Visual Impact
	clusion	Assessment has also been prepared with accompanying Photomontages. These demonstrate that the site can accommodate the proposed development without significant adverse effects. It is considered that the natural and built environment in this area has the

3. Type and Characteristics of Potential Impacts

The likely significant effects on the environment of proposed development in relation to criteria set out under paragraphs 1 and 2, with regard to the impact of the project on the factors specified in paragraph (b)(i)(l) to (V) of the definition of 'environmental impact assessment report' in section 171A of the Act, taking into account—	Response
(a) the magnitude and spatial extent of the impact (for example geographical area and size of the population likely to be affected);	The site size is c 3.66ha. The site is located on a greenfield site in a suburban location with an established residential land use. The works during the construction phase may have a minor impact on the immediate area, however, works will be carried out in accordance with the Outline Construction Management Plan to ensure impacts are minimised.
	The works during construction or the operational phase are not of such a scale or extent that would be considered to be likely to cause significant effects on the relevant aspects of environment (specified in paragraph (b)(i)(I) to (V) of the definition of 'environmental impact assessment report' in section 171A of the Act) with particular reference to the impacts on human health and the population in the vicinity.
(b) the nature of the impact;	The construction impacts have potential to cause nuisance associated with noise, dust and traffic. The Site Specific Outline Construction Management Plan will put in place measures to avoid, reduce or mitigate impacts. With mitigation measures in place any impacts are likely to be short term, minor and local. The operational phase will result in the development of permanent residential accommodation, compatible with the established predominant land use in the area. The proposed development will give rise to a small increase in traffic during operational phase. This will be a minor adverse, local, long term impact.
(c) the transboundary nature of the impact;	There are no construction phase or operational phase transboundary impacts. Any minor impacts will be contained in the immediate vicinity of the site. The subject lands are not located on any geographical or other boundary of relevance to assessment of likely significant effects on the relevant aspects of the environment.
(d) the intensity and complexity of the impact;	The intensity and complexity of the construction phase is in keeping with modern construction projects. Following mitigation, it is likely that the impacts of the construction phase will be minor. The operational phase of the development is moderate in scale and no significant negative impacts are likely.
(e) the probability of the impact;	It is likely that minor impact will arise from noise and during the construction phase will occur. However, construction activity in an urban environment is entirely normal and working hours will be limited generally to hours set by condition or as otherwise agreed. All works carried out will be done so in accordance with approved management plans.

	In summary, some level of construction impacts on the relevant aspects of the environment is highly probable, but these will be mitigated by the implemented Outline Construction Management Plan.
(f) the expected onset, duration, frequency and reversibility of the impact;	The construction impacts will commence within approximately 6 months of planning approval; they will be short-medium term, over a period of c. 2 years and restricted by planning conditions in terms of the hours of operation.
	The frequency of the minor impacts will vary throughout the construction phase; however, the impact is considered to be short term, local and minor.
	No permanent negative impacts on the relevant aspects of the environment are anticipated as a result of the construction phase of the project. No significant negative impacts are likely.
	The development will be occupied all year round and impacts will be irreversible.
(g) the cumulation of the impact with the impact of other existing and/or approved projects;	Planning permission has been granted on lands to the east at Cheshire Home (DLRCC Ref: D17A/0590; ABP Ref: 301203), comprising 56 no. residential units. This could increase to 72 units if another permission is granted.
	The subject site is zoned land designated for residential use and is surrounded by zoned lands. The development of lands in the area is to be expected, in the context of the Development Plan.
	It is considered that cumulative impacts with other existing and/or approved projects are not likely to cause significant effects on the on the relevant aspects of the environment.
(h) the possibility of effectively reducing the impact.	Appropriate mitigation measures will be undertaken in order to reduce likely significant effects on the environment arising from the proposed development.
	Any mitigation measures to manage noise, dust and/or pollution during the construction phase will be implemented in accordance with the site specific construction management plan submitted with the application.

Dalguise House

5.0 SUMMARY & CONCLUSIONS

- 5.1 This Environmental Impact Assessment Screening Report has been prepared to accompany the Strategic Housing Development Pre-Application Consultation Request to An Bord Pleanála for the development of 300 no. unit residential development and creche on the lands of Dalguise House, Monkstown Road, Monkstown, County Dublin, a protected structure.
- 5.2 The purpose of this report is to provide to An Bórd Pleanála with the information required under Schedule 7A of the Planning and Development Regulations 2001, as amended, to enable The Board to determine in light of the criteria set out under Schedule 7 of those regulations whether the proposed development is likely to have significant effects on the environment. If it determines that the proposed development is not likely to have significant effects on the environment, the application can be determined without an Environmental Impact Assessment Report (EIAR) having been submitted.
- 5.3 The report has assessed the potential impact of the proposed development on the environment in response to Section 6 of the pre-application consultation application form. The proposed development is substantially below the thresholds of a mandatory EIAR. The screening exercise has been completed in this report and the methodology used has been informed by the available guidance, legislation and directives.
- 5.4 It is considered that a sub threshold EIAR is not required for the proposed residential development for the following reasons (in summary) set out in this screening exercise:
 - The proposal falls significantly below the thresholds of Schedule 5 of the Planning and Development Regulations 2001 (as amended);
 - The site makes optimum use of a suburban greenfield land resource in close proximity to existing residential development and utilises existing servicing provision.
 - The Ecological Impact Assessment and AA screening outlines that adverse
 effects on the integrity of the Natura 2000 network from the proposed
 development, whether considered on its own or in combination with other plans
 or projects, can be excluded following implementation of the mitigation
 measures to be applied.
 - The development will be connected to public services such as water, foul and storm sewers.
 - The proposed drainage and flood risk strategy will contribute to improved retention of surface water on site.
 - The level of demolition involved will not create any significant impacts on the
 environment. A Appropriate Assessment has been undertaken which confirms
 that the likelihood or risk of significant effects to the Natura 2000 network, either
 alone or in combination with other plans or projects, can be excluded.
 - Standard construction practices as described in the Site Specific Outline Construction Management Plan prepared by Benchmark Property can be employed to mitigate any risk of adverse impacts during the construction phase arising from noise, dust or pollution.

- No identified impact in this screening exercise, cumulatively or individually is considered to likely cause significant effects on the environment.
- In the event that the screening determination carried out by the Board reaches the conclusion that the proposed development is not likely to have significant effects on the environment, the Board's attention is specifically drawn to the requirement that the Board's screening determination must comply with the requirements of Article 299C(2) of the Planning and Development Regulations, as amended, which provides:
 - "(2) (a) Paragraph (b) applies where the screening determination is that the proposed development would not be likely to have significant effects on the environment and the applicant has provided, under article 299B(1)(c), a description of the features, if any, of the proposed development and the measures, if any, envisaged to avoid or prevent what might otherwise have been significant adverse effects on the environment of the development.
 - (b) The Board shall specify such features, if any, and such measures⁵, if any, in the screening determination."
- 5.6 In conclusion, it is considered that the proposed development will not have any significant impacts on the environment. Main recommended mitigation measures are set out at in Appendix 2 of this report and will be employed throughout the construction and operational phase of the development with the result that the proposed development will not create any significant impacts on the quality of the surrounding environmentt.

⁵ Commonly referred to as mitigation measures.

Appendix 1

Location of Designated Environmental Sites within 15km Radius of Subject Site (red circle) and the Ringsend Waste Water Treatment Plant (green circle) – Source: Openfield Ecological Services

Appendix 2: Main Mitigation Measures

These can be found in the Site Specific Outline Construction Management Plan, which is bound separately to this report.

HYDROLOGICAL &
HYDROGEOLOGICAL
QUALITATIVE RISK
ASSESSMENT
for
PROPOSED RESIDENTIAL
DEVELOPMENT SITE
at
DALGUISE HOUSE

Technical Report Prepared For

John Spain Associates

Technical Report Prepared By

Jessie Loft
BSc MSc
And
Teri Hayes Director
BSc MSc PGeo

Our Reference

TH/20/11452

Date of Issue

19th March 2020

The Tecpro Building, Clonshaugh Business & Technology Park, Dublin 17, Ireland.

T: + 353 1 847 4220 F: + 353 1 847 4257 E: info@awnconsulting.com W: www.awnconsulting.com

Cork Office
Unit 5, ATS Building,
Carrigaline Industrial Estate,
Carrigaline, Co. Cork.
T: +353 21 438 7400
F: +353 21 483 4606

AWN Consulting Limited Registered in Ireland No. 319812 Directors: F Callaghan, C Dilworth, T Donnelly, T Hayes, D Kelly, E Porter

Document History

Document Reference		Original Issue Date				
TH/20/11452	477	19th March 2020				
Revision Level	Revision Date	Description	Sections Affected			

Record of Approval

Details	Written by	Approved by
Signature	Jesse Jost	Len Hayer
Name	Jessie Loft, Teri Hayes	Teri Hayes
Title	Environmental Consultant	Director
Date	19th March 2020	19th March 2020

TABLE C	F CON	NTENTS	Page				
1.0	INTRODUCTION						
	1.1	Site Location & Hydrological Setting	4				
	1.2	Objective of Report	5				
	1.3	Description of Drainage	5				
2.0	ASSESSMENT OF BASELINE WATER QUALITY, RIVER FLOW AND WATER BODY STATUS						
	2.1	Hydrological Catchment Description	7				
	2.2	Aquifer Description & Superficial Deposits	8				
3.0	CONCEPTUAL SITE MODEL						
	3.1	Assessment of Plausible Sources	9				
	3.2	Assessment of Pathways	11				
	3.3	Assessment of Receptors	11				
	3.4	Assessment of Source Pathway Receptor Linkages	11				
4.0	CON	CLUSIONS	14				
5.0	REF	ERENCES	15				
Tables							
	Table	e 3.1 - Pollutant Linkage Assessment (without mitigation)	14				
Figures							
	Figui	re 1.1 – Site Location in relation to regional drainage	4				
	Figui	re 2.1 – Aquifer Vulnerability	9				

1.0 INTRODUCTION

1.1 Site Location & Hydrological Setting

The proposed development comprises a residential development on lands at Dalguise House (Protected Structure RPS No. 870). The proposed development will comprise 300 dwelling units, including the conversion of 'Dalguise House' into two dwellings and a creche, 8 new apartment blocks of 276 units, ranging in height from 5 to 9 storeys and 22 houses, (including the converted stable yard and refurbishment of an existing gate lodge), the site will also have a basement carpark. The proposed development will include demolition of an existing modern dwelling (known as White Lodge) and a modern swimming pool. It will also involve the removal of a garage and a group of sheds.

The proposed development site is located 11km South East of Dublin City Centre and approx. 2 km from Dun Laoghaire (refer site location in Figure 1.1 below). The site is 3.66 Ha and is currently a combination of built surfaces and open ground and the lands surrounding the site consist of urban development. The topography range of approx. +4 mOD (north) to +2 mOD (south).

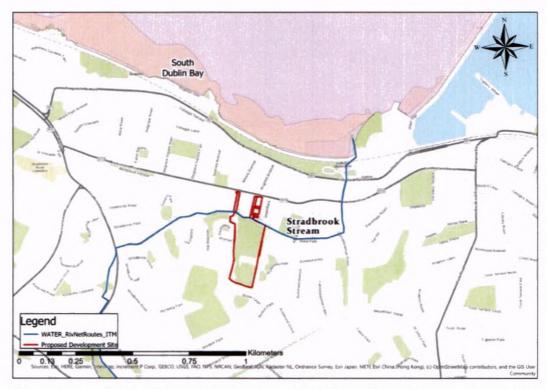


Figure 1.1 Site Location in relation to regional drainage (hydrological setting) and Natura 2000 sites. Note the Stradbrook river shown in blue is partially culverted.

The EPA (2019) on-line database indicates one watercourse, the Stradbrook stream within the general area of the subject site, as shown in Figure 1.1 above, and discussed further in Section 1.3 below. Dublin Bay is located 350 m north of the development. The Stradbrook Stream flows along the northern site boundary and is

partially culverted along its route, it has a confluence with the Mikie Brien stream in Monkstown prior to reaching its outfall at Dun Laoghaire (located east of the proposed development). On site it is characterised by artificial embankments along its length.

1.2 Objective of Report

The scope of this desk top review is to confirm any hydrological pathway to a Natura 2000 sites and determine the risks to water quality based on the construction and operation of the proposed development.

In particular, this review considers the possible impact of construction run-off and domestic sewage from the proposed development on water quality and overall water body status within Dublin Bay habitats SAC/ SPA/ pNHA which is located to the north east of the proposed development (see Figure 1.1). The assessment relies on information regarding construction and design provided by Benchmark Property Consultancy Limited (February 2020) (Project Reference No: PAC/SHD/268/19).

This report is prepared by Jessie Loft (BSc and MSc) and Teri Hayes (BSc MSc PGeol EurGeol). Teri is a hydrogeologist with over 25 years of experience in water resource management and impact assessment. She has a Masters in Hydrogeology and is a former President of the Irish Group of the Association of Hydrogeologists (IAH) and has provided advisory services on water related environmental and planning issues to both public and private sector bodies. She is qualified as a competent person as recognised by the EPA in relation to contaminated land assessment (IGI Register of competent persons www.igi.ie). Her specialist area of expertise is water resource management eco-hydrogeology, hydrological assessment and environmental impact assessment.

1.3 Description of Drainage

Current Drainage

Currently, roof runoff on site is combined with foul discharges and discharges to an existing site septic tank and in to the existing 450 diameter combined main sewer from Monkstown Valley which runs along the existing site entrance roadway onto Albany Avenue. There is no attenuation of rainwater run-off and this drains to the Stradbrook Stream or percolates to ground. The Stradbrook Stream (EPA code: IE_EA_09B130400) discharges to an outfall at Dun Laoghaire into Dublin Bay. As such there is a direct open-water linkage between the proposed development and Dublin Bay.

Currently the existing site foul drainage follows two different pathways. The White Lodge, (3 No existing residential units) along with Gate Lodge 1 & 2, drain into the existing 450mm dia. V.C draining through the existing estate entrance roadway, onto Albany Avenue and to the main running along Seapoint Avenue. Dalguise

House is served by a separate septic tank and percolation area located in the lands outside to the Walled Garden on the western boundary.

Proposed Stormwater Drainage

The proposed foul water connection will be separated from the surface water network throughout the development resulting in an overall improvement in storm water quality discharging from the site. Surface water discharge will be into the Stradbrook Stream via two new dedicated surface water outfall pipes (served by a simple gravity drainage system). The separation of foul and stormwater will result in improved water quality discharging to the stream.

To ensure maintenance of high quality run-off, SUDS measures (Greater Design Strategic Drainage Study -Dublin City Council, and Dun-Laoghaire Rathdown County Council) are incorporated in a surface water treatment train approach for the development.

The SUDS element within the proposed development consists of blue roofs over all apartment blocks, permeable paving, swales and filter strips along road/pavement areas and specific attenuation tanks with flow control devices to control discharged to greenfield levels prior to development. The proposed basement car park areas will have a series of gullies and drainage channels cast into the floor slab which will cater for limited amounts of run-off that may enter the proposed car park through ramps, service ventilation opens etc. and from vehicles. The outflow will discharge through a petrol interceptor to remove any contaminants and will flow to sumps containing a duty and standby pumping system which will lift the collected water via a rising main to the nearest foul manhole on the main gravity system.

During construction, mitigation measures include a settlement pond to ensure adequate settlement of solids prior to discharge to the receiving stream water. The stream will also be protected by a robust silt fence.

Proposed Foul Drainage

Two new connections to foul sewer will be created for the proposed development. Foul effluent from the proposed development discharges to the Irish Water drainage system, where it flows under gravity to the treatment plant/pumping station at the West Pier in Dunlaoighre. From there it Is pumped to the wastewater treatment plant at Ringsend in Dublin. The calculated flows from the development to the foul sewer network for connection 1 has a peak capacity flow (with 10%-unit consumption allowance) of up to 4.05 l/s, and connection 2 has a peak capacity flow (with 10%-unit consumption allowance) of 6.56 l/s.

Water Supply

There is an existing 160 diameter Irish Water watermain on Monkstown Road. In order to provide water supply to the proposed site an additional 150mm diameter

AWN Consulting

watermain was laid through the site and terminated adjacent to the Stradbrook / Monkstown Stream.

2.0 ASSESSMENT OF BASELINE WATER QUALITY, RIVER FLOW AND WATER BODY STATUS

A reliable Conceptual Site Model (CSM) requires an understanding of the existing hydrological and hydrogeological setting. This is described below for the proposed development site and surrounding hydrological and hydrogeological environments.

2.1 Hydrological Catchment Description

The proposed development site lies within the Liffey River and Dublin Bay Catchment 09. The Stradbrook Stream (EPA, 2019) runs on the northern boundary of the development (EPA name is Brewery Stream EPA code IE_EA_09B130400).

The Dublin Bay waterbody (EPA online site code: 00206) includes Special Area of Conservation (SAC), Special Protection Area (SPA), and proposed Natural Heritage Area (pNHA). The Environmental Protection Agency (EPA, 2019) on-line mapping presents the available water quality status information for water bodies in Ireland.

Dublin Bay has a WFD status (2013 – 2018) of 'Good'. Dublin Bay waterbody has a WFD risk score of 'Not at risk'. The ecological status of transitional and coastal water bodies during 2013-2018 for Dublin Bay is classed as 'good' (taken from Map 4.1 EPA, 2019). The most recent surface water quality data for the Dublin Bay for the 2015–2017 assessment on trophic status of estuarine and coastal waters indicate that they are 'Unpolluted' (based on Map 10, EPA, 2018)'. Under the 2015 'Trophic Status Assessment Scheme' classification of the EPA, 'Unpolluted' means there have been no breaches of the EPA's threshold values for nutrient enrichment, accelerated plant growth, or disturbance of the level of dissolved oxygen normally present.

The Stradbrook stream (EPA code IE_EA_09B130400) WFD risk score and status is still "under review". It is significantly culverted and is not expected to have good water quality.

The current EPA (2019) bathing water quality report has classified nearby Seapoint as 'excellent quality' from 2016-2018. The EPA rates beaches as follows: Excellent, Good, Sufficient and Poor. The 2019 status is based on the assessment of bacteriological results for the period 2015 to 2018. Seapoint has achieved an Excellent Water Quality rating for the four consecutive years 2015 to 2018. Annual water quality ratings are generally calculated using monitoring results over a four-year period and are assessed against stringent bacterial limits to protect bather health. The 2019 monthly data has continued to indicate excellent status.

2.2 Aquifer Description & Superficial Deposits

The Geological Survey of Ireland GSI (2019) classifies the bedrock beneath the overall site and the surrounding area as Type 2p microcline porphyritic Formation which comprises Granite with microcline phenocrysts.

The GSI also classifies the principal aquifer types in Ireland as:

- Lk Locally Important Aquifer Karstified
- LI Locally Important Aquifer Bedrock which is Moderately Productive only in Local Zones
- Lm Locally Important Aquifer Bedrock which is Generally Moderately Productive
- PI Poor Aquifer Bedrock which is Generally Unproductive except for Local Zones
- Pu Poor Aquifer Bedrock which is Generally Unproductive
- Rkd Regionally Important Aquifer (karstified diffuse)

Presently, from the GSI (2019) National Bedrock Aquifer Map, the GSI classifies the bedrock aquifer beneath the subject site as a *Poor aquifer (PI)*, *i.e.* 'bedrock which is generally unproductive except in local zones'.

The proposed development lies within the Kilcullen Groundwater Body (GWB, IE_EA_G_003). Presently, the groundwater body in the region of the site is classified under the WFD status 2010-2015 (EPA, 2019) as 'good'. The WFD risk score system indicates the GWB as 'not at risk'.

Aquifer vulnerability is a term used to represent the intrinsic geological and hydrological characteristics that determine the ease with which groundwater may be contaminated generally by human activities. The GSI (2019) guidance presently classifies the bedrock aquifer vulnerability in the region of the subject site as 'moderate' which indicates a general thick overburden depth potential of 5 - 10m, indicating relatively good protection of the underlying aquifer by low permeability subsoil. This desk study data was confirmed by cable percussion drilled boreholes at the site, which were drilled to a maximum depth of 6 m. The aquifer vulnerability class in the region of the site is presented as Figure 2.1 below.

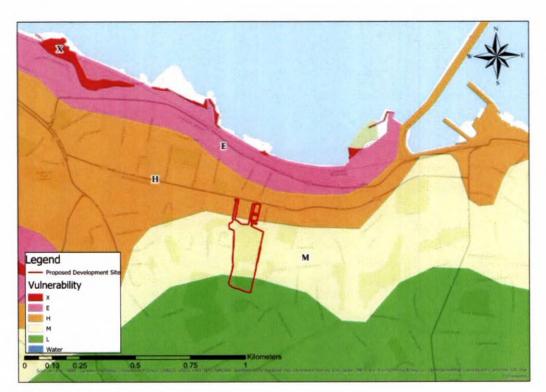


Figure 2.1 Aquifer Vulnerability

The GSI/ Teagasc (2019) mapping database of the quaternary sediments in the area of the subject site indicates the principal subsoil type in the study area is gravels derived from limestone (GLs), and the underlying subsoil namely *made ground* which reflects the urbanised land use in the immediate area.

3.0 CONCEPTUAL SITE MODEL

A conceptual site model (CSM) is developed based on a good understanding of the hydrological and hydrogeological environment, plausible sources of impact and knowledge of receptor requirements. This in turn allows possible Source Pathway Receptor (S-P-R) linkages to be identified. If no S-P-R linkages are identified, then there is no risk to identified receptors.

3.1 Assessment of Plausible Sources

Potential sources during both the construction and operational phases are considered. For the purposes of undertaking the potential of any hydrological/ hydrogeological S-P-R linkages, all potential sources of contamination are considered without taking account of any measures intended to avoid or reduce harmful effects of the proposed project (mitigation measures) i.e. a worst-case scenario. Construction sources (short-term) and operational sources (long-term) are considered below.

Construction Phase

The following sources are considered plausible for the proposed construction site:

(i) Accidental leakage may occur from construction site equipment. As a worstcase scenario an unmitigated leak of 300 litres is considered. This would be a single short-term event.

- (ii) Use of wet cement is a requirement during construction. Run-off water from recent cemented areas will result in highly alkaline water with high pH. As this would only occur during phases of work this is again considered as a single short-term event rather than an ongoing event.
- (iii) The demolition of the existing building units and construction requires soil excavation and removal and import. Unmitigated run-off could contain a high concentration of suspended solids during earthworks.

These impacts could be considered as intermittent short-term events.

Operational Phase

The following sources are considered plausible post construction:

- (i) No heating oil storage is required for the proposed development. Therefore, the only plausible leak is petrol/ diesel fuel from individual cars in parking areas, run-off may contain a worst-case scenario of 70 litres. The risk of a short-term release of oil is already considered under the construction scenario above i.e. without mitigation. Within the basement carpark area, any rainwater entering the sealed system as a result of snow melt or raindrops from cars will pass through a petrol interceptor providing treatment before discharging to the foul sewer. These mitigation measures have not been considered in this risk assessment.
- (ii) The development will be fully serviced with [separate] foul and storm sewers which will have adequate capacity for the facility as required by Irish Water licencing. Discharge from the site to the public foul sewer will be sewage and grey water only due to the residential nature of the proposed development. The foul discharge from the site will join the public sewer and will be treated at the Irish Water Ringsend WWTP prior to subsequent discharge to Dublin Bay. This WWTP is required to operate under an EPA licence and must meet environmental legislative requirements as set out in such licence. It is noted that an application for a new upgrade to this facility (Irish Water, 2018) has recently received planning and is expected to be fully operational with greater treatment capacity within 5 years. All [attenuated] stormwater will discharge to the public stormwater network which will ultimately discharge to Dublin Bay.

3.2 Assessment of Pathways

The following pathways have been considered with the final impact assessment presented in Section 3.4:

(i) The potential for vertical migration of any contaminants into to the bedrock aquifer is significantly reduced due to the recorded "Moderate Vulnerability

"recorded at the site, which will result in attenuation of any pollutants. The site is underlain by a *Poor aquifer (LI)* GSI classifies as a *bedrock which is generally unproductive only in local zones*. As such, there is a low potential for offsite migration of any accidentally discharged contaminants within the bedrock.

- (ii) There is an open water hydrological linkage with Dublin Bay through Stradbrook stream located to the north of the site.
- (iii) There is no 'direct' pathway for foul sewage to any receiving water body. There is however an 'indirect pathway' through the public sewer which ultimately discharges to the Irish Water WWTP at Ringsend prior to final discharge to Dublin Bay, post treatment.

3.3 Assessment of Receptors

The receptors considered in this assessment include the following:

- (i) Underlying [poor aquifer] granite bedrock aquifer;
- (ii) Stradbrook Stream;
- (iii) Natura 2000 sites; and
- (iv) Seapoint bathing water quality (for reference).

3.4 Assessment of Source Pathway Receptor Linkages

Table 3.1 below summarises the plausible pollutant linkages (S-P-R) considered as part of the assessment and a review of the assessed risk to waterbodies is also summarised below.

The overburden thickness and permeability together with underlying poor aquifer will help to minimise the rate of any off-site migration for any indirect discharges to ground at the site.

During, construction, surface run off from the site will only be discharged to the Stradbrook Stream via a settlement pond so that only silt-free water will enter the environment. Elsewhere the stream will be protected by a robust silt fence. However, should any silt-laden stormwater from construction manage to enter the stream i.e. without on-site mitigation, the suspended solids will naturally settle within within 0.5 kilometre i.e. before the outfall to Dublin Bay SAC/SPA/pHNA.

In the event of a [theoretical] 300 litre [worst case scenario used] hydrocarbon leak fully discharging to the stormwater sewer or adjacent stream <u>without mitigation</u>, there is potential for some short-term impact above surface water quality limits as outlined in S.I. No. 272 of 2009 in the Stradbrook stream. This would be a short-term impact event. Based on the relatively flat gradient and distance to the outfall, there is no possible exceedance above statutory guidelines within Dublin Bay.

However, with the presence of an oil/ petrol interceptor within the sealed basement car park area of the proposed development, there is no likely impact above statutory thresholds in the Stradbrook stream either. Based on the possible loading of any hazardous material during construction and operation there is no potential for

impact on Dublin Bay water quality status from an accidental discharge to stormwater.

The total average wastewater discharge is calculated at 2.6 l/s and the total peak design flow is calculated to be 10.6 l/sec for the proposed development site.

The sewage discharge will be licensed by Irish Water, collected in the public sewer and treated at Irish Water's WWTP at Ringsend prior to treated discharge to Dublin Bay. This WWTP is required to operate under an EPA licence (D0034-01) and to meet environmental legislative requirements. The plant has received planning (2019) and will be upgraded with increased treatment capacity over the next five years. The peak foul discharge calculated for the proposed development is well within the capacity of the WWTP. Even without treatment at the Ringsend WWTP, the peak effluent discharge, calculated for the proposed development, would equate to 0.096% of the licensed discharge (peak hydraulic capacity) at Ringsend WWTP and would not impact on the overall water quality within Dublin Bay and therefore would not have an impact on the current Water Body Status (as defined within the Water Framework Directive). (Note: the average effluent discharge equates to approx. 0.023% of the licensed discharge (peak hydraulic capacity) at Ringsend WWTP). Recent water quality assessment of Dublin Bay also shows that Dublin Bay on the whole, currently has an 'unpolluted' water quality status (EPA, 2019).

The assessment has also considered the effect of cumulative events, such as release of sediment-laden water combined with a minor hydrocarbon leak on site. As the potential hazard loading is low and short term in nature, it is concluded that no perceptible impact on water quality would occur. It can also be concluded that the cumulative or in-combination effects of effluent arising from the proposed development with that of other developments discharging to Ringsend WWTP will not be significant having regard to the size of the calculated discharge from the proposal.

There have been a number of breaches of the EPA licence for the Ringsend WWTP, due to stormwater overflows etc. However, recent water quality assessment shows that these overflows have not been shown to have had a longterm detrimental impact on the water body status. Map 4.1 in the 2019 EPA Water quality in Ireland (2013-2018) shows that the ecological status of transitional and coastal water bodies during 2013-2018 for Dublin Bay is classified as 'good'. The water quality status information for Dublin Bay has a WFD status of 'Good' (2013-2018). The WFD risk score for the waterbody is 'Not at risk', and the surface water quality data for Dublin Bay (2015-2017) indicate that it is 'Unpolluted' based on Map 10 in the 2018 EPA Indicators Report.

The 'excellent quality' bathing water status (issued by the EPA) at Seapoint will be unchanged by the proposed development at Dalguise House. The existing and proposed foul and storm sewers are 'separate' in compliance with the Building Regulations and Dublin City Councils 'Regional Code of Practice for Drainage works and Irish Waters Code of Practice for Wastewater Infrastructure'. As such, there is

TH/20/11452 AWN Consulting

no potential for sewage-laden water from the proposed development to enter the local stormwater network and ultimately discharging to Seapoint at Dublin Bay.

Source	Pathways	Receptors considered	Risk of Impact (without mitigation)
Construction Impacts Unmitigated leak from a construction vehicle. Discharge to ground of runoff water with High	Vertical with protection by overlying made ground subsoils (Moderate vulnerability)	Granite bedrock aquifer (Poor aquifer)	Minor to moderate risk of localised discharge to ground of contaminated water. No possible impact on the status of the aquifer due to volume of leak indicated, natural attenuation within overburden and low potential for migration due to low connectivity of fracturing within the granite aquifer (Poor Aquifer).
pH from cement process Unmitigated run- off containing a high concentration of suspended solids	Direct pathway through stormwater drainage and Stradbrook Stream to Dublin Bay	Stradbrook Stream and Dublin Bay (SAC/ SPA/ pNHA)	Minor to moderate risk of a temporary impact without mitigation on Stradbrook stream. No possible impact on water quality status in Dublin Bay due to low contaminant loading and attenuation and dilution near source area.
Operational Impacts Foul effluent discharge to sewer	Indirect pathway to Dublin Bay through public sewer via Ringsend WWTP	Dublin Bay (SAC/ SPA/ pNHA)	No perceptible risk – Even without treatment at Ringsend WWTP, the peak effluent discharge from the site would equate to 0.096% Note 1 of the licensed discharge at Ringsend WWTP, would not impact on the overall water quality within Dublin Bay and therefore would not have an impact on the current Water Body Status (as defined within the Water Framework Directive).
Discharge to ground of hydrocarbons from carpark leak	Direct pathway through stormwater drainage by Stradbrook Stream water course	Dublin Bay (SAC/ SPA/ pNHA)	No possible impact due to low contaminant loading and short-term nature of any potential discharge.

Table 3.1 Pollutant Linkage Assessment (without mitigation)

Note 1: This assessment is based on the current licenced discharge from the Ringsend WWTP. IW have a number of projects which have receive planning or are within the planning process which will

TH/20/11452 AWN Consulting

result in greater capacity for wastewater treatment for the greater Dublin area. In particular, the following key projects are applicable:

- (i) Ringsend WWTP upgrade An application for the upgrade was lodged with An Bord Pleanála in June 2018 and planning permission was granted in April 2019. Upgrade works are scheduled to increase the treatment capacity from 1.64 million p.e. to 2.4million p.e. This upgrade is currently programmed to be complete in 2025.
- (ii) Greater Dublin Drainage Project A planning application was lodged with An Bord Pleanála in June 2018, an oral hearing held in March 2019 and a decision is currently awaited.
- (iii) 9C sewer duplication. A planning application for this project was lodged with FCC on 11th May 2017 and FCC granted planning permission on 5th July 2017. Construction has commenced in summer 2019 and will be completed by September 2022.
- (iv) The Liffey Siphons refurbishment project Construction of this project commenced in May 2018 and is expected to be completed in December of this year.

An assessment of plausible source pathway receptor linkages shows there is no resultant impact as a result of construction or operation of the proposed development, which could result in any change to the current water regime (water quality or quantity) with Dublin Bay Natura 2000 sites.

4.0 CONCLUSIONS

A conceptual site model (CSM) has been prepared following a desk top review of the site and surrounding environs. Based on this CSM, plausible Source-Pathway-Receptor linkages have been assessed 'assuming an absence of any measures' intended to avoid or reduce harmful effects of the proposed project (i.e. mitigation measures) in place at the proposed development site.

There is an open water linkage between the proposed development site the Dublin Bay Natura 2000 site through Stradbrook stream and there is an indirect source pathway linkage from the proposed development site via the public sewer discharging to Ringsend WWTP.

A review of source pathway linkages concludes that the impact of storm water runoff and foul effluent from the proposed development will not result in any change to the current regime (water quality or quantity) in any of the Dublin Bay Natural 2000 Sites.

Finally, as outlined in the report prepared by Benchmark Property Consultancy Limited, and OPENFIELD Ecological Services, and in line with good practice, mitigation measures have been included in the construction design, management of construction programme and during operation of the proposed development. These specific measures will provide further protection to the receiving soil and water environments. However, the protection of downstream European sites is in no way reliant on these measures.

AWN Consulting

5.0 REFERENCES

EPA, (2019). Environmental Protection Agency. Available on-line at: https://gis.epa.ie/EPAMaps/ [Accessed: 10-12-2019].

DCC, (2012). EIS for the Ringsend Waste Water Treatment Project. [Accessed: 12-12-2019].

GSI, (2019). Geological Survey of Ireland; Available on-line at: http://www.gsi.ie [Accessed: 10-12-2019].

Irish Water, (June 2018). Ringsend Wastewater Treatment Plant Upgrade Project Environmental Impact Assessment Report. [Accessed: 10-12-2019].

NPWS, (2019). National Parks & Wildlife Service. Available on-line at: http://webgis.npws.ie/npwsviewer/ [Accessed: 10-12-2019].

Benchmark Property Consultancy Limited (February 2020). Engineering Services Report for Pre- Planning (Full Site). (Project Reference No: PAC/SHD/268/19)

OPENFIELD Ecological Services (November 2019). Natura Impact Statement of residential development on lands at Dalguise House, Monkstown, Co. Dublin

Project No.	23927	GROUNDWATER MONITORING DATA SHEET	IGSL Ltd

Project:

Dalguise House

Engineer:

David Rehill Consulting

Monitoring Date: 08/08/2022

Exploratory Hole No.	Ground Level (m OD)	Hole Depth (m bgl)	Response Zone Top (m bgl)	Response Zone Base (m bgl)	Depth to Groundwater (m bgl)	Groundwater Level (m OD)	Comments
RC03	27.94	17.00	1.50	14.50	7.63	20.31	
RC05	25.92	15.00	1.00	11.00	3.49	22.43	
RC07	22.38	12.30	2.00	12.30	7.46	14.92	
RC09	14.00	7.50	1.00	7.50	2.32	11.68	
							_

Remarks:

Water levels measured using electric dipmeter

BH - denotes cable percussion borehole

RC - denotes rotary core drillhole

Project No. 23927 GROUNDWATER MONITORING DATA SHEET IGSL Ltd

Project: Dalguise House

Engineer: David Rehill Consulting

Monitoring Date: 24/10/2022

Exploratory Hole No.	Ground Level (m OD)	Hole Depth (m bgl)	Response Zone Top (m bgl)	Response Zone Base (m bgl)	Depth to Groundwater (m bgl)	Groundwater Level (m OD)	Comments
RC03	27.94	17.00	1.50	14.50	7.05	20.89	
RC05	25.92	15.00	1.00	11.00	2.82	23.10	
RC07	22.38	12.30	2.00	12.30	7.27	15.11	
RC09	14.00	7.50	1.00	7.50	1.89	12.11	

Remarks:

Water levels measured using electric dipmeter

BH - denotes cable percussion borehole

RC - denotes rotary core drillhole

WIND MICROCLIMATE ASSESSMENT

for the

PROPOSED LARGE RESIDENTIAL DEVELOPMENT

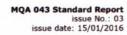
at

DALGUISE HOUSE, MONKSTOWN

for

GEDV MONKSTOWN OWNER LTD

La Vallee House **Upper Dargle Road** Bray, Co. Wicklow **A98 W2H9 Ireland**



p: 00 353 (0)1 204 0005 e: info@metec.ir w: www.metec.

				approvals			
issue no.	issue date	pages	issued for	by	checked	approved	
01	17/09/2022	29	PLANNING	LH	SC	MR	

CONTENTS

EXECUTIVE SUMMARY

SECTION 1 INTRODUCTION

SECTION 2 STUDY METHODOLOGY

SECTION 3 RESULTS OF THE ASSESSMENT

SECTION 4 SUMMARY

APPENDIX A VELOCITY RATIO

APPENDIX B ADDITIONAL WIND DATA

APPENDIX C CFD MODELLING METHODOLOGY

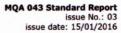
APPENDIX D: WIND MICROCLIMATE OF BALCONIES

REFERENCES

EXECUTIVE SUMMARY

METEC Consulting Engineers have been instructed by our client, GEDV Monkstown Owner Limited, to carry out a pedestrian level wind microclimate assessment for the proposed development at Dalguise House, Monkstown.

The pedestrian level wind microclimate assessment conclusions are sumarised as:


The proposed development at Dalguise House, Monkstown constitutes a significant increase in the overall massing at the site. It is taller than surrounding buildings and is therefore at risk of downdraft/downwash causing wind acceleration at pedestrian level.

Regarding pedestrian comfort:

 Pedestrian comfort was achieved at ground level in all locations within and adjacent to the proposed site.

Regarding to pedestrian distress/safety:

 Pedestrian safety was achieved at ground level in all locations within and adjacent to the proposed site.

1.0 INTRODUCTION

METEC Consulting Engineers have been instructed by our client, GEDV Monkstown Owner Limited, to carry out a pedestrian level wind microclimate assessment for the proposed development at Dalguise House, Monkstown.

The methodology used in the study is presented in Section 2 Study Methodology with further details in Appendix C CFD Modelling Methodology. Section 3 Results of the Assessment gives results of Pedestrian Comfort and Pedestrian Distress. A summary of the assessment and findings are presented in Section 4 Summary.

2.0 STUDY METHODOLOGY

2.1 LAWSON PEDESTRIAN COMFORT AND DISTRESS CRITERIA

This study uses the Lawson Pedestrian Comfort and Pedestrian Distress [1] criteria to assess the wind microclimate at pedestrian level for the proposed development at Dalguise House, Monkstown.

The pedestrian comfort criteria given in Table 1 quantify a person's comfort or discomfort due to the wind based on their activity. The criteria give an hourly average wind speed threshold that must not be exceeded for more than 5% of the assessment period. In this study, assessments covering the summer, winter, autumn, and spring periods, plus a whole year were undertaken. The report provides results of the summer assessment and the winter (worst-case seasonal) assessment.

Comfort Rating	Threshold Speed	Exceedance Time
Uncomfortable	10 m/s	> 5 %
Business walking	10 m/s	<= 5%
Strolling	8 m/s	<= 5%
Standing	6 m/s	<= 5%
Long-term sitting	4 m/s	<= 5%

Table 1: Lawson Pedestrian Comfort Criteria

Table 2 gives the recommended target pedestrian comfort designation for a variety of public area usage patterns.

Usage	Description	Target
Outdoor seating	For long periods of sitting such as for an outdoor café / bar	`Long-term sitting' in summer
Entrances, waiting areas, shop fronts	iting areas, eitting or standing such as at a bus stop, taxi rapk	
Recreational spaces		
Leisure Thoroughfare	For access to and passage through the development and surrounding area	'Strolling' in all seasons
Pedestrian Transit (A-B)	For access to and passage through the development and surrounding area	'Business walking' in all seasons

Table 2: Recommended Target Comfort Rating for Different Public Space Usage

The pedestrian distress criterion given in Table 3 quantifies a person's distress and/or safety due to the wind. Application of the pedestrian distress/safety analysis seeks to identify areas where a pedestrian may find walking difficult or could even stumble or fall. The criterion gives a wind speed threshold that must not be exceeded and is based on an exceedance probability of 0.022% [1].

Distress/Safety Rating	Threshold Speed
Unsuitable	15 m/s

Table 3: Lawson Pedestrian Distress Criteria

2.2 ACCOUNTING FOR THE EFFECT OF GUSTS

Pedestrian comfort and pedestrian distress are not only affected by the mean wind velocity but also by shorter timescale wind gusts due to the turbulent nature of wind. Therefore, in this study wind gust speed is accounted for by calculating the equivalent mean wind speed, considering the standard deviation of the mean wind speed, in particular the turbulent kinetic energy, k:

$$\sigma_U = \sqrt{k * ^2/_3}$$

Based on the work of Melbourne [4], the peak gust wind speed is derived as:

$$\ddot{U} = U_{MEAN} + 3.5\sigma_U$$

And the Gust Equivalent Mean (GEM) is derived as:

$$U_{GEM} = \ddot{U}/1.85$$

The pedestrian wind speed is defined as:

max(U_{MEAN}, U_{GEM})

2.3 MODEL GEOMETRY

Figures 1 to 6 show the CFD model geometry used in the study for the existing and proposed site conditions. The geometry of the surroundings and terrain were built from Google Earth and OS data using photogrammetry techniques to digitise points that define the geometry over which a surface mesh was generated. Further details of the CFD geometry, mesh and solution method are given in Appendix C: CFD Modelling Methodology.

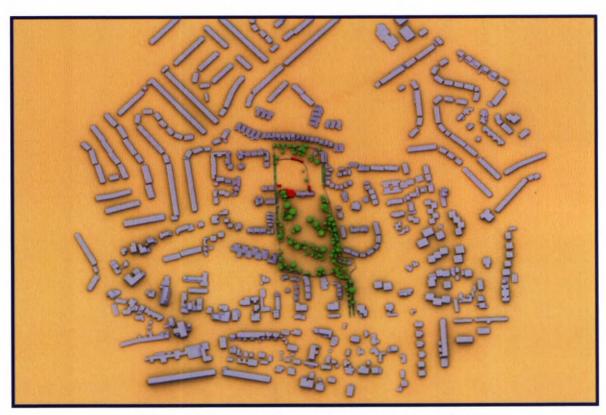


Figure 1: CFD Model Geometry for the Existing Site

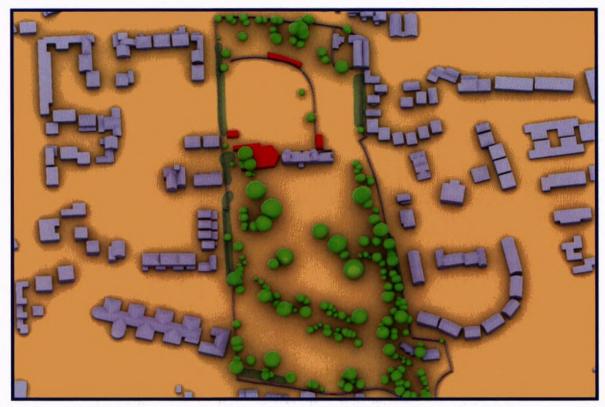


Figure 2: CFD Model Geometry for the Existing Site, Close-up from North



Figure 3: CFD Model Geometry for the Existing Site, Close-up from South

Figure 4: CFD Model Geometry for the Proposed Site, View from North

Figure 5: CFD Model Geometry for the Proposed Site, Close-up from North

Figure 6: CFD Model Geometry for the Proposed Site, View from South

Figure 7: CFD Model Geometry for the Proposed Site, Close-up from South

2.4 SITE AND SURROUNDINGS

An aerial view of the site of the proposed development at Dalguise House, Monkstown can be seen in Figure 8.

Figure 9 shows the landscaping plan for the proposed development at Dalguise House, Monkstown.

Figure 8: Site Location

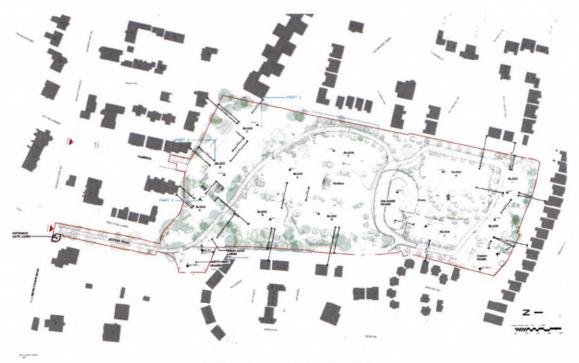


Figure 9: Landscaping Plan

2.5 SITE WIND MICROCLIMATE ASSESSMENT

Figures 10, 11 and 12 show wind roses for the proposed development at Dalguise House, Monkstown site at the reference height of 100m for the annual, summer and winter periods respectively. Additionally, spring and autumn period wind roses are shown in Appendix B Additional Wind Data.

The wind roses were calculated using wind data from Dublin airport adjusted for the site location based on terrain analysis using the EDSU methodology [6].

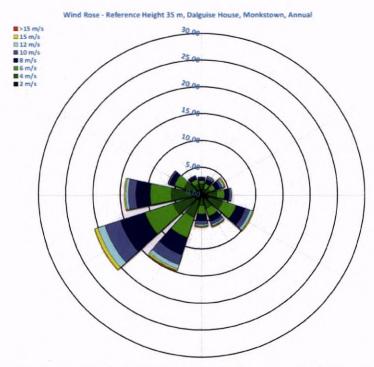


Figure 10: Annual Period Wind Rose at Reference Height for the Site

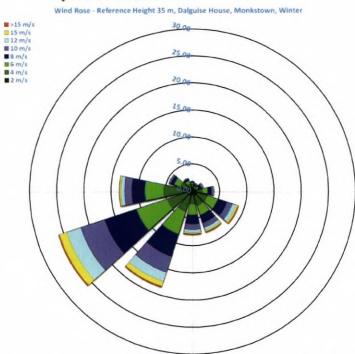


Figure 11: Winter Period Wind Rose at Reference Height for the Site

Figure 12: Summer Period Wind Rose at Reference Height for the Site

3.0 RESULTS OF THE ASSESSMENT

The main body of the report contains results for Pedestrian Comfort and Pedestrian Distress. Additionally, plots of velocity ratio for each of the 12 wind directions modelled are provided in Appendix A Velocity Ratio.

3.1 PEDESTRIAN COMFORT

Figure 13 shows a plot of Pedestrian Comfort rating at 1.5m above ground level for the worst seasonal conditions, which at this site occurs during winter. Figure 14 shows a plot of Pedestrian Comfort for the summer period.

Figure 13: Pedestrian Comfort Rating for Worst Seasonal Conditions

Figure 14: Pedestrian Comfort Rating for Summer Period

3.2 PEDESTRIAN DISTRESS/SAFETY

Figure 15 shows a plot of Pedestrian Distress/Safety Rating at 1.5m above ground level, where the Lawson Pedestrian Distress/Safety Criterion of 15m/s is exceeded, based on an exceedance probability of 0.022% [1].

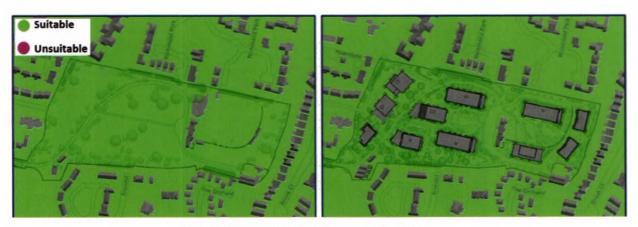


Figure 15: Pedestrian Distress Rating

4.0 SUMMARY

4.1 GENERAL OBSERVATIONS

The proposed development at Dalguise House, Monkstown constitutes a significant increase in the overall massing at the site. It is taller than surrounding buildings and is therefore at risk of downdraft/downwash causing wind acceleration at pedestrian level.

4.2 PEDESTRIAN COMFORT

The wind microclimate assessment for the proposed development identified the following regarding pedestrian comfort:

Pedestrian comfort was achieved in all locations within and adjacent to the development.

4.3 PEDESTRIAN DISTRESS/SAFETY

With regards to pedestrian distress/safety, the assessments key findings were as follows:

- Pedestrian safety was achieved at ground level within the proposed site and adjacent public spaces.
- In winter, the northwest corner of Block H was mostly rated as suitable for strolling with a
 very small area rated as suitable for walking. Here the prevailing wind direction created the
 worst-case wind speeds. Extra soft landscaping at and around the northwest corner of Block
 H is recommended, but not required.

APPENDIX A - VELOCITY RATIO

Figure A1 to Figure A12 show contour plots of velocity magnitude ratio in and around the existing and proposed site for each of the 12 wind directions modelled. The velocity magnitude is calculated by dividing the local air speed by the reference air speed: the wind speed at 35m above ground level at the start of the explicitly modelled inner area of the domain as calculated by terrain and wind profile analysis using the EDSU methodology [6].

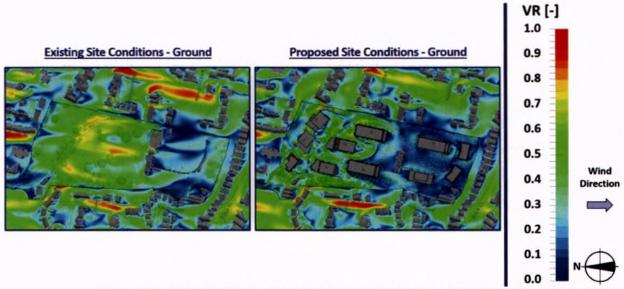


Figure A1: Velocity Ratio, Wind Direction of 0 Degrees (Northerly)

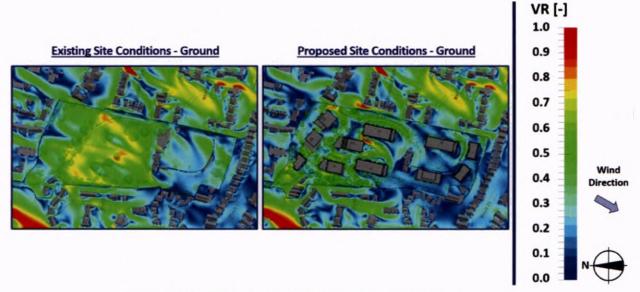


Figure A2: Velocity Ratio, Wind Direction of 30 Degrees

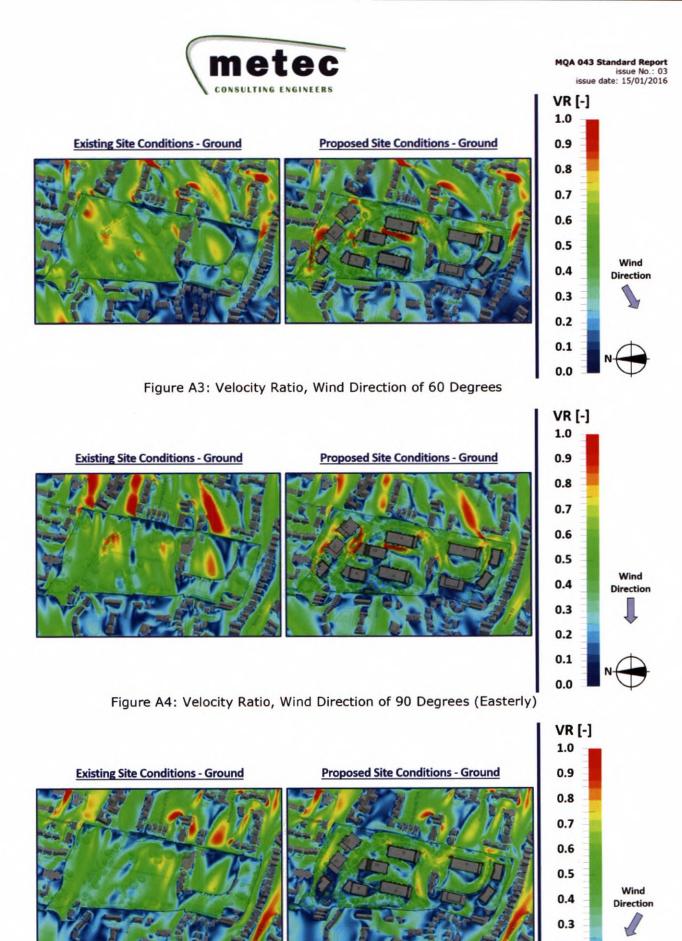


Figure A5: Velocity Ratio, Wind Direction of 120 Degrees

0.2 0.1 0.0

Wind

Direction

VR [-]



Figure A6: Velocity Ratio, Wind Direction of 150 Degrees

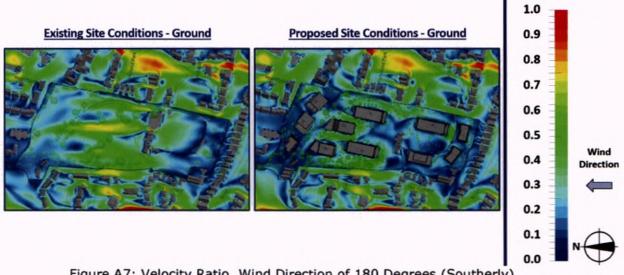


Figure A7: Velocity Ratio, Wind Direction of 180 Degrees (Southerly)

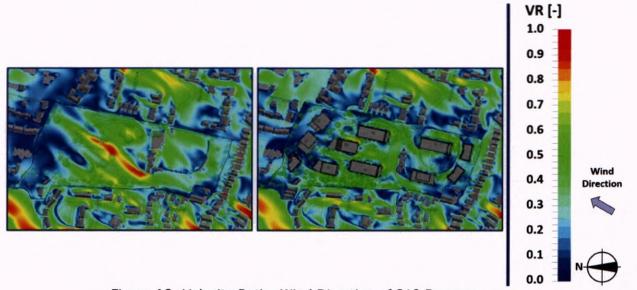


Figure A8: Velocity Ratio, Wind Direction of 210 Degrees

MQA 043 Standard Report issue No.: 03 issue date: 15/01/2016

Figure A9: Velocity Ratio, Wind Direction of 240 Degrees

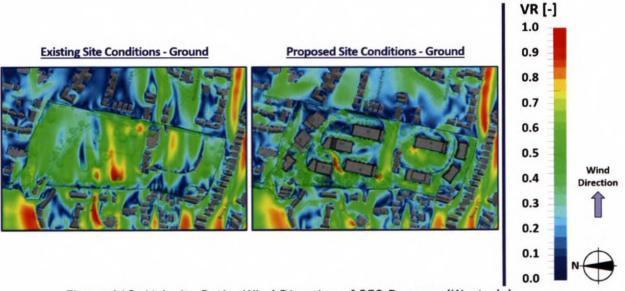


Figure A10: Velocity Ratio, Wind Direction of 270 Degrees (Westerly)

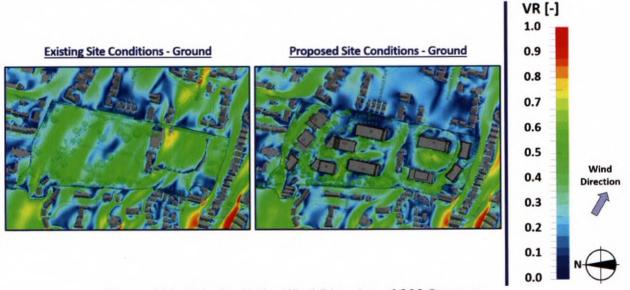
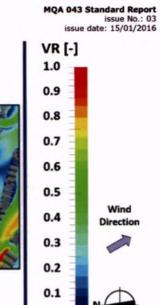



Figure A11: Velocity Ratio, Wind Direction of 300 Degrees

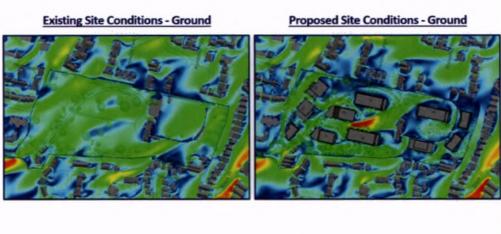


Figure A12: Velocity Ratio, Wind Direction of 330 Degrees

APPENDIX B - ADDITIONAL WIND DATA

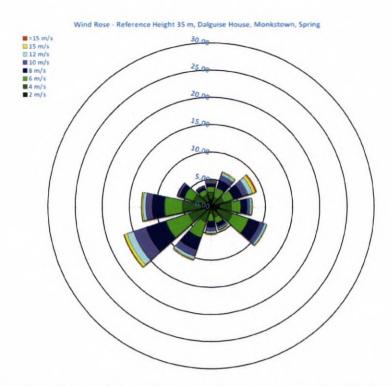


Figure B1: Spring Period Wind Rose at Reference Height for the Development Site

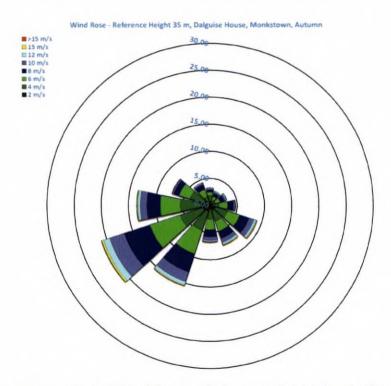


Figure B1: Autumn Period Wind Rose at Reference Height for the Development Site

MQA 043 Standard Report issue No.: 03 issue date: 15/01/2016

GENERAL

The multi-purpose CFD software Helyx® (https://engys.com/products/helyx, version 3.2) was used for the wind environment simulations. A total of 24 steady state atmospheric boundary layer simulations were completed for the assessment, covering two site configurations and 360 degrees of approaching winds, with a wind sector increment of 30 degrees.

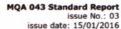
SPATIAL DISCRETIZATION

The spatial discretization of the 3D model was completed with snappyHexMesh utility, part of the CFD code OpenFoam®. Computational meshes, consisting of approximately 14 million hexahedral and polyhedral elements, were constructed for two site configurations:

- The existing site within the existing surrounds,
- The proposed site within the existing surrounds.

The computational domain included the proposed development site, the surrounding buildings and terrain explicitly modelled to approximately 500 m from the development, 1000 m in radius ground surface and the outer boundaries (side and upper at 1000 m height from the ground).

The base cell size in the numerical grid was 32.0 m. The refinement level increased to 0.1 m in the zone closest to the proposed site, to capture the detailed geometrical features. Additionally, 5 prism surface layers were introduced to all pedestrian ground level surfaces, with the first layer height of approximately 0.4 m.


SOLUTION METHOD

The RANS (Reynolds-averaged Navier–Stokes) CFD simulations were performed using the simpleFoam solver. The modelling of an incompressible fluid flow was completed using the semi-implicit method for pressure-linked equations (SIMPLE) algorithms. The resulted flow turbulent features were modelled using the Shear Stress Transport (SST) k- ω turbulence model. This model by Menter [2] and is based on a two-equation eddy-viscosity approach, where the SST model formulation combines the use of a k- ω in the inner parts of the boundary layer, but also switches to a k- ε behaviour in the free-stream regions of the solutions. Further details for the selected turbulence model are provided in the work of Menter [3].

BOUNDARY CONDITIONS

The atmospheric boundary layer flow was simulated by implementing a logarithmic velocity profile model presented by Richards and Hoxey [4], with the following main assumptions:

- The vertical velocity component at the domain boundary is negligible.
- The pressure gradient and shear stress are constant.

The model implies the following equation for the mean inlet velocity at the CFD domain:

$$U(z) = \frac{U^*}{\kappa} ln \left(\frac{z + z_0}{z_0} \right)$$

where:

κ - is the von Karman's constant.

z - is the distance from the ground surface in vertical direction.

zo - is the ground surface roughness length in meters.

The friction velocity U* is calculated by the following equations:

$$U^* = \kappa \, \frac{U_{ref}}{ln \left(\frac{z_{ref} + z_0}{z_0} \right)} \label{eq:update}$$

where:

z_{ref} - is the reference height in meters.

U_{ref} - is the reference velocity in m/s measured at z_{ref}.

The turbulent velocity fluctuations at the domain inlet are induced by the constant shear stress with height, maintained by the turbulent kinetic energy k:

$$k(z) = \frac{U^{*2}}{\sqrt{C_{\mu}}}$$

where:

 $C\mu$ = 0.09 - is the usual k- ϵ turbulence model constant.

Within the inner region of the domain (i.e., where the development, surrounding buildings, and terrain were modelled) all surface boundary conditions were modelled as smooth walls with a no-slip condition. On the surface representing the ground in the outer region of the domain (i.e., the region without explicitly modelled building geometry) a no-slip wall boundary condition with a varying roughness length based on the terrain analysis for that region was applied.

POROUS MEDIA MODEL

The permeability of existing and proposed vegetation within vicinity of the site was modelled by introduction of a volumetric source term in the momentum equation applied at two different cell zones defined within the CFD model:

- Deciduous trees
- Hedges

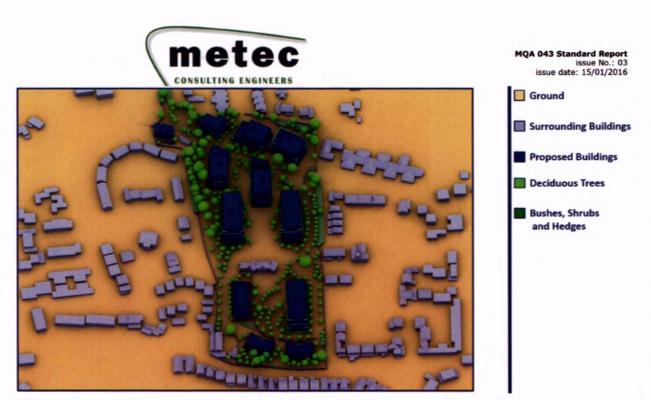


Figure C3 - 3D Model of the proposed and existing vegetation

The model is based on the Darcy-Forchheimer formula, implementing full scale wind tunnel experimental data [7]. The numerical model is based on the conservative assumption of winter leaf cover.

APPENDIX D - WIND MICROCLIMATE ON BALCONIES AND TERRACES

Though they are intended for analysis of public spaces rather than balconies, here we apply pedestrian comfort and distress criteria to quantify the wind conditions experienced on the balconies and terraces of the proposed development. Although there are no strict criteria for balconies, the generally accepted industry norm is to target a summer comfort rating of Suitable for Sitting, and that the annual pedestrian safety criterion should be met.

Figures D1, D2 and D3 show contour plots of pedestrian comfort in winter, pedestrian comfort in the summer, and pedestrian distress/safety on the balconies and terraces of the proposed development respectively.

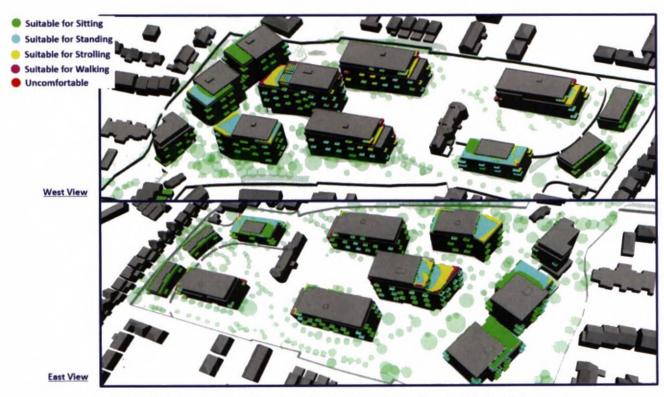


Figure D1: Pedestrian Comfort Rating for Worst Seasonal Conditions

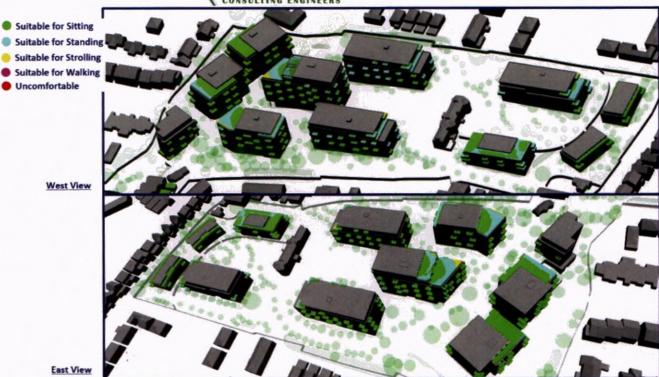


Figure D2: Pedestrian Comfort Rating for Summer Period

Figure D2 highlights balconies and roof terrace areas where the summer period target rating of suitable for sitting is exceeded. Most of the terraces and balconies were rated as Suitable for Sitting or Suitable for Standing. The northwest corner of the Block E terrace was rated as Suitable for Strolling.

Figure D3: Pedestrian Distress/Safety Rating

Figure D3 highlights balconies and roof terrace areas where wind speeds exceed the pedestrian safety criterion.

Exceptions to the Lawson comfort and safety criteria were observed across a significant area of the terraces of Block E, as well as a small area on the terraces of Block D and H.

Mitigation is required for terraces, particularly on Block E. Mitigation measures could be in form of solid or porous mesh panels (<=50% porosity) with a height of 1.8m. Evergreen hedging on the terraces could also be used to slow the wind and provide more sheltering to allow for long-term sitting in the summer period.

REFERENCES

- [1] Lawson T.V. (2001), Building Aerodynamics, Imperial College Press
- [2] Menter F., (1993), Zonal Two Equation k- ω Turbulence Models for Aerodynamic Flows, AIAA Paper 93-2906
- [3] Menter F., (2011), Turbulence Modelling for Engineering Flows, ANSYS Inc.
- [4] Richards, P.J. and Hoxey, R.P., Appropriate boundary conditions for computational wind engineering models using the $k-\epsilon$ turbulence model, Journal of Wind Engineering and Industrial Aerodynamics, vol. 46 & 47, pp. 145-153, 1993
- [5] Melbourne, W.H., Criteria for Environmental Wind Conditions, Journal of Industrial Aerodynamics, 3, 241-249, 1978
- [6] ESDU (Engineering Science Data Unit) Item 01008. Computer Program for Wind Speeds and Turbulence Properties: Flat or Hilly Sites in Terrain with Roughness. 2001
- [7] Bitog, J.P., Lee, I.-B., Hwang, H.-S., Shin, M.-H., Hong, S.-W., Seo, I.-H., Mostafa, E., and Pang, Z. A wind tunnel study on aerodynamic porosity and windbreak drag, Forest Science and Technology, Vol. 7, No. 1, March 2011, 8–16.

RESIDENTIAL DEVELOPMENT, DALGUISE HOUSE, MONKSTOWN, CO DUBLIN

Transport Impact Assessment Report

October 2022

Residential Development, Dalguise House, Monkstown, Co Dublin Transport Impact Assessment Report

Document No: 21.120

Author:.....Rico Raymundo (RR)

Checker: Eoin Ó Catháin (EOC)

Approver:..... Eoin Ó Catháin (EOC)

Document No	Revision	Description	Made	Checked	Approved	Date
21.120	-	Draft	RR	EOC	EOC	May 2022
21.120	1	Client Comments RR EOC EOC M		May 2022		
21.120	2	DLRCC Comments	EOC	RR	EOC	Sept 2022
21.120	3	TPA Final Comments	EOC	EOC	EOC	Oct 2022
21.120	4	MCF Comments	EOC	EOC	EOC	Oct 2022
21.120	5	TPA Comments	RR	RR	EOC	Oct 2022

Residential Development, Dalguise House, Monkstown, Co Dublin Transport Impact Assessment Report

TABLE OF CONTENTS

1.	INTE	RODUCTION	1
2.	SITE	E LOCATION AND PROPOSED DEVELOPMENT	2
	2.1	Site Location	2
	2.2	Development Details	2
	2.3	Access	3
3.	SUR	RROUNDING TRANSPORT NETOWRK	4
	3.1	Road Network	4
	3.2	Public Transport Accessibility	4
		3.2.1 Accessibility for Cyclist and Pedestrians	
		3.2.2 Future Transport Network	5
4.	EXIS	STING TRAFFIC	7
	4.1	Existing Traffic Survey Data	7
	4.2	Annual Average Daily Traffic (AADT)	8
	4.3	Existing Modal Split	8
5.	TRA	ANSPORT DEMAND GENERATION	10
	5.1	Modal Split	10
	5.2	Trip Generation	10
	5.3	Public Transport Capacity	12
6.	TRA	AFFIC GROWTH	13
7.	TRA	AFFIC ANALYSIS & RESULTS	14
	7.1	Microsimulation Analysis	14
	7.2	Annual Average Daily Traffic (AADT)	16
8.	PAF	RKING AND SERVICING	17
	8.1	Car Parking	17
	8.2	Bicycle Parking	19
	8.3	Motorbike Parking	21
	8.4		
	8.5	Servicing and Loading	21
9.	SUN	MMARY AND CONCLUSION	22
APF	PEND	DIX A TRAFFIC SURVEY DATA	
APF	PEND	DIX B TRICS DATA	
		DIX C TRAFFIC GROWTH	
		DIX D TRAFFIC ANALYSIS	
APP	END	DIX E TRAVEL PLAN / MOBILITY MANAGEMENT PLAN	1

1. INTRODUCTION

Roughan & O'Donovan has been commissioned by GEDV Monkstown Owner Limited – part of the Greystar Group - to prepare a Transport Impact Assessment Report for a proposed development at Dalguise house, Monkstown Road, Co. Dublin. The proposed development will consist of the following elements:

- 491 residential units comprising 3 no. conventional houses, 488 no. BRT units comprising 2 No. studio units, 288 No. 1-beds, 185 No. 2-beds, and 16 No. 3beds.)
- Childcare Facility
- Restaurant/Cafe
- Private Residential Amenities including yoga studio, gym, resident's lounge, music room, library, and co working spaces.

This Transport Impact Assessment has been prepared to assess the traffic and transportation impacts of the proposed residential development. It follows the 'Traffic and Transport Assessment Guidelines' published by Transport Infrastructure Ireland (TII) and 'Guidelines for Transport Impact Assessment' published by the Chartered Institution of Highways and Transportation [CIHT]. The following additional documents are considered best practice in the industry and have been considered in the preparation of this report:

- Design Standards for New Apartments published by the Department of Housing, Planning and Local Government in March 2018;
- Sustainable Urban Housing: Design Standards for New Apartments, Government of Ireland, December 2020
- The Design Manual for Urban Roads and Streets, published by DTTaS and DoE;
- The Design Manual for Roads and Bridges, published by TII; and
- The National Cycle Manual, published by the NTA.

2. SITE LOCATION AND PROPOSED DEVELOPMENT

2.1 Site Location

The proposed residential development is located south of Monkstown Road. The site is approximately 3.58 ha and is bounded by existing residential estates to south, east, and west. To the north, the site is bounded by Purbeck which connects with Monkstown Road by means of a simple priority T-junction. The site is approximately 300m from Monkstown Village and 500m from Salthill and Monkstown Dart Station.

An aerial image of the site is shown below with the subject lands outlined in red.

Figure 1: Aerial Photo of Site Location (Source: Google Maps)

2.2 Development Details

The proposed development includes 491 residential units comprising 3 no. conventional houses, 488 no. BRT units comprising 2 No. studio units, 288 No. 1-beds, 185 No. 2-beds, and 16 No. 3-beds.), childcare facility, restaurant/café, residential amenities including yoga studio, gym, resident's lounge, music room, library, and co working spaces. The development also includes 224 car parking spaces, and 1,071 bike spaces. 713 bike parking spaces will be secure long stays for residents and 346 will be provided for visitors at convenient locations throughout the site. 12 cargo bike spaces and 8 motorbike spaces will also be provided.

The proposed development will be developer owned and managed as a "Build to Rent" development. Greystar is an international company providing high quality managed accommodation, and this is one of several residential campuses it is developing in Ireland. These developments are self-contained with amenities and essential services for residents, and are typically located in proximity to public transport and cycling corridors to minimise the need for car use. Greystar are operational long term holders

with directly employed staff, supporting local employment. Other schemes in Ireland include Dublin Landings and Griffith Woods which are high quality well managed schemes in Dublin City Council jurisdiction.

2.3 Access

Vehicular access to the proposed development will be primarily via Purbeck, from which the main underground car park will be accessed, while the rear part of the site will be accessed via the Dalguise House Access Avenue. The proposal includes the provision of passing bays along the avenue to facilitate the low volumes of two-way vehicular traffic. Car traffic from Blocks A – G (i.e. the blocks in front of Dalguise House) will access the site via Purbeck (388 of 491 units). This represents approx. 79% of total development traffic. Car traffic from Blocks H – I, Dalguise House, Coach House, Brick Gate Lodge, and North West House will access the site via the Dalguise House Access Avenue (103 of 491 units).

Sightlines have been checked at both access locations and adequate visibility is available in both directions from a 2.4m setback. The standard required is 49m to oncoming traffic (DMURS Table 4.2).

Figure 2: Visibility from 2.4m setback at Purbeck

Figure 3: Visibility from 2.4m setback at Dalguise House Access

Pedestrian and cycle access will be predominantly along the Dalguise House Access Avenue. Delivery and service access will also be predominantly via this route, although a bin store is provided for Blocks A, B and C via the Purbeck access.

Construction access will primarily be via the Dalguise House access avenue, except for traffic associated with the construction of the bridge and road at the rear of Purbeck. In keeping with best practice, it is proposed to maintain the existing arrangements at both accesses, whereby the footpath is continuous across the access, and crossing traffic must give way to pedestrians.

3. SURROUNDING TRANSPORT NETOWRK

3.1 Road Network

North of the Site is the R119 Monkstown Road, a regional road single carriageway with a 50km/hr speed limit. Monkstown Road from the proposed site connects to Monkstown Village to the east and Blackrock to the west.

Monkstown Road has a good road surface and includes advisory cycle lanes in both directions. The horizontal alignment of Monkstown Road from the proposed site is straight with the vertical profile being almost flat. The general layout of Monkstown Road along the frontage of the Purbeck Lodge T-junction is shown in Figure 2 and Figure 3 below.

Figure 4: Monkstown Road

Westbound and Eastbound Views

The road network close to the site is shown in Figure 5 below.

Figure 5: Surrounding Road Network.

3.2 Public Transport Accessibility

The proposed development site is highly accessible by public transport. It is within 500m (5 minute walk) of the Salthill and Monkstown Train Station. The DART suburban rail service connects directly to Connolly Station in Dublin City Centre, where it

connects to the national rail network, as well as the Luas red line and the national bus network via BusÁras. The DART is a high frequency, high capacity regular service, operating at frequencies of up to 1 train every 10 minutes, with potential to further increase this in future.

The site also enjoys excellent accessibility by bus. Routes 7, 7a and 7d directly serve the site on the R119 Monkstown Road (connecting to Mountjoy Square at one end and Bride's Glen, Loughlinstown Wood, and Dalkey respectively at the other end). In addition, the 703 route connects the site directly to Dublin Airport. There is up to 1 bus every 12 minutes at peak times.

Various observations on site have indicated no difficulty boarding either buses or trains at any time of day. The site therefore enjoys excellent accessibility by public transport.

As part of the BusConnects programme, it is proposed to reorganise the bus services in the area. BusConnects is a programme of ongoing investment in Dublin's bus network, involving both the acquisition of additional buses and staff, and improvements to bus infrastructure. The service improvements are being rolled out on an ongoing basis, with 5 of 11 phases already implemented and improvements in the Blackrock / Monkstown area planned for 2024. The earliest possible occupation date for the proposed development is 2025, by which time the revised service plan will be in place.

3.2.1 Accessibility for Cyclist and Pedestrians

The proposed development will be fully accessible for pedestrians, cyclists, and the mobility impaired and disabled. All the surrounding main roads have adequate width footpaths on both sides and crossing facilities at junctions. Along the R119 Monkstown Road footpath width on the south side is approximately 1.8m and between 2-2.5m on the northern side.

In terms of cyclist accessibility, cycle facilities are present along the R119 Monkstown Road. These connect to express routes to the city centre along both the Blackrock Road and Coast Road corridors. These major routes are subject to ongoing improvement as part of the implementation of the GDA Cycle Network Plan and the BusConnects programme.

Pedestrian and cycle facilities within the site will be provided in accordance with the Design Manual for Urban Roads and Streets [DMURS]. The developer hopes to maximise permeability through the site by linking through to adjoining developments at Richmond Park and Arundel. This would complement the network of walking and cycling routes separate to the road network throughout the Monkstown area. While the developer doesn't have the power to implement these links without the consent of adjacent landowners, it is the developer's intention to work closely with Dún Laoghaire – Rathdown County Council towards their realisation.

3.2.2 Future Transport Network

As part of the BusConnects programme, it is proposed to further enhance the number of bus service in the area. The following BusConnects routes will serve Monkstown Road:

- B3: Dun Laoghaire City Centre Tyrrelstown, with a frequency of 15 minutes;
- S8: Dun Laoghaire Sandyford Tallaght, with a frequency of 15-30 minutes;
- 98: Loughlinstown Drive Dun Laoghaire Mountjoy Square, with a frequency 60 minutes.

Figure 6: Proposed BusConnects Network

The GDA Cycle Network Plan identifies the R119 Monkstown Road as a secondary route, Temple Hill/Stradbrook Road as a Primary route to the west, and Carrickbrennan Road as a feeder route to the east.



Figure 7: GDA Proposed Cycle Network Plan

4. EXISTING TRAFFIC

A traffic survey was undertaken by Traffinomics Ltd on Tuesday March 8th, 2022, at the Monkstown Road/Purbeck / Brighton Avenue junction and at the existing Dalguise House access at the Albany Avenue junction. The full traffic survey data is included in Appendix **A**. the traffic counts were carried out over a 12-hour period between 7am and 7pm.

The traffic survey indicates the following periods represent the peak hours:

AM Peak Hour: 08:00 – 09:00
 PM Peak Hour: 17:00 – 18:00

4.1 Existing Traffic Survey Data

The traffic survey data was reviewed and has been summarised in Figure 8 and Figure 9 below. The summary shows the existing traffic volume for each movement during the peak hour, expressed in passenger car units (PCU's).

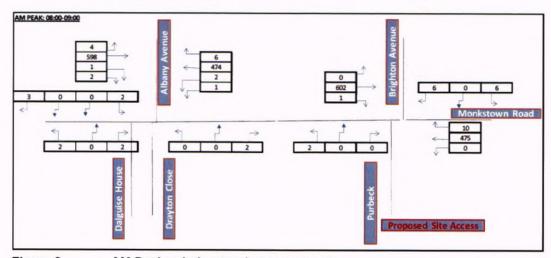


Figure 8: AM Peak existing turning movements.

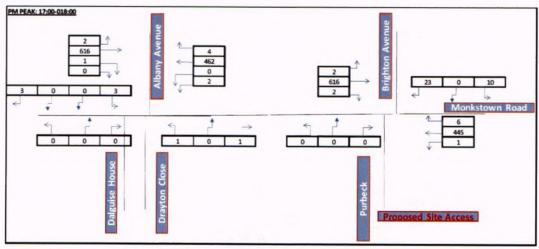


Figure 9: PM Peak existing turning movements.

The data above indicates modest existing traffic volumes on Monkstown Road (up to 11 cars per minute per direction) and very light traffic on the side roads (less than 1

car a minute). The higher eastbound flows reflect the closure of Seapoint Avenue in this direction.

4.2 Annual Average Daily Traffic (AADT)

The AADT of Monkstown Road has been calculated having regard to Unit 16.1 of the TII Project Appraisal Guidelies for National Roads, October 2016. There is no equivalent document for non-national roads so it is common practice to use this guidance, which is region specific. For Monkstown (Dublin), the guidance is:

- 1) 0800-0900 Peak hour is 7.7% of daily flow.
- 2) Tuesday flows are 107% of the daily average.
- March flows are 98% of the monthly average.

On the basis of the foregoing, the calculated AADT is 13,500. HGVs comprise 1.5% of traffic volumes on Monkstown Road.

4.3 Existing Modal Split

The 2016 CSO census Small Area Population statistics (SAPS) was analysed for the nearby existing residential area on Monkstown Road to understand the travel patterns in the area. The data considers the means of travel to work, school, or college for the population in the area aged 5 years and over. The data was used to calculate the existing percentage of people who walk, cycle, use public transport or take a private vehicle to commute. Table 4.1 below shows the existing travel modes in the area.

Table 4.1: Existing Travel Patterns for Monkstown Road

Means of Travel	%
On foot	8%
Bicycle	12%
Bus, minibus or coach	12%
Train, DART or LUAS	16%
Motorcycle or scooter	1%
Car driver	30%
Car passenger	15%
Van	0%
Other (incl. lorry)	0%
Work mainly at or from home	3%
Not stated	3%
Total	100%

The data indicates a low modal share for car drivers in Monkstown compared with the regional and national averages (see Table 4.2 below). This reflects the high accessibility of the area by other modes. Indeed, the number of public transport trips is almost equal to the number of car movements (allowing that 33% of car trips are passengers).

Table 4.2: Existing Travel Patterns for Dublin / Leinster and National

Current Modal Split - De	ublin/Leinster/N	lational	
Existing Modal Share	Dublin	Leinster	National
On Foot	19.09%	15.87%	13.94%
Bicycle	6.30%	3.83%	2.68%
Bus, minibus or coach	14.09%	11.74%	10.24%
Train, DART or LUAS	6.78%	4.52%	2.70%
Motorcycle or scooter	0.51%	0.36%	0.28%
Car Driver	31.84%	36.58%	39.31%
Car passenger	11.83%	16.12%	18.64%
Van	2.13%	3.45%	4.20%
Other (incl. lorry)	0.14%	0.29%	0.39%
Work mainly at or from home	1.66%	2.51%	3.14%
Not stated	5.63%	4.73%	4.48%

5. TRANSPORT DEMAND GENERATION

5.1 Modal Split

A Travel Plan / Mobility Management Plan (MMP) has been prepared for the proposed development and this is included in **Appendix E**. The Travel Plan sets out modal split targets for the development and prescribes measures required to achieved them. The implementation of these measures will reduce pressure on the vehicular and public transport networks in the area associated with the proposed development. The trip generation has been calibrated with the Travel Plan to ensure that the traffic generation is calculated based on a comparison with similar sites.

5.2 Trip Generation

The traffic generated by the proposed development has been calculated using the TRICS Software. TRICS is a database of various development types throughout Ireland and the UK, which allows the trip generation of new developments to be accurately calculated on similar sites in similar locations. The vehicular trip generation data for the proposed development is summarised below with further detail provided in **Appendix B**.

The number of trips generated by the development has been calculated for the AM peak hour, between 08:00-09:00, and the PM peak hour, between 17:00-18:00. A summary of the estimated number of trips generated by the proposed development is given below.

Table 5.1 Parameters Used for TRICS

The state of the s	Use	
Apartment units	491	No.
Childcare Facility	540	Sqm
Restaurant/Cafe	273	Sqm

Table 5.2 Trips Generated in AM Peak Hour

	Trip Rate			No. Trips		
Use		Inbound	Outbound	Inbound	Outbound	Two-way
	Unit			(veh/hr)		
Apartment Units	/Dwelling	0.045	0.127	22	62	84
Childcare Facility	/100 Sqm	3.682	2.879	20	16	36
Restaurant/Cafe	/100 Sqm	1.691	0.520	6	1	7
Total				48	79	127

Table 5.3 Trips Generated in PM Peak Hour

Use	Trip Rate			No. Trips		
				Inbound	Outbound	Two-way
	Unit	Inbound	d Outbound	(veh/hr)		
Apartment Units	/Dwelling	0.120	0.066	59	32	91

Use	Trip Rate			No. Trips		
			d Outbound	Inbound	Outbound	Two-way
	Unit	Inbound		(veh/hr)		
Childcare Facility	/100 Sqm	2.398	3.129	13	17	30
Restaurant/Cafe	/100 Sqm	2.670	1.481	7	4	8
	Total			75	49	124

Given the creche and restaurant / café are predominantly going to serve the development itself and the local population within walking distance, the vehicular trip generation of the creche has been reduced by 60% and the trip generation of the restaurant / café by 20%.

Table 5.4 Trips Generated in AM Peak Hour (Adjusted)

		Trip Rate		No. Trips		
Use		Inbound	Outbound	Inbound	Outbound	Two-way
生态比较的	Unit			(veh/hr)		
Apartment Units	/Dwelling	0.045	0.127	22	62	84
Childcare Facility	/100 Sqm	3.682	2.879	8	6	14
Restaurant/Cafe	/100 Sqm	1.691	0.520	5	1	6
Total				35	69	104

Table 5.5 Trips Generated in PM Peak Hour (Adjusted)

Use	Trip Rate			No. Trips		
		Inbound	Outbound	Inbound	Outbound	Two-way
	Unit			(veh/hr)		
Apartment Units	/Dwelling	0.120	0.066	59	32	91
Childcare Facility	/100 Sqm	2.398	3.129	5	7	12
Restaurant/Cafe	/100 Sqm	2.670	1.481	6	3	9
Total				70	44	112

Car traffic from Blocks A – G (i.e. the blocks in front of Dalguise House) will access the site via Purbeck (388 of 491 units). This represents approx. 79% of total development traffic. Car traffic from Blocks H – I, Dalguise House, Coach House, Brick Gate Lodge, and North West House will access the site via the Dalguise House Access Avenue (103 of 491 units). However, for the purposes of assessment, all traffic has been loaded onto the Purbeck access to stress test the junction performance. As shown in Section 4.1, the junction of Monkstown Road, Purbeck and Brighton Avenue is considerably busier than the junction of Monkstown Road, Dalguise House Access and Albany Avenue. Therefore, the former is the critical junction in terms of capacity, and if it can be shown to operate satisfactorily, it can be inferred that the less busy junction will also operate satisfactorily.

5.3 Public Transport Capacity

The peak additional passenger loading onto the public transport system as a result of the proposed development is likely to be towards the city centre during the morning peak hour. As outlined in the accompanying Travel Plan (see **Appendix E**), the anticipated patronage for buses and trains in the morning is 63 and 85 respectively, of which 50% will be during the morning peak hour. During the morning peak hour, there will therefore be approximately 74 outbound movements to public transport. A little over half of these will be to the DART (c.42) and the rest by bus (c. 32). It is assumed that 90% of these movements will be towards the city centre (approx. 39 by DART and 29 by bus).

There is an inbound DART train every 10 minutes during the morning peak hour. larnród Éireann indicates that inbound capacity for the hour is 6,500 passengers to increase to 10,000 by 2027. As such, the anticipated loading from the proposed development is less than 1% of the DART's capacity (0.6% in 2022 and 0.4% in 2027), and therefore its impact on the DART public transportation system will be negligible.

In terms of bus movements, BusConnects proposes five services an hour to the city centre (4 x B3 plus 1 x 98), each with a capacity of 90 passengers, giving total passenger capacity of 450 per hour. The anticipated loading of 29 passengers per hour by bus equals 6.4% of this capacity. The BusConnects service plan is based on citywide multi-modal transport modelling, taking account of additional property development and population. Therefore, the impact of this additional passenger loading has been taken into account in the design of the future bus service network. The existing bus network also has 5 citybound services an hour on Monkstown Road during the morning peak hour, with the same capacity to cater for additional passengers even in the event of the rollout of BusConnects being delayed.

In summary, the local public transportation system has and will have adequate capacity to cater for the additional passenger loading associated with the proposed development.

6. TRAFFIC GROWTH

Traffic growth on the external road network is inevitable over time as a result of further economic development in Dublin and Monkstown area. The performance of the road network has been assessed for the estimated Opening Year (2024), opening + 5 years (2029), and opening + 15 years (2039). The purpose of analysing the road network for future traffic growth is to ensure the surrounding road network has sufficient capacity not alone for the proposed development, but also for the other development, including other residential developments in the vicinity of the proposed development site, that will occur over time. These additional developments are captured by applying the growth factors calculated in the TII Project Appraisal Guidelines Unit 5.3 - Travel Demand Projections (October 2021).

The medium growth rates (used for this analysis) for Dublin anticipate a 1.8% annual traffic growth until 2030 for light vehicles. Beyond 2030 until 2040, a 0.62% annual growth is anticipated for light vehicles. These figures are net, and include, in addition to new development traffic, modal shift for existing travel movements to sustainable transport modes as services and infrastructure are improved on an ongoing basis (e.g. BusConnects, Cycle Network Plan, DART service improvements, etc). The application of these growth factors thereby ensures that the analysis takes account of other new developments in the area in line with best practice TII guidelines.

The traffic analysis has assumed no new road improvements in the area in the 15-year design horizon – so any such new road development will improve the capacity projections outlined in this report.

The traffic growth calculated for each traffic movement is shown in Appendix C.

7. TRAFFIC ANALYSIS & RESULTS

7.1 Microsimulation Analysis

The junction that will be most affected by the Dalguise House development is the Purbeck / Monkstown Road T-junction. This junction is the main access and egress to the proposed development. The priority junction has been assessed using Junctions 10 under the following scenarios:

- (1) Baseline Year 2022
- (2) Opening Year 2024 (With and Without Development)
- (3) Opening Year + 5 2029 (With and Without Development)
- (4) Opening Year + 15 2039 (With and Without Development)

The opening year consists of the 2022 Traffic Survey Data with growth factors applied. Similarly for 2029 and 2039 as above, growth factors have also been applied. As noted above, 100% of development car traffic has been loaded onto this junction, even though only 79% of the traffic will use it in practice, with the balance using the existing access avenue to Dalguise House. As shown in Section 4.1, the junction of Monkstown Road, Purbeck and Brighton Avenue is considerably busier than the junction of Monkstown Road, Dalguise House Access and Albany Avenue. Therefore, the former is the critical junction in terms of capacity, and if it can be shown to operate satisfactorily, it can be inferred that the less busy junction will also operate satisfactorily. Further, the detailed junction analysis was undertaken on an earlier development proposal with approximately 10% higher inbound and outbound traffic flows, adding an extra degree of robustness.

The assessment outputs are presented in terms of Ratio of Flow to Capacity (RFC), which provides a basis for judging the acceptability of a junction. A junction with an RFC of less than 0.85 (i.e. operating at 85% of its theoretical maximum capacity) is considered to be operating within capacity. The second output is delay given in seconds; is the average time a vehicle must wait on the approach before it can enter the junction. Where 0.00 is indicated, the flows are either zero or too low to register in the traffic software.

Base Year [2022] Scenario

The priority junction was analysed using the 2022 traffic survey data. The results indicate that the base year operates within capacity. A summary of the results is shown below and full results of the analysis in included in **Appendix D**.

Table 7.1 Summary of Junction Analysis in Base Year

Baseline 2022						
Arm/Stream	Peak Hour	Delay (s)	RFC			
Arm A - Monkstown Road W	AM Peak (08:00-09:00)	8.03	0.02			
	PM Peak (17:00-18:00)	8.19	0.01			
	AM Peak (08:00-09:00)	0.00	0.00			
Arm B - Purbeck (Site)	PM Peak (17:00-18:00)	0.00	0.00			
Arm C - Monkstown Road E	AM Peak (08:00-09:00)	7.58	0.00			
	PM Peak (17:00-18:00)	7.60	0.00			

Baseline 2022						
Arm/Stream	Peak Hour	Delay (s)	RFC			
Arm D - Brighton Avenue	AM Peak (08:00-09:00)	11.38	0.04			
	PM Peak (17:00-18:00)	13.79	0.12			

Opening Year [2024] Scenario

Analysis has been carried out in opening year scenario, assuming the development has been completed and fully occupied by then. The analysis was carried out with and without development (in both cases taking account of other development in the area by application of the TII growth factors). The analysis shows that the opening year operates within capacity for both scenarios. A summary of the results is shown below and full results of the analysis in included in **Appendix D**.

Table 7.2 Summary of Junction Analysis in Opening Year 2024

Ope	ening Year 2024 No Develo	pment		With Development		
Arm/Stream	Peak Hour	Delay (s)	RFC	Delay (s)	RFC	
Arm A -	AM Peak (08:00-09:00)	8.11	0.02	8.34	0.03	
Monkstown Road W	PM Peak (17:00-18:00)	8.28	0.01	8.38	0.02	
Arm B - Purbeck	AM Peak (08:00-09:00)	0.00	0.00	14.71	0.26	
(Site)	PM Peak (17:00-18:00)	0.00	0.00	13.37	0.17	
Arm C -	AM Peak (08:00-09:00)	7.64	0.00	7.89	0.05	
Monkstown Road E	PM Peak (17:00-18:00)	7.66	0.00	7.92	0.09	
Arm D - Brighton	AM Peak (08:00-09:00)	11.64	0.04	12.21	0.04	
Avenue	PM Peak (17:00-18:00)	14.28	0.13	14.89	0.13	

Opening Year + 5-year Forecast [2029] Scenario

Analysis has been carried out in opening year + 5-year forecast scenario. The analysis was carried out with and without development (in both cases taking account of other development in the area by application of the TII growth factors). The analysis shows that the opening year + 5 years operates within capacity for both scenarios. A summary of the results is shown below and full results of the analysis in included in **Appendix D.**

Table 7.3 Summary of Junction Analysis in Opening Year +5 2029

Op	ening Year +5 2029 No De	ening Year +5 2029 No Development										
Arm/Stream	Peak Hour	Delay (s)	RFC	Delay (s)	RFC							
Arm A -	AM Peak (08:00-09:00)	8.37	0.03	8.60	0.03							
Monkstown Road W	PM Peak (17:00-18:00)	8.60	0.03	8.66	0.03							
Arm B -	AM Peak (08:00-09:00)	0.00	0.00	15.68	0.27							
Purbeck (Site)	PM Peak (17:00-18:00)	0.00	0.00	14.17	0.18							
Arm C -	AM Peak (08:00-09:00)	7.79	0.00	7.96	0.05							
Monkstown Road E	PM Peak (17:00-18:00)	7.73	0.05	7.87	0.10							

0	pening Year +5 2029 No De	velopment		With Develo	pment
Arm/Stream	Peak Hour	Delay (s)	RFC	Delay (s)	RFC
Arm D -	AM Peak (08:00-09:00)	12.38	0.05	13.03	0.05
Brighton Avenue	PM Peak (17:00-18:00)	15.31	0.02	16.18	0.15

Opening Year + 15-year Forecast [2039] Scenario

Analysis has been carried out in opening year + 15-year forecast scenario. The analysis was carried out with and without development (in both cases taking account of other development in the area by application of the TII growth factors). The analysis shows that the opening year + 15 years operates within capacity for both scenarios. A summary of the results is shown below and full results of the analysis in included in **Appendix D.**

Table 7.4 Summary of Junction Analysis in Opening Year +15 2039

Ope	ning Year +15 2039 No De	velopment		With Devel	opment
Arm/Stream	Peak Hour	Delay (s)	RFC	Delay (s)	RFC
Arm A -	AM Peak (08:00-09:00)	8.46	0.03	8.90	0.03
Monkstown Road W	PM Peak (17:00-18:00)	8.60	0.03	9.04	0.03
Arm B -	AM Peak (08:00-09:00)	0.00	0.00	16.61	0.29
Purbeck (Site)	PM Peak (17:00-18:00)	0.00	0.00	14.93	0.18
Arm C -	AM Peak (08:00-09:00)	7.92	0.00	8.18	0.05
Monkstown Road E	PM Peak (17:00-18:00)	7.85	0.00	8.11	0.10
Arm D -	AM Peak (08:00-09:00)	13.02	0.05	13.74	0.05
Brighton Avenue	PM Peak (17:00-18:00)	16.32	0.16	17.32	0.17

Table 7.4 above indicates that the proposed site access on Purbeck can comfortably accommodate the projected traffic growth in 2039 and the projected levels of traffic associated with the proposed 491 apartment units, restaurant / café and creche development. Given the particular nature of the Greystar development model, which is very much sustainability focussed, it is anticipated that actual car traffic generation will be lower than modelled.

7.2 Annual Average Daily Traffic (AADT)

The AADT of Monkstown Road has been calculated having regard to Unit 16.1 of the TII Project Appraisal Guidelies for National Roads, October 2016 as 13,500. Given the AM peak hour comprises 7.7% of daily flow, the additional AADT associated with the proposed development is 1,350. This is equal to 10% of the existing AADT and will result in a post development AADT of 14,850 in the Opening Year (including for background traffic growth). This will increase to 16,500 in the Design Year (2039).

The development will not generate regular HGV traffic, therefore the % HGV on Monkstown Road will reduce to 1.2% following completion of the development.

8. PARKING AND SERVICING

8.1 Car Parking

Table 8.1 below sets out the car parking requirements based on the Dun Laoghaire Rathdown County Development Plan 2022-2028. The site intersects Parking Zones 2 and 3, and the Zone 2 standards have been adopted on the basis of the proximity to high quality public transport services.

Table 8.1 Car Parking Standards (County Development Plan)

	Number / Size	Unit	No.	Parking Standard (DLRCC Development Plan 2022 – 2028)	Total Required
		Studio/1-bed unit	290	1 per 1-bed	290
Apartments	491	2 bed unit	185	1 per 2-bed	185
, iparamonto	,31	3 bed unit/ 3 Bed House	16	2 per 3-bed	32
Childcare Facility	540 sqm	-	540 sqm	1 per 60	9
Restauran t / Cafe	273 sqm	-	273 sqm	1 per 50	5
		Total			521

However, Section 12.4.5.2 of the County Development Plan sets out circumstances under which these parking standards can be relaxed. These include:

- Proximity to public transport services and level of service and interchange available. In this regard, it is noted that the proposed development is served by regular bus services along Monkstown Road in addition to the excellent accessibility afforded by the DART line at Salthill / Monkstown DART station.
- Walking and cycling accessibility / permeability and any improvement to same. In this regard, it is noted that the proposed development intends to increase permeability with adjacent developments, subject to neighbour and County Council support.
- 3) Accessibility of car sharing and bike / e-bike sharing facilities. It is confirmed that both of these facilities will be available on site. In the first instance, 2 car share spaces will be reserved, and this will be increased as demand dictates. Bike / Ebike sharing will also be encouraged and facilitated.
- 4) Potential nature, scale and characteristics of the proposed development. The Greystar model is a unique campus style model for long-term rental accommodation. This model has worked successfully in many other countries but is relatively new to Ireland. The on-site management by the developer means a more serviced model, which lends itself to lower car ownership. The reduced parking provision proposed is in line with what has been successfully implemented at other similar Greystar sites overseas in similarly accessible locations.

With specific regard to Build to Rent developments, Section 12.4.5.6 states:

"For the purposes of the parking standards set out in Table 12.5 below Built to Rent development are considered to be residential apartments. Where a Built to Rent scheme avails of lower car parking based on the nature of the use a condition

should be attached to any grant of permission to state that planning permission shall be sought for a change of tenure to another tenure model following the period specified in the covenant."

It is confirmed that the developer is satisfied for such a condition to be attached to the planning permission, since it is wholly consistent with the developer's long-term vision for a sustainable, long-term, settled rental community on the site.

The proposed car parking provision for the proposed 491 units is 210 spaces. The proposed allocation is summarised below:

Table 8.2 Proposed Car Parking Provision

	Number / Size	Unit	No.	Proposed Provision	Total Proposed
		Studio/1-bed unit	290	0.29 per 1-bed	84
Apartments	491	2 bed unit	185	0.59 per 2-bed	110
		3 bed unit	16	1 per 3-bed	16
Childcare Facility	540 sqm	-	540 sqm	Staff parking only – drop-off facility only for external patrons	6
Restaurant / Cafe	273 sqm	-	273 sqm	8 (to cater for visitors also)	8
		Total			224

The rental agreements will include a surcharge for the provision of a car parking space. Car parking spaces will be allocated on a first come / first served basis for prospective tenants. Basement car park access fobs will only be available to those having paid the surcharge. There is no suitable convenient on-street long-stay car parking in the vicinity, since on-street parking in Monkstown Village is pay and display. Therefore, it is not considered likely that the proposed development will give rise to additional car parking demand external to the site.

While the proposed development parking provision is considerably lower than the prevailing County Development Plan, it is consistent with the Design Standards for New Apartments published by the Department of Housing, Planning and Local Government in March 2018. Sections 4.19 and 4.20 of the "Sustainable Urban Housing: Design Standards for New Apartments", Government of Ireland, December 2020 state:

"In larger scale and higher density developments, comprising wholly of apartments in more central locations that are well served by public transport, the default policy is for car parking provision to be minimised, <u>substantially reduced</u> or wholly eliminated in certain circumstances. The policies above would be particularly applicable in <u>highly accessible areas</u> such as in or adjoining city cores or at a <u>confluence of public transport systems</u> such rail and bus stations located in close proximity.

These locations are most likely to be in cities, especially in or adjacent to (i.e. within 15 minutes walking distance of) city centres or centrally located employment locations. This includes 10 minutes walking distance of DART, commuter rail or Luas stops [emphasis added] or within 5 minutes walking distance of high frequency (min 10 minute peak hour frequency) bus services."

Section 4.21 states:

"In suburban/urban locations served by public transport or close to town centres or employment areas and particularly for housing schemes with more than 45 dwellings per hectare net (18 per acre), planning authorities <u>must consider a reduced overall car parking standard</u> [emphasis added] and apply an appropriate maximum car parking standard."

The proposed development is wholly located within 5 minutes' walk of the Salthill / Monkstown DART station, thereby permitting a substantially reduced car parking standard to be applied. As outlined above, this is very much in keeping with the sustainability principles at the core of the Greystar Build-to-rent model.

8.2 Bicycle Parking

Table 8.3 below sets out the bicycle parking requirements based on the Dun Laoghaire Rathdown County Council Standards for Cycle Parking and associated Cycling Facilities for New Developments January 2018.

Table 8.3 DLRCC Bicycle Parking Standards (long-stay)

	Number / Size	Unit	No.	DLRCC Parking Standard (long- stay)	Total Required
		Studio / 1- bed unit	290	1 per unit	290
Apartments	491	2 bed unit	185	1 per unit	185
		3 bed unit/House	16	1 per unit	16
Childcare Facility	540 sqm	-	540 sqm	1 per 5 staff	2
Restaurant / Cafe	273 sqm	-	273 sqm	1 per 5 staff	2
	•	Total			495

The Design Standards for New Apartments published by the Department of Housing, Planning and Local Government in March 2018 have a higher requirement for bicycle parking. These are summarised below.

Table 8.4 Department of Housing Bicycle Parking Standards (long-stay)

	Number /Size	Unit	No.	DoH Parking Standard (long- stay)	Total Required
		Studio/1- bed unit	290	1 per bedroom	290
Apartments	491	2 bed unit	185	1 per bedroom	370
		3 bed unit/House	16	1 per bedroom	48
Childcare Facility	540 sqm	-	540 sqm	1 per 5 staff	2

Restaurant / Cafe	273 sqm	-	273 sqm	1 per 5 staff	2
		Total			712

713 secure long-stay bicycle parking spaces are proposed for residents and staff of the proposed development, which is 44% in excess of the required Dun Laoghaire Rathdown County Council Standards for Cycle Parking and associated Cycling Facilities for New Developments and in compliance with the Design Standards for New Apartments. In addition, 12 cargo bike spaces will be provided. The Council standards also require short-term bicycle parking to be provided for visitors. The required standards are summarised below:

Table 8.5 DLRCC Bicycle Parking Standards (short-stay)

	Number / Size	Unit	No.	DLRCC Parking Standard (long- stay)	Total Required
		Studio/1- bed unit	290	1 per 5 units	58
Apartments	491	2 bed unit	185	1 per 5 units	37
		3 bed unit/House	16	1 per 5 units	4
Childcare Facility	540 sqm	-	540 sqm	1 per 10 children	3
Restaurant /Cafe	273 sqm	-	273 sqm	1 per 100 sqm	3
		Total			105

The Design Standards for New Apartments published by the Department of Housing, Planning and Local Government in March 2018 have a higher requirement for visitor bicycle parking. These are summarised below.

Table 8.6 Department of Housing Bicycle Parking Standards (short-stay)

	Number / Size	Unit	No.	DoH Parking Standard (long- stay)	Total Required
		Studio/1- bed unit	290	1 per 2 units	145
Apartments	491	2 bed unit	185	1 per 2 units	93
		3 bed unit/House	16	1 per 2 units	8
Childcare Facility	540 sqm	-	540 sqm	1 per 10 children	3
Restaurant / Cafe	273 sqm	-	273 sqm	1 per 100 sqm	3
	•	Total		•	252

346 short-stay bicycle parking spaces are proposed for visitors to the proposed development, which is more than three times the DLRCC standard and 40% more than required by the Design Standards for New Apartments.

8.3 Motorbike Parking

In addition to the above, 8 motorbike spaces are proposed across the development.

8.4 Creche and Restaurant

The creche is primarily intended for use by residents of the development. However, it is expected that a small amount of external users in the area will avail of it. Staff parking only will be provided for the creche, and this will be within the basement car park. A drop-off facility is provided for external users. The anticipated usage of this is low, with 14 two-way user movements an hour (approx. 7 children being dropped by car).

In keeping with the principles of the development, very limited visitor car parking (8 spaces) will be provided on site to cater for occasional visitors and for the restaurant / café use. Access will be managed by the on-site 24 hour management / security team., and visitor spaces will need to be pre-booked. On-street paid parking is available in Monkstown Village and on Albany and Brighton Avenues for occasional car-borne visitors. Exceptional access for special vehicles for the mobility or visually impaired will be arranged by appointment through the on-site 24 hour management / security team.

8.5 Servicing and Loading

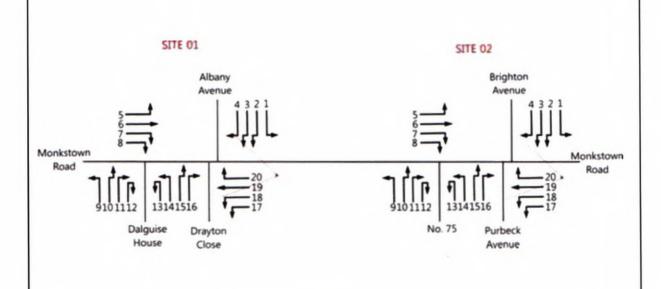
Appendix B of the Travel Plan included in Appendix E of this report sets out the GDV approach to managing deliveries to the residential users. The centrally managed approach to deliveries will minimise trips to and from the development by delivery companies. Service deliveries to the café / restaurant will be by regular appointment.

Refuse truck access will be managed by the 24/7 security team, as will taxis and occasional furniture removal trucks and other large deliveries. Visitor space allocation will be by appointment with the exception of the café / restaurant, which will again be managed by the 24/7 security team.

9. SUMMARY AND CONCLUSION

The summary of this Traffic Impact Assessment are as follows:

- The proposed development consists of 491 dwellings, a 540sqm childcare facility and a 273sqm restaurant/cafe.
- The site enjoys excellent accessibility by bus, DART and bicycle.
- Vehicular access to the proposed development will be via Purbeck (79%) and Dalguise House Access (21%).
- The unique nature of this managed campus development means that a reduced car parking standard is appropriate. It is proposed to provide 210 secure resident parking spaces. Non-resident cars will only be permitted to access the site by appointment and on a managed basis (including taxis and deliveries). There is also on-street pay and display parking in the general vicinity of the site.
- Bicycle parking will be provided well in excess of the required standards for both residents and visitors. More than 1 secure space per bedroom will be provided as well as 346 visitor spaces.
- Safe access is available at both proposed access locations and both junctions can operate well within their respective capacities. A worst-case scenario was assessed whereby all development traffic was loaded onto the busier of the two access junctions at Brighton Avenue / Purbeck and the junction was found to operate well within capacity under all scenarios assessed. Given the sustainability focussed and centrally managed nature of the build-to-rent development proposal, it is anticipated that actual car traffic generation will be lower than modelled.
- The receiving public transport network is high capacity and high frequency, and can cater for the proposed development.
- A Travel Plan has been prepared to inform the Management Company's approach to maximising the uptake of sustainable travel modes.


In conclusion, the proposed development will have negligible impact on the receiving transportation network, which has ample spare capacity to cater for the modest volumes of traffic generated.

APPENDIX A TRAFFIC SURVEY DATA

Site Locations

Movement Numbering

A	Job number: TRA/22/068	Job Date: 8 th March 2022	Drawing No: TRA/22/068-01	traffinomics
P	Client: Roughan & O'Donovan	Job Day: Tuesday	Author: SPW	w ie

MONKSTOWN ROAD TRAFFIC COUNTS MANUAL CLASSIFIED JUNCTION TURNING COUNTS

MARCH 2022 MONKSTOWN ROAD TRAFFIC COUNTS TRA/22/068 MANUAL CLASSIFIED JUNCTION TURNING COUNTS

MARCH 2022 MONKSTO TRA/22/068 MANUAL (

SITE:

01

DATE: 8th March 2022 SITE:

01

DATE: 8th March 2022 SITE:

LOCATION:

Monkstown Road/Albany Avenue/Drayton Close/Dalguise House

DAY:

Tuesday LOCATION: Monkstown Road/Albany Avenue/Drayton Close/Dalguise House

DAY:

Tuesday LOCATION:

		мо	OVEN	MEN	NT 1					N	IOVI	EME	NT 2	2					MOV	EME	NT 3					MOV	/EME	NT 4						М	VEMI	NT 5					мо	VEME	NT 6	;			1	MOV	EMEN	NT 7				,	MOVI	EMEN'	Т 8				
TIME	PCL N	MCL	CAR	LGV	/ HG	V BUS	s то	PCI	PCL	мс	L CA	R LG	SV HO	GV B	BUS 1	гот Р	ecu i	PCL M	ICL CA	AR LG	V HG	V BUS	тот	PCU	PCL N	ACL C	AR LG	V HG	V BUS	тот	PCU	TIME	PCL	MCL	CAR L	SV HG	V BUS	тот	PCU	PCL I	MCL C	AR LG	GV HG	SV BUS	тот	PCU	PCL M	CL CA	AR LGV	v HGV	BUS	тот	PCU	PCL MC	CL CAI	R LGV	HGV	BUS 1	тот РС	U T	TIME
7:00	0	0	0	0	0	0	0	0	0	0	0	0	0 (0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	7:00	0	0	0	0 0	0	0	0	1	0	39 1	12 3	3 3	58	63	0 (0 0	0	0	0	0	0	0 0) 0	0	0	0	0 0		7:00
7:15	0	0	0	0	0	0	0	0	0	0	0	0	0 (0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	7:15	0	0	0	0 0	0	0	0	1	1	55 1	2 2	2 0	71	72	0 (0 0	0	0	0	0	0	0 0	0 0	0	0	0	0 0		7:15
7:30	0	0	0	0	0	0	0	0	0	0	0	0	0 (0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	3 (0	0	3	3	7:30	0	0	0	0 0	0	0	0	1	0	44 1	13 2	2 2	62	65	0 (0 0	0	0	0	0	0	0 0	0 0	0	0	0	0 0		7:30
7:45	0	0	0	0	0	0	0	0	0	0	0	0) (0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	2 (0	0	2	2	7:45	0	0	1	0 0	0	1	1	3	0	97 1	3 1	1 3	117	119	0 (0 1	0	0	0	1	1	0 0) 0	1	0	0	1 1		7:45
/тот	0	0	0	0	0	0	0	0	0	0	0	0) (0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	5 (0 0	0	5	5	н/тот	0	0	1	0 0	0	1	1	6	1 2	235 5	8 08	8 8	308	319	0 (0 1	0	0	0	1	1	0 0) 0	1	0	0	1 1	Н	I/TOT
8:00	0	0	0	0	0	0	0	0	0	0	0	0	0 (0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	1 (0	0	1	1	8:00	0	0	0	0 0	0	0	0	6	0	81 1	13 4	4 4	108	111	0 (0 1	0	0	0	1	1	0 0) 0	0	0	0	0 0	1	8:00
8:15	0	0	1	0	0	0	1	1	0	0	0	0	0 (0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	2 (0	0	2	2	8:15	0	0	1	0 1	0	2	3	5	3	134 1	16 2	2 2	162	160	0 (0 0	0	0	0	0	0	0 0) 1	0	0	0	1 1	1	8:15
8:30	0	0	0	0	0	0	0	0	0	0	0	0) (0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0 (0	0	0	0	8:30	0	0	0	0 0	0	0	0	4	1	151 1	1 0	2	169	167	0 (0 0	0	0	0	0	0	0 0) 0	0	0	0	0 0	1	8:30
3:45	0	0	1	0	0	0	1	1	0	0	0	0) (0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0 (0	0	0	0	8:45	1	0	1	0 0	0	2	1	6	0	144 8	8 1	1 2	161	159	0 (0 0	0	0	0	0	0	0 0) 1	0	0	0	1 1	1	8:45
/тот	0	0	2	0	0	0	2	2	0	0	0	0) (0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	3 (0	0	3	3	н/тот	1	0	2	0 1	0	4	4	21	4 5	510 4	18 7	7 10	600	598	0 (0 1	0	0	0	1	1	0 0) 2	0	0	0	2 2	Н	І/ТОТ
9:00	0	0	0	0	0	0	0	0	0	0	0	0) (0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	2 (0	0	2	2	9:00	0	0	0	0 0	0	0	0	4	0	143 2	20 3	3	173	176	0 (0 0	1	0	0	1	1	0 0	0 0	0	0	0	0 0	1	9:00
9:15	0	0	0	0	0	0	0	0	0	0	0	0) (0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	1 (0	0	1	1	9:15	0	0	0	0 0	0	0	0	3	1	103 7	7 2	2 4	120	123	0 (0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	1	9:15
9:30	0	0	0	0	0	0	0	0	0	0	0	0) (0	0	0	0	0	0 1	1 0	0	0	1	1	0	0	0 0	0	0	0	0	9:30	0	0	2	0 0	0	2	2	0	2	108 1	15 2	2 0	127	128	0 (0 0	0	0	0	0	0	0 0	0	1	0	0	1 1	1	9:30
9:45	0	0	1	1	0	0	2	2	0	0	0	0) (0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0 (0	0	0	0	9:45	1	0	0	0 0	0	1	0	0	1	85 1	14 4	4 3	107	113	0 (0 0	0	0	0	0	0	0 0) 1	0	0	0	1 1		9:45
/тот	0	0	1	1	0	0	2	2	0	0	0	0) (0	0	0	0	0	0 1	1 0	0	0	1	1	0	0	3 (0	0	3	3	н/тот	1	0	2	0 0	0	3	2	7	4	439 5	66 1	1 10	527	540	0 (0 0	1	0	0	1	1	0 0) 1	1	0	0	2 2	Н	I/TOT
0:00	0	0	0	0	0	0	0	0	0	0	0	0) (0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	2 (0	0	2	2	10:00	0	0	1	0 0	0	1	1	2	0	94 1	14 2	2 0	112	112	0 (0 0	0	0	0	0	0	0 0	0 0	0	0	0	0 0	1	10:00
0:15	0	0	1	0	0	0	1	1	0	0	0	0) (0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	10:15	0	0	1	0 0	0	1	1	1	0	96 1	17 4	4 2	120	125	0 (0 0	0	0	0	0	0	0 0	0 0	0	0	0	0 0	1	10:15
0:30	0	0	0	0	0	0	0	0	0	0	0	0) (0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	10:30	0	0	0	0 0	0	0	0	0	1	92 1	16 5	5 2	116	122	0 (0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	1	10:30
0:45	0	0	0	0	0	0	0	0	0	0	0	0) (0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	10:45	0	0	0	0 0	0	0	0	0	3	106 1	18 1	1 1	129	129	0 (0 0	0	0	0	0	0	0 0) 0	0	0	0	0 0	1	10:45
/тот	0	0	1	0	0	0	1	1	0	0	0	0) (0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	2 (0	0	2	2	н/тот	0	0	2	0 0	0	2	2	3	4	388 6	55 12	2 5	477	489	0 (0 0	0	0	0	0	0	0 0) 0	0	0	0	0 0	Н	і/тот
1:00	0	0	3	0	0	0	3	3	0	0	0	0) (0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	1 (0	0	1	1	11:00	0	0	2	0 0	0	2	2	0	1	90 1	13 3	3 0	107	109	0 0	0 0	0	0	0	0	0	0 0	0 0	0	0	0	0 0	1	11:00
1:15	0	0	0	0	0	0	0	0	0	0	0	0) (0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	1 (0	0	1	1	11:15	0	0	1	2 0	0	3	3	0	2	95 1	15 5	5 2	119	125	0 (0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	1	11:15
1:30	0	0	3	0	0	0	3	3	0	0	0	0) (0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0 0) 1	0	1	2	11:30	0	0	0	0 0	0	0	0	0	0	99 1	13 4	4 1	117	122	0 (0 0	0	0	0	0	0	0 0) 0	0	0	0	0 (1	11:30
11:45	0	0	1	1	1	0	3	4	0	0	0	0) (0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	1 (0	0	1	1	11:45	0	0	0	0 0	0	0	0	0	4	98 1	10 3	3 0	115	116	0 (0 0	0	0	0	0	0	0 0) 0	0	0	0	0 0	1	11:45
тот	0	0	7	1	1	0	9	10	0	0	0	0) (0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	3 () 1	0	4	5	н/тот	0	0	3	2 0	0	5	5	0	7	382 5	51 15	5 3	458	472	0 (0 0	0	0	0	0	0	0 0	0 0	0	0	0	0 (н	/тот
		-						1000								100	A-127							-							7.71	12:00							17277							1,0272							2000						100	2	
2:15	0	0	2	0	0	0	2	2	0	0	0	0) (0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	1 (0 0	0	1	1	12:15	0	0	1	1 0	0	2	2	0	3	109 1	15 1	1 3	131	133	0 (0 0	0	0	0	0	0	0 0) 0	0	0	0	0 (1	12:15
2:30	0	0	0	0	0	0	0	0	0	0	0	0) (0	0	0	0	0 (0 0	0 0	0	0	0	0	0	0	2 (0 0	0	2	2	12:30	0	0	0	0 0	0	0	0	0	1	113 1	16 6	6 0	136	141	0 (0 1	0	0	0	1	1	0 0	0 0	0	0	0	0 (1 1	12:30
2:45	0	0	2	0	0	0	2	2	0	0	0	0) (0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0 0	0 0	0	0	0	12:45	0	0	0	1 0	0	1	1	0	0	93 1	18 2	2 1	114	117	0 (0 0	0	0	0	0	0	0 0	0 0	0	0	0	0 (1 1	12:45
	_						1	-	1			-			-	100								7.77							27	н/тот							-2012							333							20121						100	7	

MONKSTOWN ROAD TRAFFIC COUNTS MANUAL CLASSIFIED JUNCTION TURNING COUNTS

MARCH 2022 MONKSTOWN ROAD TRAFFIC COUNTS TRA/22/068 MANUAL CLASSIFIED JUNCTION TURNING COUNTS

MARCH 2022 MONKSTO TRA/22/068 MANUAL (

SITE:

01

DATE: 8th March 2022 SITE:

01

DATE: 8th March 2022 SITE:

LOCATION:

Monkstown Road/Albany Avenue/Drayton Close/Dalguise House

DAY: Tuesday

Tuesday LOCATION: Monkstown Road/Albany Avenue/Drayton Close/Dalguise House

DAY:

Tuesday LOCATION:

	N	иои	/EME	NT 1	1					МО	VEM	ENT	2					МО	VEM	ENT :	3				N	OVE	MEN	IT 4						М	OVEM	ENT	5				N	OVE	MENT	T 6				МО	VEM	ENT 7					MO	VEMEN	8 TI		ST CK		
TIME	PCL MC	CL C	AR LO	GV HO	GV B	us T	от Р	CU F	PCL N	NCL C	AR L	LGV H	HGV I	BUS	тот	PCU	PCL	MCL (CAR L	GV H	GV BL	JS TO	OT PO	U PC	L MC	L CAF	R LGV	HGV	/ BUS	тот	PCU	TIME	PCL	MCL	CAR L	.GV H	IGV B	us To	DT PC	U PC	L MC	L CAR	LGV	HGV	BUS 1	тот РС	U PCL	MCL (CAR L	GV HG	V BUS	тот	PCU	PCL	MCL C	AR LG	V HGV	/ BUS	TOT P	CU	TIME
13:00	0 0) ;	3 (0 (0	0	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0 0) (0	0	0	0	0	0	0	0	0	13:00	0	0	0	0	0	0 0	0	1	2	103	19	3	3	131 13	5 0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	13:00
13:15	0 0)	1 (0 (0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0 0) (0	0	0	2	0	0	0	2	2	13:15	0	0	1	0	0	0 1	,	1	1	132	18	3	2	157 16	1 0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	13:15
13:30	0 0) ;	2 (0 (0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0 0) (,	0	0	0	0	0	0	0	0	13:30	0	0	2	0	0	0 2	2 2	0	1	107	10	5	0	123 12	7 0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	13:30
13:45	0 0)	1 (0 (0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0 0) (, ,	0	0	1	1	0	0	2	2	13:45	0	0	0	0	0	0 0	0	0	1	107	13	1	3	125 12	8 0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	13:45
-	0 0)	7	0 (0	0	7	7	0	0	0	0	0	0	0	0	0	0	0	0	0 0) (0	0	0	3	1	0	0	4	4	н/тот	0	0	3	0	0	0 3	3 3	2	5	449	60	12	8	536 55	1 0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	н/тот
14:00	0 0) ;	2 (0 (0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0 0) (0	0	0	1	0	0	0	1	1	14:00	0	0	0	0	0	0 0	0	0	2	105	11	2	0	120 12	1 0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	14:00
14:15	0 0	,	1 (0 (0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0 0) (,	0	0	0	0	0	0	0	0	14:15	0	0	0	1	0	0 1	1	15	5 3	134	11	0	3	166 15	5 0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	14:15
14:30	0 0) :	3 (0 (0	0	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0 0) (,	0	0	2	0	0	0	2	2	14:30	0	0	1	0	0	0 1		5	1	173	12	2	1	194 19	2 0	0	1	0 0	0	1	1	0	0	1 0	0	0	1	1	14:30
14:45	0 0	,	1 (0 (0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0 0) (, ,	0	0	3	0	0	0	3	3	14:45	0	0	1	0	0	0 1		2	2	111	13	1	2	131 13	1 0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	14:45
	0 0)	7 (0 (0	0	7	7	0	0	0	0	0	0	0	0	0	0	0	0	0 0) (0	0	0	6	0	0	0	6	6	н/тот	0	0	2	1	0	0 3	3	22	2 8	523	47	5	6	611 60	0 0	0	1	0 0	0	1	1	0	0	1 0	0	0	1	1	н/тот
15:00	0 0)	1	1 (0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0 0) (, ,	0	0	2	0	0	0	2	2	15:00	0	0	2	0	0	0 2	2 2	2	1	125	9	2	5	144 14	9 0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	15:00
15:15	0 0) :	3 (0 (0	0	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0 0) (, ,	0	0	1	0	0	0	1	1	15:15	0	0	1	0	0	0 1	,	4	1	132	10	0	2	149 14	7 0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	15:15
15:30	0 0) (0 (0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0) (, (0	0	1	0	0	0	1	1	15:30	0	0	0	0	0	0 0	0	3	3	143	10	2	3	164 16	5 0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	15:30
15:45	0 0) (0 (0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	, ,		0	0	0	0	0	0	0	0	15:45	0	0	1	0	0	0 1	1	4	1	140	11	3	0	159 15	8 0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	15:45
н/тот	0 0) ,	4	1 (0	0	5	5	0	0	0	0	0	0	0	0	0	0	0	0	0 0) (, (0	0	4	0	0	0	4	4	н/тот	0	0	4	0	0	0 4	4	13	6	540	40	7	10	616 61	9 0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	н/тот
16:00	0 0)	1 (0 0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0 0) (, ,	0	0	2	0	0	0	2	2	16:00	0	0	1	0	0	0 1	,	2	2	132	8	0	3	147 14	7 0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	16:00
16:15	0 0) (0 1	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0) (, ,	0	0	1	0	0	0	1	1	16:15	0	0	2	0	0	0 2	2 2	6	2	136	8	1	2	155 15	2 0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	16:15
16:30	0 0)	1 (0 0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0 0) (0	0	3	0	0	0	3	3	16:30	0	0	0	0	0	0 0	0	1	1	136	16	2	1	157 15	9 0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	16:30
16:45	0 0) (0 (0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0) (, ,	0	0	1	0	0	0	1	1	16:45	0	0	2	0	0	0 2	2	2	1	151	15	0	1	170 16	9 0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	16:45
-	0 0) ;	2 (0 (0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0 0	, (0	0	7	0	0	0	7	7	н/тот	0	0	5	0	0	0 9	5 5	11	6	555	47	3	7	629 62	7 0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	н/тот
17:00	0 0) (0 (0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0) (, (0	0	0	0	0	0	0	0	17:00	0	0	0	0	0	0 0	0	5	5	134	9	0	1	154 14	8 0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	17:00
17:15	0 0) (0 (0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0) (0	0	0	0	0	0	0	0	17:15	0	0	0	0	0	0 0	0	3	3	141	7	0	1 1	155 15	2 0	0	1	0 0	0	1	1	0	0	0 0	0	0	0	0	17:15
17:30	0 0)	1 (0 (0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0 0) (, ,) 1	0	0	0	0	0	1	0	17:30	0	0	2	0	0	0 2	2	5	2	162	6	1	2	178 17	6 0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	17:30
17:45	0 0) ;	2 (0 (0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0 0			1	0	3	0	0	0	4	3	17:45	0	0	0	0	0	0 0	0	0	2	135	3	1	0	141 14	1 0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	17:45
	0 0)	3 (0 (0	0	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0 0) (2	0	3	0	0	0	5	3	н/тот	0	0	2	0	0	0 2	2 2	13	12	572	25	2	4	628 61	5 0	0	1	0 0	0	1	1	0	0	0 0	0	0	0	0	н/тот
					0	0	0	0	0	0	0	0	0	0		32.8							988								500								3.5	100						1,335	70						1						100	907	18:00
								8.3								100							100								100								110							3.3													13	533	18:15
														1																		18:30							133							133															18:30
							30																								100								100							100													1		18:45
							190				-												100	3							100		+		_				10.85	2					-	199							P0795				_			200	н/тот
							33	139															100								700								7.51	8						738							325.1							40.0	Р/ТОТ

WN ROAD TRAFFIC COUNTS **CLASSIFIED JUNCTION TURNING COUNTS**

MARCH 2022 MONKSTOWN ROAD TRAFFIC COUNTS TRA/22/068 MANUAL CLASSIFIED JUNCTION TURNING COUNTS

MARCH 2022 MONKSTOWN ROAL TRA/22/068 MANUAL CLASSIFIED

01

DATE: 8th March 2022 SITE:

01

DATE: 8th March 2022 SITE:

01

Monkstown Road/Albany Avenue/Drayton Close/Dalguise House

DAY:

Tuesday LOCATION:

Monkstown Road/Albany Avenue/Drayton Close/Dalguise House

DAY:

Tuesday LOCATION: Monks

NOVEN	MENT	Г 9				1	IVON	MEN	T 10					MON	VEME	NT 1	1				MO	/EME	NT 12	2					МО	VEME	NT 13	3				MOV	EMEN	T 14				M	OVEM	ENT '	15				MO	VEME	NT 16	6					МО	VEMEN
L CAR	LGV	HGV	BUS	тот	PCU	PCL M	CL CA	R LGV	HGV	BUS	тот	PCU	PCL I	MCL (CAR L	GV H	GV BU	s то	T PCU	PCL I	MCL	CAR LO	GV HG	V BUS	тот	PCU	TIME	PCL	MCL	CAR L	GV HG	V BUS	тот	PCU	PCL I	MCL CA	AR LGV	/ HGV	BUS T	от РС	U PC	L MCL	CAR	LGV H	IGV BU	s to	T PCU	PCL	MCL	CAR L	GV HG	V BUS	s тот	PCU	TIME	PCL	MCL	CAR LGV
0	0	0	0	0	0	0) (0	0	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	7:00	0	0	0	0 0	0	0	0	0	0	1 0	0	0	1 1	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	7:00	0	0	0 1
0	0	0	0	0	0	0) (0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0 (0 0	0	0	0	7:15	0	0	0	0 0	0	0	0	0	0 (0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	7:15	0	0	0 0
0	0	0	0	0	0	0) (0	0	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	7:30	0	0	0	0 0	0	0	0	0	0 (0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	7:30	0	0	0 0
0	0	0	0	0	0	0) (0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0 (0 0	0	0	0	7:45	0	0	0	0 0	0	0	0	0	0 1	1 0	0	0	1 1	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	7:45	0	0	0 0
0	0	0	0	0	0	0) (0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0	0 0	0	0	0	н/тот	0	0	0	0 0	0	0	0	0	0 2	2 0	0	0	2 2	2 0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	н/тот	0	0	0 1
1	0	0	0	1	,	0		0	0	0	0	0	0	0	1	0 (0 0	1		0	0	0 (0 0	0	0	0	8:00	0	0	0	0 0	0	0	0	0	0 (0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	8:00	0	0	0 0
	0	0	0			0		0	0	0		0	0	0		0 (0 0			0	0	0		0	0	0	8:15	0	0	0	0 0	0	0	0	0	0 (0	0			0	0	0	0 0		0	0	0	1	0 0		,	1	8:15	0	0	0 0
	0					0		0	0	0			0		0			0			0			0	0	0	8:30	0	0	0	0 0	0	٥		٥	0 (0	0				0	0	0 0		٠		0						8:30	٥	0	0 0
0	0	0	0	0	0	U	, (0	0	0	0	٥	U	U	Ü	0 (0 0	0		0	0	0 (0											0										0				'				-	0 0
0	0	0	0	0	0	0) (0	0	0	0	0	0	0	1	0 (0 0	1	1	0	0	0 (0 0	0	0	0	8:45	0	0	0	0 0	0	0	0	0	0 (0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0 0	0	-	0	8:45	0	0	0 1
2	0	0	0	2	2	0) (0	0	0	0	0	0	0	2	0 (0 0	2	2	0	0	0 (0 0	0	0	0	н/тот	0	0	0	0 0	0	0	0	0	0 (0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	1	1 0	0	2	2	н/тот	0	0	0 1
0	0	0	0	0	0	0) (0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0 (0 0	0	0	0	9:00	0	0	0	0 0	0	0	0	0	0 (0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	9:00	0	0	0 0
0	0	0	0	0	0	0) (0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0 (0 0	0	0	0	9:15	0	0	0	0 0	0	0	0	0	0 (0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	1 0	0	1	1	9:15	0	0	0 0
0	0	0	0	0	0	0) 1	0	0	0	1	1	0	0	0	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	9:30	0	0	1	0 0	0	1	1	0	0 (0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	9:30	0	0	1 0
0	1	0	0	1	1	0) (0	0	0	0	0	0	0	1	0 (0 0	1	1	0	0	0 (0 0	0	0	0	9:45	0	0	0	0 0	0	0	0	0	0 (0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	9:45	0	0	0 1
0	1	0	0	1	1	0) 1	0	0	0	1	1	0	0	1	0 0	0 0	1	1	0	0	0 (0 0	0	0	0	н/тот	0	0	1	0 0	0	1	1	0	0 (0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	1 0	0	1	1	н/тот	0	0	1 1
2	0	0	0	2	2	0	0 0	0	0	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0 0	0	0	0	10:00	0	0	0	0 0	0	0	0	0	0 2	2 0	0	0	2 2	2 0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	10:00	0	0	1 0
0	1	0	0	1	1	0	0 0	0	0	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	10:15	0	0	0	0 0	0	0	0	0	0 (0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0 1	0	1	2	10:15	0	0	0 0
0 -	0	0	0	0	0	0) (0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0 (0 0	0	0	0	10:30	0	0	0	0 0	0	0	0	0	0 (0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	1 0	0	1	1	10:30	0	0	0 0
0	0	0	0	0	0	0) (0	0	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	10:45	0	0	0	0 0	0	0	0	1	0	1 0	0	0	2 1	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	10:45	1	0	0 1
2	1	0	0	3	3	0) (0	0	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	н/тот	0	0	0	0 0	0	0	0	1	0 :	3 0	0	0	4 3	0	0	0	0	0 0	0	0	0	0	0	1 1	0	2	3	н/тот	1	0	1 1
0	0	0	0	0	0	0) (0	0	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	11:00	0	0	0	0 0	0	0	0	0	0 (0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	11:00	0	0	0 0
0	0	0	0	0	٠	0		0	0	0		,	0	0	0	0 (0 0	0		0	0	0 (0 0	0	0	0	11:15	0	0	0	0 0	0	0	0	0	0 (0 0	0	0	0 0		0	0	0	0 0	0	0	0	0	0	0 0		0	0	11:15	0	0	0 0
						0		0	0	0		•	0	0	0					٠	0			0	0		11:30	0	0	0	0 0	0	0		٥	0 (0	0				0	0	0 0				0	0	0 0		0	0	11:30	0	0	0 0
0	0	0	0	0	0	0	, (0	0	0	0	٥	U	U	U	0 (0 0	0	0	0	0	0 (0 0	0	0	0		U	U	U	0 0	U	0	Ů	0	0 (0	0			U		0	0 0			U	U	0	0 0	U					U	0 0
0	0	0	0	0	0	0) (0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0 (0 0	0	0	0	11:45	0	0	0	0 0	0	0	0	0	0 (0 0	0	0	0 0	0	0	1	0	0 0	1	1	0	0	0	0 0	0	0	0		-		1 0
0		0	0	0	0	0) (0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0 (0 0	0	0	0	н/тот	-	0	0	0 0	0	0	0	- 2	0 (0 0	0	0	0 0	0	0	1	0	0 0	1	1	0	0	0	0 0	0	0	200	н/тот	-		
											1								2000							3975								0.25						2.89	100						25.00							383	12:00			
					334						3								1000															7.0						1.31	35						1805	1						S. A.	12:15			
0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	12:30	0	0	0	0 0	0	0	0	0	0 (0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	12:30	0	0	0 0
0	0	1	0	1	2	0) (0	0	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	12:45	0	0	0	0 0	0	0	0	0	0 (0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	12:45	0	0	0 0
0	0	1	0	1	2	0) (0	0	0	0	0	0	0	1	0 0	0 0	1	1	0	0	0 (0 0	0	0	0	н/тот	0	0	0	0 0	0	0	0	0	0 0	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	1	0 0	0	1	1	н/тот	0	0	1 0

WN ROAD TRAFFIC COUNTS **CLASSIFIED JUNCTION TURNING COUNTS**

MARCH 2022 MONKSTOWN ROAD TRAFFIC COUNTS TRA/22/068 MANUAL CLASSIFIED JUNCTION TURNING COUNTS

MARCH 2022 MONKSTOWN ROAL TRA/22/068 MANUAL CLASSIFIED

01

DATE: 8th March 2022 SITE:

01

DATE: 8th March 2022 SITE:

01

Monkstown Road/Albany Avenue/Drayton Close/Dalguise House

DAY:

Tuesday LOCATION:

Monkstown Road/Albany Avenue/Drayton Close/Dalguise House

DAY:

Tuesday LOCATION: Monks

MOVEM	EN1	9					M	OVE	MEN	NT 1	0						MOV	/EM	ENT	11					М	OVE	MEN	T 12							мо	VEM	IENT	13				ı	моч	EME	NT 14	4				М	OVEN	MEN	T 15				1	MOV	EMEN	NT 16	6					N	IOVE	MEN
CL CAR L	LGV	HGV	BUS	тот	PCU	PCL	MC	L CA	R LG	V H	GV E	BUS	тот	PCI	U PC	CL M	ICL C	CAR	LGV	HGV	BUS	тот	PCL	PCL	MCL	. CAF	R LG	/ HG	V BU	т то	T PC	U	TIME	PCL	MCL	CAR	LGV	HGV E	US TO	OT P	CU F	CL M	ICL C	AR LG	SV HO	GV BU	s to	T PC	U PCL	L MCL	CAR	LGV	HGV	BUS	тот	PCU	PCL N	ICL C	AR LG	V HG	V BU	s тот	PCU	TIME	PC	CL MC	CL CA	R LG
0 0	0	0	0	0	0	0	0	0	0		0	0	0	0	c	0	0	0	0	0	0	Ó	0	0	0	0	0	0	0	0	0	,	13:00	0	0	0	0	0	0 (0	0	0	0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	13:00	0	0 0	1	0
0 0	0	0	0	0	0	0	0	0	C)	0	0	0	0	c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	13:15	0	0	0	0	0	0 (0	0	0	0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	13:15	0	0 0	0	0
0 1	0	0	0	1	1	0	0	0	C)	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	13:30	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	13:30	0	0 0	0	0
0 0	1	0	0	1	1	0	0	0	C)	0	0	0	0	c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	13:45	0	0	0	0	0	0 (0	0	0	0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	13:45	0	0 0	0	0
0 1	1	0	0	2	2	0	0	0	c)	0	0	0	0	c	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	н/тот	0	0	0	0	0	0 (0	0	0	0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	н/то	T o	0 0	1	0
0 0	0	0	0	0	0	0	0	0	0	,	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	14:00	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	14:00	0	0 0	0	0
0 0	0	0	0	0	0	0	0	0	C)	0	0	0	0	c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	14:15	0	0	0	0	0	0 (0	0	0	0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	14:15	0	0 0	0	0
0 0	0	0	0	0	0	0	0	0	c	,	0	0	0	0	c	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	14:30	0	0	0	0	0	0 (0	0	0	0	1 0	0 0	0 0	1	1	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	14:30	0	0	0	0
0 0	0	0	0	0	0	0	0	0	0)	0	0	0	0	C	0 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	14:45	0	0	0	0	0	0 (0	0	0	0	1 1	1 0	0 0	2	2	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	14:45	0	0 0	0	1
0 0	0	0	0	0	0	0	0	0	0	,	0	0	0	0	c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	н/тот	0	0	0	0	0	0 (0	0	0	0	2 1	1 0	0 0	3	3	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	н/то	T o	0	0	1
0 0	0	0	0	0	0	0	0	0	0	,	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	15:00	0	0	0	0	0	0 0	0	0	0	0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	15:00	0	0	1	0
0 0	0	0	0	0	0	0	0	0	0		0	0	0	0	c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	,	15:15	0	0	0	0	0	0 (0	0	0	0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	15:15	0	0	1	0
0 0	0	0	0	0	0	0	0	0	c	,	0	0	0	0	c	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	15:30	0	0	0	0	0	0 (0	0	0	0	o 2	2 0	0 0	2	2	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	15:30	0	0 0	0	0
0 0	0	0	0	0	0	0	0	0	C	1	0	0	0	0	c	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	15:45	0	0	0	0	0	0 (0	0	0	0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	15:45	0	0	0	0
0 0	0	0	0	0	0	0	0	0	C		0	0	0	0	c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0) I	н/тот	0	0	0	0	0	0 (0	0	0	0	0 2	2 0	0 0	2	2	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	н/то	T o	0 0	2	0
0 0	0	0	0	0	0	0	0	0	C	,	0	0	0	0	c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	16:00	0	0	0	0	0	0 (0	0	0	0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	16:00	0	0	1	0
0 0	1	0	0	1	1	0	0	0	o	,	0	0	0	0	c	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	16:15	0	0	0	0	0	0 (0	0	0	0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	16:15	0	0	0	0
0 0	1	0	0	1	1	0	0	0	0	,	0	0	0	0	c	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	16:30	0	0	0	0	0	0 (0	0	0	0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	16:30	0	0	1	0
0 0	0	0	0	0	0	0	0	0	0	,	0	0	0	0	c	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	16:45	0	0	0	0	0	0 (0	0	0	0	1 0	0 0	0 0	1	1	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	16:45	0	0	0	0
0 0	2	0	0	2	2	0	0	0	0		o	0	0	0	c) (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0) I	н/тот	0	0	0	0	0	0 (0	0	0	0	1 0	0 0	0 0	1	1	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	н/то	T o	0	2	0
0 0	0	0	0	0	0	0	0	0	o		0	0	0	0	c	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	17:00	0	0	0	0	0	0 0	0	0	0	0	0 0	0 0	0 0	0	0	0	0	o	0	0	0	0	0	0	0 (0 0	0	0	0	0	17:00	0	0	0	0
0 0	0	0	0	0	0	0	0	0	0		0	0	0	0	c	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	17:15	0	0	0	0	0	0 0	,	0	0	0	1 0	0 0	0 0	1	1	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	17:15	0	0 0	1	0
0 0	0	0	0	0	0	0	0	0	0		0	0	0	0	c	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	17:30	0	0	0	0	0	0 (0	0	0	0 (0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	17:30	0	0	1	0
0 0	0	0	0	0	0	0	0	0	0		0	0	0	0	c	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	17:45	0	0	0	0	0	0 (0	0	0	0 (0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	1 0	0	0	1	1	17:45	0	0 0	0	0
0 0	0	0	0	0	0	0	0	0	0		0	0	0	0	c	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		н/тот	0	0	0	0	0	0 (0	0	0	1 0	0 0	0 0	1	1	0	0	0	o	0	0							0	1	1	н/то	T o	0	2	0
0 1	0	0	0	1	1	0	0	0	o		0																						18:00																												0	0	0	18:00	0	0	0	0
0 0	0	0	0	0	0	0	0	0	0		0	0	0	0	c	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	,	18:15	0	0	0	0	0	0 0	0	0	0	0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	18:15	0	0	0	0
0 0	0	0	0	0	0	0	0	0	0	,	0	0	0	0	c	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	,	18:30	0	0	0	0	0	0 0	0	0	0	0) (0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	18:30	0	0	0	0
0 1	0	0	0	1	1	0	0	0	o		0	0	0	0	C	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		18:45	0	0	0	0	0	0 0	,	0	0	0	1 0	0 0	0 0	1	1	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	18:45	0	0 0	0	0
0 2	0	0	0	2	2	0	0	0	0		0	0	0	0	C	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		н/тот	0	0	0	0	0	0 (0	0	0	0	2 0	0 0	0 0	2	2	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	н/то	T o	0 0	0	0
												_		100								_	100	-						_	200			_				_	_	-	100							-	_					_	-	-						_	-	Р/ТО	_			

) TRAFFIC COUNTS) JUNCTION TURNING COUNTS

MARCH 2022 TRA/22/068

DATE: 8th March 2022

town Road/Albany Avenue/Drayton Close/Dalguise House

DAY:

Tuesday

17					М	OVEN	/ENT	Г 18					MC	OVEN	MENT	Г 19					MC	VEN	/ENT	20			
HGV	BUS	тот	PCU	PCL	MCL	CAR	LGV	HGV	BUS	тот	PCU	PCL	MCL	CAR	LGV	HGV	BUS	тот	PCU	PCL	MCL	CAR	LGV	HGV	BUS	тот	PCI
0	0	1	1	0	0	0	0	0	0	0	0	2	1	72	7	0	1	83	82	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	4	1	94	9	0	2	110	108	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	1	1	0	1	115	7	1	1	125	126	0	0	1	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	2	0	137	15	2	2	158	160	0	0	2	0	0	0	2	2
0	0	1	1	0	0	0	1	0	0	1	1	8	3	418	38	3	6	476	477	0	0	3	0	0	0	3	3
0	0	0	0	0	0	1	1	0	0	2	2	11	3	134	11	1	3	163	156	1	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0	0	0	11	1	93	6	1	1	113	106	0	0	1	0	0	1	2	3
0	0	0	0	0	0	0	0	0	0	0	0	16	1	92	10	2	2	123	114	0	0	0	1	0	0	1	1
0	0	1	1	0	0	0	0	0	0	0	0	6	2	85	3	3	1	100	98	0	0	2	0	0	0	2	2
0	0	1	1	0	0	1	1	0	0	2	2	44	7	404	30	7	7	499	474	1	0	3	1	0	1	6	6
0	0	0	0	0	0	0	0	0	0	0	0	6	0	97	8	1	2	114	112	0	0	1	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	3	0	98	13	2	3	119	122	0	0	1	0	0	0	1	1
0	0	1	1	0	0	0	0	0	0	0	0	3	0	96	6	1	4	110	113	0	0	1	0	0	0	1	1
0	0	1	1	0	0	0	0	0	0	0	0	2	0	88	11	1	2	104	105	0	0	0	0	0	0	0	0
0	0	2	2	0	0	0	0	0	0	0	0	14	0	379	38	5	11	447	452	0	0	3	0	0	0	3	3
0	0	1	1	0	0	0	0	0	0	0	0	2	2	75	12	1	2	94	94	0	0	3	0	0	0	3	3
1	0	1	2	0	0	0	1	0	0	1	1	0	2	73	11	1	1	88	89	0	0	2	0	0	0	2	2
0	0	0	0	0	0	0	1	0	0	1	1	1	1	82	7	7	1	99	106	0	0	0	1	0	0	1	1
0	0	2	1	0	0	0	0	0	0	0	0	1	0	85	13	1	1	101	102	0	0	1	0	0	0	1	1
1	0	4	4	0	0	0	2	0	0	2	2	4	5	315	43	10	5	382	391	0	0	6	1	0	0	7	7
0	0	0	0	0	0	0	0	0	0	0	0	0	1	68	10	5	2	86	92	0	0	1	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	103	7	3	1	114	118	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	3	1	67	7	6	2	86	91	0	0	1	0	0	0	1	1
0	0	1	1	0	0	0	0	0	0	0	0	0	1	86	15	1	1	104	105	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	0	0	0	3	3	324	39	15	6	390	407	0	0	2	0	0	0	2	2
0	0	1	1	0	0	0	0	0	0	0	0	1	1	102	16	1	1	122	123	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	1	96	7	3	1	109	112	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	1	2	1	0	83	13	3	1	101	104	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	2	119	11	4	0	137	139	0	0	5	0	0	0	5	5
0	0	1	1	0	0	0	0	1	0	1	2	4	4	400	47	11	3	469	477	0	0	5	0	0	0	5	5

PCU's Through Junction
147
180
197
287
810
274
278
283
264
1099
292
248
248
225
1013
218
224
231
235
907
209
247
219
228
903
261
251
251
266
1028

TRAFFIC COUNTS JUNCTION TURNING COUNTS

MARCH 2022 TRA/22/068

DATE: 8th March 2022

town Road/Albany Avenue/Drayton Close/Dalguise House

DAY:

Tuesday

17					МС	VEN	IENT	18					M	OVEN	IENT	19					M	OVEN	MENT	20			
HGV	BUS	тот	PCU	PCL	MCL	CAR	LGV	HGV	BUS	тот	PCU	PCL	MCL	CAR	LGV	HGV	BUS	тот	PCU	PCL	MCL	CAR	LGV	HGV	BUS	тот	PCI
0	0	1	1	0	0	0	0	0	0	0	0	1	1	98	11	2	3	116	120	0	0	0	1	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	0	77	19	2	1	100	102	0	0	1	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	2	92	13	2	2	111	114	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	104	8	2	1	115	118	0	0	2	0	0	0	2	2
0	0	1	1	0	0	0	0	0	0	0	0	2	3	371	51	8	7	442	454	0	0	3	1	0	0	4	4
0	0	0	0	0	0	0	0	0	0	0	0	3	1	118	15	2	2	141	142	0	0	1	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	2	2	85	11	4	2	106	109	0	0	1	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	2	86	16	1	1	107	107	0	0	4	0	0	0	4	4
0	0	1	1	0	0	0	0	0	0	0	0	1	0	87	5	1	1	95	96	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	0	0	0	7	5	376	47	8	6	449	454	0	0	6	0	0	0	6	6
0	0	1	1	0	0	0	0	0	0	0	0	3	1	95	8	2	3	112	114	0	0	1	0	0	0	1	1
0	0	1	1	0	0	0	0	0	0	0	0	2	2	92	11	1	2	110	110	0	0	2	0	0	0	2	2
0	0	0	0	0	0	0	0	0	0	0	0	3	1	92	9	1	1	107	106	0	0	3	0	0	0	3	3
0	0	0	0	0	0	0	0	0	0	0	0	1	1	102	12	0	0	116	115	0	0	0	0	0	0	0	0
0	0	2	2	0	0	0	0	0	0	0	0	9	5	381	40	4	6	445	445	0	0	6	0	0	0	6	6
0	0	1	1	0	0	0	0	0	0	0	0	1	0	92	13	1	2	109	111	0	0	3	0	0	0	3	3
0	0	0	0	0	0	0	0	0	0	0	0	1	1	93	11	0	0	106	105	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	0	0	0	3	0	93	21	0	2	119	119	0	0	1	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	2	2	99	10	0	1	114	112	0	0	2	0	0	0	2	2
0	0	2	2	0	0	0	0	0	0	0	0	7	3	377	55	1	5	448	447	0	0	6	0	0	0	6	6
0	0	0	0	0	0	0	0	0	0	0	0	2	2	120	8	0	1	133	131	0	0	2	0	0	0	2	2
0	0	1	1	0	0	0	0	0	0	0	0	3	2	104	9	0	3	121	120	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	0	0	0	2	1	102	9	0	1	115	114	0	0	1	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	4	1	88	3	1	1	98	96	0	0	1	0	0	0	1	1
0	0	2	2	0	0	0	0	0	0	0	0	11	6	414	29	1	6	467	462	0	0	4	0	0	0	4	4
0	0	0	0	0	0	0	0	0	0	0	0	6	4	97	4	3	0	114	110	0	0	1	0	0	0	1	1
0	0	0	0	0	0	1	0	0	0	1	1	0	0	101	9	1	3	114	118	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	2	5	71	8	0	2	88	85	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	4	2	88	11	0	1	106	103	0	0	1	0	0	0	1	1
0	0	0	0	0	0	1	0	0	0	1	1	12	11	357	32	4	6	422	416	0	0	2	0	0	0	2	2
1	0	18	18	0	0	2	4	1	0	7	8	125	55	4516	489	77	74	5336	5354	1	0	49	3	0	1	54	54

PCU's Through Junction
260
268
246
252
1026
267
267
312
235
1082
271
265
277
274
1087
266
261
284
287
1098
281
275
295
244
1095
253
274
246
241
1014
12163

MONKSTOWN ROAD TRAFFIC COUNTS MANUAL CLASSIFIED JUNCTION TURNING COUNTS

MARCH 2022 MONKSTOWN ROAD TRAFFIC COUNTS TRA/22/068 MANUAL CLASSIFIED JUNCTION TURNING COUNTS

MARCH 2022 MONKSTO TRA/22/068 MANUAL (

SITE:

02

DATE: 8th March 2022 SITE:

02

DATE: 8th March 2022 SITE:

LOCATION:

Monkstown Road/Brighton Avenue/Purbeck Avenue/No. 75

DAY:

Tuesday LOCATION:

Monkstown Road/Brighton Avenue/Purbeck Avenue/No. 75

DAY:

Tuesday LOCATION:

		М	OVE	MEI	NT 1		T			N	IOVE	EMEN	NT 2						MO	/EME	ENT :	3				N	vov	EME	NT 4						M	IOVE	MENT	Г 5				N	IOVE	MENT	Г 6				М	OVE	MENT	7				N	NOVE	MENT	Г8			Vi	
TIME	PCL	MCL	CAR	R LG	V HG	V BU	s TO	PC	U PC	MC	L CAI	R LG	V HG	V BU	US TO	OT PO	CU F	PCL N	ICL C	AR L	GV H	GV B	US TO	T PO	CU PC	L MC	CL CA	R LG	V HG	V BU	s TO	PCU	TIME	PC	L MCI	L CAR	LGV	HGV	BUS T	от Р	CU PC	L MC	L CAR	LGV	HGV	BUS	тот Р	CU PC	L MCL	CAR	LGV	HGV B	BUS 1	тот Р	CU P	CL MC	L CAR	LGV	HGV	BUS T	OT PC	u T	ГІМЕ
7:00	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0 0		0 0	0	0	0	0	0	0	0	7:00	0	0	0	0	0	0	0	0 1	0	39	12	3	3	58	63 0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0 0	7	7:00
7:15	0	0	1	0	0	0	1	1	0	0	0	0	0		0	0	0	0	0	0	0	0	0 0		0 0	0	0	0	0	0	0	0	7:15	0	0	0	0	0	0	0	0 1	1	55	12	2	0	71	2 0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0 0	1	7:15
7:30	0	0	0	0	1	0	1	2	0	0	0	0	0		0	0	0	0	0	0	0	0	0 0		0 0	0	0	0	0	0	0	0	7:30	0	0	0	0	0	0	0	0 1	0	44	13	2	2	62	55 0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0 0	1	7:30
7:45	0	0	0	1	0	0	1	1	0	0	0	0	0	0	0	0 (0	0	0	0	0	0	0 0		0 0	0	4	0	0	0	4	4	7:45	0	0	0	0	0	0	0	0 3	0	97	13	1	3	117 1	19 0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0 0	7	7:45
1/ТОТ	0	0	1	1	1	0	3	4	0	0	0	0	0		0	0	0	0	0	0	0	0	0 0		0 0	0	4	0	0	0	4	4	н/то	Г о	0	0	0	0	0	0	0 6	1	235	50	8	8	308 3	19 0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0 0	H,	/тот
8:00	0	0	2	0	0	0	2	2	0	0	0	0	0		0	0	0	0	0	0	0	0	0 0		0 0	0	0	1	0	0	1	1	8:00	0	0	0	0	0	0	0	0 6	0	82	13	4	4	109 1	12 0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0 0		8:00
8:15	0	0	1	0	0	0	1	1	0	0	0	0	0) (0	0 (0	0	0	0	0	0	0 0		0 0	0	3	1	0	0	4	4	8:15	0	0	0	0	0	0	0	0 5	3	135	16	2	2	163 1	61 0	0	0	0	0	0	0	0 (0 0	1	0	0	0	1 1		8:15
8:30	2	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0		0 0	0	0	1	0	0	1	1	8:30	0	0	0	0	0	0	0	0 4	1	150	12	0	2	169 1	67 0	0	1	0	0	0	1	1 (0 0	0	0	0	0	0 0	8	8:30
8:45	0	0	0	1	1	0	2	3	0	0	0	0	0	0	0	0 (0	0	0	0	0	0	0 0		0 0	0	0	0	0	0	0	0	8:45	0	0	0	0	0	0	0	0 6	0	146	8	1	2	163 1	61 0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0 0		8:45
1/ТОТ	2	0	3	1	1	0	7	6	0	0	0	0	0) (0	0 (0	0	0	0	0	0	0 0		0 0	0	3	3	0	0	6	6	н/то	0	0	0	0	0	0	0	0 2	1 4	513	49	7	10	604 6	02 0	0	1	0	0	0	1	1 (0 0	1	0	0	0	1 1	H,	/тот
9:00	1	0	4	0	0	0	5	4	0	0	0	0	0	0	0	0 (0	0	0	0	0	0	0 0		0 0	0	0	0	0	0	0	0	9:00	0	0	0	0	0	0	0	0 4	0	143	20	3	3	173 1	76 0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0 0	ç	9:00
9:15	0	0	3	2	0	0	5	5	1	0	0	0	0		0	1 (0	0	0	0	0	0	0 0		0 0	0	2	0	0	0	2	2	9:15	0	0	1	0	0	0	1	1 3	1	102	7	2	4	119 1	22 0	0	0	1	0	0	1	1 (0 0	0	0	0	0	0 0	ç	9:15
9:30	0	0	1	0	0	0	1	1	0	0	0	0	0		0	0 (0	0	0	0	0	0	0 0		0 0	0	4	0	0	0	4	4	9:30	0	0	0	0	0	0	0	0 0	2	107	15	2	0	126 1	27 0	0	1	0	0	0	1	1 (0 0	0	0	0	0	0 0	ç	9:30
9:45	0	0	1	0	0	0	1	1	0	0	0	0	0		0	0	0	0	0	0	0	0	0 0		0 0	0	2	0	0	0	2	2	9:45	0	0	0	0	0	0	0	0 0	1	87	15	4	3	110 1	16 0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0 0	ç	9:45
I/TOT	1	0	9	2	0	0	12	11	1	0	0	0	0		0	1 (0	0	0	0	0	0	0 0		0 0	0	8	0	0	0	8	8	н/то	г о	0	1	0	0	0	1	1 7	4	439	57	11	10	528 5	41 0	0	1	1	0	0	2	2 (0 0	0	0	0	0 (0 0	H,	/тот
10:00	0	0	3	1	1	0	5	6	0	0	0	0	0		0	0	0	0	0	0	0	0	0 0		0 0	0	1	1	0	0	2	2	10:00	0	0	0	0	0	0	0	0 2	0	94	14	2	0	112 1	12 0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0 0	1	10:00
10:15	0	0	2	2	1	0	5	6	0	0	0	0	0		0	0 (0	0	0	0	0	0	0 0		0 0	0	1	3	0	0	4	4	10:15	0	0	0	0	0	0	0	0 1	0	97	17	4	2	121 1	26 0	0	0	0	1	0	1	2 (0 0	0	0	0	0	0 0	1	10:15
10:30	0	0	6	1	0	0	7	7	0	0	0	0	0	0	0	0 (0	0	0	0	0	0	0 0		0 0	0	3	1	0	0	4	4	10:30	0	0	0	0	0	0	0	0 0	1	92	17	5	2	117 1	23 0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0 0	1	10:30
10:45	0	0	7	0	0	0	7	7	0	0	0	0	0		0	0 (0	0	0	0	0	0	0 0		0 0	0	11	1	0	0	12	12	10:45	0	0	1	0	0	0	1	1 0	3	105	18	1	1	128 1	28 0	0	0	0	0	0	0	0 (0 0	0	0	0	0 (0 0	1	10:45
1/TOT	0	0	18	4	2	0	24	26	0	0	0	0	0	0	0	0 (0	0	0	0	0	0	0 0		0 0	0	16	6	0	0	22	22	н/то	r 0	0	1	0	0	0	1	1 3	4	388	66	12	5	478 4	90 0	0	0	0	1	0	1	2 (0 0	0	0	0	0 (0 0	Н	/тот
11:00	0	0	6	1	0	0	7	7	0	0	0	0	0		0	0	0	0	0	0	0	0	0		0 0	1	4	0	1	0	6	6	11:00	0	0	0	0	0	0	0	0 0	1	93	13	3	0	110 1	12 0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0 0	1	1:00
11:15	0	0	3	2	0	0	5	5	0	0	0	0	0		0	0 (0	0	0	0	0	0	0 0	(0 0	0	5	0	0	0	5	5	11:15	0	0	2	0	0	0	2	2 0	2	93	15	5	2	117 1	23 0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0 0	1	11:15
11:30	0	0	12	2	0	0	14	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0		0 0	0	1	0	0	0	1	1	11:30	0	0	1	0	0	0	1	1 0	0	101	13	4	1	119 1	24 0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0 0	1	11:30
11:45	0	0	3	0	1	0	4	5	0	0	0	0	0	0	0	0 (0	0	0	0	0	0 (0 0	(0 0	0	2	1	0	0	3	3	11:45	0	0	0	0	0	0	0	0 0	4	99	11	4	0	118 1	20 0	0	0	0	0	0	0	0 (0 0	0	0	0	0 (0 0	1	11:45
1/ТОТ	0	0	24	5	1	0	30	31	0	0	0	0	0		0	0 (0	0	0	0	0	0	0 0		0 0	1	12	2 1	1	0	15	15	н/то	r 0	0	3	0	0	0	3	3 0	7	386	52	16	3	464 4	79 0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0 0	H	/тот
12:00	0	0	10	1	1	0	12	13	0	0	0	1	0		0	1 1	1	0	0	0	0	0	0 0		0 0	0	2	2	0	0	4	4	12:00	0	0	1	0	0	0	1	1 0	1	113	14	2	1	131 1	33 0	0	1	0	0	0	1	1 (0 0	1	0	0	0	1 1	1	2:00
12:15	0	0	6	0	0	0	6	6	0	0	0	0	0		0	0 (0	0	0	0	0	0 (0		0 0	0	3	1	0	0	4	4	12:15	0	0	0	0	0	0	0	0 0	3	112	15	1	3	134 1	36 0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0 0	1	2:15
12:30	0	0	5	0	0	0	5	5	0	0	0	0	0	0	0	0 (0	0	0	0 .	0	0 (0		0 0	0	1	4	1	0	6	7	12:30	0	0	0	0	0	0	0	0 0	1	113	16	6	0	136 1	41 0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0 0	1	2:30
12:45	0	0	6	1	0	0	7	7	0	0	0	0	0		0	0 (0	0	0	0	0	0 (0 0		0	0	5	3	0	0	8	8	12:45	0	0	0	0	0	0	0	0 0	0	95	18	2	1	116 1	19 0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0 0	1	2:45
1/ТОТ	0	0	27	2	1	0	30	31	0	0	0	1	0		0	1 1	1	0	0	0	0	0 (0 0	-	0 0	0	11	10	1	0	22	23	н/то	0	0	1	0	0	0	1	1 0	5	433	63	11	5	517 5	30 0	0	1	0	0	0	1	1 1	0 0	1	0	0	0	1 1	н	/тот

MONKSTOWN ROAD TRAFFIC COUNTS MANUAL CLASSIFIED JUNCTION TURNING COUNTS

MARCH 2022 MONKSTOWN ROAD TRAFFIC COUNTS TRA/22/068 MANUAL CLASSIFIED JUNCTION TURNING COUNTS

MARCH 2022 MONKSTO TRA/22/068 MANUAL (

SITE:

02

DATE: 8th March 2022 SITE:

02

DATE: 8th March 2022 SITE:

LOCATION: Monkstown Road/Brighton Avenue/Purbeck Avenue/No. 75

DAY:

Tuesday LOCATION: Monkstown Road/Brighton Avenue/Purbeck Avenue/No. 75

DAY:

Tuesday LOCATION:

	N	мом	/EME	ENT	1				ı	моч	/EME	NT 2	2		STATE OF THE PERSON NAMED IN			мо	VEME	NT 3	3		198		N	IOVE	MEN	T 4						МО	VEME	NT 5					MO	VEME	NT 6				N	OVE	MEN	Т7				M	OVEN	MENT	8				
TIME	PCL MC	CL C	AR LO	GV H	GV B	US T	от Р	U P	CL M	a c	AR LG	GV H	IGV B	BUS 1	тот г	PCU	PCL	MCL (AR L	GV H	GV BU	s TO	T PC	U PCL	. MC	L CAR	LGV	HGV	BUS	тот	PCU	TIME	PCL	MCL	CAR L	GV HG	V BUS	s тот	PCU	PCL	MCL C	CAR LG	GV HG	V BUS	тот	PCU F	PCL MC	L CAR	R LGV	HGV I	BUS T	от Р	CU PC	CL MCI	CAR	LGV I	HGV B	us to	OT PCU	TIF	ME P
13:00	0 0) :	3 (0	0	0	3	3	0 0	0 (0 0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	1	2	1	0	0	4	3	13:00	0	0	0	0 0	0	0	0	1	2 1	106 1	19 3	3	134	138	0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	13:	00
13:15	0 0) (6	2	0	0	8 8	8	0 0) (0 0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	8	1	0	0	9	9	13:15	0	0	1	0 0	0	1	1	1	1 1	132 1	18 3	2	157	161	0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0 0	13:	15
13:30	0 0) 4	4	1	0	0	5	5	0 0	0 (0 0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	2	1	0	0	3	3	13:30	0	0	1	0 0	0	1	1	0	1 1	108 1	10 5	0	124	128	0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0 0	13:	30
13:45	0 0) ;	3	2	0	0	5 !	5	0 0	0 (0 0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0	3	0	0	3	3	13:45	0	0	0	0 0	0	0	0	0	1 1	108 1	13 1	3	126	129	0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0 0	13:	45
1/ТОТ	0 0) 1	16	5	0	0 2	1 2	1	0 0	0 (0 0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	1	12	6	0	0	19	18	н/тот	0	0	2	0 0	0	2	2	2	5 4	454 6	50 12	2 8	541	556	0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0 0	Н/Т	тот
14:00	0 0) ,	4	1	0	0	5	5	0 0	0 (0 0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	1	1	2	0	0	4	3	14:00	0	0	0	0 0	0	0	0	0	2 1	107 1	11 2	0	122	123	0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0 0	14:	00
14:15	0 0)	7 (0	1	0	8 9	9	0 0	0 (0 0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0	0	0	0	0	0	14:15	0	0	0	0 0	0	0	0	15	3 1	134 1	11 0	3	166	155	0 0	1	0	0	0	1	1 (0	0	0	0	0 0	0 0	14:	15
14:30	0 0) :	3 (0	0	0	3	3	0 0	0 (0 0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	2	0	0	0	2	2	14:30	0	0	3	0 0	0	3	3	5	1 1	173 1	12 2	1	194	192	0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0 0	14:	30
14:45	1 0) ;	7	0	0	0	8	,	0 0	0 (0 0	0 (0	0	0	0	0	0	0	0 (0 0	0	0	0	0	4	1	0	0	5	5	14:45	0	0	0	0 0	0	0	0	2	2 1	112 1	13 1	2	132	132	0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0 0	14:	45
1/ТОТ	1 0) 2	21	1	1	0 2	24 2	4	0 0	0 (0 0	0 1	0	0	0	0	0	0	0	0 (0 0	0	0	0	1	7	3	0	0	11	10	н/тот	0	0	3	0 0	0	3	3	22	8 5	526 4	17 5	6	614	603	0 0	1	0	0	0	1	1 (0	0	0	0	0 0	0	Н/Т	от
15:00	0 0) 4	4	0	0	0	4	4	0 0	0 (0 0	0 (0	0	0	0	0	0	0	0 (0 0	0	0	0	0	4	2	0	0	6	6	15:00	0	0	0	0 0	0	0	0	2	1 1	126 1	10 2	5	146	151	0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0 0	15:	00
15:15	0 0) ;	3 (0	0	0	3	3	0 0	0 (0 0	0 (0	0	0	0	0	0	0	0 (0 0	0	0	0	0	5	1	0	0	6	6	15:15	0	0	0	0 0	0	0	0	4	1 1	135 1	0 0	2	152	150	0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	15:	15 (
15:30	0 0) 4	4	0	0	0	4	4	0 0	0 (0 0	0 (0	0	0	0	0	0	0	0 (0 0	0	0	0	0	3	0	0	0	3	3	15:30	0	0	0	0 0	0	0	0	3	3 1	142 1	10 2	3	163	164	0 0	0	0	0	0	0	0 0	0	1	0	0	0 1	1	15:	30
15:45	0 0) :	3 (0	0	0	3	3	0 0	0 (0 0	0 (0	0	0	0	0	0	0	0 (0 0	0	0	0	0	2	0	0	0	2	2	15:45	0	0	0	0 0	0	0	0	4	1 1	139 1	1 3	0	158	157	0 0	1	0	0	0	1	1 (0	0	0	0	0 0	0	15:	45
1/ТОТ	0 0) 1	14	0	0	0	4 1	4	0 0	0 (0 0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	14	3	0	0	17	17	н/тот	0	0	0	0 0	0	0	0	13	6 5	542 4	11 7	10	619	622	0 0	1	0	0	0	1	1 0	0	1	0	0	0 1	1	н/т	тот
16:00	0 0) ;	7	0	0	0	7	,	0 0) (0 0	0 1	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	6	1	0	0	7	7	16:00	0	0	0	0 0	0	0	0	2	2 1	133 8	8 0	3	148	148	0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	16:	00 0
16:15	0 0) 8	8	1	0	0	9 9	,	0 0	0 (0 0	0 (0	0	0	0	0	0	0	0 (0 0	0	0	0	0	2	0	0	0	2	2	16:15	0	0	0	0 0	0	0	0	6	2 1	136 8	8 1	2	155	152	0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	16:	15
16:30	0 0) (6	2	0	0	8 8	3	0 0) (0 0	0 (0	0	0	0	0	0	0	0 (0 0	0	0	0	0	3	1	0	0	4	4	16:30	0	0	0	0 0	0	0	0	1	1 1	137 1	6 2	1	158	160	0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	16:	30
16:45	0 0) (6 (0	0	0	6	5	0 0) (0 0	0 (0	0	0	0	0	0	0	0 (0 0	0	0	0	0	2	0	0	0	2	2	16:45	0	0	2	0 0	0	2	2	2	1 1	148 1	15 0	1	167	166	0 0	1	0	0	0	1	1 (0	0	0	0	0 0	0	16:	45 (
1/ТОТ	0 0) 2	27	3	0	0 3	0 3	0	0 0) (0 0	0 (0	0	0	0	0	0	0	0 (0	0	0	0	0	13	2	0	0	15	15	н/тот	0	0	2	0 0	0	2	2	11	6 5	554 4	17 3	7	628	626	0 0	1	0	0	0	1	1 0	0	0	0	0	0 0	0	Н/Т	от
17:00	0 0) :	3 (0	0	0	3	3	0 0	0 (0 0	0 (0	0	0	0	0	0	0	0 (0 0	0	0	0	0	2	0	0	0	2	2	17:00	0	0	1	0 0	0	1	1	5	5 1	133 9	9 0	1	153	147	0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	17:	00 0
17:15	0 0) (0	1 1	0	0	1	1	0 0) (0 0	0 (0	0	0	0	0	0	0	0 (0	0	0	0	0	6	0	0	0	6	6	17:15	0	0	0	0 0	0	0	0	3	3 1	141 7	7 0	1	155	152	0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	17:	15
17:30	0 0) ;	2	1	0	0	3	3	0 0	0 (0 0	0 (0	0	0	0	0	0	0	0 (0	0	0	0	0	10	1	0	0	11	11	17:30	0	0	1	0 0	0	1	1	5	2 1	161 6	6 1	2	177	175	0 0	1	0	0	0	1	1 0	0	0	0	0	0 0	0	17:	30
17:45	0 0) :	3 (0 1	0	0	3	3	0 0) (0 0	0 (0	0	0	0	0	0	0	0 (0	0	0	0	0	4	0	0	0	4	4	17:45	0	0	0	0 0	0	0	0	0	2 1	137 3	3 1	0	143	143	0 0	1	0	0	0	1	1 0	0	0	0	0	0 0	0	17:	45
і/тот	0 0) 8	8	2	0	0	0 1	0	0 0) (0 0	0 (0	0	0	0	0	0	0	0 0	0 0	0	0	0	0	22	1	0	0	23	23	н/тот	0	0	2	0 0	0	2	2	13	12 5	572 2	5 2	4	628	616	0 0	2	0	0	0	2	2 0	0	0	0	0	0 0	0	н/т	от
18:00	0 0) !	5	1	0	0	6	5	0 0	0 (0 0	0 (0	0	0	0	0	0	0	0 (0	0	0	0	0	5	0	0	0	5	5	18:00	0	0	0	0 0	0	0	0	6	2 1	127 5	5 0	1	141	136	0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	18:	00
18:15	0 0) 4	4 (0	0	0	4		0 0	0 0	0 0	0 (0	0	0	0	0	0	0	0 (0	0	0	0	0	8	0	0	0	8	8	18:15	0	0	0	0 0	0	0	0	6	4 1	137 5	5 0	3	155	151	0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	18:	15
18:30	0 0) 4	4	2	0	0	6	5	0 0	0 0	0 0	0 (0	0	0	0	0	0	0	0 (0	0	0	0	1	3	1	0	0	5	4	18:30	0	0	0	0 0	0	0	0	2	1 1	152 5	5 0	0	160	158	0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	18:	30 (
18:45	0 1	1 7	7	1	0	0	9 8	3	0 0) (0 0	0 (0	0	0	0	0	0	0	0 (0 0	0	0	1	0	5	4	0	0	10	9	18:45	0	0	0	0 0	0	0	0	2	2 1	120 4	4 2	1	131	131	0 0	1	0	0	0	1	1 0	0	1	0	0	0 1	1	18:	45
/тот	0 1	2	20	4	0	0 2	25 2	4	0 0) (0 0	0 (0	0	0	0	0	0	0	0 (0	0	0	1	1	21	5	0	0	28	27	н/тот	0	0	0	0 0	0	0	0	16	9 5	536 1	9 2	5	587	576	0 0	1	0	0	0	1	1 0	0	1	0	0	0 1	1	н/т	от
утот	4 1	18	88 3	30	7	0 2	30 23	33	1 0) (0 1	1 (0	0	2	1	0	0	0	0 0	0	0	0	1	4	143	40	2	0	190	189	Р/ТОТ	0	0	15	0 0	0	15	15	114	71 5	578 57	76 96	81	6516	5559	0 0	9	1	1	0	11 1	12 0	0	4	0	0 (0 4	4	P/T	от

WN ROAD TRAFFIC COUNTS **CLASSIFIED JUNCTION TURNING COUNTS**

MARCH 2022 MONKSTOWN ROAD TRAFFIC COUNTS TRA/22/068 MANUAL CLASSIFIED JUNCTION TURNING COUNTS

MARCH 2022 MONKSTOWN ROAL TRA/22/068 MANUAL CLASSIFIED

02

DATE: 8th March 2022 SITE:

02

DATE: 8th March 2022 SITE:

02

Monkstown Road/Brighton Avenue/Purbeck Avenue/No. 75

DAY:

Tuesday LOCATION:

Monkstown Road/Brighton Avenue/Purbeck Avenue/No. 75

DAY:

Tuesday LOCATION: Monks

MOVEN	ΛEN	IT 9	(N	OVE	MEI	NT 1	0		0.100.54.5mg			МС	OVEN	MEN	T 11					M	OVE	MEN	NT 12	2						мо	VEMI	ENT	13				1	MOVE	MEN	NT 14	1				М	OVE	MEN	T 15					М	OVE	MEN	T 16						M	NOVE	MEN
MCL CAR	LGV	HG	V BU	s to	ТРС	U PC	L MC	L CA	R LG	V H	GV B	US T	тот	PCU	PCL	MCL	CAR	LGV	HGV	V BUS	тот	PCU	PCL	MCI	CAR	R LG	V HG	V B	US TO	T PO	cu	TIME	PCL	MCL	CAR I	LGV I	HGV E	US TO	T P	CU P	CL M	CL CA	R LG	V HG	V BUS	тот	T PCI	U PCI	L MCI	CAR	LGV	HGV	BUS	то	PCU	PC	L MC	L CAR	LG	/ HG	/ BUS	тот	PCU	TIM	E P	CL MC	CL CA	R LG
0 0	0	0	0	0	0	0	0	C	()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0 0) (0	7:00	0	0	0	0	0	0 0		0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7:00)	0 0	0	0
0 0	0	0	0	0	0	0	0	C	()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0 () (0	7:15	0	0	0	0	0	0 (0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7:15	5	0 0	0	0
0 0	0	0	0	0	0	0	0	C	()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0 0) (0	7:30	0	0	0	0	0	0 0		0	0	0 3	0	0	0	3	3	0	0	0	o	0	0	0	0	0	0	0	0	0	0	0	0	7:30)	0 0	0	0
0 0	0	0	0	0	0	0	0	0	()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0) 0		0 0		0	7:45	0	0	0	0	0	0 (0 (0	0 1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7:45	5	0 0	0	0
0 0	0	0	0	0	0	0	0	0	()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0 0) (0	н/тот	0	0	0	0	0	0 0		0	0	0 4	0	0	0	4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	н/тс	т	0 0	0	0
0 0	0	0	0	0	0	0	0	0	()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0 0) (0	8:00	0	0	0	0	0	0 (0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8:00)	0 0	0	0
0 0	0	0	0	0	0	0	0	0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0) 0		0 0) (0	8:15	0	0	0	0	0	0 0		0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8:15	5	0 0	0 0	0
0 0	0	0	0	0	0	0	0	0	() (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0 0		0	8:30	0	0	0	0	0	0 0		0	0	0 1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8:30)	0 0	0	0
0 0	0	0	0	0	0	0	0	0) (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0 0		0	8:45	0	0	0	0	0	0 0		0 (0	0 1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8:45	5	0 0	0 0	0
0 0	0	0	0	0	0	0	0	0) (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0		0 0) (0	н/тот	0	0	0	0	0	0 0		0	0	0 2	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	н/тс	т	0 0	0 0	0
0 0	0	0	0	0	0	0	0	0) (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0) 0		0 (0	9:00	0	0	0	0	0	0 (0 (0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1		9:00		0 0	0	1
0 0	0	0	0	0		0	0				1	0	0	0	0	0	1	0	0	0	1		0	0	n	0					0	9:15	0	0	0	0	0	0			0	0 0			0	0	0	0	0	0	1	0	0	1		0	0	0	0	0	0		,	9:15		0 0		
0 0	0	0	0	0		,	0				1	0	0	0	0	0		0	0	0	0		0	0	0	0					0	9:30	0	0	0	0	0				0	0 0			0	0	0		0	0		0	0			0	0	0	0	0	0	0	۰	9:30		0 0		0
0 0	0	0	0	0		0	0				1	0	0		0	٥	0	0	0	0	0	0	0	0	0	0					0	9:45	0	0	0	0	0				0	0 0			0	0	0		0	0	0	0	0	0	۰	0	0	0	0	0	0	0		9:45		0 0		0
0 0	0	-	0	-		0	0	-				0	0		0	0		-	0	0			0	0	0		, 0		0 0			н/тот	0	0	0	0	0				0	0 0	0		0	0	0	0	0	0		0	0			0		-		0	0	-		H/TC		0 0		- 0
0 0	0	0	0	0		0	0	0		, ,			0	-	0	0	-	0	0	0	-		0	0	0	0	, 0		0 (0		0	0	0	0	0	0 (100	0 (0	0 0	0		0	0	0		0	0	1	0	0	1		0	0	0	1	0	0	1				0 0	0	1
0 0	0	0	0	0	0	0	0	0) (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0) 0		0 ('	0	10:00	0	0	0	0	0	0 0		0 (0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10:0		0 0	0	0
0 2	0	0	0	2	2	0	0	0) (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0 0		0	10:15	0	0	0	0	0	0 0		0 (0	0 1	0	1	0	2	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10:1:		0 0) 0	0
0 0	0	0	0	0	0	0	0	0	() (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0 ()	0	10:30	0	0	0	0	0	0 0		0 (0	0 0	0	1	0	1	2	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	10:30		0 0	1	0
0 0	0	0	0	0	0	0	0	0	() ()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0 () (0	10:45	0	0	0	0	0	0 (0 (0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	10:4		1 0	0	0
0 2	0	0	0	2	2	0	0	0	0) (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0 () (0	н/тот	0	0	0	0	0	0 (0 (0	0 1	0	2	0	3	5	0	0	0	0	0	0	0	0	1	0	1	0	0	0	2	1	Н/ТС	T	1 0	1	0
0 0	0	0	0	0	0	0	0	0	0) (0	0	0	0	0	0	0	1	0	0	1	1	0	0	0	0	0	(0 0) (0	11:00	0	0	0	0	0	0 0		0 (0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11:00	0 (0 0	0	0
0 1	0	0	0	1	1	0	0	0	C) (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(0 0	0	0	11:15	0	0	0	0	0	0 0		0 (0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11:1:	5 (0 0	0	0
0 1	0	0	0	1	1	0	0	0	C) (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(0 0) (0	11:30	0	0	0	0	0	0 0		0 (0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	11:30	0 (0 0	1	0
0 0	0	0	0	0	0	0	0	0	0) (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(0 0) (0	11:45	0	0	0	0	0	0 0		0 (0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11:4	5 (0 0	0	0
0 2	0	0	0	2	2	0	0	0	0) ()	0	0	0	0	0	0	1	0	0	1	1	0	0	0	0	0	(0 0	0	0	н/тот	0	0	0	0	0	0 0		0 (0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	н/то) T	0 0	1	0
0 1	0	0	0	1	1	0	0	0	0) (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0 0	,	0	12:00	0	0	0	0	0	0 0		0 0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	12:00	0 (0 0	0	1
0 0	0	0	0	0	0	0	0	0	0) (0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	(0 0		0	12:15	0	0	0	0	0	0 0		0 (0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12:1	5 (0 0	0	0
0 0	0	0	0	0	0	0	0	0	C) ()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0		0	12:30	0	0	0	0	0	0 0		0 (0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12:30	0 0	0 0	0	0
0 0	0	0	0	0	0	0	0	0	c) ()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0 0		0	12:45	0	0	0	0	0	0 0		0 (0	0 0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12:4:	5 (0 0	0	0
0 1					130	71			_	_			1									177								150	W.5								12	27							1000	20			-			+-	1972				_			+	74556		-			

WN ROAD TRAFFIC COUNTS CLASSIFIED JUNCTION TURNING COUNTS

MARCH 2022 MONKSTOWN ROAD TRAFFIC COUNTS TRA/22/068 MANUAL CLASSIFIED JUNCTION TURNING COUNTS

MARCH 2022 MONKSTOWN ROAL TRA/22/068 MANUAL CLASSIFIED

02

DATE: 8th March 2022 SITE:

02

DATE: 8th March 2022 SITE:

02

Monkstown Road/Brighton Avenue/Purbeck Avenue/No. 75

DAY:

Tuesday LOCATION:

Monkstown Road/Brighton Avenue/Purbeck Avenue/No. 75

DAY:

Tuesday LOCATION: Monks

MOVEMENT 9		MOV	EMEN	T 10				M	OVEM	ENT 1	11			1	MOVE	MENT	12					MOV	VEMEN	NT 13				M	IOVE	MENT	14				MOV	/EME	NT 15	5			N	MOVE	MENT	16					МС	OVEMEN
ICL CAR LGV HGV BUS TOT	T PCU P	CL MCL C	AR LG	/ HGV	BUS TO	от РС	CU PC	L MCL	CAR	LGV H	GV BUS	тот	PCU	PCL M	CL CA	R LGV	HGV B	US TO	T PC	U TIME	PCL	MCL C	AR LG	V HGV	BUS	тот	PCU F	CL MC	L CAR	LGV	HGV E	SUS TO	PCU	PCL	MCL (CAR LO	V HG	V BUS	тот	PCU	CL M	CL CA	₹ LGV	HGV	BUS T	OT P	U TIME	PCL	L MCL	CAR LG
0 0 0 0 0	0	0 0	0 0	0	0 (0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0	13:00	0	0	0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0 (0 0	0	0	0	0 0	13:00	0	0	0 0
0 0 0 0 0	o	0 0	0 0	0	0 (0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0	13:15	0	0	0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0 (0 1	0	0	0	1	1 13:15	0	0	1 0
0 0 0 0 0	0	0 0	0 0	0	0 (0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0	13:30	0	0	0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0 (0 0	0	0	0	0 1	13:30	0	0	0 0
0 0 0 0 0	0	0 0	0 0	0	0 (0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0	13:45	0	0	0 0	0	0	0	0	0 0	1	0	0	0 1	1	0	0	0 (0 0	0	0	0	0 (0 0	0	0	0	0 0	13:45	0	0	0 0
0 0 0 0 0	0	0 0	0 0	0	0 (0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0	н/тот	0	0	0 0	0	0	0	0	0 0	1	0	0	0 1	1	0	0	0 (0 0	0	0	0	0 0	0 1	0	0	0	1	н/тот	0	0	1 0
0 1 0 0 0 1	1	0 0	0 0	0	0 (0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0	14:00	0	0	0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0 (0 0	0	0	0	0	14:00	0	0	0 0
0 0 0 0 0	0	0 0	0 0	0	0 (0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0	14:15	0	0	0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0 (0 1	0	0	0	1	1 14:15	0	0	0 0
0 0 0 0 0 0	0	0 0	0 0	0	0 (0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0	14:30	0	0	0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0 (0 0	0	0	0	0	14:30	0	0	0 0
0 0 0 0 0	0	0 0	0 0	0	0 (0 0	0 0	0 0	0	0	0 0	0	0	0	0 0	0	0	0 0	0	14:45	0	0	0 0	0	0	0	0	0 0	1	0	0	0 1	1	0	0	0 (0 0	0	0	0	0 (0 0	0	0	0	0	14:45	0	0	0 0
0 1 0 0 0 1	1	0 0	0 0	0	0 (0 0	0 0	0 0	0	0	0 0	0	0	0	0 0	0	0	0 0	0	н/тот	0	0	0 0	0	0	0	0	0 0	1	0	0	0 1	1	0	0	0 (0 0	0	0	0	0 (0 1	0	0	0	1	н/тот	0	0	0 0
0 0 0 0 0	0	0 0	0 0	0	0 (0 0	0 0	0 0	0	0	0 0	0	0	0	0 0	0	0	0 0	0	15:00	0	0	0 0	0	0	0	0	0 0	1	0	0	0 1	1	0	0	0 (0 0	0	0	0	0 (0 0	0	0	0	0	15:00	0	0	0 0
0 0 0 0 0	0	0 0	0 0	0	0 (0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0	15:15	0	0	0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0 (0 0	0	0	0	0	15:15	0	0	0 0
0 0 0 0 0	0	0 0	0 0	0	0 (0 0	0 0	0 0	0	0	0 0	0	0	0	0 0	0	0	0 0	0	15:30	0	0	0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0 (0 0	0	0	0	0	15:30	0	0	0 0
0 0 0 0 0	0	0 0	0 0	0	0 (0 0	0 0	0 0	0	0	0 0	0	0	0	0 0	0	0	0 0	0	15:45	0	0	0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0 0	0 0	0	0	0	0	15:45	0	0	0 0
0 0 0 0 0	0	0 0	0 0	0	0 (0 0	0 0	0 0	0	0	0 0	0	0	0	0 0	0	0	0 0	0		0	0	0 0	0	0	0	0	0 0	1	0	0	0 1	1	0	0	0 (0 0	0	0	0	0	0 0	0	0	0	0 0	н/тот	0	0	0 0
0 0 0 0 0	0	0 0	0 0	0	0 (0 0	0 0	0 0	0	0	0 0	0	0	0	0 0	0	0	0 0	0	8	0	0	0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0	0 0	0	0	0	0	16:00	0	0	0 0
	0	0 0	0 0	0	0 (0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0		16:15	0	0	0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0 1	0 0	0	0	0	0	16:15	0	0	0 0
	0	0 0	0 0	0	0 (0 0		0	0	0 0	0	0	0	0 0	0	0	0 0	0	46.00	0	0	0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0	0 0	0	0	0	0	16:30	0	0	0 0
		0 0	0 0	0	0 (0	0	0 0	0	٥	0		0	0	0 0	0		0	0	0 0		0	0	0	0 0	0	0	0	0 0	0	0	0	0 (0	0	0	0	0 0	0	0	0	0 0	16:45	0	0	1 0
	0	0 0	0 0	0	0 (0	0	0 0	0	0	0		0	0	0 0			0	0	0 0		0	0	0	0 0	0	0	0	0 0	0	0	0	0 (0	0	0	0	0 0	0	0		0 0	н/тот		-	1 0
0 0 0 0 0	0	0 0	0 0	0	0 (0 0	0 0		0	0	0 0	0	0	0		0	0		0		0	0	0 0		0	0	0	0 0	0	0	0	0 0	0	0	0	0 (0	0	0	0	0 0	0	0	0	0	17:00	0	0	0 0
0 0 0 0 0	0	0 0	0 0	0	0 (0 0		0		0 0	0	ů	0		0	0				0	0					٠		0	0	0	0 0		0	0	0 (0	0	٠	0 0		0	0	0		17:15	0	0	0 0
0 0 0 0 0	0	0 0	0 0	0	0 (0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0	0		0	0	0 0	0	0	0		0 0	0	0	0	0 0		0	0	0 (-	0		0 0	0 0	0	0	0			0	0	0 0
0 0 0 0 0	0	0 0	0 0	0	0 (0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0		0	0	0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0 0	0 0	0	0	0		17:30		0	0 0
0 0 0 0 0	0	0 0	0 0	0	0 (0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0	17:45	0	0	0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0 0	0 0	0	0	0	0 0	17:45		0	1 0
0 0 0 0 0	0	0 0	0 0	0	0 (0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0	н/тот	0	0	0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0 0	0 0	0	0	0	0 0	H/TO		0	1 0
0 0 0 0 0						0.43													1353							3	-22						100							255										
1 0 0 0 1	15323					563							200						25.0	(5)						- 3	253						1000													100	7			
0 0 0 0 0	0	0 0	0 0	0	0 (0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0	18:30	0	0	0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0 (0 0	0	0	0	0 1	18:30	0	0	0 0
0 0 0 0 0	100		_			122	23	-				1	-7.0	-		_			150-9	70							30.50						1000							1000						179	100			
1 0 0 0 1	1	0 0	0 0	0	0 (0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0	н/тот	0	0	0 0	0	0	0	0	0 0	1	0	1	0 2	3	0	0	0 (0 0	0	0	0	0 (0 0	0	0	0	0 (H/TO	0	0	0 0
7 0 0 0 7	7	0 0	0 0	0	0 0	0 0	0 0	0	2	1	0 0	3	3	0	0 0	0	0	0 0	0	P/TOT	0	0	0 0	0	0	0	0	0 0	11	1	3	0 15	18	0	0	0	1 0	0	1	1	1 (0 4	2	0	0	7	P/TOT	1	0	5 2

) TRAFFIC COUNTS) JUNCTION TURNING COUNTS

MARCH 2022 TRA/22/068

DATE: 8th March 2022

town Road/Brighton Avenue/Purbeck Avenue/No. 75

DAY:

Tuesday

17					MC	VEN	IENT	18					M	VEN	MENT	Г 19					MC	VEN	IENT	20			
HGV	BUS	тот	PCU	PCL	MCL	CAR	LGV	HGV	BUS	тот	PCU	PCL	MCL	CAR	LGV	HGV	BUS	тот	PCU	PCL	MCL	CAR	LGV	HGV	BUS	тот	PCI
0	0	0	0	0	0	0	0	0	0	0	0	2	1	72	8	0	1	84	83	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	4	1	94	9	0	2	110	108	0	0	2	0	0	0	2	2
0	0	0	0	0	0	0	0	0	0	0	0	0	1	113	8	1	1	124	125	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	2	0	134	15	2	2	155	157	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	8	3	413	40	3	6	473	474	0	0	2	0	0	0	2	2
0	0	0	0	0	0	0	0	0	0	0	0	12	3	135	11	1	3	165	158	0	0	1	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	11	1	91	5	1	2	111	105	0	0	2	0	0	0	2	2
0	0	0	0	0	0	0	0	0	0	0	0	16	1	91	10	2	2	122	113	0	1	4	0	0	0	5	4
0	0	0	0	0	0	0	1	0	0	1	1	6	2	86	4	3	1	102	100	1	0	2	0	0	0	3	2
0	0	0	0	0	0	0	1	0	0	1	1	45	7	403	30	7	8	500	475	1	1	9	0	0	0	11	10
0	0	1	1	0	0	0	0	0	0	0	0	6	0	98	8	1	2	115	113	0	0	1	2	0	0	3	3
0	0	0	0	0	0	0	0	0	0	0	0	3	0	97	13	2	3	118	121	0	0	1	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	3	0	94	6	1	4	108	111	0	0	1	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	2	0	86	12	1	2	103	104	0	0	3	0	0	0	3	3
0	0	1	1	0	0	0	0	0	0	0	0	14	0	375	39	5	11	444	449	0	0	6	2	0	0	8	8
0	0	0	0	0	0	0	0	0	0	0	0	2	2	78	11	1	2	96	96	0	0	3	0	0	0	3	3
1	0	1	2	0	0	0	0	0	0	0	0	0	2	71	9	1	1	84	85	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	0	0	0	1	1	79	8	6	1	96	102	0	0	2	0	0	0	2	2
0	0	1	0	0	0	0	0	0	0	0	0	2	0	75	13	1	1	92	92	0	0	2	0	0	0	2	2
1	0	3	3	0	0	0	0	0	0	0	0	5	5	303	41	9	5	368	375	0	0	7	0	0	0	7	7
0	0	0	0	0	0	2	0	0	0	2	2	0	0	65	10	4	2	81	87	0	0	3	0	0	0	3	3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	97	7	3	1	108	112	0	0	1	1	0	0	2	2
0	0	1	1	0	0	0	0	0	0	0	0	3	1	66	7	6	2	85	90	0	0	2	0	1	0	3	4
0	0	0	0	0	0	0	0	0	0	0	0	0	1	85	14	1	1	102	103	0	0	2	0	0	0	2	2
0	0	1	1	0	0	2	0	0	0	2	2	3	2	313	38	14	6	376	392	0	0	8	1	1	0	10	11
0	0	1	1	0	0	0	0	0	0	0	0	1	1	100	14	1	1	118	119	0	0	1	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	93	6	3	1	105	108	0	0	1	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	0	82	9	3	1	96	99	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0	0	1	1	1	2	119	7	4	0	133	135	0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0	0	0	1	1	4	4	394	36	11	3	452	460	0	0	3	0	0	0	3	3

and the same and t
PCU's
Through Junction
Janction
146
183
196
282
806
274
274
288
268
1104
298
255
244
227
1024
220
230
242
243
935
219
250
237
233
939
277
256
253
272
1057

TRAFFINOMICS LIMITED

TRAFFIC COUNTS JUNCTION TURNING COUNTS

MARCH 2022 TRA/22/068

DATE: 8th March 2022

town Road/Brighton Avenue/Purbeck Avenue/No. 75

DAY:

Tuesday

17								MOVEMENT 18								M	OVEN	IENT	19					MOVEMENT 20					
HGV	BUS	тот	PCU	PCL	MCL	CAR	LGV	HGV	BUS	тот	PCU	PCL	MCL	CAR	LGV	HGV	BUS	тот	PCU	PCL	MCL	CAR	LGV	HGV	BUS	тот	PCU		
0	0	0	0	0	0	0	0	0	0	0	0	1	0	97	11	2	3	114	118	0	0	3	0	0	0	3	3		
0	0	1	1	0	0	0	0	0	0	0	0	1	0	70	18	2	1	92	94	0	0	2	0	0	0	2	2		
0	0	0	0	0	0	0	0	0	0	0	0	0	2	90	12	2	2	108	111	0	0	4	0	0	0	4	4		
0	0	0	0	0	0	1	0	0	0	1	1	0	0	105	5	2	1	113	116	0	0	3	1	0	0	4	4		
0	0	1	1	0	0	1	0	0	0	1	1	2	2	362	46	8	7	427	439	0	0	12	1	0	0	13	13		
0	0	0	0	0	0	0	0	0	0	0	0	3	0	117	13	2	2	137	139	0	0	3	0	0	0	3	3		
0	0	0	0	0	0	1	0	0	0	1	1	2	2	86	11	4	2	107	110	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0	0	0	1	2	88	16	1	1	109	109	0	0	2	0	0	0	2	2		
0	0	0	0	0	0	0	0	0	0	0	0	1	0	82	5	1	1	90	91	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	1	0	0	0	1	1	7	4	373	45	8	6	443	449	0	0	5	0	0	0	5	5		
0	0	0	0	0	0	0	0	0	0	0	0	3	1	92	6	2	3	107	109	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0	0	0	2	2	90	10	1	2	107	107	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0	0	0	3	1	92	9	1	1	107	106	0	0	1	1	0	0	2	2		
0	0	0	0	0	0	0	0	0	0	0	0	1	1	100	12	0	0	114	113	0	0	2	0	0	0	2	2		
0	0	0	0	0	0	0	0	0	0	0	0	9	5	374	37	4	6	435	435	0	0	3	1	0	0	4	4		
0	0	0	0	0	0	0	0	0	0	0	0	1	0	90	12	1	2	106	108	0	0	3	0	0	0	3	3		
0	0	0	0	0	0	0	0	0	0	0	0	1	1	91	11	0	0	104	103	0	1	0	0	0	0	1	0		
0	0	0	0	0	0	0	0	0	0	0	0	3	0	92	20	0	2	117	117	0	0	0	0	0	0	0	0		
0	0	1	1	0	0	0	0	0	0	0	0	2	2	99	10	0	1	114	112	0	0	3	0	0	0	3	3		
0	0	1	1	0	0	0	0	0	0	0	0	7	3	372	53	1	5	441	440	0	1	6	0	0	0	7	6		
0	0	0	0	0	0	0	0	0	0	0	0	2	2	120	8	0	1	133	131	0	0	3	0	0	0	3	3		
0	0	0	0	0	0	0	0	0	0	0	0	3	2	99	9	0	3	116	115	0	1	1	0	0	0	2	1		
0	0	0	0	0	0	0	0	0	0	0	0	2	1	94	8	0	1	106	105	0	0	0	0	0	0	0	0		
0	0	1	1	0	0	0	0	0	0	0	0	4	1	85	3	1	1	95	93	0	0	2	0	0	0	2	2		
0	0	1	1	0	0	0	0	0	0	0	0	11	6	398	28	1	6	450	445	0	1	6	0	0	0	7	6		
0	0	0	0	0	0	0	0	0	0	0	0	6	4	92	4	3	0	109	105	0	0	0	0	0	0	0	0		
1	0	1	2	0	0	0	0	0	0	0	0	0	0	93	9	0	3	105	108	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0	0	0	2	4	68	7	0	2	83	81	0	0	1	0	0	0	1	1		
0	0	0	0	0	0	0	0	0	0	0	0	3	2	84	7	0	1	97	94	1	0	0	1	0	0	2	1		
1	0	1	2	0	0	0	0	0	0	0	0	11	10	337	27	3	6	394	388	1	0	1	1	0	0	3	2		
2	0	10	11	0	0	5	1	0	0	6	6	126	51	4417	460	74	75	5203	5221	2	3	68	6	1	0	80	78		

PCU's Through	
Junction	1
266	
277	
252	
259	
1054	
274	
277	
311	00000
237	
1099	
271	
266	
280	
278	
1095	7
273	
266	
288	
293	
1121	
287	
276	
296	
247	000
1105	
253	Section 1
276	0.00
250	800
246	
1025	100
12364	

APPENDIX B TRICS DATA

Licence No: 357901 Calculation Reference: AUDIT-357901-220419-0414

TRIP RATE CALCULATION SELECTION PARAMETERS:

Land Use : 03 - RESIDENTIAL
Category : C - FLATS PRIVATELY OWNED
TOTAL VEHICLES

01	cted regions and areas: GREATER LONDON	
	BE BEXLEY	2 days
	BK BARKING	1 days
	BM BROMLEY	1 days
	BT BRENT	2 days
	EN ENFIELD	2 days
	HG HARINGEY	2 days
	HK HACKNEY	1 days
	HM HAMMERSMITH AND FULHAM	2 days
	HO HOUNSLOW	4 days
	HV HAVERING	1 days
	IS ISLINGTON	3 days
	KI KINGSTON	1 days
	RD RICHMOND	1 days
	SK SOUTHWARK	3 days
	TH TOWER HAMLETS	1 days
	WF WALTHAM FOREST	6 days
02	SOUTH EAST	
	BD BEDFORDSHIRE	3 days
	ES EAST SUSSEX	1 days
	HC HAMPSHIRE	1 days
	HF HERTFORDSHIRE	4 days
03	SOUTH WEST	
	DC DORSET	1 days
	DV DEVON	1 days
04	EAST ANGLIA	
	CA CAMBRIDGESHIRE	1 days
	NF NORFOLK	2 days
	SF SUFFOLK	4 days
05	EAST MIDLANDS	
	DS DERBYSHIRE	1 days
	LE LEICESTERSHIRE	1 days
	NT NOTTINGHAMSHIRE	2 days
06	WEST MIDLANDS	
	WM WEST MIDLANDS	1 days
07	YORKSHIRE & NORTH LINCOLNSH	
	RI EAST RIDING OF YORKSHIRE	1 days
00	SY SOUTH YORKSHIRE	1 days
08	NORTH WEST	2 4
09	MS MERSEYSIDE NORTH	3 days
09	CB CUMBRIA	2 days
	TW TYNE & WEAR	3 days
10	WALES	1 days
10	CO CONWY	1 days
11	SCOTLAND	1 uays
	EB CITY OF EDINBURGH	1 days
	SA SOUTH AYRSHIRE	1 days
	SR STIRLING	3 days
12	CONNAUGHT	3 days
	MA MAYO	1 days
13	MUNSTER	1 days
	WA WATERFORD	1 days
14	LEINSTER	I days
	LU LOUTH	1 days
15	GREATER DUBLIN	1 uays
	DL DUBLIN	4 days
17	ULSTER (NORTHERN IRELAND)	, 44,5
	AN ANTRIM	1 days

This section displays the number of survey days per TRICS® sub-region in the selected set

ughan & O' Donovan Arena Road

Dublin 18

Licence No: 357901

Primary Filtering selection:

This data displays the chosen trip rate parameter and its selected range. Only sites that fall within the parameter range are included in the trip rate calculation.

Parameter:

No of Dwellings

Actual Range:

6 to 493 (units:)

Range Selected by User:

6 to 493 (units:)

Parking Spaces Range:

All Surveys Included

Parking Spaces per Dwelling Range: All Surveys Included

Bedrooms per Dwelling Range:

All Surveys Included

Percentage of dwellings privately owned:

All Surveys Included

Public Transport Provision:

Selection by:

Include all surveys

Date Range:

01/01/14 to 15/10/21

This data displays the range of survey dates selected. Only surveys that were conducted within this date range are included in the trip rate calculation.

Selected survey days:

Monday 11 days 25 days Tuesday Wednesday 23 days Thursday 9 days 11 days Friday

This data displays the number of selected surveys by day of the week.

Selected survey types:

Manual count 79 days Directional ATC Count 0 days

This data displays the number of manual classified surveys and the number of unclassified ATC surveys, the total adding up to the overall number of surveys in the selected set. Manual surveys are undertaken using staff, whilst ATC surveys are undertaking using machines.

Selected Locations:

Town Centre	6
Edge of Town Centre	29
Suburban Area (PPS6 Out of Centre)	27
Edge of Town	9
Neighbourhood Centre (PPS6 Local Centre)	8

This data displays the number of surveys per main location category within the selected set. The main location categories consist of Free Standing, Edge of Town, Suburban Area, Neighbourhood Centre, Edge of Town Centre, Town Centre and Not Known.

Selected Location Sub Categories:

Science Location Sub Caregories.	
Industrial Zone	1
Development Zone	8
Residential Zone	44
Built-Up Zone	15
High Street	1
No Sub Category	10

This data displays the number of surveys per location sub-category within the selected set. The location sub-categories consist of Commercial Zone, Industrial Zone, Development Zone, Residential Zone, Retail Zone, Built-Up Zone, Village, Out of Town, High Street and No Sub Category.

Secondary Filtering selection:

Use Class:

79 days **C3**

This data displays the number of surveys per Use Class classification within the selected set. The Use Classes Order 2005 has been used for this purpose, which can be found within the Library module of TRICS®.

Population within 500m Range:

All Surveys Included

Roughan & O' Donovan Arena Road

Dublin 18

Page 3 Licence No: 357901

Secondary Filtering selection (Cont.):

Population will	thin 1 mile	
-----------------	-------------	--

1,001 to 5,000	4 days
5,001 to 10,000	2 days
10,001 to 15,000	9 days
15,001 to 20,000	3 days
20,001 to 25,000	13 days
25,001 to 50,000	32 days
50,001 to 100,000	11 days
100,001 or More	5 days

This data displays the number of selected surveys within stated 1-mile radii of population.

Population within 5 miles:

5,001 to 25,000	2 days
25,001 to 50,000	1 days
50,001 to 75,000	12 days
75,001 to 100,000	3 days
125,001 to 250,000	15 days
250,001 to 500,000	11 days
500,001 or More	35 days

This data displays the number of selected surveys within stated 5-mile radii of population.

Car ownership within 5 miles:

0.5 or Less	7 days
0.6 to 1.0	46 days
1.1 to 1.5	25 days
1.6 to 2.0	1 days

This data displays the number of selected surveys within stated ranges of average cars owned per residential dwelling, within a radius of 5-miles of selected survey sites.

Travel Plan:

Yes	16 days
No	63 days

This data displays the number of surveys within the selected set that were undertaken at sites with Travel Plans in place, and the number of surveys that were undertaken at sites without Travel Plans.

PTAL Rating:

No PTAL Present	47 days
1a (Low) Very poor	2 days
1b Very poor	1 days
2 Poor	6 days
3 Moderate	5 days
4 Good	4 days
5 Very Good	5 days
6a Excellent	6 days
6b (High) Excellent	3 days

This data displays the number of selected surveys with PTAL Ratings.

Covid-19 Restrictions

Yes

At least one survey within the selected data set was undertaken at a time of Covid-19 restrictions

Licence No: 357901

TRIP RATE for Land Use 03 - RESIDENTIAL/C - FLATS PRIVATELY OWNED

TOTAL VEHICLES

Calculation factor: 1 DWELLS

Estimated TRIP rate value per 476 DWELLS shown in shaded columns

BOLD print indicates peak (busiest) period

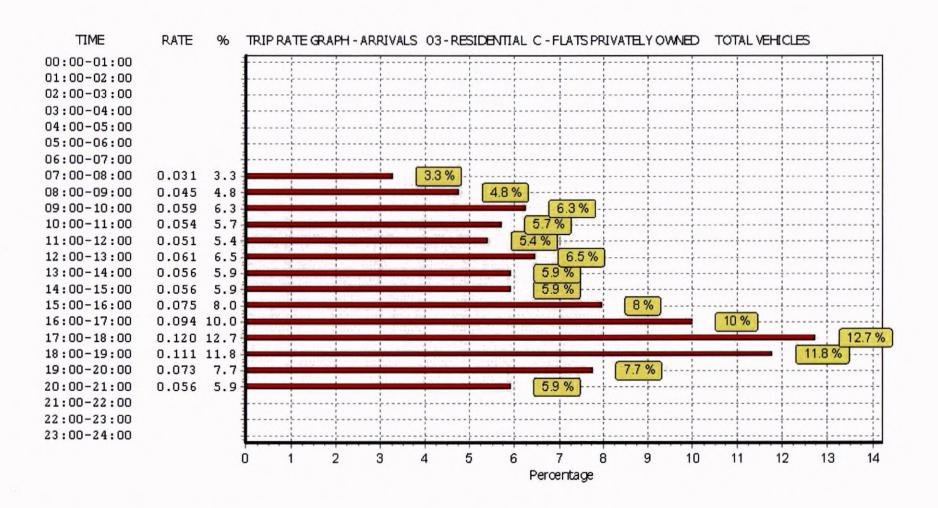
	1000	AR	RIVALS		DEPARTURES					TOTALS			
Time Range	No. Days	Ave. DWELLS	Trip Rate	Estimated Trip Rate	No. Days	Ave. DWELLS	Trip Rate	Estimated Trip Rate	No. Days	Ave. DWELLS	Trip Rate	Estimated Trip Rate	
00:00 - 01:00													
01:00 - 02:00													
02:00 - 03:00													
03:00 - 04:00													
04:00 - 05:00													
05:00 - 06:00													
06:00 - 07:00	2	32	0.000	0.000	2	32	0.000	0.000	2	32	0.000	0.000	
07:00 - 08:00	79	87	0.031	14.702	79	87	0.104	49.698	79	87	0.135	64.400	
08:00 - 09:00	79	87	0.045	21.329	79	87	0.127	60.673	79	87	0.172	82.002	
09:00 - 10:00	79	87	0.059	27,886	79	87	0.063	30.026	79	87	0.122	57.912	
10:00 - 11:00	79	87	0.054	25.539	79	87	0.063	30.164	79	87	0.117	55.703	
11:00 - 12:00	79	87	0.051	24.504	79	87	0.063	29.750	79	87	0.113	54.254	
12:00 - 13:00	79	87	0.061	28.853	79	87	0.062	29.336	79	87	0.123	58.189	
13:00 - 14:00	79	87	0.056	26.644	79	87	0.066	31.407	79	87	0.122	58.05	
14:00 - 15:00	79	87	0.056	26.644	79	87	0.060	28.577	79	87	0.116	55.22	
15:00 - 16:00	79	87	0.075	35.824	79	87	0.057	26.989	79	87	0.132	62.813	
16:00 - 17:00	79	87	0.094	44,798	79	87	0.063	29.750	79	87	0.156	74.548	
17:00 - 18:00	79	87	0.120	56.946	79	87	0.066	31.545	79	87	0.186	88.49	
18:00 - 19:00	79	87	0.111	52.805	79	87	0.073	34.789	79	87	0.184	87.594	
19:00 - 20:00	25	116	0.073	34.973	25	116	0.049	23,480	25	116	0.122	58.45	
20:00 - 21:00	25	116	0.056	26,764	25	116	0.041	19.375	25	116	0.097	46.139	
21:00 - 22:00													
22:00 - 23:00													
23:00 - 24:00													
Total Rates:			0.942	448.211			0.955	455.559			1.897	903.770	

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

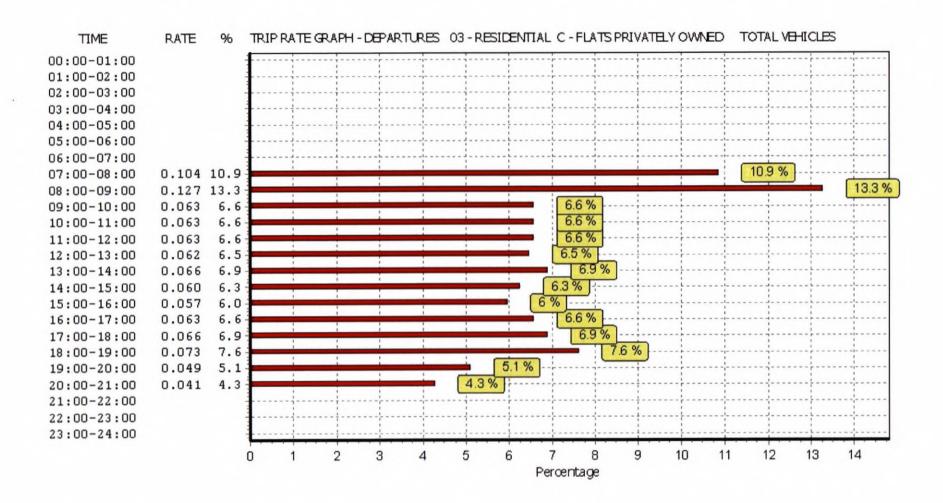
The survey data, graphs and all associated supporting information, contained within the TRICS Database are published by TRICS Consortium Limited ("the Company") and the Company claims copyright and database rights in this published work. The Company authorises those who possess a current TRICS licence to access the TRICS Database and copy the data contained within the TRICS Database for the licence holders' use only. Any resulting copy must retain all copyrights and other proprietary notices, and any disclaimer contained thereon.

The Company accepts no responsibility for loss which may arise from reliance on data contained in the TRICS Database. [No warranty of any kind, express or implied, is made as to the data contained in the TRICS Database.]

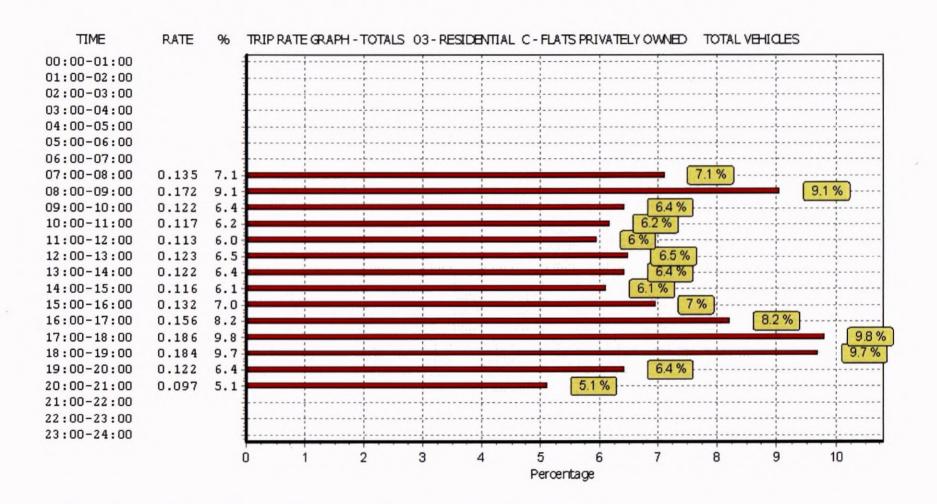

Parameter summary

Trip rate parameter range selected: 6 - 493 (units:)
Survey date date range: 01/01/14 - 15/10/21

Number of weekdays (Monday-Friday): 79
Number of Saturdays: 0
Number of Sundays: 0
Surveys automatically removed from selection: 4
Surveys manually removed from selection: 0


This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

Licence No: 357901


This graph is a visual representation of the trip rate calculation results screen. The same time periods and trip rates are displayed, but in addition there is an additional column showing the percentage of the total trip rate by individual time period, allowing peak periods to be easily identified through observation. Note that the type of count and the selected direction is shown at the top of the graph.

Licence No: 357901

This graph is a visual representation of the trip rate calculation results screen. The same time periods and trip rates are displayed, but in addition there is an additional column showing the percentage of the total trip rate by individual time period, allowing peak periods to be easily identified through observation. Note that the type of count and the selected direction is shown at the top of the graph.

Licence No: 357901

This graph is a visual representation of the trip rate calculation results screen. The same time periods and trip rates are displayed, but in addition there is an additional column showing the percentage of the total trip rate by individual time period, allowing peak periods to be easily identified through observation. Note that the type of count and the selected direction is shown at the top of the graph.

Calculation Reference: AUDIT-357901-220509-0544

TRIP RATE CALCULATION SELECTION PARAMETERS:

Land Use : 04 - EDUCATION Category : D - NURSERY TOTAL VEHICLES

01	GRE/	ATER LONDON	
	KI	KINGSTON	1 days
	RB	REDBRIDGE	2 days
02	SOU	TH EAST	
	ES	EAST SUSSEX	1 days
03	SOU	TH WEST	
	WL	WILTSHIRE	1 days
04	EAST	ANGLIA	
	CA	CAMBRIDGESHIRE	1 days
	SF	SUFFOLK	1 days
05	EAST	MIDLANDS	
	DS	DERBYSHIRE	1 days
	LE	LEICESTERSHIRE	1 days
	LN	LINCOLNSHIRE	1 days
06	WES	T MIDLANDS	
	SH	SHROPSHIRE	1 days
	WK	WARWICKSHIRE	1 days
	WM	WEST MIDLANDS	1 days
80	NOR	TH WEST	
	CH	CHESHIRE	1 days
09	NOR	TH	
	TV	TEES VALLEY	1 days
	TW	TYNE & WEAR	1 days
10	WAL	ES	
	BG	BRIDGEND	1 days
	MM	MONMOUTHSHIRE	1 days
	RC	RHONDDA CYNON TAFF	1 days
11	SCO	TLAND	
	DU	DUNDEE CITY	1 days
	SR	STIRLING	1 days
12	CON	NAUGHT	
	RO	ROSCOMMON	2 days
16	ULST	TER (REPUBLIC OF IRELAND)	
	MG	MONAGHAN	1 days

This section displays the number of survey days per TRICS® sub-region in the selected set

Primary Filtering selection:

This data displays the chosen trip rate parameter and its selected range. Only sites that fall within the parameter range are included in the trip rate calculation.

Parameter:

Gross floor area

Actual Range: Range Selected by User: 129 to 880 (units: sqm) 100 to 900 (units: sqm)

Parking Spaces Range:

All Surveys Included

Public Transport Provision:

Selection by:

Include all surveys

Licence No: 357901

Date Range:

01/01/14 to 19/11/21

This data displays the range of survey dates selected. Only surveys that were conducted within this date range are included in the trip rate calculation.

Selected survey days:

 Monday
 4 days

 Tuesday
 6 days

 Wednesday
 4 days

 Thursday
 4 days

 Friday
 6 days

This data displays the number of selected surveys by day of the week.

Selected survey types:

Manual count 24 days Directional ATC Count 0 days

This data displays the number of manual classified surveys and the number of unclassified ATC surveys, the total adding up to the overall number of surveys in the selected set. Manual surveys are undertaken using staff, whilst ATC surveys are undertaking using machines.

Selected Locations:

Edge of Town Centre	5
Suburban Area (PPS6 Out of Centre)	7
Edge of Town	9
Neighbourhood Centre (PPS6 Local Centre)	3

This data displays the number of surveys per main location category within the selected set. The main location categories consist of Free Standing, Edge of Town, Suburban Area, Neighbourhood Centre, Edge of Town Centre, Town Centre and Not Known.

Selected Location Sub Categories:

Industrial Zone	1
Commercial Zone	1
Residential Zone	19
Village	1
No Sub Category	2

This data displays the number of surveys per location sub-category within the selected set. The location sub-categories consist of Commercial Zone, Industrial Zone, Development Zone, Residential Zone, Retail Zone, Built-Up Zone, Village, Out of Town, High Street and No Sub Category.

Secondary Filtering selection:

Use Class:

) 24 days

This data displays the number of surveys per Use Class classification within the selected set. The Use Classes Order 2005 has been used for this purpose, which can be found within the Library module of TRICS®.

Population within 500m Range:

All Surveys Included

Dublin 18 ughan & O' Donovan Arena Road

Secondary Filtering selection (Cont.):

Population within 1 mile:	
1,001 to 5,000	3 days
5,001 to 10,000	4 days
10,001 to 15,000	1 days
15,001 to 20,000	4 days
20,001 to 25,000	2 days
25,001 to 50,000	8 days
50,001 to 100,000	2 days

This data displays the number of selected surveys within stated 1-mile radii of population.

Population within 5 miles:

5,001 to 25,000	2 days
50,001 to 75,000	2 days
75,001 to 100,000	6 days
125,001 to 250,000	6 days
250,001 to 500,000	5 days
500,001 or More	3 days

This data displays the number of selected surveys within stated 5-mile radii of population.

Car ownership within 5 miles:

0.5 or Less	1 days
0.6 to 1.0	7 days
1.1 to 1.5	15 days
2.1 to 2.5	1 days

This data displays the number of selected surveys within stated ranges of average cars owned per residential dwelling, within a radius of 5-miles of selected survey sites.

Travel Plan:

No 24 days

This data displays the number of surveys within the selected set that were undertaken at sites with Travel Plans in place, and the number of surveys that were undertaken at sites without Travel Plans.

DTAI Pating

No PTAL Present	22 days
1b Very poor	1 days
2 Poor	1 days

This data displays the number of selected surveys with PTAL Ratings.

Covid-19 Restrictions

Yes At least one survey within the selected data set was undertaken at a time of Covid-19 restrictions

Monday 09/05/22

Roughan & O' Donovan Arena Road Dublin 18

Page 4 Licence No: 357901

1	BG-04-D-01 NURSERY GEORGE STREET		BRIDGEND
	BRIDGEND BRIDGEND IND. ESTATE		
	Edge of Town Industrial Zone		
	Total Gross floor area:	210 sqm	
	Survey date: MONDAY	13/10/14	Survey Type: MANUAL
2	CA-04-D-02 NURSERY EASTFIELD ROAD PETERBOROUGH		CAMBRIDGÉSHIRE
	Suburban Area (PPS6 Out of Centre)		
	Residential Zone		
	Total Gross floor area:	400 sqm	
_	Survey date: TUESDAY	18/10/16	Survey Type: MANUAL
3	CH-04-D-01 NURSERY CHESTER ROAD		CHESHIRE
	MACCLESFIELD		
	Edge of Town Centre		
	No Sub Category		
	Total Gross floor area:	500 sqm	
4	Survey date: MONDAY DS-04-D-02 NURSERY	24/11/14	Survey Type: MANUAL DERBYSHIRE
4	MAXWELL AVENUE		DERBTSHIRE
	DERBY		
	DARLEY ABBEY		
	Edge of Town		
	Residential Zone		
	Total Gross floor area:	415 sqm	

Survey Type: MANUAL DUNDEE CITY Survey date: THURSDAY 12/07/18 DU-04-D-01 N LONGTOWN TERRACE NURSERY 5

DUNDEE

Suburban Area (PPS6 Out of Centre) Residential Zone 325 sqm Total Gross floor area: 24/04/17

Survey date: MONDAY
ES-04-D-01 NURSER Survey Type: MANUAL NURSERY **EAST SUSSEX** CONNAUGHT ROAD

BRIGHTON HOVE Neighbourhood Centre (PPS6 Local Centre) Residential Zone Total Gross floor area: 185 sqm Survey date: FRIDAY 22/09/17

Survey Type: MANUAL KI-04-D-01 NURSERY KINGSTÓN WINDMILL LANE

SURBITON LONG DITTON Suburban Area (PPS6 Out of Centre) Residential Zone Total Gross floor area: Survey date: WEDNESDAY

22/06/16 Survey Type: MANUAL LEICESTERSHIRE LE-04-D-01 NURSERY

149 sqm

WIGSTON ROAD LEICESTER OADBY Edge of Town Residential Zone Total Gross floor area:

375 sqm Survey date: THURSDAY 30/10/14

Survey Type: MANUAL

Licence No: 357901

LIST OF SITES relevant to selection parameters (Cont.)

LN-04-D-01 NURSERY LINCOLNSHIRE NEWARK ROAD

LINCOLN SWALLOW BECK

Suburban Area (PPS6 Out of Centre)

Residential Zone

Total Gross floor area: Survey date: TUESDAY 600 sqm

31/10/17

Survey Type: MANUAL MONAGHAN

MG-04-D-01 NURSERY 10

THE GRANGE MONAGHAN

Edge of Town Centre Residential Zone

Total Gross floor area: Survey date: TUESDAY 810 sqm

12/10/21 Survey Type: MANUAL

MM-04-D-01 NURSERY 11

SPOONER CLOSE NEWPORT COEDKERNEW Edge of Town Commercial Zone

Total Gross floor area:

860 sqm

Survey date: FRIDAY 27/09/19

Survey Type: MANUAL RB-04-D-01 REDBRIDGE NURSERY

CASTLETON ROAD

ILFORD

12

CHADWELL HEATH

Suburban Area (PPS6 Out of Centre)

Residential Zone

Total Gross floor area:

129 sam

Survey Type: MANUAL Survey date: TUESDAY 07/10/14 REDBRIDGE NURSERY

RB-04-D-02 RAY LODGE ROAD

WOODFORD GREEN

Edge of Town

Residential Zone

Total Gross floor area: Survey date: WEDNESDAY 666 sqm 22/11/17

RC-04-D-01 NURSERY

Survey Type: MANUAL **RHONDDA CYNON TAFF**

MONMOUTHSHIRE

HEOL Y COLEG NEAR CARDIFF

NANTGARW

Neighbourhood Centre (PPS6 Local Centre)

Village

Total Gross floor area:

664 sqm

Survey date: THURSDAY 06/05/21

Survey Type: MANUAL ROSCOMMON NURSERY

15 RO-04-D-01 PARK VIEW

ROSCOMMON CRUBY HILL Edge of Town

Residential Zone

Total Gross floor area:

500 sqm

Survey date: FRIDAY 26/09/14 Survey Type: MANUAL ROSCOMMON NURSERY

RO-04-D-03 16

CIRCULAR ROAD ROSCOMMON

Edge of Town Centre Residential Zone

509 sam Total Gross floor area:

Survey date: TUESDAY 14/09/21 Survey Type: MANUAL

Monday 09/05/22

TRICS-Childcare

Roughan & O' Donovan Arena Road

Dublin 18

Page 6 Licence No: 357901

LIST OF SITES relevant to selection parameters (Cont.)

17	SF-04-D-03	NURSERY	SUFFOLK

CAMP ROAD LOWESTOFT

Edge of Town Centre Residential Zone

Total Gross floor area: 750 sqm

Survey date: WEDNESDAY 10/12/14 Survey Type: MANUAL

SH-04-D-01 SHROPSHIRE 18 NURSERY OLD COLEHAM

SHREWSBURY

Edge of Town Centre Residential Zone

Total Gross floor area: 326 sqm

Survey date: WEDNESDAY 28/05/14 Survey Type: MANUAL

SR-04-D-01 19 NURSERY STIRLING HENDERSON STREET

STIRLING BRIDGE OF ALLAN

Edge of Town No Sub Category

250 sqm Total Gross floor area:

Survey date: MONDAY 16/06/14 Survey Type: MANUAL TV-04-D-01 20 NURSERY TEES VALLEY

COTSWOLD DRIVE

REDCAR

Edge of Town Residential Zone

Total Gross floor area: 150 sqm

Survey date: FRIDAY Survey Type: MANUAL
TYNE & WEAR 19/05/17

TW-04-D-03 NURSERY

JUBILEE ROAD

NEWCASTLE UPON TYNE

GOSFORTH

Suburban Area (PPS6 Out of Centre)

Residential Zone

Total Gross floor area:

725 sqm Survey date: TUESDAY 21/05/19

Survey Type: MANUAL WARWICKSHIRE WK-04-D-01 NURSERY

THE RIDGEWAY

STRATFORD UPON AVON

Edge of Town Residential Zone

Total Gross floor area: 340 sqm

Survey date: FRIDAY 29/06/18 Survey Type: MANUAL

WL-04-D-01 NURSERY WILTSHÍRE

SHREWSBURY ROAD

SWINDON WALCOT

Suburban Area (PPS6 Out of Centre)

Residential Zone

Total Gross floor area: 500 sqm

Survey date: THURSDAY 22/09/16 Survey Type: MANUAL WEST MIDLANDS

WM-04-D-02 24 NURSERY

> BERTRAM ROAD BIRMINGHAM SMALL HEATH

Neighbourhood Centre (PPS6 Local Centre)

Residential Zone

Total Gross floor area: 880 sqm

Survey date: FRIDAY 19/11/21 Survey Type: MANUAL

This section provides a list of all survey sites and days in the selected set. For each individual survey site, it displays a unique site reference code and site address, the selected trip rate calculation parameter and its value, the day of the week and date of each survey, and whether the survey was a manual classified count or an ATC count.

Page 7 Licence No: 357901

TRIP RATE for Land Use 04 - EDUCATION/D - NURSERY

TOTAL VEHICLES

Calculation factor: 100 sqm

Estimated TRIP rate value per 450 SQM shown in shaded columns

BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS					
Time Range	No. Days	Ave. GFA	Trip Rate	Estimated Trip Rate	No. Days	Ave. GFA	Trip Rate	Estimated Trip Rate	No. Days	Ave. GFA	Trip Rate	Estimated Trip Rate
00:00 - 01:00												
01:00 - 02:00												
02:00 - 03:00												
03:00 - 04:00												
04:00 - 05:00												
05:00 - 06:00												
06:00 - 07:00	3	346	0.000	0.000	3	346	0.000	0.000	3	346	0.000	0.00
07:00 - 08:00	24	467	1.881	8.464	24	467	0.891	4.011	24	467	2.772	12.47
08:00 - 09:00	24	467	3.682	16.567	24	467	2.879	12.957	24	467	6.561	29.52
09:00 - 10:00	24	467	1.605	7.221	24	467	1.613	7.261	24	467	3.218	14.48
10:00 - 11:00	24	467	0.490	2,206	24	467	0.357	1.605	24	467	0.847	3.81
11:00 - 12:00	24	467	0.686	3.089	24	467	0.437	1.966	24	467	1.123	5.05
12:00 - 13:00	24	467	1.435	6.458	24	467	1.596	7.180	24	467	3.031	13.63
13:00 - 14:00	24	467	0.936	4.212	24	467	1.364	6.137	24	467	2.300	10.34
14:00 - 15:00	24	467	0.713	3,209	24	467	0.597	2.688	24	467	1.310	5.89
15:00 - 16:00	24	467	0.874	3.931	24	467	1.016	4.573	24	467	1.890	8.50
16:00 - 17:00	24	467	1.435	6.458	24	467	1.685	7.582	24	467	3.120	14.04
17:00 - 18:00	24	467	2.398	10.791	24	467	3.129	14.080	24	467	5.527	24.87
18:00 - 19:00	23	481	0.154	0.691	23	481	0.669	3.009	23	481	0.823	3.70
19:00 - 20:00	2	265	0.000	0.000	2	265	0.000	0.000	2	265	0.000	0.00
20:00 - 21:00				-								
21:00 - 22:00												
22:00 - 23:00												
23:00 - 24:00												
Total Rates:			16.289	73.297		15 3.5	16.233	73.049			32.522	146.34

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

The survey data, graphs and all associated supporting information, contained within the TRICS Database are published by TRICS Consortium Limited ("the Company") and the Company claims copyright and database rights in this published work. The Company authorises those who possess a current TRICS licence to access the TRICS Database and copy the data contained within the TRICS Database for the licence holders' use only. Any resulting copy must retain all copyrights and other proprietary notices, and any disclaimer contained thereon.

The Company accepts no responsibility for loss which may arise from reliance on data contained in the TRICS Database. [No warranty of any kind, express or implied, is made as to the data contained in the TRICS Database.]

Parameter summary

Trip rate parameter range selected: 129 - 880 (units: sqm) Survey date date range: 01/01/14 - 19/11/21

Number of weekdays (Monday-Friday): 24
Number of Saturdays: 0
Number of Sundays: 0
Surveys automatically removed from selection: 1
Surveys manually removed from selection: 0

This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRICS-Restaurant

Roughan & O' Donovan Arena Road

Dublin 18

Page 1 Licence No: 357901

Calculation Reference: AUDIT-357901-220509-0514

TRIP RATE CALCULATION SELECTION PARAMETERS:

Land Use

: 06 - HOTEL, FOOD & DRINK

Category

: B - RESTAURANTS

TOTAL VEHICLES

Cala	stad rasions and areas.	
01	cted regions and areas: GREATER LONDON	
••	BT BRENT	1 days
	EN ENFIELD	1 days
	LB LAMBETH	1 days
02	SOUTH EAST	,-
	HC HAMPSHIRE	1 days
	WS WEST SUSSEX	1 days
04	EAST ANGLIA	
	NF NORFOLK	1 days
05	EAST MIDLANDS	
	DS DERBYSHIRE	2 days
06	WEST MIDLANDS	
	WM WEST MIDLANDS	2 days
08	NORTH WEST	
	CH CHESHIRE	2 days
09	NORTH	
	CB CUMBRIA	1 days
10	WALES	
	CF CARDIFF	1 days
11	SCOTLAND	
	RF RENFREWSHIRE	1 days
17	ULSTER (NORTHERN IRELAND)	
	AN ANTRIM	2 days

This section displays the number of survey days per TRICS® sub-region in the selected set

Primary Filtering selection:

This data displays the chosen trip rate parameter and its selected range. Only sites that fall within the parameter range are included in the trip rate calculation.

Parameter:

Gross floor area

Actual Range:

75 to 400 (units: sqm) 75 to 400 (units: sqm)

Range Selected by User:

Parking Spaces Range:

All Surveys Included

Public Transport Provision:

Selection by:

Include all surveys

Date Range:

01/01/14 to 25/09/19

This data displays the range of survey dates selected. Only surveys that were conducted within this date range are included in the trip rate calculation.

Selected survey days:

Monday 3 days Tuesday 2 days Wednesday 1 days Thursday 3 days 3 days Friday Saturday 4 days Sunday 1 days

This data displays the number of selected surveys by day of the week.

<u>Selected survey types:</u> Manual count 17 days Directional ATC Count 0 days

This data displays the number of manual classified surveys and the number of unclassified ATC surveys, the total adding up to the overall number of surveys in the selected set. Manual surveys are undertaken using staff, whilst ATC surveys are undertaking using machines.

Selected Locations: Town Centre 5 Edge of Town Centre 1 Suburban Area (PPS6 Out of Centre)

Licence No: 357901

ughan & O' Donovan Arena Road Dublin 18

This data displays the number of surveys per main location category within the selected set. The main location categories consist of Free Standing, Edge of Town, Suburban Area, Neighbourhood Centre, Edge of Town Centre, Town Centre and Not Known.

Selected Location Sub Categories:

Development Zone	3
Residential Zone	2
Retail Zone	1
Built-Up Zone	3
Village	1
High Street	5
No Sub Category	2

This data displays the number of surveys per location sub-category within the selected set. The location sub-categories consist of Commercial Zone, Industrial Zone, Development Zone, Residential Zone, Retail Zone, Built-Up Zone, Village, Out of Town, High Street and No Sub Category.

Secondary Filtering selection:

Use Class:

E(b) 17 days

This data displays the number of surveys per Use Class classification within the selected set. The Use Classes Order 2005 has been used for this purpose, which can be found within the Library module of TRICS®.

Population within 500m Range:

All Surveys Included

Population within 1 mile:	
1,001 to 5,000	2 days
5,001 to 10,000	1 days
10,001 to 15,000	1 days
15,001 to 20,000	2 days
20,001 to 25,000	2 days
25,001 to 50,000	6 days
50,001 to 100,000	2 days
100,001 or More	1 days

This data displays the number of selected surveys within stated 1-mile radii of population.

Population within 5 miles:

25,001 to 50,000	1 days
75,001 to 100,000	6 days
125,001 to 250,000	1 days
250,001 to 500,000	7 days
500,001 or More	2 days

This data displays the number of selected surveys within stated 5-mile radii of population.

Car ownership within 5 miles:

0.6 to 1.0	9 days
1.1 to 1.5	8 days

This data displays the number of selected surveys within stated ranges of average cars owned per residential dwelling, within a radius of 5-miles of selected survey sites.

Travel Plan:

Yes	1 days
No	16 days

This data displays the number of surveys within the selected set that were undertaken at sites with Travel Plans in place, and the number of surveys that were undertaken at sites without Travel Plans.

PTAL Rating

No PTAL Present	14 days
3 Moderate	1 days
5 Very Good	1 days
6b (High) Excellent	1 days

This data displays the number of selected surveys with PTAL Ratings.

Licence No: 357901

LIST OF SITES relevant to selection parameters

FRANKIE & BENNY'S ANTRIM AN-06-B-02

HILSBOROUGH ROAD LISBURN

Edge of Town Retail Zone

Total Gross floor area:

275 sqm

Survey date: FRIDAY 19/06/15 MODERN CUISINE

Survey Type: MANUAL ANTRIM

AN-06-B-03 LISBURN ROAD

BELFAST

Suburban Area (PPS6 Out of Centre)

High Street

Total Gross floor area:

320 sqm

Survey date: FRIDAY 25/09/15

Survey Type: MANUAL

BT-06-B-01 **COFFEE SHOP & RESTAURANT BRENT**

EMPIRE WAY WEMBLEY

Suburban Area (PPS6 Out of Centre)

Development Zone

150 sqm Total Gross floor area:

Survey date: MONDAY 18/05/15 Survey Type: MANUAL

CB-06-B-01 **ITALIAN RESTAURANT** CUMBRIA

MARKET STREET

CARLISLE

Town Centre Built-Up Zone

Total Gross floor area: 150 sqm

Survey date: SATURDAY 25/06/16 Survey Type: MANUAL

CF-06-B-02 **FRANKIE & BENNY'S** CARDIFF

NEWPORT ROAD

CARDIFF

Edge of Town

Development Zone

Total Gross floor area: 400 sqm

Survey date: SUNDAY 19/10/14 Survey Type: MANUAL **ITALIAN RESTAURANT** CHESHIRE CH-06-B-02

MILL STREET

MACCLESFIELD

Town Centre

Built-Up Zone

Total Gross floor area:

Survey date: SATURDAY 17/09/16 Survey Type: MANUAL

75 sqm

PIZZA EXPRESS CH-06-B-03 CHESHIRE

MARKET PLACE

MACCLESFIELD

Town Centre

Built-Up Zone

321 sqm Total Gross floor area:

Survey date: SATURDAY 11/11/17 Survey Type: MANUAL

DS-06-B-03 **BRITISH RESTAURANT** DERBYSHIRE

THORNHILL ROAD

DERBY

LITTLEOVER

Neighbourhood Centre (PPS6 Local Centre)

Residential Zone

Total Gross floor area:

350 sqm

Survey date: THURSDAY 12/07/18 Survey Type: MANUAL

DERBYSHIRE

ughan & O' Donovan Arena Road Dublin 18

LIST OF SITES relevant to selection parameters (Cont.)

DS-06-B-04 FRIAR GATE DERBY

Town Centre High Street

Total Gross floor area:

180 sam Survey date: WEDNESDAY 25/09/19

FRENCH RESTAURANT

Survey Type: MANUAL EN-06-B-01 **ITALIAN RESTAURANT** ENFIELD 10

CHASE SIDE ENFIELD

Neighbourhood Centre (PPS6 Local Centre)

Residential Zone

Total Gross floor area: 370 sqm

Survey date: TUESDAY 17/11/15 Survey Type: MANUAL

HC-06-B-01 PIZZA HUT HAMPSHIRE 11

BINNACLE WAY PORTSMOUTH COSHAM

Suburban Area (PPS6 Out of Centre)

Development Zone

325 sam Total Gross floor area:

Survey date: MONDAY 23/11/15 Survey Type: MANUAL

PORTUGUESE RESTAURANT LB-06-B-01 LAMBETH

STOCKWELL ROAD STOCKWELL

Edge of Town Centre No Sub Category

Total Gross floor area: 194 sqm

Survey date: MONDAY 24/06/19 Survey Type: MANUAL

NF-06-B-01 **INDIAN RESTAURANT** NORFOLK

KING STREET GREAT YARMOUTH

Town Centre High Street

Total Gross floor area: 160 sqm

Survey date: THURSDAY Survey Type: MANUAL RENFREWSHIRE 14/09/17

INDIAN RESTAURANT RF-06-B-01

LINWOOD ROAD

PAISLEY

PHOENIX LEISURE PARK

Neighbourhood Centre (PPS6 Local Centre)

No Sub Category

175 sqm Total Gross floor area:

Survey Type: MANUAL Survey date: FRIDAY 20/06/14 **ITALIAN RESTAURANT WEST MIDLANDS**

WM-06-B-06 **EARLSDON STREET**

COVENTRY

Neighbourhood Centre (PPS6 Local Centre)

High Street

175 sqm Total Gross floor area:

Survey date: THURSDAY 24/11/16 Survey Type: MANUAL

WM-06-B-07 **WEST MIDLANDS INDIAN RESTAURANT** 16

AUDNAM

STOURBRIDGE

AUDNAM

Neighbourhood Centre (PPS6 Local Centre)

High Street

Total Gross floor area: 370 sqm

Survey Type: MANUAL Survey date: TUESDAY 28/11/17

TRICS 7.9.1 300322 B20.41 Database right of TRICS Consortium Limited, 2022. All rights reserved Monday 09/05/22 Page 5 Licence No: 357901 TRICS-Restaurant

Roughan & O' Donovan Arena Road Dublin 18

LIST OF SITES relevant to selection parameters (Cont.)

BRITISH FINE DINING

ARUNDEL ROAD NEAR CHICHESTER TANGMERE Neighbourhood Centre (PPS6 Local Centre)

Village

WS-06-B-02

Total Gross floor area: Survey date: SATURDAY 130 sqm

04/10/14

Survey Type: MANUAL

WEST SUSSEX

This section provides a list of all survey sites and days in the selected set. For each individual survey site, it displays a unique site reference code and site address, the selected trip rate calculation parameter and its value, the day of the week and date of each survey, and whether the survey was a manual classified count or an ATC count.

Licence No: 357901

TRIP RATE for Land Use 06 - HOTEL, FOOD & DRINK/B - RESTAURANTS

TOTAL VEHICLES

Calculation factor: 100 sqm

Estimated TRIP rate value per 201 SQM shown in shaded columns

BOLD print indicates peak (busiest) period

	THE REAL PROPERTY.	AR	RIVALS	IVALS		DEPARTURES			TOTALS			
Time Range	No. Days	Ave. GFA	Trip Rate	Estimated Trip Rate	No. Days	Ave. GFA	Trip Rate	Estimated Trip Rate	No. Days	Ave. GFA	Trip Rate	Estimated Trip Rate
00:00 - 01:00	1	370	0.000	0.000	1	370	0.270	0.543	1	370	0.270	0.543
01:00 - 02:00												
02:00 - 03:00												
03:00 - 04:00												
04:00 - 05:00												
05:00 - 06:00												
06:00 - 07:00												
07:00 - 08:00	1	194	0.000	0.000	1	194	0.000	0.000	1	194	0.000	0.000
08:00 - 09:00	2	297	0.673	1.354	2	297	0.505	1.015	2	297	1.178	2.369
09:00 - 10:00	3	256	1.691	3.398	3	256	0.520	1.046	3	256	2.211	4.444
10:00 - 11:00	13	222	1.944	3.908	13	222	0.833	1.675	13	222	2.777	5.583
11:00 - 12:00	16	234	1.760	3.538	16	234	1.227	2.466	16	234	2.987	6.004
12:00 - 13:00	16	234	3.147	6.325	16	234	1.600	3.216	16	234	4.747	9.541
13:00 - 14:00	16	234	2.107	4.234	16	234	2.773	5.574	16	234	4.880	9.808
14:00 - 15:00	16	234	1.093	2.198	16	234	1.520	3.055	16	234	2.613	5.253
15:00 - 16:00	17	242	0.971	1.951	17	242	1.383	2.781	17	242	2.354	4.732
16:00 - 17:00	17	242	1.481	2.976	17	242	1.214	2.439	17	242	2.695	5.415
17:00 - 18:00	17	242	2.670	5.367	17	242	1.481	2.976	17	242	4.151	8.343
18:00 - 19:00	17	242	3.058	6.147	17	242	2.597	5.220	17	242	5.655	11.367
19:00 - 20:00	17	242	3.301	6.635	17	242	2.791	5.610	17	242	6.092	12.245
20:00 - 21:00	17	242	1.650	3.317	17	242	2.524	5.074	17	242	4.174	8.391
21:00 - 22:00	17	242	1.335	2.683	17	242	2.112	4.244	17	242	3.447	6.927
22:00 - 23:00	17	242	0.485	0.976	17	242	1.723	3.464	17	242	2.208	4.440
23:00 - 24:00	13	248	0.093	0.187	13	248	1.084	2.178	13	248	1.177	2.365
otal Rates:			27,459	55.194		No. of Contract of	26.157	52.576			53.616	107.770

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

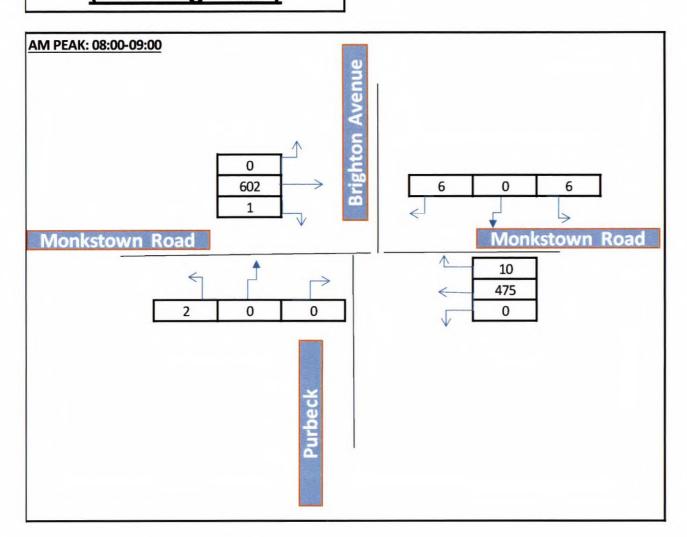
The survey data, graphs and all associated supporting information, contained within the TRICS Database are published by TRICS Consortium Limited ("the Company") and the Company claims copyright and database rights in this published work. The Company authorises those who possess a current TRICS licence to access the TRICS Database and copy the data contained within the TRICS Database for the licence holders' use only. Any resulting copy must retain all copyrights and other proprietary notices, and any disclaimer contained thereon.

The Company accepts no responsibility for loss which may arise from reliance on data contained in the TRICS Database. [No warranty of any kind, express or implied, is made as to the data contained in the TRICS Database.]

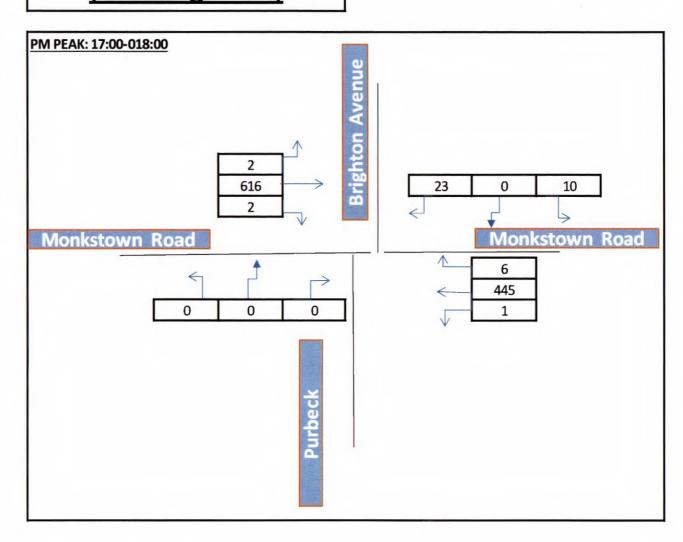
Parameter summary

75 - 400 (units: sam) Trip rate parameter range selected: 01/01/14 - 25/09/19 Survey date date range:

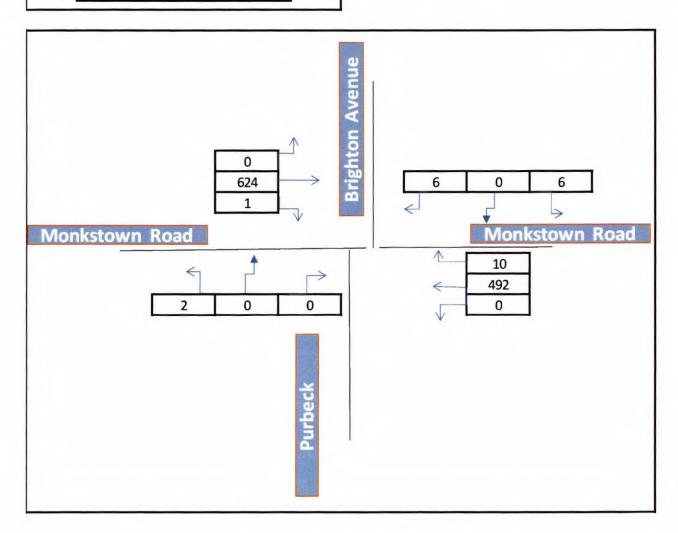
Number of weekdays (Monday-Friday): 12 Number of Saturdays: 4 Number of Sundays: Surveys automatically removed from selection: 0

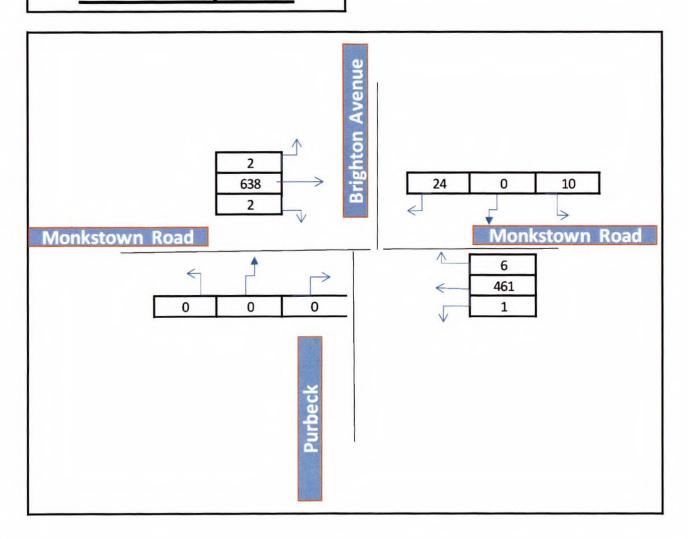

This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of

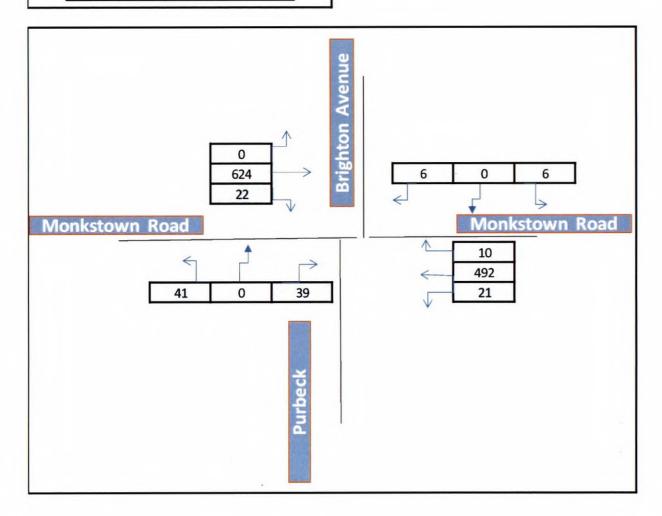
the standard filtering procedure are displayed.


Surveys manually removed from selection:

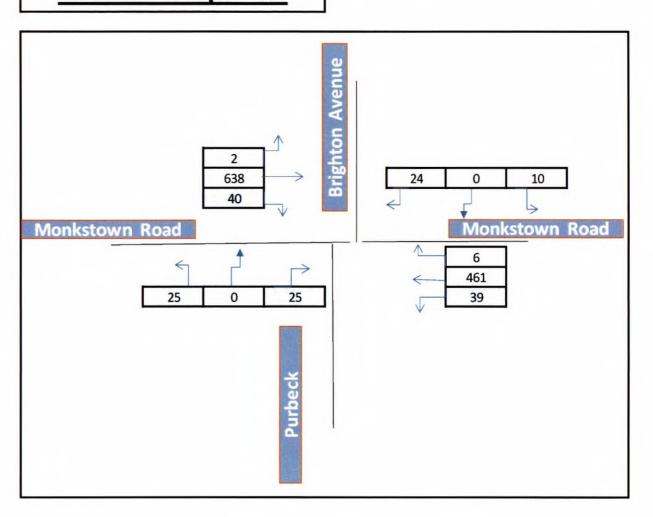
APPENDIX C TRAFFIC GROWTH

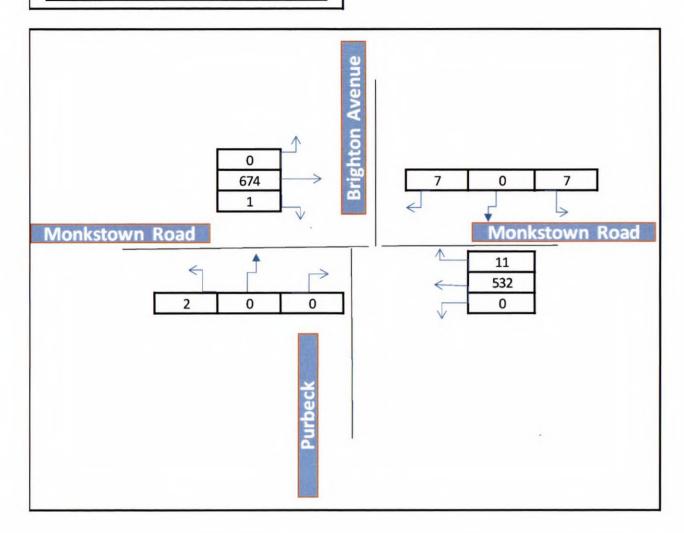

AM Peak Baseline (Existing 2022)


PM Peak Baseline (Existing 2022)

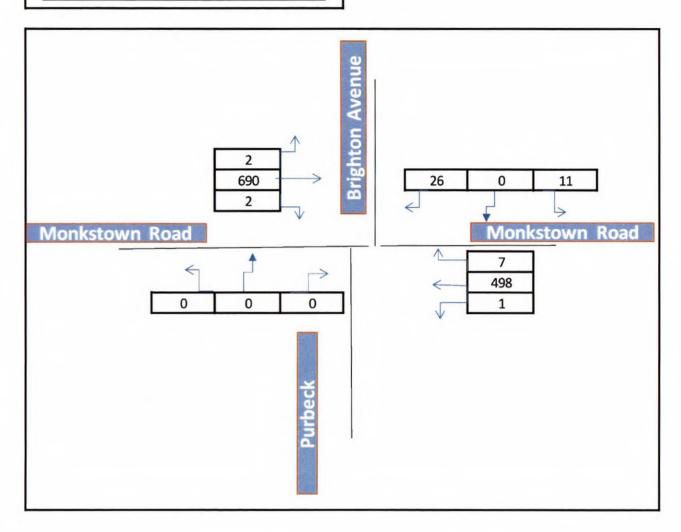

AM Peak Opening 2024 No Development

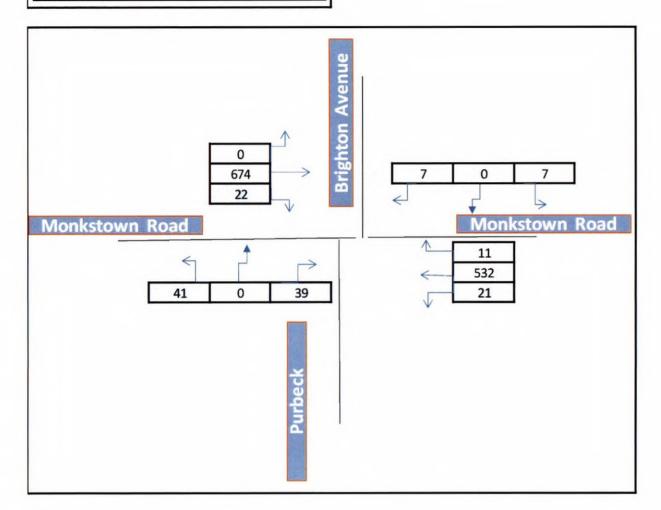
PM Peak Opening 2024 No Development


AM Peak Opening 2024 With Development

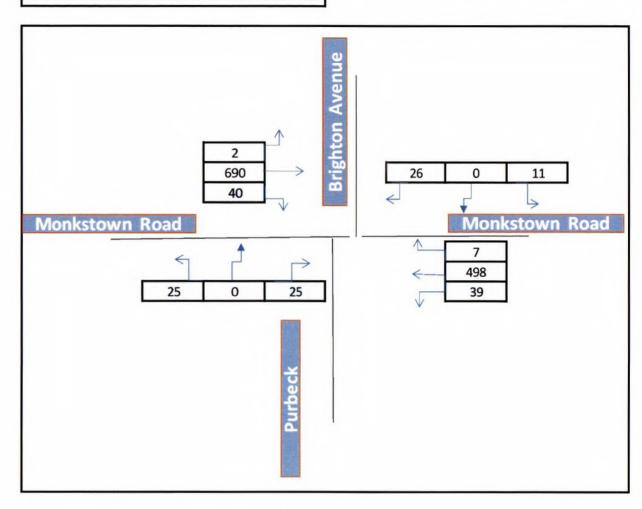

Traffic Generated by Development (494 Apartments)			
AMA Dook	Arrivals	42	
AM Peak	Departures	77	
DAADaala	Arrivals	75	
PM Peak	Departures	50	

Traffic Assignment						
AM Peak	Arrival	Monkstown Road via East	50%	21		
		Monkstown Road via West	50%	21		
	Departure -	Purbeck going East	50%	39		
		Purbeck going West	50%	39		
	Arrival	Monkstown Road via East	50%	38		
		Monkstown Road via West	50%	38		
PM Peak	Departure -	Purbeck going East	50%	25		
		Purbeck going West	50%	25		


PM Peak Opening 2024 With Development

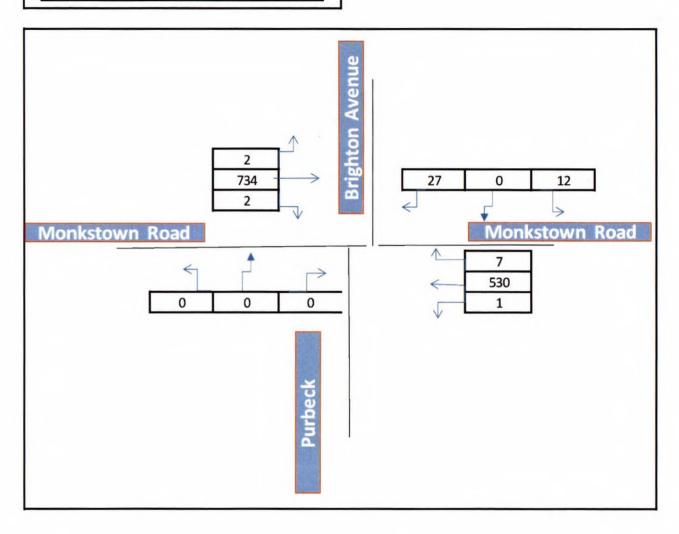

AM Peak Opening +5 2029 No Development

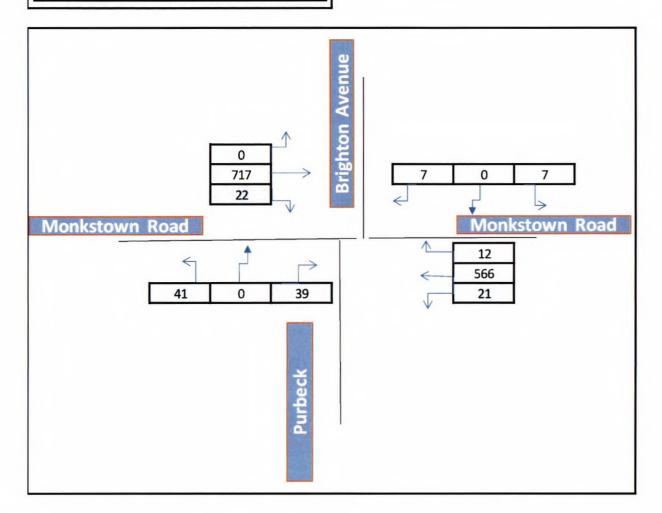
PM Peak Opening +5 2029 No Development


AM Peak Opening +5 2029 With Development

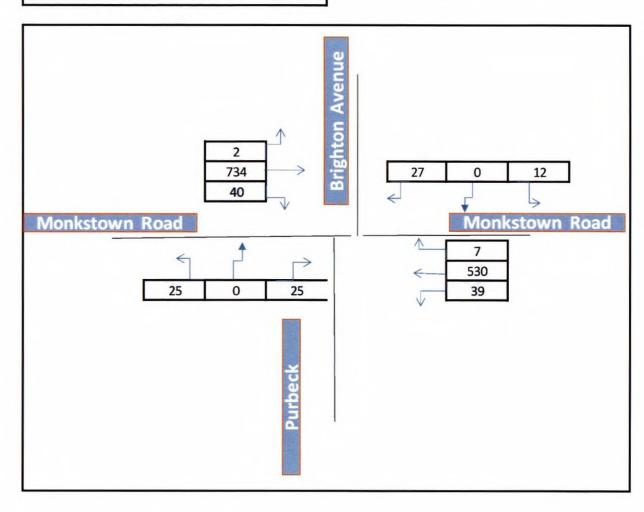

Traffic Generated by Development (494 Apartments)			
AM Dook	Arrivals	42	
AM Peak —	Departures	77	
	Arrivals	75	
PM Peak	Departures	50	

		Traffic Assignment		
AM Peak	Arrival	Monkstown Road via East	50%	21
	Arrival	Monkstown Road via West	50%	21
	Departure -	Purbeck going East	50%	39
		Purbeck going West	50%	39
	Arrival	Monkstown Road via East	50%	38
DAAD I		Monkstown Road via West	50%	38
PM Peak		Purbeck going East	50%	25
	1.2	Departure	Purbeck going West	50%


PM Peak Opening +5 2029 With Development


AM Peak Opening +15 2039 No Development

PM Peak Opening +15 2039 No Development


AM Peak Opening +15 2039 With Development

Traffic Generated by Development (494 Apartments)				
AM Peak	Arrivals	42		
AIVIPEAK	Departures	77		
2142	Arrivals	75		
PM Peak	Departures	50		

Traffic Assignment							
AM Peak	Annium	Monkstown Road via East	50%	21			
	Arrival	Monkstown Road via West	50%	21			
	Departure -	Purbeck going East	50%	39			
		Purbeck going West	50%	39			
111	Arrival	Monkstown Road via East	50%	38			
DAADL		Monkstown Road via West	50%	38			
PM Peak	_	Purbeck going East	50%	25			
		Departure	Purbeck going West	50%	25		

PM Peak Opening +15 2039 With Development

APPENDIX D TRAFFIC ANALYSIS

Junctions 10

PICADY 10 - Priority Intersection Module

Version: 10.0.2.1574

© Copyright TRL Software Limited, 2021

For sales and distribution information, program advice and maintenance, contact TRL Software: +44 (0)1344 379777 software@trl.co.uk trlsoftware.com

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: 2022 Baseline.j10

Path: J:\2021\21120\21120-02_WIP\05 CALCS\Traffic\Junctions 10 Analysis

Report generation date: 5/11/2022 3:59:05 PM

»2022 Baseline, AM »2022 Baseline, PM

Summary of junction performance

		А	M			PM				
	Set ID	Queue (PCU)	Delay (s)	RFC	Los	Set ID	Queue (PCU)	Delay (s)	RFC	LOS
				20	22 B	aseline				
Stream B-ACD		0.0	0.00	0.00	Α		0.0	0.00	0.00	Α
Stream A-BCD		0.0	8.03	0.02	Α	-	0.0	8.19	0.01	A
Stream D-ABC	D1	0.0	11.38	0.04	В	D2	0.1	13.79	0.12	В
Stream C-ABD	105	0.0	7.58	0.00	Α		0.0	7.60	0.00	A

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.

File summary

File Description

Title	
Location	
Site number	
Date	4/20/2022
Version	
Status	(new file)
Identifier	
Client	
Johnumber	
Enumerator	ROD\Rico.Raymundo
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	PCU	PCU	perHour	s	-Min	perMin

Analysis Options

Calculate Queue Percentiles Calculate residual capacity		RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)	
		0.85	36.00	20.00	

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2022 Baseline	AM	PHF	08:00	09:00	15
D2	2022 Baseline	PM	PHF	08:00	09:00	15

Analysis Set Details

ID	Network flow scaling factor (%) 100.000
A1	100.000

2022 Baseline, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Arm D Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	untitled	Right-Left Stagger	Two-way	Two-way	Two-way	Two-way		0.21	Α

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	0,21	A

Arms

Arms

Arm	Name	Description	Arm type
A	untitled		Major
В	untitled		Minor
С	untitled		Major
D	untitled		Minor

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Has right-turn storage	Width for right-turn storage (m)	Visibility for right turn (m)	Blocks?	Blocking queue (PCU)
A	7.50		1	2.20	20.0		1.00
С	7.50		/	2.20	20.0	1	1.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor arm type	Lane width (m)	Visibility to left (m)	Visibility to right (m)
В	One lane	2.25	16	14
D	One lane	2.25	17	18

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Stream	Intercept (PCU/hr)	Slope for AB	Slope for A-C	Slope for A-D	Slope for B-A	Slope for B-D	Slope for C-A	Slope for C-B	Slope for C-D	Slope for D-B	Slope for D-C
A-D	586				0.212	0.212	0.212		0.212		-
B-AD	453	0.077	0.195	-	-	-	0.123	0.278	0.123	0.077	0.195
B-C	585	0.084	0.212		-	-		-	-	0.084	0.212
С-В	586	0.212	0.212		-				-	0.212	0.212
D-A	588		-	-	0.213	0.084	0.213	-	0.084	-	-
D-BC	455	0.123	0.123	0.280	0.196	0.077	0.196	-	0.077		•

The slopes and intercepts shown above include custom intercept adjustments only.

Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2022 Baseline	AM	PHF	08:00	09:00	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
A		1	485	100.000
В		1	2	100.000
С		1	603	100.000
D		·	12	100.000

Peak Hour Factor Data (Traffic)

Am	Hourly volume (PCU/hr)	Peak hour factor	Peak time segment
Α	485	0.92	SecondQuarter
В	2	0.92	SecondQuarter
С	603	0.92	SecondQuarter
D	12	0.92	SecondQuarter

Origin-Destination Data

Demand (PCU/hr)

	То								
		Α	В	С	D				
	A	0	0	475	10				
From	В	0	0	2	0				
100	C	602	1	0	0				
	D	6	0	6	0				

Vehicle Mix

Heavy Vehicle Percentages

			То		
-		A	В	C	D
	A	0	0	0	0
From	В	0	0	0	0
	C	0	0	0	0
	D	0	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.00	0.00	0.0	A
A-BCD	0.02	8.03	0.0	Α
A-B				
A-C				
D-ABC	0.04	11.38	0.0	В
C-ABD	0.00	7.58	0.0	A
C-D				
C-A				

Main Results for each time segment

08:00 - 08:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	368	0.000	0	0.0	0.000	A
A-BCD	10	474	0.020	10	0.0	7.744	A
A-B	0			0			
A-C	447			447			
D-ABC	11	355	0.032	11	0.0	10.473	В
C-ABD	0.94	491	0.002	0.94	0.0	7.351	A
C-D	0			0			
C-A	567			567			

08:15 - 08:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	345	0.000	0	0.0	0.000	A
ABCD	11	459	0.024	11	0.0	8.032	A
A-B	0			0			
A-C	516			516			
D-ABC	13	329	0.040	13	0.0	11.382	В
C-ABD	1 1 1	476	0.002	1	0.0	7.576	A
C-D	0			0			
C-A	654			654			

08:30 - 08:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	354	0.000	0	0.0	0.000	A
A-BCD	11	465	0.023	11	0.0	7.917	A
A-B	0			0			
A-C	489			489			
D-ABC	12	340	0.036	12	0.0	11.005	В
C-ABD	1	482	0.002	1	0.0	7.488	A
C-D	0			0			
C-A	619			619	9		

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	368	0.000	0	0.0	0.000	A
A-BCD	10	474	0.020	10	0.0	7.746	Α
A-B	0			0			
A-C	447			447			
D-ABC	11	355	0.032	11	0.0	10.481	В
C-ABD	0.94	491	0.002	0.95	0.0	7.355	A
C-D	0			0			
C-A	567			567	21		

2022 Baseline, PM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Arm D Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	untitled	Right-Left Stagger	Two-way	Two-way	Two-way	Two-way		0.47	A

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	0.47	A

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D2	2022 Baseline	PM	PHF	08:00	09:00	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Am	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
A		1	452	100.000
В		1	0	100.000
C		1	620	100.000
D		1	33	100.000

Peak Hour Factor Data (Traffic)

Arm	Hourly volume (PCU/hr)	Peak hour factor	Peak time segment
A	452	0.92	SecondQuarter
В	0	0.92	SecondQuarter
C	620	0.92	SecondQuarter
D	33	0.92	SecondQuarter

Origin-Destination Data

Demand (PCU/hr)

- 2	To							
1		A	B	C	D			
100	A	0	1	445	6			
From	B	0	0	0	0			
	C	616	2	0	2			
	D	10	0	23	0			

Vehicle Mix

Heavy Vehicle Percentages

	То							
	1	A	В	C	D			
	A	0	1	1	1			
From	В	1	0	1	1			
	C	1	1	0	1			
	D	1	1	1	0			

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.00	0.00	0.0	A
ABCD	0.01	8.19	0.0	Α
A-B				
A-C				
D-ABC	0.12	13.79	0.1	В
C-ABD	0.00	7.60	0.0	A
C-D				
C-A				

Main Results for each time segment

08:00 - 08:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	369	0.000	0	0.0	0.000	A
ABCD	6	467	0.012	6	0.0	7.872	A
A-B	0.94			0.94	6		
A-C	419			419			
D-ABC	31	325	0.096	31	0.1	12.326	В
C-ABD	2	494	0.004	2	0.0	7.384	A
C-D	2			2			
C-A	580			580			

08:15 - 08:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	345	0.000	0	0.0	0.000	A
A-BCD	7	451	0.015	7	0.0	8.190	A
A-B	1			1			
A-C	484			484	9		
D-ABC	36	299	0.120	36	0.1	13.786	В
C-ABD	2	481	0.005	2	0.0	7.599	A
C-D	2			2			
C-A	670			670	5		

08:30 - 08:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	355	0.000	0	0.0	0.000	A
A-BCD	6	457	0.014	6	0.0	8.062	A
A-B	1		- Land	1		1	
A-C	458			458			
D-ABC	34	310	0.110	34	0.1	13.189	В
C-ABD	2	486	0.004	2	0.0	7.512	A
C-D	2			2		D. J.	
C-A	634			634			

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	369	0.000	0	0.0	0.000	A
A-BCD	6	467	0.012	6	0.0	7.876	A
A-B	0.94			0.94			
A-C	419			419			
D-ABC	31	325	0.096	31	0.1	12.369	В
C-ABD	2	494	0.004	2	0.0	7.388	A
C-D	2			2			
C-A	580			580			

Junctions 10

PICADY 10 - Priority Intersection Module

Version: 10.0.2.1574 Copyright TRL Software Limited, 2021

For sales and distribution information, program advice and maintenance, contact TRL Software: +44 (0)1344 379777 software@trl.co.uk trisoftware.com

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: 2024 Opening Year No Development.j10

Path: J:\2021\21120\21120-02_WIP\05 CALCS\Traffic\Junctions 10 Analysis

Report generation date: 5/11/2022 4:02:20 PM

»2024 Opening Year No Development, AM

»2024 Opening Year No Development, PM

Summary of junction performance

	AM					PM				
	Set ID	Queue (PCU)	Delay (s)	RFC	Los	Set ID	Queue (PCU)	Delay (s)	RFC	Los
		2024 Opening Year No Development								
Stream B-ACD	1 2	0.0	0.00	0.00	A		0.0	0.00	0.00	Α
Stream A-BCD		0.0	8.11	0.02	A		0.0	8.28	0.01	Α
Stream D-ABC	D1	0.0	11.64	0.04	В	D2	0.1	14.28	0.13	В
Stream C-ABD		0.0	7.64	0.00	Α		0.0	7.66	0.00	Α

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.

File summary

File Description

Title	
Location	
Site number	
Date	4/20/2022
Version	
Status	(new file)
Identifier	
Client	
Johnumber	
Enumerator	ROD\Rico.Raymundo
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	PCU	PCU	perHour	s	-Min	perMin

Analysis Options

Calculate Queue Percentiles	Calculate residual capacity	RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)
		0.85	36.00	20.00

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2024 Opening Year No Development	AM	PHF	08:00	09:00	15
D2	2024 Opening Year No Development	PM	PHF	08:00	09:00	15

Analysis Set Details

	Network flow scaling factor (%)
A1	100.000

2024 Opening Year No Development, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Arm D Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	untitled	Right-Left Stagger	Two-way	Two-way	Two-way	Two-way		0.20	A

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	0.20	A

Arms

Arms

Arm	Name	Description	Arm type
A	untitled		Major
В	untitled		Minor
С	untitled		Major
D	untitled		Minor

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Has right-turn storage	Width for right-turn storage (m)	Visibility for right turn (m)	Blocks?	Blocking queue (PCU)
Α	7.50		✓	2.20	20.0	1	1.00
С	7.50		1	2.20	20.0	1	1.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor arm type	Lane width (m)	Visibility to left (m)	Visibility to right (m)
В	One lane	2.25	16	14
D	One lane	2.25	17	18

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Stream	Intercept (PCU/hr)	Slope for AB	Slope for AC	Slope for AD	Slope for B-A	Slope for B-D	Slope for C-A	Slope for C-B	Slope for C-D	for D-B	for D-C
A-D	586				0.212	0.212	0.212	-	0.212		-
B-AD	453	0.077	0.195				0.123	0.278	0.123	0.077	0.195
B-C	585	0.084	0.212			+		-		0.084	0.212
С-В	586	0.212	0.212		-	-	-	-	-	0.212	0.212
D-A	588	-			0.213	0.084	0.213	-	0.084	-	-
D-BC	455	0.123	0.123	0.280	0.196	0.077	0.196	-	0.077	-	

The slopes and intercepts shown above include custom intercept adjustments only.

Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2024 Opening Year No Development	AM	PHF	08:00	09:00	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
A		1	502	100.000
В		1	2	100.000
C		1	625	100.000
D		1	12	100.000

Peak Hour Factor Data (Traffic)

Arm	Hourly volume (PCU/hr)	Peak hour factor	Peak time segment
Α	502	0.92	SecondQuarter
В	2	0.92	SecondQuarter
C	625	0.92	SecondQuarter
D	12	0.92	SecondQuarter

Origin-Destination Data

Demand (PCU/hr)

100	То								
- 4	120	A	В	С	D				
4-54	A	0	0	492	10				
From	В	0	0	2	0				
100	C	624	1	0	0				
- 27	D	6	0	6	0				

Vehicle Mix

Heavy Vehicle Percentages

			To		
	14	A	В	C	D
	A	0	0	0	0
From	В	0	0	0	0
	C	0	0	0	0
	D	0	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.00	0.00	0.0	Α
A-BCD	0.02	8.11	0.0	A II
A-B				
A-C				
D-ABC	0.04	11.64	0.0	В
C-ABD	0.00	7.64	0.0	A
C-D				
C-A				

Main Results for each time segment

08:00 - 08:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	363	0.000	0	0.0	0.000	A
A-BCD	10	470	0.020	10	0.0	7.811	A
A-B	0			0			
A-C	463			463			
D-ABC	11	349	0.032	11	0.0	10.659	В
C-ABD	0.94	487	0.002	0.94	0.0	7.402	A
C-D	0			0			
C-A	588			588			

08:15 - 08:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	338	0.000	0	0.0	0.000	A
A-BCD	11	455	0.025	11	0.0	8.113	A
A-B	0			0			
A-C	534			534			
D-ABC	13	322	0.040	13	0.0	11.638	В
C-ABD	1 1 1	472	0.002	1	0.0	7.638	A
C-D	0			0			
C-A	678			678			

08:30 - 08:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	348	0.000	0	0.0	0.000	A
A-BCD	11	461	0.023	11	0.0	7.994	A
A-B	0			0			
A-C	506			506			
D-ABC	12	333	0.037	12	0.0	11.229	В
C-ABD	1 1	478	0.002	1	0.0	7.542	A
C-D	0			0			
C-A	642			642	9		

5

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	363	0.000	0	0.0	0.000	A
A-BCD	10	470	0.020	10	0.0	7.815	A
A-B	0			0			
AC	463			463			
D-ABC	11	349	0.032	11	0.0	10.665	В
C-ABD	0.94	487	0.002	0.95	0.0	7.405	A
C-D	0			0			
C-A	588			588			

2024 Opening Year No Development, PM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Arm D Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	untitled	Right-Left Stagger	Two-way	Two-way	Two-way	Two-way		0.48	Α

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	0.48	A

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D2	2024 Opening Year No Development	PM	PHF	08:00	09:00	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		1	468	100.000
В		1	0	100.000
С		1	642	100.000
D		1	34	100.000

Peak Hour Factor Data (Traffic)

Arm	Hourly volume (PCU/hr)	Peak hour factor	Peak time segment
Α	468	0.92	SecondQuarter
В	0	0.92	SecondQuarter
С	642	0.92	SecondQuarter
D	34	0.92	SecondQuarter

Origin-Destination Data

Demand (PCU/hr)

	То							
		Α	В	С	D			
	A	0	1	461	6			
From	В	0	0	0	0			
	C	638	2	0	2			
	D	10	0	24	0			

Vehicle Mix

Heavy Vehicle Percentages

	То							
		Α	В	С	D			
	A	0	1	1	1			
From	В	1	0	1	1			
	C	1	1	0	1			
	D	1	1	1	0			

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.00	0.00	0.0	A
A-BCD	0.01	8.28	0.0	A
A-B				
A-C				
D-ABC	0.13	14.28	0.1	В
C-ABD	0.00	7.66	0.0	A
C-D				
C-A	-			

Main Results for each time segment

08:00 - 08:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	363	0.000	0	0.0	0.000	A
A-BCD	6	463	0.012	6	0.0	7.944	A
A-B	0.94			0.94			
A-C	434			434			
D-ABC	32	318	0.101	32	0.1	12.673	В
C-ABD	2	491	0.004	2	0.0	7.434	A
C-D	2			2			
C-A	601			601			

08:15 - 08:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	339	0.000	0	0.0	0.000	A
A-BCD	7	446	0.015	7	0.0	8.278	A
A-B	1			1			
A-C	501			501			
D-ABC	37	291	0.127	37	0.1	14.284	В
C-ABD	2	477	0.005	2	0.0	7.659	A
C-D	2			2			
C-A	693			693			

08:30 - 08:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	349	0.000	0	0.0	0.000	A
ABCD	6	453	0.014	6	0.0	8.143	A
A-B	1			1			
A-C	474			474			
D-ABC	35	302	0.116	35	0.1	13.623	В
C-ABD	2	482	0.004	2	0.0	7.569	A
C-D	2			2			
C-A	656			656			

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	363	0.000	0	0.0	0.000	A
A-BCD	6	463	0.012	6	0.0	7.947	A
A-B	0.94			0.94			
A-C	434			434			
D-ABC	32	318	0.101	32	0.1	12.720	В
C-ABD	2	491	0.004	2	0.0	7.435	A
C-D	2			2			
C-A	601			601			

Junctions 10

PICADY 10 - Priority Intersection Module

Version: 10.0.2.1574

© Copyright TRL Software Limited, 2021

For sales and distribution information, program advice and maintenance, contact TRL Software: +44 (0)1344 379777 software@trl.co.uk trlsoftware.com

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: 2024 Opening Year With Development.j10

Path: J:\2021\21120\21120-02_WIP\05 CALCS\Traffic\Junctions 10 Analysis

Report generation date: 5/18/2022 9:20:41 AM

»2024 Opening Year With Development, AM

»2024 Opening Year With Development, PM

Summary of junction performance

		AM				PM				
	Set ID	Queue (PCU)	Delay (s)	RFC	LOS	Set ID	Queue (PCU)	Delay (s)	RFC	LOS
			2024 Op	ening	Year	With [Developmen	t		
Stream B-ACD	1	0.3	14.71	0.26	В		0.2	13.37	0.17	В
Stream A-BCD		0.0	8.34	0.03	A		0.0	8.38	0.02	A
Stream D-ABC	D1	0.0	12.21	0.04	В	D2	0.2	14.89	0.13	В
Stream C-ABD	100	0.1	7.89	0.05	A		0.1	7.92	0.09	A

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.

File summary

File Description

Title	
Location	
Site number	
Date	4/20/2022
Version	
Status	(new file)
Identifier	
Client	
Johnumber	
Enumerator	ROD\Rico.Raymundo
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	PCU	PCU	perHour	s	-Min	perMin

Analysis Options

- analysis opasis							
Calculate Queue Percentiles	Calculate residual capacity	RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)			
		0.85	36.00	20.00			

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2024 Opening Year With Development	AM	PHF	08:00	09:00	15
D2	2024 Opening Year With Development	PM	PHF	08:00	09:00	15

Analysis Set Details

ID	Network flow scaling factor (%)
A1	100.000

2024 Opening Year With Development, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Arm D Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	untitled	Right-Left Stagger	Two-way	Two-way	Two-way	Two-way		1.26	Α

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	1.26	Α:

Arms

Arms

Arm	Name	Description	Arm type
A	untitled		Major
В	untitled		Minor
С	untitled		Major
D	untitled		Minor

Major Arm Geometry

Am	Width of carriageway (m)	Has kerbed central reserve	Has right-turn storage	Width for right-turn storage (m)	Visibility for right turn (m)	Blocks?	Blocking queue (PCU)
A	7.50		1	2.20	20.0	1	1.00
С	7.50		1	2.20	20.0	1	1.20

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Am	Minor arm type	Lane width (m)	Visibility to left (m)	Visibility to right (m)
В	One lane	2.25	16	14
D	One lane	2.25	17	18

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Stream	Intercept (PCU/hr)	Slope for AB	Slope for AC	Slope for AD	Slope for B-A	Slope for B-D	Slope for C-A	Slope for C-B	Slope for C-D	Slope for D-B	Slope for D-C
A-D	586				0.212	0.212	0.212		0.212		
B-AD	453	0.077	0.195				0.123	0.278	0.123	0.077	0.195
B-C	585	0.084	0.212				-		-	0.084	0.212
C-B	586	0.212	0.212			-		-	-	0.212	0.212
D-A	588				0.213	0.084	0.213		0.084		-
D-BC	455	0.123	0.123	0.280	0.196	0.077	0.196	-	0.077		

The slopes and intercepts shown above include custom intercept adjustments only.

Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2024 Opening Year With Development	AM	PHF	08:00	09:00	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		1	523	100.000
В		1	80	100.000
C		1	646	100.000
D		1	12	100.000

Peak Hour Factor Data (Traffic)

Arm	Hourly volume (PCU/hr)	Peak hour factor	Peak time segment
A	523	0.92	SecondQuarter
В	80	0.92	SecondQuarter
С	646	0.92	SecondQuarter
D	12	0.92	SecondQuarter

Origin-Destination Data

Demand (PCU/hr)

	То							
		Α	В	С	D			
	A	0	21	492	10			
From	В	39	0	41	0			
	C	624	22	0	0			
	D	6	0	6	0			

Vehicle Mix

Heavy Vehicle Percentages

	То						
		Α	В	C	D		
	A	0	1	1	1		
From	В	1	0	1	1		
	С	1	1	0	1		
	D	1	1	1	0		

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.26	14.71	0.3	В
ABCD	0.03	8.34	0.0	A
A-B				
A-C				
D-ABC	0.04	12.21	0.0	В
C-ABD	0.05	7.89	0.1	A
C-D				
C-A				

Main Results for each time segment

08:00 - 08:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	75	359	0.210	74	0.3	12.731	В
A-BCD	10	464	0.021	10	0.0	8.009	A
A-B	20			20			
A-C	463			463			
D-ABC	11	339	0.033	11	0.0	11.080	В
C-ABD	21	496	0.043	21	0.0	7.658	A
C-D	0			0			
C-A	587			587			

08:15 - 08:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	87	333	0.261	87	0.3	14.714	В
A-BCD	11	447	0.025	11	0.0	8.340	A
A-B	23			23			
A-C	534			534		77	
D-ABC	13	311	0.042	13	0.0	12.210	В
C-ABD	25	486	0.051	25	0.1	7.889	A
C-D	0			0			
C-A	677			677			

08:30 - 08:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	82	344	0.240	82	0.3	13.926	В
A-BCD	11	454	0.023	11	0.0	8.209	A
A-B	22			22			
A-C	506			506			
D-ABC	12	322	0.038	12	0.0	11.738	В
C-ABD	23	490	0.048	23	0.1	7.801	A
C-D	0			0			
C-A	641			641			

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	75	359	0.210	76	0.3	12.846	В
A-BCD	10	463	0.021	10	0.0	8.014	A
A-B	20			20			
A-C	463			463			
D-ABC	11	339	0.033	11	0.0	11.097	В
C-ABD	21	496	0.043	21	0.0	7.662	A
C-D	0			0			
C-A	587			587			

2024 Opening Year With Development, PM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Arm D Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	untitled	Right-Left Stagger	Two-way	Two-way	Two-way	Two-way		1.23	A

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	1.23	A

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D2	2024 Opening Year With Development	PM	PHF	08:00	09:00	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Am	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
A		1	506	100.000
В		1	50	100.000
C		·	680	100.000
D		1	34	100.000

Peak Hour Factor Data (Traffic)

Am	Hourly volume (PCU/hr)	Peak hour factor	Peak time segment
A	506	0.92	SecondQuarter
В	50	0.92	SecondQuarter
C	680	0.92	SecondQuarter
D	34	0.92	SecondQuarter

Origin-Destination Data

Demand (PCU/hr)

	1.7	e la	То		Or .
		A	В	C	D
- 3	A	0	39	461	6
From	В	25	0	25	0
	С	638	40	0	2
- 2	D	10	0	24	0

Vehicle Mix

Heavy Vehicle Percentages

	То							
	20	A	В	C	D			
	A	0	1	1	1			
From	В	1	0	1	1			
	С	1	1	0	1			
	D	1	1	1	0			

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.17	13.37	0.2	В
A-BCD	0.02	8.38	0.0	A
A-B				
A-C				
D-ABC	0.13	14.89	0.2	В
C-ABD	0.09	7.92	0.1	Α
C-D				
C-A				

Main Results for each time segment

08:00 - 08:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	47	352	0.134	46	0.2	11.862	В
A-BCD	6	459	0.012	6	0.0	8.022	A
A-B	37			37			
A-C	434			434			
D-ABC	32	309	0.104	32	0.1	13.074	В
C-ABD	40	510	0.078	40	0.1	7.722	A
C-D	2			2	in the second		
C-A	599			599			

08:15 - 08:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	54	326	0.167	54	0.2	13.375	В
A-BCD	7	441	0.015	7	0.0	8.375	A
A-B	42			42	6		
A-C	501			501	4		
D-ABC	37	281	0.132	37	0.2	14.891	В
C-ABD	47	506	0.094	47	0.1	7.919	A
C-D	2			2	4		
C-A	690			690	8		

08:30 - 08:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	51	336	0.153	52	0.2	12.765	В
A-BCD	6	448	0.014	6	0.0	8.233	A
A-B	40			40			
A-C	474			474			
D-ABC	35	292	0.120	35	0.1	14.142	В
C-ABD	44	507	0.087	44	0.1	7.853	A
C-D	2			2			
C-A	653			653			

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	47	352	0.134	47	0.2	11.924	В
ABCD	6	459	0.012	6	0.0	8.026	A
A-B	37			37			
A-C	434			434			
D-ABC	32	309	0.104	32	0.1	13.128	В
C-ABD	40	510	0.078	40	0.1	7.737	A
C-D	2			2			
C-A	599			599			

Junctions 10

PICADY 10 - Priority Intersection Module

Version: 10.0.2.1574 Copyright TRL Software Limited, 2021

For sales and distribution information, program advice and maintenance, contact TRL Software:
+44 (0)1344 379777 software@trl.co.uk trlsoftware.com

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: 2029 Opening Yr + 5 No Development.j10

Path: J:\2021\21120\21120-02_WIP\05 CALCS\Traffic\Junctions 10 Analysis

Report generation date: 5/11/2022 4:06:09 PM

»2029 Opening Yr + 5 No Development, AM

»2029 Opening Yr + 5 No Development, PM

Summary of junction performance

		А	M	100		PM				
	Set ID	Queue (PCU)	Delay (s)	RFC	LOS	Set ID	Queue (PCU)	Delay (s)	RFC	Los
			2029 Op	ening	Yr+	5 No D	evelopment			
Stream B-ACD		0.0	0.00	0.00	A		0.0	0.00	0.00	Α
Stream A-BCD		0.0	8.37	0.03	A	00	0.0	8.41	0.02	Α
Stream D-ABC	D1	0.1	12.38	0.05	В	D2	0.2	15.31	0.15	C
Stream C-ABD		0.0	7.79	0.00	A	SUC	0.0	7.73	0.00	A

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.

File summary

File Description

Title	
Location	
Site number	
Date	4/20/2022
Version	
Status	(new file)
Identifier	
Client	
Johnumber	
Enumerator	ROD\Rico.Raymundo
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	PCU	PCU	perHour	s	-Min	perMin

Analysis Options

Calculate Queue Percentiles Calculate residual capacity		RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)	
		0.85	36.00	20.00	

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2029 Opening Yr + 5 No Development	AM	PHF	08:00	09:00	15
D2	2029 Opening Yr + 5 No Development	PM	PHF	08:00	09:00	15

Analysis Set Details

ID	Network flow scaling factor (%)
A1	100.000

2029 Opening Yr + 5 No Development, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Arm D Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	untitled	Right-Left Stagger	Two-way	Two-way	Two-way	Two-way		0.22	Α

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	0.22	A

Arms

Arms

Arm	Name	Description	Arm type
Α	untitled		Major
В	untitled		Minor
С	untitled		Major
D	untitled		Minor

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Has right-turn storage	Width for right-turn storage (m)	Visibility for right turn (m)	Blocks?	Blocking queue (PCU)
Α	7.50		✓	2.20	20.0	1	1.00
С	7.50		✓	2.20	20.0	1	1.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor arm type	Lane width (m)	Visibility to left (m)	Visibility to right (m)	
В	One lane	2.25	16	14	
D	One lane	2.25	17	18	

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Stream	Intercept (PCU/hr)	Slope for AB	Slope for AC	Slope for AD	Slope for B-A	Slope for B-D	Slope for C-A	Slope for C-B	Slope for C-D	for D-B	for D-C
A-D	586				0.212	0.212	0.212		0.212		-
B-AD	453	0.077	0.195			-	0.123	0.278	0.123	0.077	0.195
B-C	585	0.084	0.212					-		0.084	0.212
C-B	586	0.212	0.212							0.212	0.212
D-A	588		-	-	0.213	0.084	0.213	-	0.084		-
D-BC	455	0.123	0.123	0.280	0.196	0.077	0.196	-	0.077	-	-

The slopes and intercepts shown above include custom intercept adjustments only

Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2029 Opening Yr + 5 No Development	AM	PHF	08:00	09:00	15

	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
A		1	543	100.000
В		1	2	100.000
C		1	675	100.000
D		1	14	100.000

Peak Hour Factor Data (Traffic)

Am	Hourly volume (PCU/hr)	Peak hour factor	Peak time segment
A	543	0.92	SecondQuarter
В	2	0.92	SecondQuarter
C	675	0.92	SecondQuarter
D	14	0.92	SecondQuarter

Origin-Destination Data

Demand (PCU/hr)

	To						
1.0	30.0	A	В	С	D		
	A	0	0	532	11		
From	В	0	0	2	0		
	C	674	1	0	0		
. 18	D	7	0	7	0		

Vehicle Mix

Heavy Vehicle Percentages

-113	To						
75.75		A	В	C	D		
	A	0	0	0	1		
From	В	0	0	0	0		
. 33	С	0	0	0	0		
	D	0	0	0	0		

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.00	0.00	0.0	A
ABCD	0.03	8.37	0.0	A
A-B				
A-C				
D-ABC	0.05	12.38	0.1	В
C-ABD	0.00	7.79	0.0	A
C-D				
C-A				

Main Results for each time segment

08:00 - 08:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	350	0.000	0	0.0	0.000	A
A-BCD	11	463	0.023	11	0.0	8.034	A
A-B	0			0			
A-C	501			501			
D-ABC	13	335	0.039	13	0.0	11.174	В
C-ABD	0.94	479	0.002	0.94	0.0	7.527	A
C-D	0			0			
C-A	635			635			

08:15 - 08:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	323	0.000	0	0.0	0.000	A
A-BCD	12	447	0.028	12	0.0	8.366	A
A-B	0			0			
A-C	578			578			
D-ABC	15	306	0.050	15	0.1	12.380	В
C-ABD	1	463	0.002	1	0.0	7.793	A
C-D	0			0			
C-A	733			733			

08:30 - 08:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	334	0.000	0	0.0	0.000	A
A-BCD	12	453	0.026	12	0.0	8.234	A
A-B	0			0			
A-C	547			547			
D-ABC	14	318	0.045	14	0.0	11.875	В
C-ABD	1	469	0.002	1	0.0	7.687	A
C-D	0			0			
C-A	694			694			

5

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	350	0.000	0	0.0	0.000	A
A-BCD	11	463	0.023	11	0.0	8.038	A
A-B	0			0			
A-C	501			501			
D-ABC	13	335	0.039	13	0.0	11.188	В
C-ABD	0.94	479	0.002	0.95	0.0	7.530	A
C-D	0			0			
C-A	635			635			

2029 Opening Yr + 5 No Development, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Arm D Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	untitled	Right-Left Stagger	Two-way	Two-way	Two-way	Two-way		0.52	A

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	0.52	A

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D2	2029 Opening Yr + 5 No Development	PM	PHF	08:00	09:00	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		1	506	100.000
В		1	0	100.000
С		1	694	100.000
D		*	37	100.000

Peak Hour Factor Data (Traffic)

Arm	Hourly volume (PCU/hr)	Peak hour factor	Peak time segment					
Α	506	0.92	SecondQuarter					
В	0	0.92	SecondQuarter					
С	694	0.92	SecondQuarter					
D	37	0.92	SecondQuarter					

Origin-Destination Data

Demand (PCU/hr)

	То					
		A	В	C	D	
	A	0	1	498	7	
From	В	0	0	0	0	
	C	690	2	0	2	
	D	11	0	26	0	

Vehicle Mix

Heavy Vehicle Percentages

Inte	То				
		A	В	C	D
	A	0	0	0	0
From	В	0	0	0	0
	C	0	0	0	0
	D	0	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.00	0.00	0.0	Α
A-BCD	0.02	8.41	0.0	A
A-B				
A-C				
D-ABC	0.15	15.31	0.2	C
C-ABD	0.00	7.73	0.0	A
C-D				
C-A				

Main Results for each time segment

08:00 - 08:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	351	0.000	0	0.0	0.000	A
A-BCD	7	454	0.015	7	0.0	8.042	A
A-B	0.94			0.94			
A-C	469			469			
D-ABC	35	304	0.115	34	0.1	13.313	В
C-ABD	2	483	0.004	2	0.0	7.478	A
C-D	2			2			
C-A	650			650			

08:15 - 08:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	324	0.000	0	0.0	0.000	A
A-BCD	8	436	0.018	8	0.0	8.412	A
A-B	1			1			
A-C	541			541			
D-ABC	40	275	0.146	40	0.2	15.307	C
C-ABD	2	468	0.005	2	0.0	7.728	A
C-D	2			2			
C-A	750			750			

08:30 - 08:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	335	0.000	0	0.0	0.000	A
A-BCD	7	443	0.017	7	0.0	8.263	A
A-B	1			1			
A-C	512			512			
D-ABC	38	287	0.133	38	0.2	14.482	В
C-ABD	2	474	0.004	2	0.0	7.627	A
C-D	2			2			
C-A	710			710	77		

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	351	0.000	0	0.0	0.000	A
A-BCD	7	454	0.015	7	0.0	8.044	A
A-B	0.94			0.94			
A-C	469			469	N.		
D-ABC	35	304	0.115	35	0.1	13.373	В
C-ABD	2	483	0.004	2	0.0	7.479	A
C-D	2			2			
C-A	650			650	7		

Junctions 10

PICADY 10 - Priority Intersection Module

Version: 10.0.2.1574 © Copyright TRL Software Limited, 2021

For sales and distribution information, program advice and maintenance, contact TRL Software: +44 (0)1344 379777 software@trl.co.uk trlsoftware.com

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: 2029 Opening Yr + 5 With Development.j10

Path: J:\2021\21120\21120-02_WIP\05 CALCS\Traffic\Junctions 10 Analysis

Report generation date: 5/18/2022 9:33:01 AM

»2029 Opening Yr + 5 With Development, AM

»2029 Opening Yr + 5 With Development, PM

Summary of junction performance

		A	M			PM				
	Set ID	Queue (PCU)	Delay (s)	RFC	LOS	Set ID	Queue (PCU)	Delay (s)	RFC	LOS
		2029 Opening Yr + 5 With Development								
Stream B-ACD		0.4	15.68	0.27	C		0.2	14.17	0.18	В
Stream A-BCD		0.0	8.60	0.03	A	-	0.0	8.66	0.02	Α
Stream D-ABC	D1	0.1	13.03	0.05	В	D2	0.2	16.18	0.15	C
Stream C-ABD		0.1	7.96	0.05	A		0.1	7.87	0.10	A

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.

File summary

File Description

Title	
Location	
Site number	
Date	4/20/2022
Version	
Status	(new file)
Identifier	
Client	
Johnumber	
Enumerator	ROD\Rico.Raymundo
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	PCU	PCU	perHour	s	-Min	perMin

Analysis Options

Calculate Queue Percentiles	Calculate residual capacity	RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)	
		0.85	36.00	20.00	

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2029 Opening Yr + 5 With Development	AM	PHF	08:00	09:00	15
D2	2029 Opening Yr + 5 With Development	PM	PHF	08:00	09:00	15

Analysis Set Details

ID	Network flow scaling factor (%)
A1	Network flow scaling factor (%) 100.000

2029 Opening Yr + 5 With Development, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Arm D Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	untitled	Right-Left Stagger	Two-way	Two-way	Two-way	Two-way		1.27	A

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	1.27	Α

Arms

Arms

Arm	Name	Description	Arm type
A	untitled		Major
В	untitled		Minor
С	untitled		Major
D	untitled		Minor

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Has right-turn storage	Width for right-turn storage (m)	Visibility for right turn (m)	Blocks?	Blocking queue (PCU)
A	7.50		1	2.20	20.0	1	1.00
С	7.50		1	2.20	20.0	1	1.10

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor arm type	Lane width (m)	Visibility to left (m)	Visibility to right (m)	
В	One lane	2.25	16	14	
D	One lane	2.25	17	18	

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Stream	Intercept (PCU/hr)	for	Slope for AC	Slope for A-D	Slope for B-A	Slope for B-D	Slope for C-A	Slope for C-B	Slope for C-D	Slope for D-B	Slope for D-C
A-D	586			-	0.212	0.212	0.212	-	0.212	-	-
B-AD	453	0.077	0.195	-		-	0.123	0.278	0.123	0.077	0.195
B-C	585	0.084	0.212		-	-		-	-	0.084	0.212
C-B	586	0.212	0.212	-	-	-			-	0.212	0.212
D-A	588		-		0.213	0.084	0.213		0.084		-
D-BC	455	0.123	0.123	0.280	0.196	0.077	0.196		0.077		-

The slopes and intercepts shown above include custom intercept adjustments only.

Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2029 Opening Yr + 5 With Development	AM	PHF	08:00	09:00	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Am	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
A		1	564	100.000
В		1	80	100.000
С		1	696	100.000
D		1	14	100.000

Peak Hour Factor Data (Traffic)

Arm	Hourly volume (PCU/hr)	Peak hour factor	Peak time segment
Α	564	0.92	SecondQuarter
В	80	0.92	SecondQuarter
С	696	0.92	SecondQuarter
D	14	0.92	SecondQuarter

Origin-Destination Data

Demand (PCU/hr)

	То							
		A	В	C	D			
1	A	0	21	532	11			
From	В	39	0	41	0			
	C	674	22	0	0			
	D	7	0	7	0			

Vehicle Mix

Heavy Vehicle Percentages

	1		To		
		A	В	С	D
	A	0	2	2	2
From	В	1	0	1	1
	С	2	2	0	2
	D	1	1	1	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.27	15.68	0.4	C
ABCD	0.03	8.60	0.0	A
A-B				
A-C				
D-ABC	0.05	13.03	0.1	В
C-ABD	0.05	7.96	0.1	A
C-D				
C-A				

Main Results for each time segment

08:00 - 08:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	75	346	0.218	74	0.3	13.329	В
A-BCD	11	456	0.023	11	0.0	8.237	A
A-B	20			20			
A-C	501			501			
D-ABC	13	325	0.041	13	0.0	11.640	В
C-ABD	22	495	0.044	21	0.0	7.748	A
C-D	0			0			
C-A	634			634			

08:15 - 08:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	87	318	0.273	87	0.4	15.678	С
A-BCD	12	439	0.028	12	0.0	8.601	A
A-B	23			23			
A-C	578			578			
D-ABC	15	294	0.052	15	0.1	13.028	В
C-ABD	26	487	0.052	25	0.1	7.958	A
C-D	0			0			
C-A	731			731			

08:30 - 08:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	82	329	0.250	82	0.3	14.739	В
A-BCD	12	446	0.026	12	0.0	8.459	A
A-B	22			22			
A-C	547			547			
D-ABC	14	307	0.047	14	0.1	12.444	В
C-ABD	24	490	0.049	24	0.1	7.880	A
C-D	0			0			
C-A	692			692			

08:45 - 09:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	75	346	0.218	76	0.3	13.464	В
A-BCD	11	456	0.023	11	0.0	8.244	A
A-B	20			20			
A-C	501			501			
D-ABC	13	325	0.041	13	0.0	11.660	В
C-ABD	22	495	0.044	22	0.0	7.752	A
C-D	0			0			
C-A	634			634	9		

2029 Opening Yr + 5 With Development, PM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Arm D Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	untitled	Right-Left Stagger	Two-way	Two-way	Two-way	Two-way		1.26	A

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	1.26	A

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D2	2029 Opening Yr + 5 With Development	PM	PHF	08:00	09:00	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Am	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
A		1	544	100.000
В		1	50	100.000
C		·	732	100.000
D		1	37	100.000

Peak Hour Factor Data (Traffic)

Arm	Hourly volume (PCU/hr)	Peak hour factor	Peak time segment
A	544	0.92	SecondQuarter
В	50	0.92	SecondQuarter
C	732	0.92	SecondQuarter
D	37	0.92	SecondQuarter

Origin-Destination Data

Demand (PCU/hr)

	То						
17		A	В	C	0		
12	A	0	39	498	7		
From	В	25	0	25	0		
10	c	690	40	0	2		
3	D	11	0	26	0		

Vehicle Mix

Heavy Vehicle Percentages

	То							
	3	A	В	C	D			
11	A	0	2	2	2			
From	В	1	0	1	1			
	C	2	2	0	2			
	D	1	1	1	0			

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.18	14.17	0.2	В
A-BCD	0.02	8.66	0.0	A
A-B				
A-C				
D-ABC	0.15	16.18	0.2	C
C-ABD	0.10	7.87	0.1	A
C-D				
C-A				

Main Results for each time segment

08:00 - 08:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	47	340	0.139	46	0.2	12.381	В
A-BCD	7	450	0.015	7	0.0	8.272	A
A-B	37			37			
A-C	469			469			
D-ABC	35	295	0.118	34	0.1	13.899	В
C-ABD	41	516	0.080	41	0.1	7.726	A
C-D	2			2			
C-A	647			647			

08:15 - 08:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	54	311	0.175	54	0.2	14.170	В
A-BCD	8	432	0.018	8	0.0	8.663	A
A-B	42			42			
A-C	541			541			
D-ABC	40	265	0.152	40	0.2	16.182	C
C-ABD	49	515	0.095	49	0.1	7.874	Α
C-D	2			2			
C-A	744			744			

08:30 - 08:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	51	322	0.160	52	0.2	13.440	В
A-BCD	7	439	0.017	7	0.0	8.506	A
A-B	40			40			
A-C	512			512			
D-ABC	38	277	0.138	38	0.2	15.232	C
C-ABD	46	515	0.089	46	0.1	7.830	A
C-D	2			2			
C-A	705			705			

08:45 - 09:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	47	339	0.139	47	0.2	12.452	В
A-BCD	7	450	0.015	7	0.0	8.276	A
A-B	37			37			
A-C	469			469			
D-ABC	35	295	0.118	35	0.1	13.974	В
C-ABD	41	516	0.080	41	0.1	7.743	A
C-D	2			2			
C-A	647			647	N .		

Junctions 10

PICADY 10 - Priority Intersection Module

Version: 10.0.2.1574

© Copyright TRL Software Limited, 2021

For sales and distribution information, program advice and maintenance, contact TRL Software:
+44 (0)1344 379777 software@trl.co.uk trlsoftware.com

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the

Filename: 2039 Opening Yr + 15 No Development.j10

Path: J:\2021\21120\21120-02 WIP\05 CALCS\Traffic\Junctions 10 Analysis

Report generation date: 5/11/2022 4:14:48 PM

»2039 Opening Yr + 15 No Development, AM

»2039 Opening Yr + 15 No Development, PM

Summary of junction performance

	AM						PM			
	Set ID	Queue (PCU)	Delay (s)	RFC	LOS	Set ID	Queue (PCU)	Delay (s)	RFC	LOS
			2039 Op	ening	Yr+	15 No I	Developmen	t		
Stream B-ACD		0.0	0.00	0.00	A	MAL	0.0	0.00	0.00	A
Stream A-BCD		0.0	8.46	0.03	A	-	0.0	8.60	0.02	Α
Stream D-ABC	D1	0.1	13.02	0.05	В	D2	0.2	16.32	0.16	С
Stream C-ABD		0.0	7.92	0.00	Α	50-551	0.0	7.85	0.00	Α

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.

File summary

File Description

Title	
Location	
Site number	
Date	4/20/2022
Version	
Status	(new file)
Identifier	
Client	
Johnumber	
Enumerator	ROD\Rico.Raymundo
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	PCU	PCU	perHour	s	-Min	perMin

Analysis Options

Calculate Queue Percentiles	Calculate residual capacity	RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)
		0.85	36.00	20.00

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2039 Opening Yr + 15 No Development	AM	PHF	08:00	09:00	15
D2	2039 Opening Yr + 15 No Development	PM	PHF	08:00	09:00	15

Analysis Set Details

ID	Network flow scaling factor (%)
A1	100.000

2039 Opening Yr + 15 No Development, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Arm D Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	untitled	Right-Left Stagger	Two-way	Two-way	Two-way	Two-way		0.23	A

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	0.23	A

Arms

Arms

Arm	Name	Description	Arm type
A	untitled		Major
В	untitled		Minor
С	untitled		Major
D	untitled		Minor

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Has right-turn storage	Width for right-turn storage (m)	Visibility for right turn (m)	Blocks?	Blocking queue (PCU)
A	7.50		✓	2.20	20.0	1	1.00
С	7.50		/	2.20	20.0	1	1.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor arm type	Lane width (m)	Visibility to left (m)	Visibility to right (m)
В	One lane	2.25	16	14
D	One lane	2.25	17	18

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Stream	Intercept (PCU/hr)	Slope for A-B	Slope for AC	Slope for A-D	Slope for B-A	Slope for B-D	Slope for C-A	Slope for C-B	Slope for C-D	Slope for D-B	Slope for D-C
A-D	586		-	-	0.212	0.212	0.212		0.212	-	-
B-AD	453	0.077	0.195				0.123	0.278	0.123	0.077	0.195
B-C	585	0.084	0.212		-	-				0.084	0.212
С-В	586	0.212	0.212	-	-	-			-	0.212	0.212
D-A	588				0.213	0.084	0.213		0.084		-
D-BC	455	0.123	0.123	0.280	0.196	0.077	0.196		0.077		

The slopes and intercepts shown above include custom intercept adjustments only.

Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only, they may differ for subsequent time segments.

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2039 Opening Yr + 15 No Development	AM	PHF	08:00	09:00	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
A		1	578	100.000
В		1	2	100.000
С		1	718	100.000
D		1	14	100.000

Peak Hour Factor Data (Traffic)

Am	Hourly volume (PCU/hr)	Peak hour factor	Peak time segment
A	578	0.92	SecondQuarter
В	2	0.92	SecondQuarter
C	718	0.92	SecondQuarter
D	14	0.92	SecondQuarter

Origin-Destination Data

Demand (PCU/hr)

1021	То							
		A	8	С	D			
	A	0	0	566	12			
From	8	0	0	2	0			
	C	717	1	0	0			
35	D	7	0	7	0			

Vehicle Mix

Heavy Vehicle Percentages

		1	То	3	
	20	A	В	C	D
	A	0	0	0	0
From	В	0	0	0	0
1111	C	0	0	0	0
110	D	0	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.00	0.00	0.0	A
ABCD	0.03	8.46	0.0	A
A-B				
A-C				
D-ABC	0.05	13.02	0.1	В
C-ABD	0.00	7.92	0.0	A
C-D				
C-A				

Main Results for each time segment

08:00 - 08:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	339	0.000	0	0.0	0.000	A
A-BCD	12	456	0.026	12	0.0	8.099	A
A-B	0			0			
A-C	533			533			
D-ABC	13	323	0.041	13	0.0	11.608	В
C-ABD	0.94	472	0.002	0.94	0.0	7.634	A
C-D	0			0			
C-A	675			675			

08:15 - 08:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	310	0.000	0	0.0	0.000	A
A-BCD	14	439	0.031	14	0.0	8.455	A
A-B	0			0			
A-C	615			615			
D-ABC	15	292	0.052	15	0.1	13.020	В
C-ABD	1	455	0.002	1	0.0	7.925	A
C-D	0			0			
C-A	779			779			

08:30 - 08:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	322	0.000	0	0.0	0.000	A
A-BCD	13	446	0.029	13	0.0	8.313	A
A-B	0			0			
A-C	582			582			
D-ABC	14	304	0.047	14	0.1	12.423	В
C-ABD	21.	462	0.002	1	0.0	7.808	A
C-D	0			0			
C-A	738			738			

5

08:45 - 09:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	339	0.000	0	0.0	0.000	A
A-BCD	12	456	0.026	12	0.0	8.103	A
A-B	0		100	0			
A-C	533			533			
D-ABC	13	323	0.041	13	0.0	11.623	В
C-ABD	0.94	472	0.002	0.95	0.0	7.634	A
C-D	0			0			
C-A	675			675			

2039 Opening Yr + 15 No Development, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Arm D Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	untitled	Right-Left Stagger	Two-way	Two-way	Two-way	Two-way		0.54	A

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	0.54	Α

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D2	2039 Opening Yr + 15 No Development	PM	PHF	08:00	09:00	15

Vehicle mix source	PCU Factor for a HV (PCU)		
HV Percentages	2.00		

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		1	538	100.000
В		1	0	100.000
С		1	738	100.000
D		1	39	100.000

Peak Hour Factor Data (Traffic)

Arm	Hourly volume (PCU/hr)	Peak hour factor	Peak time segment
Α	538	0.92	SecondQuarter
В	0	0.92	SecondQuarter
С	738	0.92	SecondQuarter
D	39	0.92	SecondQuarter

Origin-Destination Data

Demand (PCU/hr)

	То					
		A	В	С	D	
	A	0	1	530	7	
From	В	0	0	0	0	
	C	734	2	0	2	
	D	12	0	27	0	

Vehicle Mix

Heavy Vehicle Percentages

	То				
104		A	В	C	D
	A	0	0	0	0
From	В	0	0	0	0
	C	0	0	0	0
	D	0	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.00	0.00	0.0	A
A-BCD	0.02	8.60	0.0	A
A-B				
A-C				
D-ABC	0.16	16.32	0.2	C
C-ABD	0.00	7.85	0.0	Α
C-D				
C-A				

Main Results for each time segment

08:00 - 08:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	340	0.000	0	0.0	0.000	A
A-BCD	7	446	0.015	7	0.0	8.192	A
A-B	0.94			0.94			
A-C	499			499			
D-ABC	37	294	0.125	36	0.1	13.946	В
C-ABD	2	477	0.004	2	0.0	7.579	A
C-D	2			2			
C-A	691			691			

08:15 - 08:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	311	0.000	0	0.0	0.000	A
A-BCD	8	426	0.018	8	0.0	8.598	A
A-B	1			1			
A-C	576			576			
D-ABC	42	263	0.161	42	0.2	16.325	C
C-ABD	2	461	0.005	2	0.0	7.852	A
C-D	2			2			
C-A	798			798			

08:30 - 08:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	323	0.000	0	0.0	0.000	A
A-BCD	7	434	0.017	7	0.0	8.433	A
A-B	1			1			
A-C	545			545			
D-ABC	40	275	0.146	40	0.2	15.333	C
C-ABD	2	467	0.004	2	0.0	7.743	A
C-D	2			2			
C-A	755			755			

08:45 - 09:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	0	340	0.000	0	0.0	0.000	A
A-BCD	7	446	0.015	7	0.0	8.196	A
A-B	0.94			0.94			
A-C	499			499			
D-ABC	37	294	0.125	37	0.1	14.020	В
C-ABD	2	477	0.004	2	0.0	7.583	A
C-D	2			2			
C-A	691			691			

Junctions 10

PICADY 10 - Priority Intersection Module

Version: 10.0.2.1574

© Copyright TRL Software Limited, 2021

For sales and distribution information, program advice and maintenance, contact TRL Software:
+44 (0)1344 379777 software@trl.co.uk trlsoftware.com

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: 2039 Opening Yr + 15 With Development.j10

Path: J:\2021\21120\21120-02_WIP\05 CALCS\Traffic\Junctions 10 Analysis

Report generation date: 5/18/2022 9:38:22 AM

»2039 Opening Yr + 15 With Development, AM »2039 Opening Yr + 15 With Development, PM

Summary of junction performance

		А	M			PM				
	Set ID	Queue (PCU)	Delay (s)	RFC	LOS	Set ID	Queue (PCU)	Delay (s)	RFC	LOS
		2	039 Ope	ning \	Yr + 1	5 With	Developme	nt		
Stream B-ACD		0.4	16.61	0.29	C		0.2	14.93	0.18	В
Stream A-BCD		0.0	8.90	0.03	A	200	0.0	9.04	0.02	A
Stream D-ABC	D1	0.1	13.74	0.05	В	D2	0.2	17.32	0.17	C
Stream C-ABD	14 12	0.1	8.18	0.05	A		0.1	8.11	0.10	A

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.

File summary

File Description

Title	
Location	
Site number	
Date	4/20/2022
Version	
Status	(new file)
Identifier	
Client	
Johnumber	
Enumerator	ROD\Rico.Raymundo
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	PCU	PCU	perHour	s	-Min	perMin

Analysis Options

Calculate Queue Percentiles	Calculate residual capacity	RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)
		0.85	36.00	20.00

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2039 Opening Yr + 15 With Development	AM	PHF	08:00	09:00	15
D2	2039 Opening Yr + 15 With Development	PM	PHF	08:00	09:00	15

Analysis Set Details

ID	Network flow scaling factor (%)
A1	Network flow scaling factor (%) 100.000

2039 Opening Yr + 15 With Development, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Arm D Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	untitled	Right-Left Stagger	Two-way	Two-way	Two-way	Two-way		1.27	A

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	1.27	A

Arms

Arms

Am	Name	Description	Arm type
A	untitled		Major
В	untitled		Minor
С	untitled		Major
D	untitled		Minor

Major Arm Geometry

Am	Width of carriageway (m)	Has kerbed central reserve	Has right-turn storage	Width for right-turn storage (m)	Visibility for right turn (m)	Blocks?	Blocking queue (PCU)
A	7.50		1	2.20	20.0	1	1.00
C	7.50		1	2.20	20.0	1	1.10

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor arm type	Lane width (m)	Visibility to left (m)	Visibility to right (m)						
В	One lane	2.25	16	14						
D	One lane	2.25	17	18						

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Stream	Intercept (PCU/hr)	Slope for AB	Slope for AC	Slope for A-D	Slope for B-A	Slope for B-D	Slope for C-A	Slope for C-B	Slope for C-D	Slope for D-B	Slope for D-C
A-D	586	-			0.212	0.212	0.212		0.212		-
B-AD	453	0.077	0.195				0.123	0.278	0.123	0.077	0.195
B-C	585	0.084	0.212				3.			0.084	0.212
C-B	586	0.212	0.212							0.212	0.212
D-A	588				0.213	0.084	0.213	-	0.084		
D-BC	455	0.123	0.123	0.280	0.196	0.077	0.196	-	0.077	-	-

The slopes and intercepts shown above include custom intercept adjustments only.

Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2039 Opening Yr + 15 With Development	AM	PHF	08:00	09:00	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		1	599	100.000
В		1	80	100.000
С		V	739	100.000
D		1	14	100.000

Peak Hour Factor Data (Traffic)

Am	Hourly volume (PCU/hr)	Peak hour factor	Peak time segment
A	599	0.92	SecondQuarter
В	80	0.92	SecondQuarter
С	739	0.92	SecondQuarter
D	14	0.92	SecondQuarter

Origin-Destination Data

Demand (PCU/hr)

	То							
		A	В	С	D			
	A	0	21	566	12			
From	В	39	0	41	0			
	C	717	22	0	0			
	D	7	0	7	0			

Vehicle Mix

Heavy Vehicle Percentages

	То							
		A	В	C	D			
	A	0	4	4	4			
From	В	1	0	1	1			
	С	4	4	0	4			
	D	1	1	1	2			

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.29	16.61	0.4	C
A-BCD	0.03	8.90	0.0	Α
A-B				
A-C				
D-ABC	0.05	13.74	0.1	В
C-ABD	0.05	8.18	0.1	Α
C-D				
C-A				

Main Results for each time segment

08:00 - 08:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	75	335	0.225	74	0.3	13.876	В
A-BCD	12	451	0.026	12	0.0	8.518	A
A-B	20			20		-	
A-C	533			533			
D-ABC	13	313	0.042	13	0.0	12.111	В
C-ABD	22	492	0.044	22	0.1	7.957	A
C-D	0			0			
C-A	674			674			

08:15 - 08:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	87	305	0.285	87	0.4	16.607	C
A-BCD	14	434	0.032	14	0.0	8.903	A
A-B	23			23	-		
A-C	615			615			
D-ABC	15	280	0.054	15	0.1	13.736	В
C-ABD	26	484	0.053	26	0.1	8.176	A
C-D	0			0			
C-A	777			777			

08:30 - 08:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	82	317	0.260	82	0.4	15.507	C
A-BCD	13	441	0.029	13	0.0	8.754	A
A-B	22			22			
A-C	582			582			
D-ABC	14	293	0.049	14	0.1	13.049	В
C-ABD	24	487	0.050	24	0.1	8.095	A
C-D	0			0			
C-A	736			736			

08:45 - 09:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	75	335	0.225	76	0.3	14.033	В
A-BCD	12	451	0.026	12	0.0	8.526	A
A-B	20			20			
A-C	533			533			
D-ABC	13	313	0.042	13	0.0	12.133	В
C-ABD	22	492	0.044	22	0.1	7.967	A
C-D	0			0			
C-A	674			674			

2039 Opening Yr + 15 With Development, PM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Arm D Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	untitled	Right-Left Stagger	Two-way	Two-way	Two-way	Two-way		1.29	A

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	1.29	Α

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D2	2039 Opening Yr + 15 With Development	PM	PHF	08:00	09:00	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Am	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
A		1	576	100.000
В		1	50	100.000
С		1	776	100.000
D		1	39	100.000

Peak Hour Factor Data (Traffic)

Am	Hourly volume (PCU/hr)	Peak hour factor	Peak time segment
A	576	0.92	SecondQuarter
В	50	0.92	SecondQuarter
c	776	0.92	SecondQuarter
D	39	0.92	SecondQuarter

Origin-Destination Data

Demand (PCU/hr)

	То						
		Α	В	С	D		
	A	0	39	530	7		
From	В	25	0	25	0		
	С	734	40	0	2		
	D	12	0	27	0		

Vehicle Mix

Heavy Vehicle Percentages

	То						
	23	A	В	C	D		
	Α	0	4	4	4		
From	В	1	0	1	1		
	C	5	5	0	5		
	D	1	1	1	0		

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.18	14.93	0.2	В
A-BCD	0.02	9.04	0.0	A
A-B				
A-C				
D-ABC	0.17	17.32	0.2	C
C-ABD	0.10	8.11	0.1	A
C-D				
C-A				

Main Results for each time segment

08:00 - 08:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	47	329	0.143	46	0.2	12.858	В
A-BCD	7	443	0.015	7	0.0	8.608	A
A-B	37			37			
A-C	499			499			
D-ABC	37	285	0.129	36	0.1	14.587	В
C-ABD	42	517	0.081	41	0.1	7.978	A
C-D	2			2			
C-A	687			687			

08:15 - 08:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	54	297	0.183	54	0.2	14.933	В
ABCD	8	424	0.019	8	0.0	9.039	A
A-B	42			42			
A-C	576			576			
D-ABC	42	252	0.168	42	0.2	17.318	C
C-ABD	50	518	0.097	50	0.1	8.107	A
C-D	2			2			
C-A	791			791			

08:30 - 08:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	51	310	0.166	52	0.2	14.077	В
A-BCD	7	431	0.017	7	0.0	8.867	A
A-B	40			40			
A-C	545			545			
D-ABC	40	265	0.151	40	0.2	16.175	C
C-ABD	47	517	0.090	47	0.1	8.071	A
C-D	2			2			
C-A	750			750			

08:45 - 09:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	47	328	0.143	47	0.2	12.941	В
A-BCD	7	443	0.015	7	0.0	8.612	A
A-B	37			37			
AC	499			499			
D-ABC	37	285	0.129	37	0.2	14.678	В
C-ABD	42	517	0.081	42	0.1	7.994	A
C-D	2			2			
C-A	687			687			

APPENDIX E TRAVEL PLAN / MOBILITY MANAGEMENT PLAN

RESIDENTIAL DEVELOPMENT, DALGUISE HOUSE, MONKSTOWN, CO DUBLIN

Travel Plan / Mobility Management Plan

Planning Application | October 2022

Residential Development, Dalguise House, Monkstown, Co Dublin Travel Plan / Mobility Management Plan

Document No: 21.120

Author: Rico Raymundo

Checker: Eoin Ó Catháin (EOC)

Approver:..... Eoin Ó Catháin (EOC)

Description	Revision	Made	Checked	Approved	Date
21.120	For Planning	RR	EOC	EOC	Sept 2022
21.120	TPA Comments	EOC	EOC	EOC	Oct 2022

Residential Development, Dalguise House, Monkstown, Co Dublin

Travel Plan / Mobility Management Plan

TABLE OF CONTENTS

1.	INT	RODUCTION	1				
	1.1	Background	1				
	1.2	Description of Proposed Development	1				
	1.3	Site Location	2				
	1.4	Site Access	2				
2.	PLA	ANNING CONTEXT	3				
	2.1	Background	3				
	2.2	Smarter Travel: A Sustainable Transport Future 2009 - 2020	3				
	2.3	National Cycle Policy Framework 2009	3				
	2.4	Dun Laoghaire Rathdown County Development Plan 2022 - 2028	3				
	2.5	The Greater Dublin Area Cycle Network Plan	4				
3.	INT	RODUCTION TO MOBILITY MANAGEMENT	7				
	3.1	Background	7				
	3.2	Objectives	7				
	3.3	Structure of this Mobility Management Plan	7				
4.	EXI	EXISTING TRANSPORTATION INFRASTRUCTURE					
	4.1	Road Network	8				
	4.2	Pedestrian & Cyclists Accessibility					
	4.3	Public Transport Accessibility	9				
5.	TRA	ANSPORT MODAL SPLITS	. 11				
	5.1	Existing Modal Splits					
	5.2	Proposed Occupancy Levels					
	5.3	Proposed Target Modal Splits					
6.	MO	BILITY MANAGEMENT PLAN	. 13				
	6.1	Introduction					
	6.2	Mobility Plan Administration					
	6.3	Mobility Plan Details					
	6.4	Monitoring and Assessment					
	6.5	Commitments	. 18				
7.	COL	NCLUSIONS	19				
AP	PEND	IX A Sample Travel Survey Questionnaire					

APPENDIX B **Greystar Commitment**

1. INTRODUCTION

This Travel Plan / Mobility Management Plan has been prepared for the planning application for the residential development at Dalguise House, Monkstown, Co Dublin. The proposed development will consist of the following elements:

- 491 residential units comprising 3 no. conventional houses, 488 no. BRT units comprising 2 No. studio units, 288 No. 1-beds, 185 No. 2-beds, and 16 No. 3beds.)
- Childcare Facility
- Restaurant/Cafe
- Residential Amenities including yoga studio, gym, resident's lounge, music room, library, and co working spaces.

The purpose of the Travel Plan is to define an over-arching mobility management strategy that can be further refined by the eventual residents to optimise the uptake of sustainable transport modes. The Travel Plan will ensure the realisation of the following objectives:

- to encourage the use of sustainable modes of transport;
- to reduce dependency on lone travel by private car;
- to promote the use of public transport, car sharing, cycling and walking.

1.1 Background

Roughan & O'Donovan was commissioned by GEDV Monkstown Owner Limited (part of the Greystar Group) to advise on Traffic and Transportation related matters for the proposed residential development. A Transport Impact Assessment has also been submitted with this planning application. This Report assesses the proposed residential development in terms of its accessibility by all modes of transport and makes recommendations that will affect travel behaviour and make it easier for residents and visitors to travel by public transport, walking, cycling or car sharing, thereby reducing the need for car use.

1.2 Description of Proposed Development

The proposed development includes 491 residential units comprising 3 no. conventional houses, 488 no. BRT units comprising 2 No. studio units, 288 No. 1-beds, 185 No. 2-beds, and 16 No. 3-beds.), childcare facility, restaurant/café, residential amenities including yoga studio, gym, resident's lounge, music room, library, and co working spaces. The development also includes 224 car parking spaces, and 1,071 bike spaces. 713 bike parking spaces will be secure long stays for residents and 346 will be provided for visitors at convenient locations throughout the site. 12 cargo bike spaces and 8 motorbike spaces will also be provided.

The proposed development will be developer owned and managed as a "Build to Rent" development. Greystar is an international company providing high quality managed accommodation, and this is one of several residential campuses it is developing in Ireland. These developments are self-contained with amenities and essential services for residents, and are typically located in proximity to public transport and cycling corridors to minimise the need for car use. Greystar are operational long term holders with directly employed staff, supporting local employment. Other schemes in Ireland

include Dublin Landings and Griffith Woods which are high quality well managed schemes in Dublin City Council jurisdiction.

1.3 Site Location

The proposed residential development is located south of Monkstown Road. The site is approximately 3.58 ha and is bounded by existing residential estates to south, east, and west. To the north, the site is bounded by Purbeck which connects with Monkstown Road by means of a simple priority T-junction. The site is approximately 300m from Monkstown Village and 500m from Salthill and Monkstown Dart Station.

Figure 1 below shows the location of the development, and the surrounding road network.

Figure 1: Aerial Photo of Site Location (Source: Google Maps)

1.4 Site Access

Vehicular access to the proposed development will be primarily via Purbeck, from which the main underground car park will be accessed, while the rear part of the site will be accessed via the Dalguise House Access Avenue. The proposal includes the provision of passing bays along the avenue to facilitate the low volumes of two-way vehicular traffic. Car traffic from Blocks A – G (i.e. the blocks in front of Dalguise House) will access the site via Purbeck (383 of 491 units). This represents approx. 79% of total development traffic. Car traffic from Blocks H – I, Dalguise House, Coach House, Brick Gate Lodge, and North West House will access the site via the Dalguise House Access Avenue (108 of 491 units).

Pedestrian and cycle access will be predominantly along the Dalguise House Access Avenue. Delivery and service access will also be predominantly via this route, although a bin store is provided for Blocks A, B and C via the Purbeck access.

2. PLANNING CONTEXT

2.1 Background

This Travel Plan has been prepared with reference to the following documents:

- Smarter Travel: A Sustainable Transport Future 2009 2020;
- National Cycle Policy Framework, 2009;
- Dun Laoghaire Rathdown County Development Plan 2022 2028
- The Greater Dublin Area Cycle Network Plan.

2.2 Smarter Travel: A Sustainable Transport Future 2009 - 2020

This policy document sets its key targets for sustainable transport as:

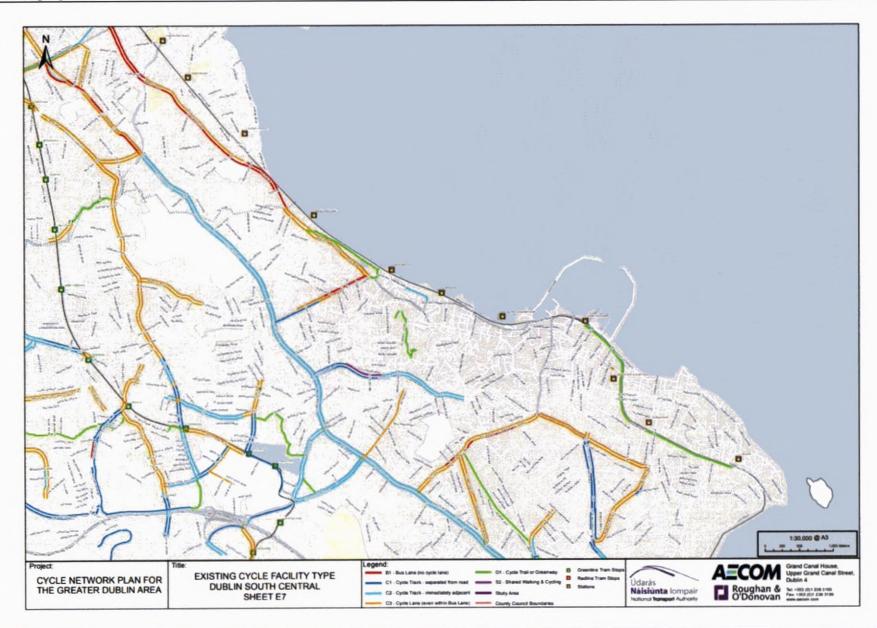
- Future population and employment growth will predominantly take place in sustainable compact forms, which reduce the need to travel for employment and services;
- Nationally, 500,000 more people will take alternative means to commute to work to the extent that the total share of car commuting will drop from 65% to 45%;
- Alternatives such as walking, cycling and public transport will be supported and provided to the extent that these will rise to 55% of total commuter journeys to work;
- The total kilometres travelled by the car fleet in 2020 will not increase significantly from current levels:
- A reduction will be achieved on the 2005 figure for greenhouse gas emissions from the transport sector.

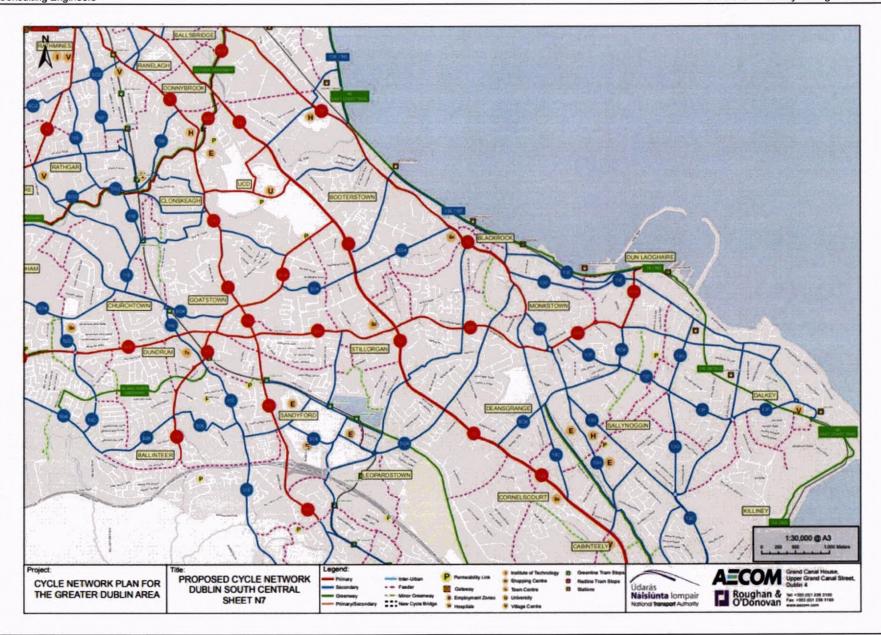
2.3 National Cycle Policy Framework 2009

The Government is committed to developing cycling as one of the most desirable modes of travel, it being good for your health, the economy and the environment. This National Cycle Policy Framework sets out objectives to the year 2020 to achieve its vision. The vision is that all cities, towns, villages and rural areas will be bicycle friendly. Cycling will be a normal way to get about, especially for short trips. Next to walking, cycling will be the most popular means of getting to school, university, college and work. The bicycle will be the transport mode of choice for all ages. We will have a healthier and happier population with consequent benefits on the health service. We will all gain economically as cycling helps in easing congestion and providing us with a fitter and more alert work force. A culture of cycling will have developed in Ireland to the extent that by 2020, 10% of all trips will be by bike.

2.4 Dun Laoghaire Rathdown County Development Plan 2022 – 2028

The Dun Laoghaire Rathdown County Development Plan states that their travel plan policy require a submission of travel plans for developments that generate significant trip demand. "Travel plans should seek to reduce reliance on car based travel and encourage more sustainable modes of transport over the lifetime of a development".


Dun Laoghaire Rathdown County Council will review and monitor Travel Plans through the Dun Laoghaire Rathdown County Council Mobility Management Section. They will also look to support the growth of Electric Vehicles and e-bikes, with support facilities as an alternative to use of fossil fuel burning vehicles, through a roll out of additional electric charging points in collaboration with relevant agencies at appropriate locations.


Dun Laoghaire Rathdown County Council use Travel Plans as a way to encourage as much travel as possible by sustainable means such as public transport, walking and cycling. To achieve this, new developments must be designed in a way that minimises the need to travel from the outset and reduces the demand for car use.

2.5 The Greater Dublin Area Cycle Network Plan

The Greater Dublin Area Cycle Network Plan mapped the existing cycle network infrastructure and identified a network for further expansion and improvement of the cycle network. The maps below are an extract from the Greater Dublin Area Cycle Network Plan showing the existing and proposed cycle network in the vicinity of the proposed development. The full document can be viewed or downloaded from the National Transport Authority website:

https://www.nationaltransport.ie/publications/strategic-planning/gda-cycle-network-plan/

3. INTRODUCTION TO MOBILITY MANAGEMENT

3.1 Background

Road traffic growth is having a damaging effect on the environment, the economy and public health. A key contributor to this is the number of people travelling in a 'driver only car'. The impact that new developments have on the local road network can be reduced through the preparation and implementation of a Travel Plan / Mobility Management Plan.

3.2 Objectives

The purpose of the Travel Plan is to assist the residents to minimise the amount of road traffic the development will generate. It assesses the development in terms of its accessibility by all modes of transport and makes recommendations consisting of physical measures and good working practices and policies that encourage and makes it easier for residents to travel to the site by public transport, car sharing, walking or cycling.

Target modal splits will be identified for the development and associated mobility management proposals are identified to enable these targets to be achieved. Thus, the plan will make a direct contribution to reducing the traffic impact of the existing development.

Through the on-going monitoring of residents and visitor travel modes, the success of the measures contained within a Travel Plan can be assessed and changes made to the Plan as appropriate.

3.3 Structure of this Travel Plan

This Travel Plan provides a review of the existing transport options at the site of the proposed residential development at Dalguise House, Monkstown.

It is intended that this report will provide direction on ways best to encourage greater use of public transport, cycling and walking and thereby minimise the traffic impact of the development.

This Travel Plan is divided into the following principal sections:

- Existing transport infrastructure available in the vicinity of the site;
- Likely commuter trends of the residents and visitors to the proposed development; and
- Recommendations to encourage greater use of more sustainable modes of transport by the residents and visitors to the site.

4. EXISTING TRANSPORTATION INFRASTRUCTURE

4.1 Road Network

The roads surrounding the site vary in their importance to the road network. North of the site is Monkstown Road, a regional road single carriageway with a 50km/hr speed limit. Monkstown Road connects to Monkstown Village to the east, and Blackrock to the west. Monkstown Road is primarily used as a link between Monkstown and Blackrock.

Monkstown Road (Source: Google Maps)

Brighton Avenue is located north of Monkstown Road adjacent to Purbeck (primary site access). Brighton Avenue is a local road used as local access. it also, provides a link from Monkstown Road to the N31 Seapoint Avenue. The west side of Brighton Avenue is used for Pay & Display parking.

Brighton Avenue (Source: Google Maps)

4.2 Pedestrian & Cyclists Accessibility

The proposed development will be fully accessible for pedestrians, cyclists, and the mobility impaired and disabled. All the surrounding main roads have adequate width footpaths on both sides and crossing facilities at junctions. Along the R119 Monkstown Road footpath width on the south side is approximately 1.8m and between 2-2.5m on the northern side.

In terms of cyclist accessibility, cycle facilities are present along the R119 Monkstown Road. These connect to express routes to the city centre along both the Blackrock Road and Coast Road corridors. These major routes are subject to ongoing improvement as part of the implementation of the GDA Cycle Network Plan and the BusConnects programme.

Pedestrian and cycle facilities within the site will be provided in accordance with the Design Manual for Urban Roads and Streets [DMURS]. The developer hopes to maximise permeability through the site by linking through to adjoining developments at Richmond Park and Arundel. This would complement the network of walking and cycling routes separate to the road network throughout the Monkstown area. While the developer does not have the power to implement these links without the consent of adjacent landowners, it is the developer's intention to work closely with Dún Laoghaire – Rathdown County Council towards their realisation.

4.3 Public Transport Accessibility

Existing Public Transport

The proposed development site is highly accessible by public transport. It is within 500m (5 minute walk) of the Salthill and Monkstown Train Station. The DART suburban rail service connects directly to Connolly Station in Dublin City Centre, where it connects to the national rail network, as well as the Luas red line and the national bus network via BusÁras. The DART is a high frequency, high capacity regular service, operating at frequencies of up to 1 train every 10 minutes, with potential to further increase this in future.

The site also enjoys excellent accessibility by bus. Routes 7, 7a and 7d directly serve the site on the R119 Monkstown Road (connecting to Mountjoy Square at one end and Bride's Glen, Loughlinstown Wood, and Dalkey respectively at the other end). In addition, the 703 route connects the site directly to Dublin Airport. There is up to 1 bus every 12 minutes at peak times.

The site therefore enjoys excellent accessibility by public transport.

Future Transport Network

As part of the BusConnects programme, it is proposed to further enhance the number of bus service in the area. The following BusConnects routes will serve Monkstown Road:

- B3: Dun Laoghaire City Centre Tyrrelstown, with a frequency of 15 minutes;
- S8: Dun Laoghaire Sandyford Tallaght, with a frequency of 15-30 minutes;
- 98: Loughlinstown Drive Dun Laoghaire Mountjoy Square, with a frequency 60 minutes.

Proposed BusConnects Network

5. TRANSPORT MODAL SPLITS

5.1 Existing Modal Splits

Following an analysis of the Small Area Population Statistics from the Central Statistics Office survey in 2016, the following trends were noted.

Dalguise House, Monkstown is located just south of Monkstown Road. The
existing modal split of this area is compared to the regional and national
averages below.

An analysis of census data from 2016 was carried out to identify the current modal split of commuters in the local area, compared with the regional and national averages. Table 5.1 below contains percentage modal split.

Table 5.1 Current Modal Split Data

Existing Modal Share	Monkstown Road	Electoral Division (Blackrock- Monkstown)	Dublin	Leinster	National
On Foot	8.11%	9.99%	19.09%	15.87%	13.94%
Bicycle	12.16%	8.10%	6.30%	3.83%	2.68%
Bus, minibus or coach	12.16%	11.92%	14.09%	11.74%	10.24%
Train, DART or LUAS	16.22%	17.10%	6.78%	4.52%	2.70%
Motorcycle or scooter	0.68%	0.66%	0.51%	0.36%	0.28%
Car Driver	29.73%	31.84%	31.84%	36.58%	39.31%
Car passenger	14.86%	12.39%	11.83%	16.12%	18.64%
Van	0.00%	0.66%	2.13%	3.45%	4.20%
Other (incl. lorry)	0.00%	0.05%	0.14%	0.29%	0.39%
Work mainly at or from home	2.70%	3.01%	1.66%	2.51%	3.14%
Not stated	3.38%	4.29%	5.63%	4.73%	4.48%

5.2 Proposed Occupancy Levels

It is proposed that the Dalguise House development will have a minimum occupancy 491 and a maximum occupancy of 705 based on an average occupancy of one person per bedroom. This Travel Plan has been prepared on the basis of this maximum occupancy level.

The proposed provision of 210 resident car parking spaces equates to at least one space per 3.3 residents or 30% of the maximum occupancy. This requires that 7 out of 10 residents does not park a private car at the development. It is not recommended to further reduce the parking provision below this amount. The proposed provision of 713 long stay-stay bicycle parking spaces dedicated to residents will account for 100% of the maximum occupancy.

5.3 Proposed Target Modal Splits

It is clear from the above that sustainable transport already prevails in the Monkstown area. However, even more ambitious targets are required for new developments, reflective of the restricted road capacity and parking provision in the area. Active

mobility management is essential to achieving the required modal split. The following modal split targets are proposed for the proposed Dalguise House development at Monkstown:

Table 5.2 Proposed Modal Split Target

Existing Modal Share	Monkstown Road	Proposed Development	Number of Residents if maximum occupancy achieved
On Foot	8.11%	12.0%	85
Bicycle	12.16%	33.0%	233
Bus, minibus, or coach	12.16%	9.0%	63
Train, DART, or LUAS	16.22%	12.0%	85
Motorcycle or scooter	0.68%	0.8%	6
Car Driver	29.73%	18.0%	127
Car passenger	14.86%	5.0%	35
Van	0.00%	0.2 %	1
Other (incl. lorry)	0.00%	0%	0
Work Mainly at or from home	2.70%	10%	71
Not stated	3.38%	0%	0

Of the above, it is expected that approximately 50% of car and public transport movements will occur during the AM peak hour, and this is reflected in the accompanying Transport Impact Assessment report. The above table includes a conservatively low provision of 10% of workers home working. Given recent trends in the population, it is likely that this figure will be higher in practice, with a corresponding reduction in use of other modes of transport.

6. MOBILITY MANAGEMENT PLAN

6.1 Introduction

This Travel Plan / Mobility Management Plan sets out the sustainable travel objectives and how maximising travel by walking, cycling and public transport will be achieved. This section outlines a series of recommendations to help set, achieve and maintain the Target Modal Splits throughout the life of the Plan.

It is intended that this report will provide direction on how best to set and achieve target modal splits for the journey to/from the new development and encourage greater use of public transport, cycling and walking and thereby minimise the traffic impact of the development. It also outlines monitoring of the plan, which is considered essential to its successful implementation.

6.2 Travel Plan Administration

Successful Travel Plans require constant management and supervision. A Travel Plan Coordinator will be required to administer, implement, monitor and review the Travel Plan.

A senior member of staff who supports the philosophy of the Travel Plan will be appointed as the Co-ordinator. The Co-ordinator will be appointed prior to the first occupation of the Site. A dedicated commuter space will be provided within the tenant amenity area where travel information, timetables, access to the internet and notice boards will be provided.

The Co-ordinator will be responsible for:

- Implementation and maintenance of the Plan
- Monitoring progress of the Plan
- Liaison with public transport operators and officers of the Planning and Highway Authorities
- Production of information reports for the Developer, the Occupier(s) and the Planning and Highway Authorities
- and Ongoing assessment of the objectives of the Plan.

Within the first 6 months of being appointed, the Co-ordinator shall arrange for a resident's travel survey to be carried out. This can be achieved by means of self-completion questionnaires, which will help to identify travel requirements and set targets for modal splits.

The information requested in the questionnaire should include:

- Primary mode of transport
- Current travel patterns including the time taken to travel to work and the place of work;
- Views on alternative modes to the car (i.e. what would encourage them to switch to other modes)
- and usage of car sharing scheme

6.3 Travel Plan Details

There are a number of measures that can be undertaken to help reduce car travel as set out under the following general headings and outlined below:

- (a) Travel Database
- (b) Personalised Travel Plans
- (c) Travel Awareness
- (d) Cycling
- (e) Walking
- (f) Public Transport
- (g) Car Sharing

(a) Travel Database

In order to optimise efficiency from the Travel Plan, an assessment of travel behaviour should be undertaken to determine the travel patterns exhibited by residents and visitors to the proposed Dalguise House development. The Plan Coordinator will produce and maintain a travel database. It is envisaged that the Plan Coordinator would distribute a Travel Survey Questionnaire to the residents and a selection of visitors. The survey would typically provide details of the following:

- Home location:
- Mode of travel to Dalguise House;
- Car occupancy rate;
- Route taken to Dalguise House;
- Journey time;
- Distance travelled;
- Estimates of public transport / taxi cost;
- Alternative modes of transport available for travel;
- Interest in car sharing;
- Reasons for not car sharing, using public transport, cycling or walking;
- Measures that would encourage the use of public transport, cycling, walking, or car sharing;

The availability of this data will assist in more accurately defining travel requirements for the site, and in defining the specific measures that would maximise the success of the Plan. A sample of this Travel Survey Questionnaire to be used by the Plan Coordinator is included in Appendix A.

In addition, the Plan Coordinator would carry out further on-site data collection, which will include surveys to measure car park and cycle facility use. This data will complement the information provided in the survey questionnaires and will provide guidance on how the Plan could be improved or modified.

These surveys should be repeated annually to highlight any measures which are not operating successfully, or those that are being underutilised by residents.

(b) Personalised Travel Plans

Action 9 of the "Smarter Travel – Sustainable Transport Future - A New Transport Policy for Ireland 2009-2020" document is to "implement a programme to promote Personalised Travel Plans aimed at citizens in areas served by public transport". The document states that Personalised Travel Plans aim to encourage individuals to take alternatives to car travel where these are available.

Personalised travel plans should be provided by the Development Management Company to the residents. It will involve the designated Travel Plan Coordinator meeting with residents in person to understand their travel needs to provide personalised journey advice including information on routes, timetables and details of interchange. Welcome packs would also assist in introducing the concept of mobility management to future residents at the proposed development. The pack would contain an access map and information on travel alternatives to the site, information on the location of bicycle parking, and the health and financial benefits of sustainable commuting.

(c) Travel Awareness

Awareness, acceptance and appreciation of the scope, objectives and targets of the Travel Plan will be key to its success.

It will be the responsibility of the Plan Coordinator to make all residents and visitors aware of the environmental consequences of their travel choices and the health benefits associated with choices such as walking and cycling.

It is recommended that a Travel Notice Board is provided for the use by all the residents of Dalguise House. This information point will dispense information to residents at the site in relation to walking, cycling and public transport.

The Travel Plan Coordinator should develop an events calendar linking in to existing national and county wide events to promote sustainable transport and capitalise on interest generated around these events. For example, the following campaigns run every year:

- National Bike Week: National Bike Week aims to promote cycling as a
 healthy mode of transport and is the opportunity for people to get back on
 the saddle for commuting or for recreation. There are various events in
 local schools and communities organised throughout the week. These
 include children's art competitions and discounts offered to cyclists at city
 centre shops. National Cycle to Work Day also forms part of National Bike
 Week.
- Commuter Challenge: The Commuter Challenge is a national event open only to employers who have signed up to implement workplace travel plans as part of the Smarter Travel Workplaces programme. Teams of 3–6 workmates can register for the Commuter Challenge. Participants are encouraged to choose healthier and smarter modes of transport for their commute to and from work.
- Cycle Challenge: This is a free workplace event, for both experienced and new cyclists. The Challenge is open only to employers who have signed up to implement workplace travel plans as part of the Smarter Travel Workplaces programme. This is a team event (3–6 cyclists) and every team must have a 'new cyclist' – that's someone who hasn't cycled in the past six months. 1 trip = 1 point.

(d) Cycling

Cycling is cost-effective, non-polluting, reduces congestion in urban areas, fosters improved health, and is accessible to everybody. It is considered reasonable that a cyclist will be prepared to travel up to 5km to work along normal roads and streets but will be prepared to travel up to 10km along a cycle network.

Maps of cycle routes will be provided with typical journey time and distance information and will be distributed to the residents the site and displayed on the travel notice board in the Dalguise House development.

The Plan Coordinator will try to encourage residents to cycle to work by implementing the government's 'Bike to Work' Scheme in order to reduce the percentage of single car users to and from Dalguise House. This government

scheme covers bicycles and accessories up to a maximum cost of €1,500 for ebikes or €1,250 for other bicycle types. The bicycle must be purchased by the employer but the scheme can then operate either with the employer bearing the full cost of the bicycle, or by way of a salary sacrifice agreement.

(e) Walking

Walking is beneficial for the environment, healthier and a cost-effective mode of transport. People will typically be prepared to walk for up to 30 minutes to work, which means that walking could be an option from all home locations within 3km of the site. Pedestrian routes should be:

- Comfortable provide a good surface without puddles and trips;
- Convenient provide continuous footpaths;
- Convivial be safe to use, and free from litter;
- Conspicuous routes should be open to view, clearly signed and lit, assisting to improve perceptions of personal security; and
- Connected direct routes reflecting desire lines where possible. They should link the main starting points with the destinations.

Similar to cycling, the Plan Coordinator will encourage more residents to walk to the Dalguise House by raising awareness of the health benefits of walking. Information on walking distances, journey times and optimal routes will give residents and visitors at the site a better perception of walking as a mode of travel. This should be displayed on the Travel Notice Board.

(f) Public Transport

The Plan Coordinator will work to promote a public transport culture amongst residents.

Poor or insufficient access to information can be a major barrier to public transport use. For Dalguise House to promote greater use of public transport, they must make the timetable information easily available and as accurate as possible. It will therefore be the responsibility of the Plan Coordinator to regularly liaise with public transport operators to ensure that residents are provided with up-to-date public transport information to help maximise patronage. This includes timetable information, fares, bus stop location, DART stop locations and

route planning. This information will be on permanent display on the Travel Notice board.

The Government's 'Tax Saver' incentive scheme should be advertised on the Travel Notice Board. Annual and Monthly public tickets for under this

scheme have tax benefits for both employers and employees. Information related to the tax saver scheme should be made available among residents to increase awareness of the merits of rail and bus travel, which they can in turn highlight to their employers.

(g) Car Sharing

Car sharing involves two or more people sharing a lift. One of the people travelling is usually the owner of the vehicle and the other(s) usually make a contribution towards fuel costs. It can take place either as a regular occurrence or just a one-off journey.

The numerous benefits of car sharing for individuals and residents are the following:

- The fuel cost is divided equally between driver and passenger(s), making the trip cheaper for everyone;
- Car pooling can help people get to know neighbours and/or colleagues better;
- Car sharing is one means of vastly reducing the number of singleoccupancy vehicles commuting everyday; and
- Less private vehicles on the road means less car emissions, noise, fossil energy consumption and pressures on the environment resulting in a better quality of life.

The Travel Plan Coordinator should promote car-pooling as a method of reducing the traffic volume attracted by Dalguise House. Using the information in the Travel Database, the Travel Plan Coordinator can investigate the feasibility of setting up a car sharing scheme for the Dalguise House redevelopment. This will involve preparing a car sharing notice board, regularly updated, of those wishing to car share, the locations from which they travel, compatible work patterns and the associated costs.

6.4 Monitoring and Assessment

Ongoing monitoring and assessment are an essential tool for feedback to enable adjustment of the mobility management measures for greatest effect.

Monitoring and assessment will be undertaken every year. This will help to identify those measures that are performing most effectively and to allow the strategy to be tailored or changed to suit the specific travel patterns in place. Future strategies will be developed with Dun Laoghaire Rathdown County Council, the National Transport Authority, and public transport operators.

The Plan Coordinator will be responsible for ongoing monitoring and regular surveys. The monitoring should include items such as:

- Review the implementation of the Travel Plan measures;
- Annual travel surveys to establish effective comparisons from earlier surveys, for

example if modal split targets for the development are being met. The results of the survey will be circulated to residents to highlight any changes in travel patterns from previous years;

- Car park surveys to establish car usage by residents and overall car parking demands; and
- Level of usage of cycle stands and lockers to determine demand.

Information gathered as part of the continuous monitoring process will be made available to the residents and visitors on the Travel Notice board.

6.5 Commitments

The management company of the Dalguise House development will make the following commitments to ensure the effective operation of the Travel Plan:

- Appoint a Travel Plan Coordinator to administer, implement, monitor, and review the Travel Plan.
- Provide a Travel Notice board for the use by the Travel Plan Coordinator and residents.
- Provide a shared taxi service for people travelling to the same location and willing to share taxis.
- Make all residents aware of the environmental consequences of their travel choices and the health benefits associated with choices such as walking and cycling.
- Supply information on public transport, cycling and walking, including timetable information, fares, bus stop location, DART stop locations, distances, journey times and optimal routes.
- Promote the use of public transport as a measure to travel to and from Dalguise House.
- Promote cycling and walking to and from Dalguise House as an alternative to driving.
- Promote car sharing as a method of reducing the traffic volume attracted by Dalguise House.

To further ensure the effective operation of the Travel Plan the management of Dalguise House will actively attempt to initiate and support the following activities:

- Undertake annual residents travel surveys and maintain a travel database
- Organise a car free day where all residents are encouraged to make an effort to travel to work by non-car based modes.

GEDV Monkstown Owner Limited (part of the Greystar Group) has been actively involved in the preparation of this plan, and has formalised its commitments in its statement included in **Appendix B**.

7. CONCLUSIONS

This Travel Plan has assessed the proposed development of Dalguise House in terms of its accessibility by all modes of transport and includes recommendations that will encourage and make it easier for residents to travel by public transport, walking, cycling or car sharing, thereby reducing the need for car use.

The conclusions of this report are as follows:

- The area already enjoys a high modal share for sustainable transport modes.
 However, the extremely restrictive car parking provision on site requires even more ambitious modal share targets.
- The success of the proposed Travel Plan will be contingent on effecting and maintaining sustainable transport patterns among residents of the proposed residential development. Modal split targets have been set out herein.
- The site is highly accessible by public transport, walking and cycling. This should encourage the use of these modes.
- This Travel Plan identifies measures to enable the target modal splits to be achieved and sustained. A Travel Plan Coordinator will be required to administer, implement, monitor, and review the measures outlined. It will be the responsibility of the Plan Coordinator to make all residents aware of the environmental consequences of their travel choices and the health benefits associated with choices such as walking and cycling.
- It is proposed that monitoring and assessment of the Travel Plan will be undertaken every year. This will give an indication of the success of the various measures adopted and allow the strategy to be tailored or changed to suit the specific travel patterns in place.
- The developer, GEDV Monkstown Owner Limited (part of the Greystar Group), has demonstrated its commitment to the above in a statement included in Appendix B of this Travel Plan.

In summary, the mobility management measures outlined in this report will ensure that the residential development at Dalguise House will be a sustainable and progressive development in terms of transportation. This report provides direction to the Management Company, the Local Authority and public transport agencies on the best methods to achieve the target modal splits for the journey to/from the site and encourage greater use of public transport, cycling and walking and thereby minimising the traffic impact of the development.

APPENDIX A Sample Travel Survey Questionnaire

Travel Survey 2017
*1 Please specify the name of your company
* 1. Please specify the name of your company
* 2. How do you usually travel to work?
Pick one box only, for the longest part, by distance, of your usual journey
to work.
On foot
Bycle
Bus, minibus or coach
Motorcycle or scooter
Driving a car
Passenger in a car with driver going to same destination
Passenger in a car with driver going to different destination
Taxi Laminaryan
Other means
Work mainly at or from home

* 3. Which modes of travel do you use occasionally to travel to/ from
work?
Please choose all modes that apply.
On foot
Bicycle
Bus, minibus or coach
Motorcycle or scooter
Driving a car
Passenger in a car with driver going to same destination
Passenger in a car with driver going to different destination
Taxi
Lorry or van
Other means
Work mainly at or from home
* 4. How far do you travel to work?
Less than 1km
Between 1 and 3km
Between 3 and 5km
Between 5 and 10km
More than 10km

5. If you have cl	nanged t	he mode	of transpo	rt you us	e on the co	mmute
over the past tw	o years,	please ca	an you ind	icate the	main reaso	n for this
change.						
Financial reasons						
Health or fitness reasons						
Sustainable Transport pro	motions in your v	vorkplace e.g. Cycle	e to Work promotion	n, Tax Saver sale	s	
The infrastructure availab	e to you changed	d (buses introduced	/ removed, cycle lar	nes installed etc)		
You changed job or the na	ature of your work	changed				
You moved house						
Other (please specify)						
6. Please indica	te vour l	evel of an	reement v	with the s	statements h	elow.
o. I lease illuica	Strongly	ever or ag	reement	vitir tric s	statements t	CIOW.
I feel confident qualing my	Disagree	Disagree	Neutral	Agree	Strongly Agree	N/A
I feel confident cycling my bike to work	\bigcirc	\circ	. 0	0	0	0
I enjoy walking (all or part of the way) to work	\bigcirc	\circ	\circ	\bigcirc	\circ	\circ
Public Transport is convenient for my commute	0	0	\circ	0	0	0
I try to use sustainable transport when I can	\circ	0	\circ	\circ	0	\circ
I travel the way I do out of habit	\circ	\circ	\circ	0	\circ	0
I use my car on the commute because I have no alternative	0	0	0	0	0	\circ
Driving a car is the most effective way to commute	\circ	\circ	\circ	\circ	\circ	0
I would like to walk more often	\circ	0	\circ	\circ	\circ	\circ
I would like to cycle more often	0	0	0	\circ	\circ	\circ
I would like to use public transport more often	\bigcirc	\circ	0	\bigcirc	\circ	0
I would like to carshare more often	\bigcirc	0	\circ	\circ	0	0

* 7. Please indicate your age range:
Under 25
25-34
35-44
45-54
55 or over
* 0 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
* 8. Please indicate your gender:
Male
Female
Prefer not to say
Other (please specify if you wish to do so)
*0 4
* 9. Are you currently active (apart from routine tasks) for at least 30
minutes at a moderate intensity five or more days per week? Moderate
intensity is similar to a brisk walk.
Yes
○ No
40 D
10. Do you have any other comments?

APPENDIX B Greystar Commitment

Greystar has more than 30 years of residential experience and we invest, develop, and operate assets across the globe.

GLOBAL PLATFORM, LOCAL EXPERTISE

We use our experience to create the very best purpose-built and purpose-designed communities with experienced local teams that tailor each concept to the local market. Our residents benefit from technology-enabled apartments in highly amenitised buildings underpinned by the exceptional customer service provided by our dedicated onsite team members. By delivering what we promise to our customers, we strengthen and deepen our relationships, and we continue reinvesting in our business and our team to provide a best-in-class experience.

Careful consideration has been given to the customer and public experience in Dalguise House from a Mobility Management perspective.

Mobility Management Co-ordinator

A senior member of staff who supports the philosophy of the Mobility Management Plan will be appointed as the Co-ordinator. The Co-ordinator will be appointed prior to the first occupation of the Site. A dedicated commuter space will be provided within the tenant amenity area where travel information, timetables, access to the internet and notice boards will be provided.

The Co-ordinator will be responsible for:

- Implementation and maintenance of the Plan
- Monitoring progress of the Plan
- Liaison with public transport operators and officers of the Planning and Highway Authorities
- Production of information reports for the Developer, the Occupier(s) and the Planning and Highway Authorities
- and Ongoing assessment of the objectives of the Plan.

Within the first 6 months of being appointed, the Co-ordinator shall arrange for a resident's travel survey to be carried out. This can be achieved by means of self-completion questionnaires, which will help to identify travel requirements and set targets for modal splits.

The information requested in the questionnaire should include:

- · Primary mode of transport
- · Current travel patterns including the time taken to travel to work and the place of work;
- Views on alternative modes to the car (i.e. what would encourage them to switch to other modes)
- · and usage of car sharing scheme

Car Sharing

GoCar is Ireland's leading car sharing service with 50,000 members and over 650 cars and vans across the country Each GoCar which is placed in a community has the potential to replace the journeys of up to 15 private cars. GoCar members sign up online and can book cars or vans via the website or mobile app. It allows individuals to have the benefits of a private car, without having the large costs and hassle associated with car ownership. GoCar is ideal for people or organisations who only need occasional access to a car, for families who need a second car sometimes, and for others who would like occasional access to a vehicle of a different type than they use day-to-day. Carsharing is a sustainable service. By allowing multiple people to use the same vehicle at different times, car sharing reduces car ownership, car dependency, congestion, noise and air pollution. It frees up land which would otherwise be used for additional parking spaces. Most GoCar users only use a car when necessary, and walk and use public transport more often than car owners. By having GoCar car club vehicles in a residential development such as this, residents will have access to pay-as-you-go driving, in their homes, which will increase usership of the service.

Coming to live with us or visit us

All our residents are contacted in advance of their arrival on site for the first time to help them plan their journey to Monkstown, be that via public transport or by vehicle. This information is also contained in our resident's handbook, to further support our efforts in communicating our parking facilities, there are paper maps available at the Concierge but more importantly we have a staff member available 24/7 to direct residents to their destination and answer any queries. Carefully considered wayfinding is visible for dedicated car parking and bicycle spaces carefully managed by the onsite team who keep a database of all allocated car parking spaces. There are clear parking guidelines for ease of use for all residents. When residents arrive for the first time, they are further assisted to their car space by the 24/7 onsite management team. Their car spaces are allocated prior to check in for efficiency. Any disregard for our parking guidelines will be dealt with immediately by our 24/7 onsite management team to ensure we are always striving to deliver a superior customer experience.

There are clearly sign posted EV Charging points available for our residents and guests. This is communicated from the outset in our handbook which every resident receives.

There is a dedicated loading zone assigned to each block to facilitate move in's/ move out's which is clearly sign posted and further advice on this is communicated from our on-site management team when required.

Disabled car spaces are available for residents and visitors and signposted accordingly. This is carefully managed to avoid misuse from able bodied residents.

GoCar spaces will be initially provided and details of how to join the scheme will be provided to all residents when the move into their apartment. Information will also be displayed within the resident amenity area and updated when required.

When guests of residents or members of the public visit by public transport or by vehicle, there are clear and visible signposts directing to the onsite concierge, and dedicated car parking spaces. The location of the concierge and security desk has been carefully considered to ensure it is immediately visible on arrival but also provides the onsite team clear visibility to the main road in and out of Dalguise House. They are also further assisted by the 24/7 onsite management team.

We manage Contractors in advance of their arrival on site to ensure they are advised or our access control policies. We carefully manage our PPM and communicate with all contractors in advance of their arrival to ensure they have adequate paperwork to undertake the task at hand but also to advise on parking facilities. All contractors must arrive at the Concierge Desk to check in and receive further instructions from the onsite maintenance team.

All suppliers/providers for the restaurant will have a dedicated drop off zone which will operate between dedicated hours of business.

Secure parking facilities will be provided within the basement levels for residents and at a number of locations through the site at ground level for visitors, Café and Crèche users. Local cycle route information will be provided in the tenant amenity area and at other fixed points within the development and residents will be advised of their location.

All residents, visitors, contractors, providers and suppliers will act in accordance with our parking guidelines which will be effectively managed by our onsite team to ensure a superior customer experience.

Active Adult

"Senior Housing" Redefined

The blue arrows point to Block I which recognises a new style of rental age-qualified housing. Greystar active adult apartment homes enable residents to live a maintenance-free, "lock-and-leave" lifestyle. Across our active adult platform, resident satisfaction is consistently ranked among the highest within the Greystar's global portfolio as well as within or senior housing industry peers. Our Mobility Management Coordinator will arrange parking in close proximity to this specific block with designated zoning monitored 24/7 to enhance resident experience.

Couriers/ Parcel Delivery

As part of our ongoing commitment to our ESG credentials, we have chosen to engage with one company for all our postal requirements. Online orders are growing nationally, evidenced by the vast increase in courier vans across our cities. Our experience of managing schemes of this nature allowed us to determine that an unacceptably large number of couriers would be delivering daily to Dalguise House without our intervention. We researched several options, and decided on one company that we will be using, who offer a unique and sustainable concept. The company we will be using collects all parcels in edge of city depots and brings them in one movement to the dedicated and purposely designed lockers within a parcel delivery area at Dalguise House by electronic vehicle. This will eliminate the need for several courier drivers arriving at multiple times and any hour during the day, reducing the requirement for vehicular movement and in turn reducing the carbon emissions in the air. Our parcel delivery driver arrives once daily to a dedicated drop off zone. This also greatly assists with the onsite traffic management and avoiding a build-up of courier drivers in the loading zone which could potentially lead to an unhealthy congestion of traffic in the main thoroughfare and eliminating the risk of couriers parking illegally

Public Transport

Up to date local bus timetables will be maintained within the tenant amenity area and other fixed points within the buildings on the site. Residents will be advised of their location. In addition, Internet access to travel information will be provided. We will provide all new residents with a travel pack showing alternative modes of travel to the development. Where possible, we will advise visitors to the site of alternative modes of travel to that of the car

We are aware that Dún Laoghaire-Rathdown County Council has renewed its focus on public awareness of bad parking practices and enforcement on illegal parking, particularly on footpaths and cycle lanes and inconsiderate parking near parks or along the coast. In the event that a vehicle was illegally parked and causing an obstruction, we would call An Gárda Siochána

Our Promise

The strategy for this Plan is based on the movement of people not vehicles. The objectives of the Plan are:

- To endeavour to reduce the use of the car by single occupants.
- To endeavour to reduce the use of the car for trips from and to the development.
- To encourage the residents to use sustainable transport modes.
- To increase the percentage of people choosing to walk, cycle or travel by public transport to and from the development.
- To create an alliance with Dun Laoghaire-Rathdown County Council, providers of public transport and residents/owners of other major developments to promote a sustainable transport network in the local area.

The Tecpro Building, Clonshaugh Business & Technology Park, Dublin 17, Ireland.

T: + 353 1 847 4220 F: + 353 1 847 4257 E: info@awnconsulting.com W: www.awnconsulting.com

RESOURCE & WASTE MANAGEMENT PLAN FOR A RESIDENTIAL DEVELOPMENT

AT

DALGUISE HOUSE, MONKSTOWN ROAD, MONKSTOWN, CO. DUBLIN

Report Prepared For

GEDV Monkstown Owner Limited

Report Prepared By

David Doran, Environmental Consultant & Chonaill Bradley, Principal Environmental Consultant

Our Reference

227501.0145WMR02

Date of Issue

21 July 2022

Cork Office
Unit 5, ATS Building,
Carrigaline Industrial Estate,
Carrigaline, Co. Cork.
T: + 353 21 438 7400
F: + 353 21 483 4606

AWN Consulting Limited Registered in Ireland No. 319812 Directors: F Callaghan, C Dilworth, T Donnelly, T Hayes, D Kelly, E Porter

Document History

Document Reference		Original Issue Date		
227501.0145WMR02		21 July 2022		
Revision Level	Revision Date	Description	Sections Affected	

Record of Approval

Details	Written by	Approved by
Signature	Family	test)
Name	David Doran	Chonaill Bradley
Title	Environmental Consultant	Principal Environmental Consultant
Date	21 July 2022	21 July 2022

CC)N	TENTS Page
1.0		INTRODUCTION4
2.0		CONSTRUCTION & DEMOLITION WASTE MANAGEMENT IN IRELAND4
	2.1	National Level4
	2.2	Regional Level6
	2.3	Legislative Requirements7
	2.4	Local Authority Guidelines8
3.0		DESIGN APPROACH9
	3.1	Designing For Prevention, Reuse and Recycling10
	3.2	Designing for Green Procurement10
	3.3	Designing for Off-Site Construction
	3.4	Designing for Materials Optimisation During Construction11
	3.5	Designing for Flexibility and Deconstruction11
4.0		DESCRIPTION OF THE DEVELOPMENT11
	4.1	Size and Scale of the Development11
	4.2	Details of the Non-Hazardous Wastes to be Produced13
	4.3	Potential Hazardous Wastes Arising13
5.0		ROLES AND RESPONSIBILITIES16
	5.1	Role of the Client
	5.2	Role of the Client Advisory Team16
	5.3	Future Role of the Contractor
6.0		KEY MATERIALS & QUANTITIES
	6.1	Project Resource Targets17
	6.2	Main Construction Waste Categories
7.0		WASTE MANAGEMENT
	7.1	Demolition Waste Generation
	7.2	Construction Waste Generation
	7.3	Proposed Resource and Waste Management Options20
	7.4	Tracking and Documentation Procedures for Off-Site Waste23
8.0		ESTIMATED COST OF WASTE MANAGEMENT24
	8.1	Reuse
	8.2	Recycling24
	8.3	Disposal24

9.0	TRAINING PROVISIONS	25
9.	1 Resource Manager Training and Responsibilities	25
9.:	2 Site Crew Training	25
10.0	TRACKING AND TRACING / RECORD KEEPING	25
11.0	OUTLINE WASTE AUDIT PROCEDURE	26
11	1.1 Responsibility for Waste Audit	26
11	.2 Review of Records and Identification of Corrective Actions	26
12.0	CONSULTATION WITH RELEVANT BODIES	27
12	2.1 Local Authority	27
12	2.2 Recycling / Salvage Companies	27
13.0	REFERENCES	28

227501.0145WMR02 AWN Consulting Ltd.

1.0 INTRODUCTION

AWN Consulting Ltd. (AWN) has prepared this Resource & Waste Management Plan (RWMP) on behalf of GEDV Monkstown Owner Limited. The proposed development comprises the demolition and part-demolition of existing structures onsite (total demolition area 815 sq m) and the construction of 491 No. residential units comprising: 3 No. two storey 2-bed terraced houses (GFA 569 sq m); 488 No. Build-to-Rent units, residential amenities and residential support facilities; a childcare facility; and restaurant/café and ancillary works at Dalguise House, Monkstown Road, Monkstown, Co Dublin.

This plan will provide information necessary to ensure that the management of construction and demolition (C&D) waste at the site is undertaken in accordance with all current legal and industry standards including the *Waste Management Act 1996* as amended and associated Regulations ¹, *Environmental Protection Agency Act 1992* as amended ², *Litter Pollution Act 1997* as amended ³ and the *Eastem-Midlands Region Waste Management Plan 2015 – 2021* ⁴. In particular, this plan aims to ensure maximum recycling, reuse and recovery of waste with diversion from landfill, wherever possible. It also seeks to provide guidance on the appropriate collection and transport of waste from the site to prevent issues associated with litter or more serious environmental pollution (e.g. contamination of soil and/or water).

This RWMP includes information on the legal and policy framework for C&D waste management in Ireland, estimates of the type and quantity of waste to be generated by the proposed development and makes recommendations for management of different waste streams. The RWMP should be viewed as a live document and should be regularly revisited throughout a project's lifecycle so that opportunities to maximise waste reduction / efficiencies are exploited throughout, and that data is collected on an ongoing basis so that it is as accurate as possible.

2.0 CONSTRUCTION & DEMOLITION WASTE MANAGEMENT IN IRELAND

2.1 National Level

The Irish Government issued a policy statement in September 1998, Changing Our Ways ⁵, which identified objectives for the prevention, minimisation, reuse, recycling, recovery and disposal of waste in Ireland. The target for C&D waste in this report was to recycle at least 50% of C&D waste within a five year period (by 2003), with a progressive increase to at least 85% over fifteen years (i.e. 2013).

In response to the *Changing Our Ways* report, a task force (Task Force B4) representing the waste sector of the already established Forum for the Construction Industry, released a report entitled *'Recycling of Construction and Demolition Waste'* ⁶ concerning the development and implementation of a voluntary construction industry programme to meet the Government's objectives for the recovery of C&D waste.

In September 2020, the Irish Government published a policy document outlining a new action plan for Ireland to cover the period of 2020-2025. This plan, 'A Waste Action Plan for a Circular Economy' ⁷ (WAPCE), replaces the previous national waste management plan, "A Resource Opportunity" (2012), and was prepared in response to the 'European Green Deal' which sets a roadmap for a transition to an altered economical model, where climate and environmental challenges are turned into opportunities.

227501.0145WMR02 AWN Consulting Ltd.

The WAPCE sets the direction for waste planning and management in Ireland up to 2025. This reorientates policy from a focus on managing waste to a much greater focus on creating circular patterns of production and consumption. Other policy statements of a number of public bodies already acknowledge the circular economy as a national policy priority.

The policy document contains over 200 measures across various waste areas including circular economy, municipal waste, consumer protection and citizen engagement, plastics and packaging, construction and demolition, textiles, green public procurement and waste enforcement.

One of the first actions to be taken was the development of the Whole of Government Circular Economy Strategy 2022-2023 'Living More, Using Less' (2021) ⁸ to set a course for Ireland to transition across all sectors and at all levels of Government toward circularity and was issued in December 2021. It is anticipated that the Strategy will be updated in full every 18 months to 2 years.

The Environmental Protection Agency (EPA) of Ireland issued 'Best Practice Guidelines for the Preparation of Resource & Waste Management Plans for Construction & Demolition Projects' in November 2021 9. These guidelines replace the previous guidelines issued by The National Construction and Demolition Waste Council (NCDWC) and the Department of the Environment, Heritage and Local Government (DoEHLG) in 2006 10. The guidelines provide a practical approach which is informed by best practice in the prevention and management of C&D wastes and resources from design to construction of a project, including consideration of the deconstruction of a project. These guidelines have been followed in the preparation of this document and include the following elements:

- Predicted C&D wastes and procedures to prevent, minimise, recycle and reuse wastes:
- Design teams roles and approach;
- Relevant EU, national and local waste policy, legislation and guidelines;
- Waste disposal/recycling of C&D wastes at the site;
- Provision of training for Resource Manager (RM) and site crew;
- Details of proposed record keeping system;
- Details of waste audit procedures and plan; and
- Details of consultation with relevant bodies i.e. waste recycling companies, Local Authority, etc.

Section 3 of the Guidelines identifies thresholds above which there is a requirement for the preparation of a RWMP for developments. The new guidance classifies developments on a two-tieredsystem. Developments which do not exceed any of the following thresholds may be classed as Tier 1 development:

- New residential development of less than 10 dwellings.
- Retrofit of 20 dwellings or less.
- New commercial, industrial, infrastructural, institutional, educational, health and other developments with an aggregate floor area less than 1,250m².
- Retrofit of commercial, industrial, infrastructural, institutional, educational, health and other developments with an aggregate floor area less than 2,000m²; and
- Demolition projects generating in total less than 100m³ in volume of C&D waste.

A development which exceeds one or more of these thresholds is classed as Tier-2 projects.

This development requires a RWMP as a Tier 2 development as it is above following criteria:

New residential developments of less than 10 dwellings.

Other guidelines followed in the preparation of this report include 'Construction and Demolition Waste Management – a handbook for Contractors and Site Managers' ¹¹, published by FÁS and the Construction Industry Federation in 2002 and the previous guildines, 'Best Practice Guidelines for the Preparation of Waste Management Plans for Construction and Demolition Projects' (2006).

These guidance documents are considered to define best practice for C&D projects in Ireland and describe how C&D projects are to be undertaken such that environmental impacts and risks are minimised and maximum levels of waste recycling are achieved.

2.2 Regional Level

The proposed development is located in the Local Authority area of Dún Laoghaire Rathdown County Council (DLRCC). The *Eastem-Midlands Region Waste Management Plan 2015 – 2021* is the regional waste management plan to the administrative area, published in May 2015. Currently the EMR and other regional waste management plans are under review and the Regional Waste Management Planning Offices expect to publish the final plan in 2022.

The Regional Plan sets out the strategic targets for waste management in the region and sets a specific target for C&D waste of "70% preparing for reuse, recycling and other recovery of construction and demolition waste" (excluding natural soils and stones and hazardous wastes) to be achieved by 2020.

Municipal landfill charges in Ireland are based on the weight of waste disposed. In the Leinster Region, charges are approximately €130 - €150 per tonne of waste, which includes a €75 per tonne landfill levy introduced under the Waste Management (Landfill Levy) (Amendment) Regulations 2015.

The *Dún Laoghaire-Rathdown County Development Plan 2022 – 2028* ¹² sets out a number of policies for the Dún Laoghaire-Rathdown area in line with the objectives of the regional waste management plan and the new circular economy strategy.

The proposed waste policies with a particular relevance to the proposed development are as follows:

Policy Objective El12: Resource Management

It is a Policy Objective to implement the Eastern-Midlands Region Waste Management Plan 2015-2021 and subsequent plans, in supporting the transition from a waste management economy towards a circular economy, to enhance employment and increase the value recovery and recirculation of resources. Underpinning this objective is the requirement to conform to the European Union and National Waste Management

and technical feasibility and Environmental Assessment.

Hierarchy of the most favoured options for waste as illustrated below subject to economic

Policy Objective El13: Waste Management Infrastructure, Prevention, Reduction, Reuse and Recycling

- To support the principles of the circular economy, good waste management and
 the implementation of best international practice in relation to waste management
 in order for the County and the Region to become self-sufficient in terms of
 resource and waste management and to provide a waste management
 infrastructure that supports this objective.
- To provide for civic amenity facilities and bring centres as part of an integrated waste collection system in accessible locations throughout the County and promote the importance of kerbside source segregated collection of household and commercial waste as the best method to ensure the quality of waste presented for recycling is preserved.
- To ensure any waste amenity facilities adhere to the Waste Regional Offices Waste Management Infrastructure siting guidelines.
- To develop a County wide network of multi material recycling centres, bring centres and a re-use centre and to require the provision of adequately-sized recycling facilities in new commercial and large-scale residential developments, where appropriate.
- To require the inclusion of such centres in all large retail developments to maximise access by the public. To ensure new developments are designed and constructed in line with the Council's Guidelines for Waste Storage Facilities

Policy Objective El14: Hazardous Waste

It is a Policy Objective to adhere to the recommendations of the 'National Hazardous Waste Management Plan 2014-2020' and any subsequent plan, and to co-operate with other agencies, to plan, organise, authorise and supervise the disposal of hazardous waste streams, including hazardous waste identified during construction and demolition projects.

2.3 Legislative Requirements

The primary legislative instruments that govern waste management in Ireland and applicable to the development are:

- Waste Management Act 1996 as amended.
- Environmental Protection Agency Act 1992 as amended.
 - Litter Pollution Act 1997 as amended.
 - Planning and Development Act 2000 as amended ¹³.

One of the guiding principles of European waste legislation, which has in turn been incorporated into the *Waste Management Act 1996* as amended and subsequent Irish legislation, is the principle of "Duty of Care". This implies that the waste producer is

responsible for waste from the time it is generated through until its legal recycling, recovery or disposal (including its method of disposal). As it is not practical in most cases for the waste producer to physically transfer all waste from where it is produced to the final destination, waste contractors will be employed to physically transport waste to the final destination. Following on from this is the concept of "Polluter Pays" whereby the waste producer is liable to be prosecuted for pollution incidents, which may arise from the incorrect management of waste produced, including the actions of any contractors engaged (e.g. for transportation and disposal/recovery/recycling of waste).

It is therefore imperative that the Developer ensures that the waste contractors engaged by the construction contractors are legally compliant with respect to waste transportation, recycling, recovery and disposal. This includes the requirement that a contractor handle, transport and recycle/recover/dispose of waste in a manner that ensures that no adverse environmental impacts occur as a result of any of these activities.

A collection permit to transport waste must be held by each waste contractor which is issued by the National Waste Collection Permit Office (NWCPO). Waste receiving facilities must also be appropriately permitted or licensed. Operators of such facilities cannot receive any waste, unless in possession of a Certificate of Registration (COR) or waste permit granted by the relevant Local Authority under the Waste Management (Facility Permit & Registration) Regulations 2007 and Amendments or a Waste or Industrial Emissions Licence granted by the EPA. The COR / permit / licence held will specify the type and quantity of waste able to be received, stored, sorted, recycled, recovered and/or disposed of at the specified site.

2.4 Local Authority Guidelines

DLRCC's Waste Management Division have issued *Guidance Notes for Environmental Design and Management of Construction Projects* (July 2022) ¹⁵ which provide good provide good practice guidance for environmental design and construction of new build high density developments to assist developers in demonstrating to local planning and waste management authorities that they have considered how the design, construction and operation of the proposed development complies with best environmental management practice.

Waste planning shall take account of "Best Practice Guidelines for the preparation of resource & waste management plans for construction & demolition projects", published by the Environmental Protection Agency in 2021.

The objective of the guidelines is to allow developers and designers to demonstrate to local planning and waste management authorities that they have considered how the design and the operation of waste management services will enable construction and demolition contractors to effectively manage their wastes arisings.

The following list sets out the main points that are considered to be necessary to proper construction waste management:

 Identification, subject to site restrictions, of a dedicated and secure compound, containing bins and skips into which all waste generated by construction site activities will be placed and designation of a single person with responsibility for provision of signage and verbal instruction to ensure proper housekeeping, maintenance of records and segregation of construction waste materials.

- Measures to ensure tracking of all waste generated to final destination. The recording of gate receipts for the licenced facility to which excavation and demolition wastes are brought is essential to ensure that waste materials removed from sites are properly disposed of and that site management is in compliance with statutory obligations under the Waste Management Acts 1996, as amended.
- Analysis of the waste arisings/material surpluses; specific waste management objectives for the project; and proposals for prevention, reuse and recycling of waste, including applications under Article 27 of the European Communities (Waste Directive) Regulations, 2011 and planning for design of projects to facilitate maintenance, replacement and re-use of building materials, recycling of demolition material and the use of materials from renewable sources.
- In all developments in excess of 10 housing units and commercial developments in excess of 1000 sq.m, a materials source and management plan illustrating design for maintenance and replacement in addition to type of materials/proportion of re-use/recycled materials to be used shall be developed and implemented by the developer to support the development of the circular economy.
- Identification and management of any Hazardous Wastes likely to arise during the
 construction process. In the event that hazardous soil, or historically deposited
 hazardous waste is encountered during the work, the contractor must notify Dún
 Laoghaire-Rathdown County Council, Environmental Enforcement Section, and
 provide a Hazardous/Contaminated Soil Management Plan, to include estimated
 tonnages, description of location, any relevant mitigation or monitoring proposed,
 and destinations for authorised disposal/treatment, in addition to information on the
 authorised waste collector(s).
- Identification and management of any invasive species found, including plans for eradication and follow up checks.

This RWMP has been prepared to demonstrate exactly that and aims to do that in a comprehensive manner.

3.0 DESIGN APPROACH

The client and the design team have integrated the 'Best Practice Guidelines for the Preparation of Resource & Waste Management Plans for Construction & Demolition Projects' into the design workshops, to help review processes, identify and evaluate resource reduction measures and investigate the impact on cost, time, quality, buildability, second life and management post demolition and construction. Further details on these design principals can be found within the aforementioned guidance document.

The design team have undertaken the design process in line with the international best practice principles to firstly prevent wastes, reuse where possible and thereafter sustainably reduce and recover materials. The below sections have been the focal point of the design process and material selections and will continued to be analysed and investigated throughout the design process and when selecting material.

The approaches presented are based on international principles of optimising resources and reducing waste on construction projects through:

- Prevention;
- Reuse;
- Recycling;
- Green Procurement Principles;
- Off-Site Construction:
- Materials Optimisation; and
- Flexibility and Deconstruction.

3.1 Designing For Prevention, Reuse and Recycling

Undertaken at the outset and during project feasibility and evaluation the Client and Design Team considered:

- Establishing the potential for any reusable site assets (buildings, structures, equipment, materials, soils, etc.);
- The potential for refurbishment and refit of any existing structures or buildings rather than demolition and new build;
- Assessing any existing buildings on the site that can be refurbished either in part or wholly to meet the Client requirements; and
- Enabling the optimum recovery of assets on site.

3.2 Designing for Green Procurement

Waste prevention and minimisation pre-procurement have been discussed and will be further discussed in this section. The Design Team will discuss proposed design solutions, encourage innovation in tenders and incentivise competitions to recognise sustainable approaches. They should also discuss options for packaging reduction with the main Contractor and subcontractors/suppliers using measures such as 'Just-in-Time' delivery and use ordering procedures that avoid excessive waste. The Green procurement extends from the planning stage into the detailed design and tender stage and will be an ongoing part of the long-term design and selection process for this development.

3.3 Designing for Off-Site Construction

Use of off-site manufacturing has been shown to reduce residual wastes by up to 90% (volumetric building versus traditional). The decision to use offsite construction is typically cost led but there are significant benefits for resource management. Some further considerations for procurement which are being investigated as part of the planning stage design process are listed as follows:

- Modular buildings as these can displace the use of concrete and the resource losses associated with concrete blocks such as broken blocks, mortars, etc.;
 - Modular buildings are typically pre-fitted with fixed plasterboard and installed insulation, eliminating these residual streams from site.
- Use of pre-cast structural concrete panels which can reduce the residual volumes of concrete blocks, mortars, plasters, etc.;
- The use of prefabricated composite panels for walls and roofing to reduce residual volumes of insulation and plasterboards;
- Using pre-cast hollow-core flooring instead of in-situ ready mix flooring or timber flooring to reduce the residual volumes of concrete/formwork and wood/packaging, respectively; and
- Designing for the preferential use of offsite modular units.

3.4 Designing for Materials Optimisation During Construction

To ensure manufacturers and construction companies adopt lean production models, including maximising the reuse of materials onsite as outlined in section 2.1. This helps to reduce the environmental impacts associated with transportation of materials and from waste management activities. This includes investigating the use of standardised sizes for certain materials to help reduce the amount of offcuts produced on site, focusing on promotion and development of off-site manufacture.

3.5 Designing for Flexibility and Deconstruction

Design flexibility has and will be investigated throughout the design process to ensure that where possible products (including buildings) only contain materials that can be recycled and are designed to be easily disassembled. Material efficiency is being considered for the duration and end of life of a building project to produce; flexible, adaptable spaces that enable a resource-efficient, low-waste future change of use; durability of materials and how they can be recovered effectively when maintenance and refurbishment are undertaken and during disassembly/deconstruction.

4.0 DESCRIPTION OF THE DEVELOPMENT

4.1 Size and Scale of the Development

GEDV Monkstown Owner Limited intends to apply for permission for development on a site of c. 3.58 hectares at Dalguise House (Protected Structure RPS No. 870), Monkstown Road, Monkstown, County Dublin, A94 D7D1 (the lands including A94 N3A1 Garage; A94 R9T1 Gate Lodge; A94 TP46 Dalguise Lodge (No. 71 Monkstown Rd); A94 V6V9 White Lodge); and on-street car parking in front of Nos. 6 and 7 Purbeck (A94 C586 and A94 HT99, respectively), with the provision of vehicular and pedestrian access and egress at two points on Monkstown Road: the existing entrance to Dalguise; and at Purbeck.

Alterations will be made at Purbeck including the relocation of 4 No. existing car parking spaces to facilitate the construction of a new vehicular and pedestrian bridge over the Stradbrook Stream.

The development, with a total gross floor area of approximately 46,940 sq m (including a basement of 5,230 sq m and undercroft parking 1,344 sq m) (45,712 sq m of new build, excluding the retained existing buildings of 1,228 sq m), will consist 491 No. residential units, consisting of 484 No. new build and 7 No. residential units within existing structures (the latter repurposed from Dalguise House, Gate Lodge and Coach House).

The residential provision will comprise: 3 No. two storey 2-bed terraced houses (GFA 569 sq m), and 488 No. Build-to-Rent units (consisting of 2 No. studio units; 289 No. 1-beds; 31 No. 2-beds/3 persons; 153 No. 2-beds/4-persons; and 13 No. 3-beds) (with an option for the use of 4 No. of the BTR Units to cater for short-term stays of up to 14 days to cater inter alia for visitors and short-term visits to residents of the overall scheme) residential amenities and residential support facilities; a childcare facility; and restaurant/café.

The development will consist of: the demolition and part-demolition of existing structures (total demolition area 815 sq m), including: Two residential properties (White Lodge (A94 V6V9), a 2 storey house (192 sq m); and a residential garage (A94 N3A1) and shed to the southwest of Dalguise House (285 sq m); swimming pool extension to the southeast of

227501.0145WMR02 AWN Consulting Ltd.

Dalguise House (250 sq m); lean-to structures to the south of the walled garden (13 sq m); part-demolition of basement area at Dalguise House (8 sq m); part-demolition at the Coach House (67 sq m); removal of 2 No. glasshouses; and alterations to and removal of sections of the walled garden wall; the construction of Block A (total GFA 2,015 sq m, 7 storey) comprising: 19 No. apartment units (15 No. 1-beds, 4 No. 2-beds) and a childcare facility (540 sq m over Ground and First Floor Levels); Block B (total GFA 3,695 sq m) 7 storey over undercroft car parking, comprising 48 No. apartment units (33 No. 1-beds, 15 No. 2-beds); Block C (total GFA 3,695 sq m) 7 storey over undercroft car parking, comprising 48 No. apartment units (33 No. 1-beds, 15 No. 2-beds); Block D (total GFA 4,150 sq m) 7 storey over basement level car park, comprising 50 No. apartment units (24 No. 1-beds, 26 No. 2-beds); Block E (total GFA 5,904 sq m) 9 storey over basement level car park, comprising 66 No. apartment units (40 No. 1-beds, 26 No. 2-beds), with residents' support facilities (concierge/lobby; management office including staff room and IT; post room 197 sq m) and residents' amenities (yoga studio, gym, co-working space; boardroom; lounge 354 sq m) at Ground Floor Level, and residents' amenities (residents' lounge; games room; screen room; private lounge; kitchen 333 sq m) with roof terrace (106 sq m) at Eighth Floor Level; Block F (total GFA 5,469 sq m) 7 storey over basement level car park, comprising 76 No. apartment units (46 No. 1-beds, 28 No. 2-beds and 2 No. 3-beds); Block G (total GFA 5,469 sq m) 7 storey over basement level car park, comprising 76 No. apartment units (46 No. 1-beds, 28 No. 2-beds and 2 No. 3-beds); Block H (total GFA 4,252 sq m) 6 storey, comprising 54 No. apartment units (30 No. 1-beds, 22 No. 2-beds and 2 No. 3-beds); Block I1 (total GFA 1,038 sq m) 3 storey, comprising 12 No. apartment units (3 No. 1-beds, 9 No. 2-beds); Block I2 (total GFA 1,038 sq m) 3 storey, comprising 12 No. apartment units (3 No. 1-beds, 9 No. 2-beds); Block J (total GFA 1,844 sq m) 4 storey, comprising 20 No. apartment units (13 No. 1-beds and 7 No. 3-beds); the refurbishment, adaptation and reuse of: a single storey Brick Gate Lodge (GFA 55 sq m) comprising 1 No. 1-bed unit; two storey Entrance Gate Lodge (GFA 55 sq m) comprising residential support facilities; and two storey Coach House (GFA 319 sq m) to provide 3 No. apartment units (1 No. 1-bed, 2 No. 2-beds); the refurbishment, adaptation and change of use of Dalguise House (GFA 799 sq m) from a single residential dwelling to provide: 3 No. apartment units (2 No. studios and 1 No. 1-bed Unit) at First Floor Level; a restaurant/cafe at Basement Level (GFA 273 sq m); and residents' amenities at Ground Floor Level (residents' lounge, library, events space, bar/bookable room, 157 sq m); the construction of a garden pavilion; the provision of balconies and terraces, communal open space including roof gardens, public open spaces, hard and soft landscaping, landscaping works including the removal of trees, of cycle parking (including cargo bike spaces) at basement and surface level; the provision of: 224 No. car parking spaces (148 No. at basement level and 42 No. at undercroft or surface level); motorbike spaces; level changes; ESB Substations (at Block D and Block H); plant areas; waste storage areas; and all ancillary site development works above and below ground.

Provision is made in the landscaping proposals for future pedestrian and cycle connections that would facilitate permeability through the site boundaries with the residential estates of Arundel and Richmond Park, respectively, and the former Cheshire Home site, subject to agreement with those parties and/or Dún Laoghaire-Rathdown County Council as appropriate.

227501.0145WMR02 AWN Consulting Ltd.

Figure 4.1 Site location and boundary

4.2 Details of the Non-Hazardous Wastes to be Produced

There will be soil, stones, clay and made ground excavated to facilitate construction of new foundations, basement and underground services. The project engineers have estimated that 68,123m³ of material will need to be excavated to do so. It is currently envisaged that 85% (57,904m³) of excavated material will be removed from site for appropriate reuse, recycling or disposal. The remaining material will be temporarily stockpiled for reuse as fill or for landscaping, where possible.

During the construction phase there may be a surplus of building materials, such as timber off-cuts, broken concrete blocks, cladding, plastics, metals and tiles generated. There may also be excess concrete during construction which will need to be disposed of. Plastic and cardboard waste from packaging and supply of materials will also be generated. The contractor will be required to ensure that oversupply of materials is kept to a minimum and opportunities for reuse of suitable materials is maximised.

Waste will also be generated from construction workers e.g. organic / food waste, dry mixed recyclables (waste paper, newspaper, plastic bottles, packaging, aluminium cans, tins and Tetra Pak cartons), mixed non-recyclables and potentially sewage sludge from temporary welfare facilities provided on site during the C&D phases. Waste printer / toner cartridges, waste electrical and electronic equipment (WEEE) and waste batteries may also be generated infrequently from site offices.

4.3 Potential Hazardous Wastes Arising

4.3.1 Contaminated Soil

Ground investigations have been conducted by IGSL on the proposed development site and a Ground Investigations Report was issued in May 2022.

Samples underwent a Waste Acceptance Criteria (WAC) analyses in accordance with the RILTA Suite, which can be used to fully assess the waste disposal requirements of soils destined for disposal.

Included in the test suite are Heavy metals, Speciated TPH, Mineral Oil, BTEX, PCB and Total Organic Carbon (TOC) carried out on dry soil samples. Also included are leachate analyses, whereby leachate is generated in accordance with CEN 10:1 specification and this is tested for the presence of recognised contaminants including Heavy metals, Dissolved Organic Carbon (DOC) and Total Dissolved Solids (TDS). An Asbestos screen is also included in the RILTA Suite.

All samples returned readings below Inert Waste Landfill limits.

There exists a minor risk associated with the possibility of encountering contaminated soils during the de-commissioning and removal of the existing septic tank on site.

In the event that contaminated material is found on site, this material will need to be segregated from clean/inert material, tested and classified as either non-hazardous or hazardous in accordance with the EPA publication entitled 'Waste Classification: List of Waste & Determining if Waste is Hazardous or Non-Hazardous' ¹⁵ using the HazWasteOnline application (or similar approved classification method). The material will then need to be classified as clean, inert, non-hazardous or hazardous in accordance with the EC Council Decision 2003/33/EC ¹⁶, which establishes the criteria for the acceptance of waste at landfills.

In the event that asbestos containing materials are found, the removal will only be carried out by a suitably permitted waste contractor, in accordance with S.I. No. 386 of 2006 Safety, Health and Welfare at Work (Exposure to Asbestos) Regulations 2006-2010. All asbestos will be taken to a suitably licensed or permitted facility.

In the event that hazardous soil, or historically deposited waste is encountered during the C&D phases, the contractor will notify DLRCC and provide a Hazardous/Contaminated Soil Management Plan, to include estimated tonnages, description of location, any relevant mitigation, destination for disposal/treatment, in addition to information on the authorised waste collector(s).

4.3.2 Fuel/Oils

Fuels and oils are classed as hazardous materials; any on-site storage of fuel / oil, and all storage tanks and all draw-off points will be bunded and located in a dedicated, secure area of the site. Provided that these requirements are adhered to and the site crew are trained in the appropriate refuelling techniques, it is not expected that there will be any fuel / oil waste generated at the site.

4.3.3 Invasive Plant Species

A site walkover to determine the presence or absence of any invasive species was conducted Roughan & O'Donovan on the 20th of June and 5th of July 2021. This included a survey of the site, and around part of the outside perimeter to search for any schedule 3 invasive species, such as Japanese Knotweed *Fallopia japonica*, which is listed on the Third Schedule of the Birds and Habitats Regulations.

No third schedule invasive species were recorded during the site walkovers. If any third schedule invasive species are found on the site at a later date, a species-specific

management plan will be created and the necessary remediation measures will be undertaken.

4.3.4 Asbestos

An Asbestos Survey Report was prepared by Phoenix Environmental Safety Ltd. on the 8th August 2022. of the will be carried out prior to the demolition of any structures on site.

During the asbestos survey at Dalguise House, the following asbestos containing materials were identified in the following locations:

Main house:

- Asbestos containing toilet cisterns were identified in the W/C's (no. 3)
- Asbestos containing floor tiles and bitumen adhesive was identified in the kitchen in the servants wing on the ground floor of the main house (8m² approx.)
- An asbestos containing rope seal was identified on the pipework in the basement kitchen pant room in the servant's wing
- Compressed Asbestos Fibre (CAF) gaskets were identified in the external boiler room

Rear Derelict Building:

An asbestos containing cement board was identified on the ceiling (12m² approx.).
 Debris from the ceiling was found in the room underneath

Red Brick Gate Lodge:

 Asbestos containing textured coating was identified on the ceiling in the kitchen and living room

Gate Lodge At Road:

- An asbestos containing toilet cistern was identified in the ground floor toilet
- Asbestos containing floor tiles and adhesive were identified in the kitchen and living room (18m² approx.)
- Asbestos containing paper backed lino was identified in the kitchen (6m² approx.)

Removal of asbestos or asbestos containing materials (ACMs) will be carried out by a suitably qualified contractor and ACMs will only be removed from site by a suitably permitted/licenced waste contractor in accordance with S.I. No. 386 of 2006 Safety, Health and Welfare at Work (Exposure to Asbestos) Regulations 2006-2010. All material will be taken to a suitably licensed or permitted facility.

4.3.5 Other Known Hazardous Substances

Paints, glues, adhesives and other known hazardous substances will be stored in designated areas. They will generally be present in small volumes only and associated waste volumes generated will be kept to a minimum. Wastes will be stored in appropriate receptacles pending collection by an authorised waste contractor.

In addition, WEEE (containing hazardous components), printer toner / cartridges, batteries (Lead, Ni-Cd or Mercury) and / or fluorescent tubes and other mercury containing waste may be generated from during C&D activities or temporary site offices. These wastes, if generated, will be stored in appropriate receptacles in designated areas of the site pending collection by an authorised waste contractor.

5.0 ROLES AND RESPONSIBILITIES

The Best Practice Guidelines on the Preparation of Resource Waste Management Plans for Construction and Demolition Projects promotes that a RM should be appointed. The RM may be performed by number of different individuals over the life-cycle of the Project, however it is intended to be a reliable person chosen from within the Planning/Design/Contracting Team, who is technically competent and appropriately trained, who takes the responsibility to ensure that the objectives and measures within the Project RWMP are complied with. The RM is assigned the requisite authority to meet the objective and obligations of the RWMP. The role will include the important activities of conducting waste checks/audits and adopting construction methodology that is designed to facilitate maximum reuse and/or recycling of waste.

5.1 Role of the Client

The Client are the body establishing the aims and the performance targets for the project.

- The Client has commissioned the preparation and submission of a preliminary RWMP as part of the design and planning submission;
- The Client is to commission the preparation and submission of an updated RWMP as part of the construction tendering process;
- The Client will ensure that the RWMP is agreed on and submitted to the local authority prior to commencement of works on site;
- The Client is to request the end-of-project RWMP from the Contractor.

5.2 Role of the Client Advisory Team

The Client Advisory Team or Design Team is formed of architects, consultants, quantity surveyors and engineers and is responsible for:

- Drafting and maintaining the RWMP through the design, planning and procurement phases of the project;
- Appointing a RM to track and document the design process, inform the Design Team and prepare the RWMP;
- Including details and estimated quantities of all projected waste streams with the support of environmental consultants/scientists. This should also include data on waste types (e.g. waste characterisation data, contaminated land assessments, site investigation information) and prevention mechanisms (such as by-products) to illustrate the positive circular economy principles applied by the Design Team;
- Handing over of the RWMP to the selected Contractor upon commencement of construction of the development, in a similar fashion to how the safety file is handed over to the Contractor;

 Working with the Contractor as required to meet the performance targets for the project.

5.3 Future Role of the Contractor

The future construction contractors have not yet been decided upon for this RWMP. However, once select they will have major roles to fulfil. They will be responsible for:

- Preparing, implementing and reviewing the RWMP throughout the C&D phases (including the management of all suppliers and sub-contractors) as per the requirements of these guidelines;
- Identifying a designated and suitably qualified RM who will be responsible for implementing the RWMP:
- Identifying all hauliers to be engaged to transport each of the resources / wastes off-site:
- Implementing waste management policies whereby waste materials generated on site are to be segregated as far as practicable;
- Renting and operating a mobile-crusher to crush concrete for temporary reuse onsite during construction and reduce the amount of HGV loads required to remove material from site:
- Applying for the appropriate waste permit to crush concrete onsite;
- Identifying all destinations for resources taken off-site. As above, any resource that
 is legally classified as a 'waste' must only be transported to an authorised waste
 facility:
- End-of-waste and by-product notifications addressed with the EPA where required;
- Clarification of any other statutory waste management obligations, which could include on-site processing;
- Full records of all resources (both wastes and other resources) should be maintained for the duration of the project; and
- Preparing a RWMP Implementation Review Report at project handover.

6.0 KEY MATERIALS & QUANTITIES

6.1 Project Resource Targets

Project specific resource and waste management targets for the site have not yet been set and this information should be updated for these targets once these targets have been confirmed by the client. However, it is expected for projects of this nature that a minimum of 70% of waste is fully re-used, recycled or recovered. Target setting will inform the setting of project-specific benchmarks to track target progress. Typical Key Performance Indicators (KPIs) that may be used to set targets include (as per guidelines):

- Weight (tonnes) or Volume (m³) of waste generated per construction value;
- Weight (tonnes) or Volume (m³) of waste generated per construction floor area (m²);
- Fraction of resource reused on site;
- Fraction of resource notified as by-product;
- Fraction of waste segregated at source before being sent off-site for recycling/recovery; and

 Fraction of waste recovered, fraction of waste recycled, or fraction of waste disposed.

6.2 Main Construction Waste Categories

The main non-hazardous and hazardous waste streams that could be generated by the construction activities at a typical site are shown in Table 6.1. The List of Waste (LoW) code (applicable as of 1 June 2015) (also referred to as the European Waste Code (EWC)) for each waste stream is also shown

Table 6.1 Typical waste types generated and LoW codes (individual waste types may contain hazardous substances)

Waste Material	LoW/EWC Code
Concrete, bricks, tiles, ceramics	17 01 01-03 & 07
Wood, glass and plastic	17 02 01-03
Treated wood, glass, plastic, containing hazardous substances	17-02-04*
Bituminous mixtures, coal tar and tarred products	17 03 01*, 02 & 03*
Metals (including their alloys) and cable	17 04 01-11
Soil and stones	17 05 03* & 04
Gypsum-based construction material	17 08 01* & 02
Paper and cardboard	20 01 01
Mixed C&D waste	17 09 04
Green waste	20 02 01
Electrical and electronic components	20 01 35 & 36
Batteries and accumulators	20 01 33 & 34
Liquid fuels	13 07 01-10
Chemicals (solvents, pesticides, paints, adhesives, detergents etc.)	20 01 13, 19, 27-30
Insulation materials	17 06 04
Organic (food) waste	20 01 08
Mixed Municipal Waste	20 03 01

^{*} Individual waste type may contain hazardous substances

7.0 WASTE MANAGEMENT

7.1 Demolition Waste Generation

The demolition stage will involve the demolition and part-demolition of existing structures (total demolition area 815 sq m), including: White Lodge a 2 storey house (192 sq m); swimming pool extension to the southeast of Dalguise House (250 sq m); residential garage and shed to the southwest of Dalguise House (285 sq m); lean-to structures to the south of the walled garden (13 sq m); part demolition of basement area at Dalguise House (8 sq m); part demolition at the Coach House (67 sq m); removal of a glasshouse; and alterations to and removal of sections of the walled garden. The decommissioning and removal of an existing septic tank on site is also proposed.

The demolition areas are identified in the planning drawings provided with the planning application. The anticipated demolition waste and rates of reuse, recycling / recovery and disposal are shown in Table 7.1 below.

Table 7.1 Estimated off-site reuse, recycle and disposal rates for demolition waste

Maria Trina	-	Reuse/	Reuse/Recovery		Recycle		Disposal	
Waste Type	Tonnes	%	Tonnes	%	Tonnes	%	Tonnes	
Glass	44.0	0	0.0	85	37.4	15	6.6	
Concrete, Bricks, Tiles, Ceramics	249.4	30	74.8	65	162.1	5	12.5	
Plasterboard	19.6	30	5.9	60	11.7	10	2.0	
Asphalts	4.9	0	0.0	25	1.2	75	3.7	
Metals	73.4	5	3.7	80	58.7	15	11.0	
Slate	39.1	0	0.0	85	33.3	15	5.9	
Timber	58.7	10	5.9	60	35.2	30	17.6	
Asbestos	1.2	0	0.0	0	0.0	100	1.2	
Total	490.2		90.2		339.6		60.4	

The decommissioning and removal of the septic tank will also constitute an additional <5 tonnes of concrete waste.

7.2 Construction Waste Generation

Table 7.2 shows the breakdown of C&D waste types produced on a typical site based on data from the EPA *National Waste Reports* ¹⁶ and the joint EPA & GMIT study ¹⁷.

Table 7.2 Waste materials generated on a typical Irish construction site

Waste Types	%
Mixed C&D	33
Timber	28
Plasterboard	10
Metals	8
Concrete	6
Other	15
Total	100

Table 7.3, below, shows the estimated construction waste generation for the proposed Project based on the gross floor area of construction and other information available to date, along with indicative targets for management of the waste streams. The estimated amounts for the main waste types (with the exception of soils and stones) are based on an average large-scale development waste generation rate per m², using the waste breakdown rates shown in Table 7.2. These have been calculated from the schedule of development areas provided by the architect.

Table 7.3 Predicted on and off-site reuse, recycle and disposal rates for construction waste

Waste Type	-	Reuse/Recovery		Recycle		Disposal	
	Tonnes	%	Tonnes	%	Tonnes	%	Tonnes
Mixed C&D	215.4	10	21.5	80	172.3	10	21.5
Timber	182.7	40	73.1	55	100.5	5	9.1
Plasterboard	65.3	30	19.6	60	39.2	10	6.5
Metals	52.2	5	2.6	90	47.0	5	2.6
Concrete	39.2	30	11.7	65	25.5	5	2.0
Other	97.9	20	19.6	60	58.7	20	19.6
Total	652.6		148.1		443.1		61.3

In addition to the waste streams in Table 6.4, there will be c. 68,123m³ of soil, stones, clay and made ground excavated to facilitate the construction of the basement, site levelling, construction of foundations, the installation of services and roads for the development and below ground services. It is currently envisaged that 85% (57,904m³) of excavated material will be removed from site for appropriate reuse, recycling or disposal.

It should be noted that until final materials and detailed construction methodologies have been confirmed, it is difficult to predict with a high level of accuracy the construction waste that will be generated from the proposed works as the exact materials and quantities may be subject to some degree of change and variation during the construction process.

7.3 Proposed Resource and Waste Management Options

Waste materials generated will be segregated on-site, where it is practical. Where the on-site segregation of certain wastes types is not practical, off-site segregation will be carried out. There will be skips and receptacles provided to facilitate segregation at source, where feasible. All waste receptacles leaving the site will be covered or enclosed. The appointed waste contractor will collect and transfer the wastes as receptacles are filled. There are numerous waste contractors in the Dún Laoghaire-Rathdown region that provide this service.

All waste arisings will be handled by an approved waste contractor holding a current waste collection permit. All waste arisings requiring disposal off-site will be reused, recycled, recovered or disposed of at a facility holding the appropriate registration, permit or licence, as required.

During construction, some of the sub-contractors on site will generate waste in relatively low quantities. The transportation of non-hazardous waste by persons who are not directly involved with the waste business, at weights less than or equal to 2 tonnes, and in vehicles not designed for the carriage of waste, are exempt from the requirement to have a waste collection permit (per Article 30 (1) (b) of the Waste Collection Permit Regulations 2007, as amended). Any sub-contractors engaged that do not generate more than 2 tonnes of waste at any one time can transport this waste off-site in their work vehicles (which are not designed for the carriage of waste). However, they are required to ensure that the receiving facility has the appropriate COR / permit / licence.

Written records will be maintained by the contractor(s), detailing the waste arising throughout the C&D phases, the classification of each waste type, waste collection permits

AWN Consulting Ltd.

for all waste contactors who collect waste from the site and COR / permit / licence for the receiving waste facility for all waste removed off-site for appropriate reuse, recycling, recovery and / or disposal

Dedicated bunded storage containers will be provided for hazardous wastes which may arise, such as batteries, paints, oils, chemicals, if required.

The anticipated management of the main waste streams is outlined as follows:

Soil, Stone, Clay & Made Ground

The waste hierarchy states that the preferred option for waste management is prevention and minimisation of waste, followed by preparing for reuse and recycling / recovery, energy recovery (i.e. incineration) and, least favoured of all, disposal. The excavations are required to facilitate construction works so the preferred option (prevention and minimisation) cannot be accommodated for the excavation phase.

If material is removed off-site it could be reused as a by-product (and not as a waste). If this is done, it will be done in accordance with Regulation 15 (By-products) (Previously Article 27 and referred to as Article 27 in this report) of S.I. No. 323/2020 - European Union (Waste Directive) Regulations 2020, which requires that certain conditions are met and that by-product notifications are made to the EPA via their online notification form. Excavated material should not be removed from site until approval from the EPA has been received. The potential to reuse material as a by-product will be confirmed during the course of the excavation works, with the objective of eliminating any unnecessary disposal of material.

The next option (beneficial reuse) may be appropriate for the excavated material, pending environmental testing to classify the material as hazardous or non-hazardous in accordance with the EPA Waste Classification – List of Waste & Determining if Waste is Hazardous or Non-Hazardous publication. Clean inert material may be used as fill material in other construction projects or engineering fill for waste licensed sites. Beneficial reuse of surplus excavation material as engineering fill may be subject to further testing to determine if materials meet the specific engineering standards for their proposed end use.

Any nearby sites requiring clean fill/capping material will be contacted to investigate reuse opportunities for clean and inert material. If any of the material is to be reused on another site as a by-product (and not as a waste), this will be done in accordance with Article 27. Similarly, if any soils/stones are imported onto the site from another construction site as a by-product, this will also be done in accordance with Article 27. Article 27 will be investigated to see if the material can be imported onto this site for beneficial reuse instead of using virgin materials.

If the material is deemed to be a waste, then removal and reuse / recovery / disposal of the material will be carried out in accordance with the Waste Management Act 1996 as amended, the Waste Management (Collection Permit) Regulations 2007 as amended and the Waste Management (Facility Permit & Registration) Regulations 2007 as amended. Once all available beneficial reuse options have been exhausted, the options of recycling and recovery at waste permitted and licensed sites will be considered.

In the event that contaminated material is encountered and subsequently classified as hazardous, this material will be stored separately to any non-hazardous material. It will

require off-site treatment at a suitable facility or disposal abroad via Transfrontier Shipment of Wastes (TFS).

Bedrock

While it is not envisaged that bedrock will be encountered, if bedrock is encountered, it is anticipated that it will not be crushed on site. Any excavated rock is expected to be removed off-site for appropriate reuse, recovery and / or disposal. If bedrock is to be crushed on-site, the appropriate mobile waste facility permit will be obtained from DLRCC.

Silt & Sludge

During the C&D phases, silt and petrochemical interception will be carried out on run-off and pumped water from site works, where required. Sludge and silt will then be collected by a suitably licensed contractor and removed off-site.

Concrete Blocks, Bricks, Tiles & Ceramics

The majority of concrete blocks, bricks, tiles and ceramics generated as part of the construction works are expected to be clean, inert material and should be recycled, where possible. If concrete is to be crushed on-site, the appropriate mobile waste facility permit will be obtained from DLRCC.

Hard Plastic

As hard plastic is a highly recyclable material, much of the plastic generated will be primarily from material off-cuts. All recyclable plastic will be segregated and recycled, where possible.

Timber

Timber that is uncontaminated, i.e. free from paints, preservatives, glues, etc., will be disposed of in a separate skip and recycled off-site.

Metal

Metals will be segregated, where practical, and stored in skips. Metal is highly recyclable and there are numerous companies that will accept these materials.

Plasterboard

There are currently a number of recycling services for plasterboard in Ireland. Plasterboard from the C&D phases will be stored in a separate skip, pending collection for recycling. The site manager will ensure that oversupply of new plasterboard is carefully monitored to minimise waste.

Glass

Glass materials will be segregated for recycling, where possible.

Waste Electrical & Electronic Equipment (WEEE)

Any WEEE will be stored in dedicated covered cages / receptacles / pallets pending collection for recycling.

Other Recyclables

Where any other recyclable wastes, such as cardboard and soft plastic, are generated, these will be segregated at source into dedicated skips and removed off-site.

Non-Recyclable Waste

C&D waste which is not suitable for reuse or recovery, such as polystyrene, some plastics and some cardboards, will be placed in separate skips or other receptacles. Prior to removal from site, the non-recyclable waste skip / receptacle will be examined by a member of the waste team (see Section 9.0) to determine if recyclable materials have been placed in there by mistake. If this is the case, efforts will be made to determine the cause of the waste not being segregated correctly and recyclable waste will be removed and placed into the appropriate receptacle.

Asbestos Containing Materials

Any asbestos or ACMs found on-site should be removed by a suitably competent contractor and disposed of as asbestos waste. All asbestos removal work or encapsulation work must be carried out in accordance with S.I. No. 589 of 2010 Safety, Health and Welfare at Work (Exposure to Asbestos) Regulations 2006-2010.

Other Hazardous Wastes

On-site storage of any hazardous wastes produced (i.e. contaminated soil if encountered and / or waste fuels) will be kept to a minimum, with removal off-site organised on a regular basis. Storage of all hazardous wastes on-site will be undertaken so as to minimise exposure to on-site personnel and the public and to also minimise potential for environmental impacts. Hazardous wastes will be recovered, wherever possible, and failing this, disposed of appropriately.

On-Site Crushing

It is currently not envisaged that the crushing of waste materials will occur on-site. However, if the crushing of material is to be undertaken, a mobile waste facility permit will first be obtained from DLRCC and the destination of the accepting waste facility will be supplied to the DLRCC waste unit.

7.4 Tracking and Documentation Procedures for Off-Site Waste

All waste will be documented prior to leaving the site. Waste will be weighed by the contractor, either by a weighing mechanism on the truck or at the receiving facility. These waste records will be maintained on site by the nominated project RM (see Section 9.0).

All movement of waste and the use of waste contractors will be undertaken in accordance with the Waste Management Act 1996 as amended, Waste Management (Collection Permit) Regulations 2007 as amended and Waste Management (Facility Permit & Registration) Regulations 2007 and amended. This includes the requirement for all waste contractors to have a waste collection permit issued by the NWCPO. The nominated project RM (see Section 9.0) will maintain a copy of all waste collection permits on-site.

If the waste is being transported to another site, a copy of the Local Authority waste COR / permit or EPA Waste / Industrial Emissions Licence for that site will be provided to the nominated project RM (see Section 9.0). If the waste is being shipped abroad, a copy of

the Transfrontier Shipping (TFS) notification document will be obtained from DCC (as the relevant authority on behalf of all Local Authorities in Ireland) and kept on-site along with details of the final destination (COR, permits, licences, etc.). A receipt from the final destination of the material will be kept as part of the on-site waste management records.

All information will be entered in a waste management recording system to be maintained on-site.

8.0 ESTIMATED COST OF WASTE MANAGEMENT

An outline of the costs associated with different aspects of waste management is outlined below. The total cost of C&D waste management will be measured and will take into account handling costs, storage costs, transportation costs, revenue from rebates and disposal costs.

8.1 Reuse

By reusing materials on site, there will be a reduction in the transport and recycle / recovery / disposal costs associated with the requirement for a waste contractor to take the material off-site. Clean and inert soils, gravel, stones, etc., which cannot be reused on-site may be used as access roads or capping material for landfill sites, etc. This material is often taken free of charge or at a reduced fee for such purposes, reducing final waste disposal costs.

8.2 Recycling

Salvageable metals will earn a rebate, which can be offset against the costs of collection and transportation of the skips.

Clean, uncontaminated cardboard and certain hard plastics can also be recycled. Waste contractors will charge considerably less to take segregated wastes, such as recyclable waste, from a site than mixed waste.

Timber can be recycled as chipboard. Again, waste contractors will charge considerably less to take segregated wastes, such as timber, from a site than mixed waste.

8.3 Disposal

Landfill charges are currently at around €130 - €150 per tonne which includes a €75 per tonne landfill levy specified in the *Waste Management (Landfill Levy) Regulations 2015*. In addition to disposal costs, waste contractors will also charge a collection fee for skips.

Collection of segregated C&D waste usually costs less than municipal waste. Specific C&D waste contractors take the waste off-site to a licensed or permitted facility and, where possible, remove salvageable items from the waste stream before disposing of the remainder to landfill. Clean soil, rubble, etc., is also used as fill / capping material, wherever possible.

9.0 TRAINING PROVISIONS

A member of the construction team will be appointed as the RM to ensure commitment, operational efficiency and accountability in relation to waste management during the C&D phases of the development.

9.1 Resource Manager Training and Responsibilities

The nominated RM will be given responsibility and authority to select a waste team if required, i.e. members of the site crew that will aid them in the organisation, operation and recording of the waste management system implemented on site.

The RM will have overall responsibility to oversee, record and provide feedback to the client on everyday waste management at the site. Authority will be given to the RM to delegate responsibility to sub-contractors, where necessary, and to coordinate with suppliers, service providers and sub-contractors to prioritise waste prevention and material salvage.

The RM will be trained in how to set up and maintain a record keeping system, how to perform an audit and how to establish targets for waste management on site. The RM will also be trained in the best methods for segregation and storage of recyclable materials, have information on the materials that can be reused on site and be knowledgeable in how to implement this RWMP.

9.2 Site Crew Training

Training of site crew in relation to waste is the responsibility of the RM and, as such, a waste training program should be organised. A basic awareness course will be held for all site crew to outline the RWMP and to detail the segregation of waste materials at source. This may be incorporated with other site training needs such as general site induction, health and safety awareness and manual handling.

This basic course will describe the materials to be segregated, the storage methods and the location of the Waste Storage Areas (WSAs). A sub-section on hazardous wastes will be incorporated into the training program and the particular dangers of each hazardous waste will be explained.

10.0 TRACKING AND TRACING / RECORD KEEPING

Records should be kept for all waste material which leaves the site, either for reuse on another site, recycling or disposal. A recording system will be put in place to record the waste arisings on Site.

A waste tracking log should be used to track each waste movement from the site. On exit from the site, the waste collection vehicle driver should stop at the site office and sign out as a visitor and provide the security personnel or RM with a waste docket (or Waste Transfer Form (WTF) for hazardous waste) for the waste load collected. At this time, the security personnel should complete and sign the Waste Tracking Register with the following information:

- Date
- Time
- Waste Contractor
- Company waste contractor appointed by, e.g. Contractor or subcontractor name
- Collection Permit No.
- Vehicle Reg.
- Driver Name
- Docket No. (Issued at site and from receiving facility with corresponding numbers)
- Waste Type
- EWC / LoW

The waste vehicle will be checked by security personal or the RM to ensure it has the waste collection permit no. displayed and a copy of the waste collection permit in the vehicle before they are allowed to remove the waste from the site.

The waste transfer dockets will be transferred to the RM on a weekly basis and can be placed in the Waste Tracking Log file. This information will be forwarded onto the DLRCC Waste Regulation Unit when requested.

Each subcontractor that has engaged their own waste contractor will be required to maintain a similar waste tracking log with the waste dockets / WTF maintained on file and available for inspection on site by the main contractor as required. These subcontractor logs will be merged with the main waste log.

Waste receipts from the receiving waste facility will also be obtained by the site contractor(s) and retained. A copy of the Waste Collection Permits, CORs, Waste Facility Permits and Waste Licences will be maintained on site at all times and will be periodically checked by the RM. Subcontractors who have engaged their own waste contractors, should provide the main contractor with a copy of the waste collection permits and COR / permit / licence for the receiving waste facilities and maintain a copy on file, available for inspection on site as required.

11.0 OUTLINE WASTE AUDIT PROCEDURE

11.1 Responsibility for Waste Audit

The appointed RM will be responsible for conducting a waste audit at the site during the C&D phases of the proposed Project. Contact details for the nominated RM will be provided to the DLRCC Waste Regulation Unit after the main contractor is appointed and prior to any material being removed from site.

11.2 Review of Records and Identification of Corrective Actions

A review of all waste management costs and the records for the waste generated and transported off-site should be undertaken mid-way through the construction phase of the proposed Project.

If waste movements are not accounted for, the reasons for this should be established in order to see if and why the record keeping system has not been maintained. The waste records will be compared with the established recovery / reuse / recycling targets for the

site. Each material type will be examined, in order to see where the largest percentage waste generation is occurring. The waste management methods for each material type will be reviewed in order to highlight how the targets can be achieved.

Upon completion of the C&D phase, a final report will be prepared, summarising the outcomes of waste management processes adopted and the total recycling / reuse / recovery figures for the development.

12.0 CONSULTATION WITH RELEVANT BODIES

12.1 Local Authority

227501.0145WMR02

Once construction contractors have been appointed and have appointed waste contractors, and prior to removal of any C&D waste materials off-site, details of the proposed destination of each waste stream will be provided to the DLRCC Waste Regulation Unit.

DLRCC will also be consulted, as required, throughout the excavation and C&D phases in order to ensure that all available waste reduction, reuse and recycling opportunities are identified and utilised and that compliant waste management practices are carried out.

12.2 Recycling / Salvage Companies

The appointed waste contractor for the main waste streams managed by the construction contractors will be audited in order to ensure that relevant and up-to-date waste collection permits and facility registrations / permits / licences are held. In addition, information will be obtained regarding the feasibility of recycling each material, the costs of recycling / reclamation, the means by which the wastes will be collected and transported off-site, and the recycling / reclamation process each material will undergo off-site.

13.0 REFERENCES

- Waste Management Act 1996 as amended.
- 2. Environmental Protection Agency Act 1992 as amended.
- Litter Pollution Act 1997 (S.I. No. 12 of 1997) as amended.
- Eastern-Midlands Region Waste Management Plan 2015 2021 (2015).
- Department of Environment and Local Government (DoELG) Waste Management Changing Our Ways, A Policy Statement (1998).
- Forum for the Construction Industry Recycling of Construction and Demolition Waste.
- Department of Communications, Climate Action and Environment (DCCAE), Waste Action Plan for the Circular Economy - Ireland's National Waste Policy 2020-2025 (Sept 2020).
- DCCAE, Whole of Government Circular Economy Strategy 2022-2023 'Living More, Using Less' (2021).
- Environmental Protection Agency (EPA) 'Best Practice Guidelines for the Preparation of Resource and Waste Management Plans for Construction & Demolition Projects' (2021).
- 10. Department of Environment, Heritage and Local Government, Best Practice Guidelines on the Preparation of Waste Management Plans for Construction and Demolition Projects (2006).
- 11. FÁS and the Construction Industry Federation (CIF), Construction and Demolition Waste Management a handbook for Contractors and site Managers (2002).
- 12. DLRCC, Dún Laoghaire-Rathdown County Council Development Plan 2022 2028.
- 13. Planning and Development Act 2000 (S.I. No. 30 of 2000) as amended.
- EPA, Waste Classification List of Waste & Determining if Waste is Hazardous or Non-Hazardous (2015).
- Council Decision 2003/33/EC, establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC.
- 16. Environmental Protection Agency (EPA), National Waste Database Reports 1998 2012.
- 17. EPA and Galway-Mayo Institute of Technology (GMIT), EPA Research Report 146 A Review of Design and Construction Waste Management Practices in Selected Case Studies Lessons Learned (2015).

OPERATIONAL WASTE MANAGEMENT PLAN FOR A RESIDENTIAL DEVELOPMENT

AT

DALGUISE HOUSE, MONKSTOWN ROAD, MONKSTOWN, CO DUBLIN

Report Prepared For

GEDV Monkstown Owner Limited

Report Prepared By

David Doran, Environmental Consultant & Chonaill Bradley, Principal Environmental Consultant

Our Reference

227501.0145WMR01

Date of Issue

2 November 2022

The Tecpro Building, Clonshaugh Business & Technology Park, Dublin 17, Ireland.

T: + 353 1 847 4220 F: + 353 1 847 4257

E: info@awnconsulting.com W: www.awnconsulting.com

Cork Office

Unit 5, ATS Building, Carrigaline Industrial Estate, Carrigaline, Co. Cork. T: +353 21 438 7400 F: +353 21 483 4606

AWN Consulting Limited
Registered in Ireland No. 319812
Directors: F Callaghan, C Dilworth,
T Donnelly, E Porter
Associate Director D Kelly

Document History

Document Reference	Can Alex Chief	Original Issue Date				
227501.0145WMR01		2 November 2022				
Revision Level	Revision Date	Description	Sections Affected			

Record of Approval

Details	Written by	Approved by
Signature	Jan J	Chonaill Bradley
Title	Environmental Consultant	Principal Environmental Consultant
Date	2 November 2022	2 November 2022

CO	NTEN	ITS	Page
1.0	INTRO	ODUCTION	4
2.0	OVEF	RVIEW OF WASTE MANAGEMENT IN IRELAND	4
	2.1	National Level	4
	2.2	Regional Level	6
	2.3	Legislative Requirements	7
	2.3.	1 Dún Laoghaire-Rathdown County Council Waste Bye-Laws	8
	2.4	Local Authority Guidelines	9
	2.5	Regional Waste Management Service Providers and Facilities	10
3.0	DESC	CRIPTION OF THE PROJECT	10
	3.1	Location, Size and Scale of the Development	10
	3.2	Typical Waste Categories	11
	3.3	European Waste Codes	12
4.0	ESTI	MATED WASTE ARISINGS	13
5.0	WAS	TE STORAGE AND COLLECTION	14
	5.1	Waste Storage – Individual Houses	17
	5.2	Waste Storage – Residential Apartment Units	17
	5.3	Waste Storage - Crèche Unit	18
	5.4	Waste Storage – Restaurant / Café Unit	19
	5.5	Waste Collection	20
	5.6	Additional Waste Materials	20
	5.7	Waste Storage Area Design	22
	5.8	Facility Management Responsibilities	22
6.0	CON	CLUSIONS	23
7.0	REFE	ERENCES	24
APP	ENDIX	1: WASTE STORAGE AREAS AND STAGINGAREAS/COLLECTION	POINTS 25
APP	ENDIX 2	WASTE COLLECTION ROUTE	29

1.0 INTRODUCTION

AWN Consulting Ltd. (AWN) has prepared this Operational Waste Management Plan (OWMP) on behalf of GEDV Monkstown Owner Limited. The proposed development comprises the demolition and part-demolition of existing structures onsite (total demolition area 815 sq m) and the construction of 491 No. residential units comprising: 3 No. two storey 2-bed terraced houses (GFA 569 sq m); 488 No. Build-to-Rent units, residential amenities and residential support facilities; a childcare facility; and restaurant/café and ancillary works at Dalguise House, Monkstown Road, Monkstown, Co Dublin.

This OWMP has been prepared to ensure that the management of waste during the operational phase of the proposed development is undertaken in accordance with current legal and industry standards including, the *Waste Management Act 1996* as amended ¹, *Environmental Protection Agency Act 1992* as amended ², *Litter Pollution Act 1997* as amended ³, the *'Eastern-Midlands Region (EMR) Waste Management Plan 2015 – 2021'* ⁴, *The Dún Laoghaire Rathdown County Council (Segregation, Storage and Presentation of Household and Commercial) Bye-Laws (2019)* ⁵ and the *Guidance Notes for Waste Management in Residential and Commercial Developments (2020)* ⁶. In particular, this OWMP aims to provide a robust strategy for storing, handling, collection and transport of the wastes generated at site.

This OWMP aims to ensure maximum recycling, reuse and recovery of waste with diversion from landfill, wherever possible. The OWMP also seeks to provide guidance on the appropriate collection and transport of waste to prevent issues associated with litter or more serious environmental pollution (e.g. contamination of soil or water resources). The plan estimates the type and quantity of waste to be generated from the proposed development during the operational phase and provides a strategy for managing the different waste streams.

At present, there are no specific guidelines in Ireland for the preparation of OWMPs. Therefore, in preparing this document, consideration has been given to the requirements of national and regional waste policy, legislation and other guidelines.

2.0 OVERVIEW OF WASTE MANAGEMENT IN IRELAND

2.1 National Level

The Irish Government issued a policy statement in September 1998 titled as 'Changing Our Ways' 7 which identified objectives for the prevention, minimisation, reuse, recycling, recovery and disposal of waste in Ireland. A heavy emphasis was placed on reducing reliance on landfill and finding alternative methods for managing waste. Amongst other things, Changing Our Ways stated a target of at least 35% recycling of municipal (i.e. household, commercial and non-process industrial) waste.

A further policy document 'Preventing and Recycling Waste – Delivering Change' was published in 2002 ⁸. This document proposed a number of programmes to increase recycling of waste and allow diversion from landfill. The need for waste minimisation at source was considered a priority.

This view was also supported by a review of sustainable development policy in Ireland and achievements to date, which was conducted in 2002, entitled 'Making Irelands Development Sustainable – Review, Assessment and Future Action' ⁹. This document also stressed the need to break the link between economic growth and waste generation, again through waste minimisation and reuse of discarded material.

In order to establish the progress of the Government policy document Changing Our Ways, a review document was published in April 2004 entitled 'Taking Stock and

Moving Forward' ¹⁰. Covering the period 1998 – 2003, the aim of this document was to assess progress to date with regard to waste management in Ireland, to consider developments since the policy framework and the local authority waste management plans were put in place, and to identify measures that could be undertaken to further support progress towards the objectives outlined in *Changing Our Ways*.

In particular, *Taking Stock and Moving Forward* noted a significant increase in the amount of waste being brought to local authority landfills. The report noted that one of the significant challenges in the coming years was the extension of the dry recyclable collection services.

In September 2020, the Irish Government published a policy document outlining a new action plan for Ireland to cover the period of 2020-2025. This plan 'A Waste Action Plan for a Circular Economy' ¹¹ (WAPCE), was prepared in response to the 'European Green Deal' which sets a roadmap for a transition to a new economy, where climate and environmental challenges are turned into opportunities, replacing the previous national waste management plan "A Resource Opportunity" (2012).

The WAPCE sets the direction for waste planning and management in Ireland up to 2025. This reorientates policy from a focus on managing waste to a much greater focus on creating circular patterns of production and consumption. Other policy statements of a number of public bodies already acknowledge the circular economy as a national policy priority.

The policy document contains over 200 measures across various waste areas including circular economy, municipal waste, consumer protection and citizen engagement, plastics and packaging, construction and demolition, textiles, green public procurement and waste enforcement.

One of the first actions to be taken was the development of the Whole of Government Circular Economy Strategy 2022-2023 'Living More, Using Less' (2021) ¹² to set a course for Ireland to transition across all sectors and at all levels of Government toward circularity and was issued in December 2021. It is anticipated that the Strategy will be updated in full every 18 months to 2 years.

Since 1998, the Environmental Protection Agency (EPA) has produced periodic 'National Waste (Database) Reports' ¹³ detailing, among other things, estimates for household and commercial (municipal) waste generation in Ireland and the level of recycling, recovery and disposal of these materials. The 2019 National Waste Statistics, which is the most recent study published, along with the national waste statistics web resource (November 2021) reported the following key statistics for 2019:

- Generated Ireland produced 3,085,652 t of municipal waste in 2019. This is almost a 6% increase since 2018. This means that the average person living in Ireland generated 628 kg of municipal waste in 2019.
- Managed Waste collected and treated by the waste industry. In 2019, a total
 of 3,036,991 t of municipal waste was managed and treated.
- Unmanaged Waste that is not collected or brought to a waste facility and is, therefore, likely to cause pollution in the environment because it is burned, buried or dumped. The EPA estimates that 48,660 t was unmanaged in 2019.
- Recovered The amount of waste recycled, used as a fuel in incinerators, or used to cover landfilled waste. In 2019, around 83% of municipal waste was recovered – a decrease from 84% in 2018.
- Recycled The waste broken down and used to make new items. Recycling also includes the breakdown of food and garden waste to make compost. The recycling rate in 2019 was 37%, which is down from 38% in 2018.

Disposed – Less than a sixth (15%) of municipal waste was landfilled in 2019.
 This is an increase from 14% in 2018.

2.2 Regional Level

The proposed development is located in the Local Authority area of Dún Laoghaire Rathdown County Council (DLRCC).

The EMR Waste Management Plan 2015 – 2021 is the regional waste management plan for the DLRCC area published in May 2015. A new National Waste Management Plan for a Circular Economy is expected to be published in 2022 and will supersede the three current regional waste management plans in Ireland.

The current regional plan sets out the following strategic targets for waste management in the region:

- Achieve a recycling rate of 50% of managed municipal waste by 2020; and
- Reduce to 0% the direct disposal of unprocessed residual municipal waste to landfill (from 2016 onwards) in favour of higher value pre-treatment processes and indigenous recovery practices.

Municipal landfill charges in Ireland are based on the weight of waste disposed. In the Leinster Region, charges are approximately €130 − €150 per tonne of waste which includes a €75 per tonne landfill levy introduced under the *Waste Management (Landfill Levy) (Amendment) Regulations 2015.*

The *Dún Laoghaire-Rathdown County Development Plan 2022 – 2028* ¹⁴ sets out a number of policies for the Dún Laoghaire-Rathdown area in line with the objectives of the waste management plan.

Proposed waste policies with a particular relevance to the proposed development are as follows:

Policy Objective El12: Resource Management

It is a Policy Objective to implement the Eastern-Midlands Region Waste Management Plan 2015-2021 and subsequent plans, in supporting the transition from a waste management economy towards a circular economy, to enhance employment and increase the value recovery and recirculation of resources. Underpinning this objective is the requirement to conform to the European Union and National Waste Management Hierarchy of the most favoured options for waste as illustrated below subject to economic and technical feasibility and Environmental Assessment.

Policy Objective El13: Waste Management Infrastructure, Prevention, Reduction, Reuse and Recycling

- To support the principles of the circular economy, good waste management and the implementation of best international practice in relation to waste management in order for the County and the Region to become self-sufficient in terms of resource and waste management and to provide a waste management infrastructure that supports this objective.
- To provide for civic amenity facilities and bring centres as part of an integrated waste collection system in accessible locations throughout the County and promote the importance of kerbside source segregated collection of household and commercial waste as the best method to ensure the quality of waste presented for recycling is preserved.

 To ensure any waste amenity facilities adhere to the Waste Regional Offices Waste Management Infrastructure siting guidelines.

- To develop a County wide network of multi material recycling centres, bring centres and a re-use centre and to require the provision of adequately-sized recycling facilities in new commercial and large-scale residential developments, where appropriate.
- To require the inclusion of such centres in all large retail developments to maximise access by the public. To ensure new developments are designed and constructed in line with the Council's Guidelines for Waste Storage Facilities

Policy Objective El14: Hazardous Waste

It is a Policy Objective to adhere to the recommendations of the 'National Hazardous Waste Management Plan 2014-2020' and any subsequent plan, and to co-operate with other agencies, to plan, organise, authorise and supervise the disposal of hazardous waste streams, including hazardous waste identified during construction and demolition projects.

2.3 Legislative Requirements

The primary legislative instruments that govern waste management in Ireland and applicable to the project are:

- Waste Management Act 1996 as amended;
- Environmental Protection Agency Act 1992 as amended;
- Litter Pollution Act 1997 as amended; and
- Planning and Development Act 2000 as amended ¹⁵.

These Acts and subordinate Regulations enable the transposition of relevant European Union Policy and Directives into Irish law.

One of the guiding principles of European waste legislation, which has in turn been incorporated into the *Waste Management Act 1996* as amended and subsequent Irish legislation, is the principle of "Duty of Care". This implies that the waste producer is responsible for waste from the time it is generated through until its legal disposal (including its method of disposal.) As it is not practical in most cases for the waste producer to physically transfer all waste from where it is produced to the final disposal area, waste contractors will be employed to physically transport waste to the final waste disposal site.

It is therefore imperative that the residents, crèche tenants and the proposed facilities management company undertake on-site management of waste in accordance with all legal requirements and employ suitably permitted/licenced contractors to undertake off-site management of their waste in accordance with all legal requirements. This includes the requirement that a waste contactor handle, transport and reuse/recover/recycle/dispose of waste in a manner that ensures that no adverse environmental impacts occur as a result of any of these activities.

A collection permit to transport waste must be held by each waste contractor which is issued by the National Waste Collection Permit Office (NWCPO). Waste receiving facilities must also be appropriately permitted or licensed. Operators of such facilities cannot receive any waste, unless in possession of a Certificate of Registration (COR) or waste permit granted by the relevant Local Authority under the *Waste Management* (Facility Permit & Registration) Regulations 2007 as amended or a waste or IE (Industrial Emissions) licence granted by the EPA. The COR/permit/licence held will

specify the type and quantity of waste able to be received, stored, sorted, recycled, recovered and/or disposed of at the specified site.

2.3.1 <u>Dún Laoghaire-Rathdown County Council Waste Bye-Laws</u>

The DLRCC "Dún Laoghaire-Rathdown County Council (Storage, Presentation and Segregation of Household and Commercial Waste) Bye-Laws (2019)" were bought into force on the 1st of February 2020. These Bye-laws repeal the previous DLRCC waste Bye-laws. The Bye-laws set a number of enforceable requirements on waste holders with regard to storage, separation and presentation of waste within the DLRCC functional area. Key requirements under these Bye-laws of relevance to the proposed development include the following:

- Kerbside waste presented for collection shall not be presented for collection earlier than 6.00 pm on the day immediately preceding the designated waste collection day;
- All containers used for the presentation of kerbside waste and any uncollected waste shall be removed from any roadway, footway, footpath or any other public place no later than 10:00am on the day following the designated waste collection day, unless an alternative arrangement has been approved in accordance with bye-law 4;
- Documentation, including receipts, is obtained and retained for a period of no less than one year to provide proof that any waste removed from the premises has been managed in a manner that conforms to these bye-laws, to the Waste Management Act and, where such legislation is applicable to that person, to the European Union (Household Food Waste and Bio-Waste) Regulations 2015; and
- Adequate access and egress onto and from the premises by waste collection vehicles is maintained.

Provisions affecting Multi-user Buildings, Apartment Blocks, etc.:

A management company, or another person if there is no such company, who exercises control and supervision of residential and/or commercial activities in multi-unit developments, mixed-use developments, flats or apartment blocks, combined living/working spaces or other similar complexes shall ensure that:

- separate receptacles of adequate size and number are provided for the proper segregation, storage and collection of recyclable kerbside waste, residual kerbside waste and food waste.
- the receptacles referred to in paragraph (a) are located both within any individual apartment and at the place where waste is stored prior to its collection.
- any place where waste is to be stored prior to collection is secure, accessible at all times by tenants and other occupiers and is not accessible by any other person other than an authorised waste collector,
- written information is provided to each tenant or other occupier about the arrangements for waste separation, segregation, storage and presentation prior to collection,
- e. an authorised waste collector is engaged to service the receptacles referred to in this section of these bye-laws, with documentary evidence, such as receipts, statements or other proof of payment, demonstrating the existence of this engagement being retained for a period of no less than two years. Such evidence shall be presented to an authorised person within a time specified in a written request from either that person or from another authorised person employed by Dún Laoghaire-Rathdown County Council,
- receptacles for kerbside waste are presented for collection on the designated waste collection day,

g. adequate access and egress onto and from the premises by waste collection vehicles is maintained

The full text of the Waste Bye-Laws is available from the DLRCC website.

2.4 Local Authority Guidelines

DLRCC's Waste Management Division have issued Guidance Notes for Waste Management Planning for Residential and Commercial Developments (2022) which provide good practice guidance for the storage and collection of waste for new build high density developments. The objective of this advice is to provide good practice guidance for the storage and collection of waste for new build high density developments to allow developers to demonstrate to local planning and waste management authorities that they have considered how the design and operation of waste management services will enable the occupiers and managing agents of new developments to manage waste arising through the lifetime of the development.

The document is designed to assist developers in considering measures required to maximise the reuse, recycling and recovery of waste in the operational lifetime of the development and give specific reference to best practice and associated legislation including minimising the carbon footprint of occupiers and services provided.

The ultimate goal of the guidelines is that the implemented waste strategy will achieve a 70% reuse and recovery target in accordance with the European Commission's proposal to introduce 70% reuse and recycling targets for municipal waste by 2030 and while also providing sufficient flexibility to support future targets and legislative requirements.

Waste storage issues should be considered at the initial apartment design stage, taking full account of this guidance note, to ensure access for all (including people with disabilities) in a brightly lit, safe and well-signed area, spacious enough for easy manoeuvrability, good ventilation and ready access if required for the control of potential vermin.

Where storage is provided in a basement area, sufficient access and egress must be provided to enable receptacles to be moved easily from the storage area to an appropriate bin staging point within the curtilage of the development in accordance with Dún Laoghaire-Rathdown County Council (Segregation, Storage And Presentation Of Household And Commercial Waste) Bye-Laws, 2019, Section 9, or any revision thereof.

The guidance notes provide requirements for five main areas of operational waste management:

- A. Common Waste Storage Area Design
- B. Requirements Within Residential units
- C. Initial Waste Management
- D. Waste Collection System
- E. Requirements for Selection of Separate Staging Area for Bin Collection Where Required.

This OWMP has been prepared to demonstrate exactly that and aims to do that in a comprehensive manner.

The guidelines and form are available on the DLRCC website.

2.5 Regional Waste Management Service Providers and Facilities

Various contractors offer waste collection services in the DLRCC region. Details of waste collection permits (granted, pending and withdrawn) for the region are available from the NWCPO.

As outlined in the regional waste management plan, there is a decreasing number of landfills available in the region. Only three municipal solid waste landfills remain operational and are all operated by the private sector. There are a number of other licensed and permitted facilities in operation in the region including waste transfer stations, hazardous waste facilities and integrated waste management facilities. There are two existing thermal treatment facilities, one in Duleek, Co. Meath and a second facility in Poolbeg in Dublin.

The DLRCC Eden Park Recycling Centre, located c. 2.13km east of the development site, can be used by residents of the proposed development for other household waste streams. There is also a bring bank located c. 420m south east of the development on Monkstown Avenue, where glass and aluminium cans can be deposited.

A copy of all CORs and waste permits issued by the Local Authorities are available from the NWCPO website and all waste/IE licenses issued are available from the EPA.

3.0 DESCRIPTION OF THE PROJECT

3.1 Location, Size and Scale of the Development

GEDV Monkstown Owner Limited intends to apply for permission for development on a site of c. 3.58 hectares at Dalguise House (Protected Structure RPS No. 870), Monkstown Road, Monkstown, County Dublin, A94 D7D1 (the lands including A94 N3A1 Garage; A94 R9T1 Gate Lodge; A94 TP46 Dalguise Lodge (No. 71 Monkstown Rd); A94 V6V9 White Lodge); and on-street car parking in front of Nos. 6 and 7 Purbeck (A94 C586 and A94 HT99, respectively), with the provision of vehicular and pedestrian access and egress at two points on Monkstown Road: the existing entrance to Dalguise; and at Purbeck.

Alterations will be made at Purbeck including the relocation of 4 No. existing car parking spaces to facilitate the construction of a new vehicular and pedestrian bridge over the Stradbrook Stream.

The development, with a total gross floor area of approximately 46,940 sq m (including a basement of 5,230 sq m and undercroft parking 1,344 sq m) (45,712 sq m of new build, excluding the retained existing buildings of 1,228 sq m), will consist 491 No. residential units, consisting of 484 No. new build and 7 No. residential units within existing structures (the latter repurposed from Dalguise House, Gate Lodge and Coach House).

The residential provision will comprise: 3 No. two storey 2-bed terraced houses (GFA 569 sq m), and 488 No. Build-to-Rent units (consisting of 2 No. studio units; 289 No. 1-beds; 31 No. 2-beds/3 persons; 153 No. 2-beds/4-persons; and 13 No. 3-beds) (with an option for the use of 4 No. of the BTR Units to cater for short-term stays of up to 14 days to cater inter alia for visitors and short-term visits to residents of the overall scheme) residential amenities and residential support facilities; a childcare facility; and restaurant/café.

The development will consist of: the demolition and part-demolition of existing structures (total demolition area 815 sq m), including: Two residential properties (White Lodge (A94 V6V9), a 2 storey house (192 sq m); and a residential garage (A94 N3A1) and shed to the southwest of Dalguise House (285 sq m); swimming pool extension to

the southeast of Dalguise House (250 sq m); lean-to structures to the south of the walled garden (13 sq m); part-demolition of basement area at Dalguise House (8 sq m); part-demolition at the Coach House (67 sq m); removal of 2 No. glasshouses; and alterations to and removal of sections of the walled garden wall; the construction of Block A (total GFA 2,015 sq m, 7 storey) comprising: 19 No. apartment units (15 No. 1-beds, 4 No. 2-beds) and a childcare facility (540 sq m over Ground and First Floor Levels); Block B (total GFA 3,695 sq m) 7 storey over undercroft car parking, comprising 48 No. apartment units (33 No. 1-beds, 15 No. 2-beds); Block C (total GFA 3,695 sq m) 7 storey over undercroft car parking, comprising 48 No. apartment units (33 No. 1-beds, 15 No. 2-beds); Block D (total GFA 4,150 sq m) 7 storey over basement level car park, comprising 50 No. apartment units (24 No. 1-beds, 26 No. 2-beds); Block E (total GFA 5,904 sq m) 9 storey over basement level car park, comprising 66 No. apartment units (40 No. 1-beds, 26 No. 2-beds), with residents' support facilities (concierge/lobby; management office including staff room and IT; post room 197 sq m) and residents' amenities (yoga studio, gym, co-working space; boardroom; lounge 354 sq m) at Ground Floor Level, and residents' amenities (residents' lounge; games room; screen room; private lounge; kitchen 333 sq m) with roof terrace (106 sq m) at Eighth Floor Level; Block F (total GFA 5,469 sq m) 7 storey over basement level car park, comprising 76 No. apartment units (46 No. 1-beds, 28 No. 2-beds and 2 No. 3-beds); Block G (total GFA 5,469 sq m) 7 storey over basement level car park, comprising 76 No. apartment units (46 No. 1-beds, 28 No. 2-beds and 2 No. 3-beds); Block H (total GFA 4,252 sq m) 6 storey, comprising 54 No. apartment units (30 No. 1-beds, 22 No. 2-beds and 2 No. 3-beds); Block I1 (total GFA 1,038 sq m) 3 storey, comprising 12 No. apartment units (3 No. 1-beds, 9 No. 2-beds); Block I2 (total GFA 1,038 sq m) 3 storey, comprising 12 No. apartment units (3 No. 1-beds, 9 No. 2-beds); Block J (total GFA 1,844 sq m) 4 storey, comprising 20 No. apartment units (13 No. 1-beds and 7 No. 3beds); the refurbishment, adaptation and reuse of: a single storey Brick Gate Lodge (GFA 55 sq m) comprising 1 No. 1-bed unit; two storey Entrance Gate Lodge (GFA 55 sq m) comprising residential support facilities; and two storey Coach House (GFA 319 sq m) to provide 3 No. apartment units (1 No. 1-bed, 2 No. 2-beds); the refurbishment, adaptation and change of use of Dalguise House (GFA 799 sq m) from a single residential dwelling to provide: 3 No. apartment units (2 No. studios and 1 No. 1-bed Unit) at First Floor Level; a restaurant/cafe at Basement Level (GFA 273 sq m); and residents' amenities at Ground Floor Level (residents' lounge, library, events space, bar/bookable room, 157 sq m); the construction of a garden pavilion; the provision of balconies and terraces, communal open space including roof gardens, public open spaces, hard and soft landscaping, landscaping works including the removal of trees, of cycle parking (including cargo bike spaces) at basement and surface level; the provision of: 224 No. car parking spaces (148 No. at basement level and 42 No. at undercroft or surface level); motorbike spaces; level changes; ESB Substations (at Block D and Block H); plant areas; waste storage areas; and all ancillary site development works above and below ground.

Provision is made in the landscaping proposals for future pedestrian and cycle connections that would facilitate permeability through the site boundaries with the residential estates of Arundel and Richmond Park, respectively, and the former Cheshire Home site, subject to agreement with those parties and/or Dún Laoghaire-Rathdown County Council as appropriate.

3.2 Typical Waste Categories

The typical non-hazardous and hazardous wastes that will be generated at the proposed development will include the following:

- Dry Mixed Recyclables (DMR) includes wastepaper (including newspapers, magazines, brochures, catalogues, leaflets), cardboard and plastic packaging, metal cans, plastic bottles, aluminium cans, tins and Tetra Pak cartons;
- Organic waste food waste and green waste generated from plants/flowers;

- Glass: and
- Mixed Non-Recyclable (MNR)/General Waste.

In addition to the typical waste materials that will be generated at the development on a daily basis, there will be some additional waste types generated in small quantities which will need to be managed separately including:

- Green/garden waste may be generated from internal plants / flowers;
- Batteries (both hazardous and non-hazardous);
- Waste electrical and electronic equipment (WEEE) (both hazardous and nonhazardous);
- Printer cartridges/toners;
- Chemicals (paints, adhesives, resins, detergents, etc.);
- Light bulbs;
- Textiles (rags);
- Waste cooking oil (if any generated by the residents or crèche tenants);
- Furniture (and from time to time other bulky wastes); and
- Abandoned bicycles.

Wastes should be segregated into the above waste types to ensure compliance with waste legislation and guidance while maximising the re-use, recycling and recovery of waste with diversion from landfill wherever possible.

3.3 European Waste Codes

In 1994, the European Waste Catalogue ¹⁶ and Hazardous Waste List ¹⁷ were published by the European Commission. In 2002, the EPA published a document titled the European Waste Catalogue and Hazardous Waste List ¹⁸, which was a condensed version of the original two documents and their subsequent amendments. This document has recently been replaced by the EPA 'Waste Classification – List of Waste & Determining if Waste is Hazardous or Non-Hazardous' ¹⁹ which became valid from the 1st June 2015. This waste classification system applies across the EU and is the basis for all national and international waste reporting, such as those associated with waste collection permits, CORs, permits and licences and EPA National Waste Database.

Under the classification system, different types of wastes are fully defined by a code. The List of Waste (LoW) code (also referred to as European Waste Code or EWC) for typical waste materials expected to be generated during the operation of the proposed development are provided in Table 3.1 below.

Table 3.1 Typical Waste Types Generated and LoW Codes

Waste Material	LoW/EWC Code
Paper and Cardboard	20 01 01
Plastics	20 01 39
Metals	20 01 40
Mixed Non-Recyclable Waste	20 03 01
Glass	20 01 02
Biodegradable Kitchen Waste	20 01 08
Oils and Fats	20 01 25
Textiles	20 01 11
Batteries and Accumulators*	20 01 33* - 34
Printer Toner/Cartridges*	20 01 27* - 28
Green Waste	20 02 01
WEEE*	20 01 35*-36
Chemicals (solvents, pesticides, paints & adhesives, detergents, etc) *	20 01 13*/19*/27*/28/29*30
Bulky Wastes	20 03 07

^{*} Individual waste type may contain hazardous materials

4.0 ESTIMATED WASTE ARISINGS

A waste generation model (WGM) developed by AWN, has been used to predict waste types, weights and volumes arising from operations within the proposed development. The WGM incorporates building area and use and combines these with other data including Irish and US EPA waste generation rates.

The estimated quantum/volume of waste that will be generated from the residential units has been determined based on the predicted occupancy of the units, while the modelling methodology used to determine waste generation rates for the crèche and restaurant/cafe unit is based on waste production rates per m² floor area.

The estimated waste generation for the development for the main waste types is presented in Tables 4.1 and 4.2.

Table 4.1 Estimated Waste Generation for Residential Units

Waste Type	Waste Volume (m³ / week)									
	3-bed house (individual)	Block A	Block B	Block C	Block D	Block E	Block F	Block G		
Organic Waste	0.02	0.25	0.67	0.67	0.68	0.92	1.02	1.02		
Dry Mixed Recyclables	0.14	1.71	4.60	4.60	4.98	6.49	7.25	7.25		
Glass	0.00	0.05	0.13	0.13	0.13	0.18	0.20	0.20		
Mixed Non- Recyclables	0.07	0.99	2.67	2.67	2.37	3.41	3.81	3.81		
Total	0.23	3.00	8.07	8.07	8.16	11.00	12.28	12.28		

Table 4.2 Estimated Waste Generation for Residential Units, Crèche and Restaurant/Cafe

1000	Waste Volume (m³ / week)								
Waste Type	Block H	Block 11	Block I2	Block J	Coach House	Crèche	Restaurant/ Cafe		
Organic Waste	0.75	0.19	0.19	0.28	0.05	0.05	0.20		
Dry Mixed Recyclables	5.31	1.36	1.36	1.96	0.33	1.65	0.47		
Glass	0.14	0.04	0.04	0.05	0.01	0.01	0.01		
Mixed Non- Recyclables	2.79	0.71	0.71	1.03	0.16	0.90	0.61		
Total	8.99	2.30	2.30	3.31	0.54	2.61	1.29		

The DLRCC Guidance Notes for Waste Management in Residential and Commercial Developments recommends calculating residential waste using Section 4.7 of BS5906:2005 Waste Management in Buildings – Code of Practice ²⁰. The predicted total waste generated from the residential units based on the Code of Practice is c. 62.76 m³ per week for the residential units. Whereas the AWN waste generation model estimates c. 79.76 m³ per week from the residential units. AWN's modelling methodology is based on data from recent published data and data from numerous other similar developments in Ireland and based on AWN's experience it is a more representative estimate of the likely waste arisings from the development.

5.0 WASTE STORAGE AND COLLECTION

This section provides information on how waste generated within the development will be stored and how the waste will be collected from the development. This has been prepared with due consideration of the proposed site layout as well as best practice standards, local and national waste management requirements including those of DLRCC. In particular, consideration has been given to the following documents:

- BS 5906:2005 Waste Management in Buildings Code of Practice;
- DLRCC Guidance Notes for Waste Management in Residential and Commercial Developments;
- DLRCC, Dún Laoghaire Rathdown County Council Segregation, Storage and Presentation of Household and Commercial Waste) Bye-laws (2019).
- EMR Waste Management Plan 2015 2021; and
- DoHLGH, Sustainable Urban Housing: Design Standards for New Apartments, Guidelines for Planning Authorities (2020) ²¹.

Five (5 no.) Waste Storage Areas (WSAs) have been allocated in the design of this development for residential use. One (1 no.) WSA has been allocated for use for residents in Blocks A, B and C, located at purbeck level. One (1 no.) WSA has been allocated for use for residents in Blocks D and G located at site lower/basement level, where the WSA is located. One (1 no.) WSA has been allocated for use for residents in Blocks E and F located at site lower/basement level, where the WSA is located. One (1 no.) WSA has been allocated for use for the residents in Block H and I1, located at garden level. One (1 no.) WSA has been allocated for use for the residents in Block I2, and J, and Coach House, located at garden level.

One (1 no.) WSA has been allocated for use by the crèche unit. This WSA is located within the residential WSA at Purbeck level. The creche will have it own bins boxed off and locked at all times to avoid cross contamination with residential waste.

One (1 no.) WSA has been allocated for use by the restaurant/cafe unit only. This WSA is located in close proximity to the restaurant/cafe unit.

Residents in houses with external access to the rear of the property will store waste in bins at the back of the house. Houses where external access to the rear of the property is unavailable, will store waste at the front of the unit, shielded from view of the road.

The location of the WSAs can be viewed on the drawings submitted with the planning application under separate cover.

Using the estimated waste generation volumes in Tables 4.1 and 4.2, the waste receptacle requirements for MNR, DMR, organic waste and glass have been established for the residential, crèche and restaurant/café WSAs. These are presented in Table 5.1. The WSAs have been appropriately sized to accommodate the weekly waste requirements for waste receptacles.

Table 5.1 Waste storage requirements for proposed development

4		Bins	Required		
Area/Use	MNR*	DMR**	Organic	Glass	
3-bed house (individual) WSA	1 x 240L	1 x 240L	1 x 120L	Bring Bank	
Blocks A B and C WSA	6 x 1100L	10 x 1100L	7 x 240L	2 x 240L	
Blocks D and G WSA	7x 1100L	11 x 1100L	8 x 240L	2 x 240L	
Blocks E and F WSA	7x 1100L	12 x 1100L	8 x 240L	2 x 240L	
Block H and I1 WSA	4 x 1100L	6 x 1100L	4 x 240L	1 x 240L	
Block I2 J and Coach House	2 x 1100L	4 x 1100L	3 x 240L	1 x 240L	
Creche WSA	1 x 1100L	2 x 1100L	1 x 120L	1 x 120L	
Restaurant/Café WSA	1 x 1100L	1 x 1100L	1 x 240L	1 x 240L	

Note:

The waste receptacle requirements have been established from distribution of the total weekly waste generation estimate into the holding capacity of each receptacle type.

Receptacles for organic, mixed dry recyclable, glass and mixed non-recyclable waste will be provided in the WSAs prior to first occupation of the development i.e. prior to the first residential unit being occupied.

This Plan will be provided to each resident from first occupation of the development i.e. once the first residential unit is occupied. This Plan will be supplemented, as required, by the property management company with any new information on waste segregation, storage, reuse and recycling initiatives that are subsequently introduced.

Waste storage receptacles as per Tables 5.1 and 5.2 above (or similar appropriate approved containers) will be provided by the facility management company in the WSAs.

The types of bins used will vary in size, design and colour dependent on the appointed waste contractor. However, examples of typical receptacles to be provided in the WSAs are shown in Figure 5.1. All waste receptacles used will comply with the SIST

^{* =} Mixed Non-Recyclables

^{** =} Dry Mixed Recyclables

EN 840-1:2020 and SIST EN 840-2:2020 standard for performance requirements of mobile waste containers, where appropriate.

Figure 5.1 Typical waste receptacles of varying size (240L and 1100L)

Facilities management may use a commercially available mini compactor for the DMR and MNR waste streams in the Blocks D, E, F and G combined WSA at site lower/basement level, referred to as an Epac compactor in this OWMP. Currently there are two separate WSAs servicing these four blocks.

This option will significantly reduce the volume of waste and as such the number of bins stored on site and the number of bins that will need to be transported for collection. It compresses/compacts the waste into 2m³ and 3m³ bags.

Alternative options can be considered in future by the facilities management company, as technologies are developed. A potential WSA for Blocks D, E, F and G would be a combination of the space currently allocated to the Blocks D and G WSA and Blocks E and F WSA. These two WSAs have been sized to accommodate bins (which take up more space than other waste management technologies) in order to ensure the Blocks D, E, F and G are not reliant on a particular technology or contactor.

The Epac compactor referred to is a compactor that compresses/compacts the waste into 2m³ and 3m³ skip bags (also called Flexible Intermediate Bulk Containers or FIBCs). A photo of the Epac mini compactor is provided as Figure 5.2.

Figure 5.2 Photo of an Epac Mini Compactor (Source: bnmrecyling Website)

5.1 Waste Storage - Individual Houses

Residents in individual houses will be required to segregate their waste into the following waste categories within their own units:

- DMR:
- MNR:
- Glass; and
- Organic waste.

Facilities management will supply all residents with a document that shall clearly state the methods of source waste segregation, storage, reuse and recycling initiatives that shall apply within the development.

Provision will be made in all residential units to accommodate 3 no. bin types to facilitate waste segregation at source. An example of a potential 3 bin storage system is provided in Figure 5.3 below.

Figure 5.3 Example three bin storage system to be provided within the unit design

Residents with external access to the rear of the property will store waste in bins at the back of the house. Houses where external access to the rear of the property is unavailable will store waste at the front of the unit, shielded from view of the road. Residents will be required to place their segregated waste materials into these bins as necessary.

It is anticipated that DMR, MNR and organic waste will be collected on a weekly basis. Residents will be required to take glass to the nearest bring bank. Other waste materials such as textiles, batteries, printer toner/cartridges and WEEE may be generated infrequently by the residents. Residents will be required to identify suitable temporary storage areas for these waste items within their own units and dispose of them appropriately. Further details on additional waste types can be found in Section 5.6.

5.2 Waste Storage – Residential Apartment Units

Residents will be required to segregate their waste into the following main waste categories within their own units:

- DMR;
- MNR;
- Glass; and

Organic waste.

Facilities management will supply all residents with a document that shall clearly state the methods of source waste segregation, storage, reuse and recycling initiatives that shall apply within the development.

Provision will be made in all residential units to accommodate 3 no. bin types to facilitate waste segregation at source. An example of a potential 3 bin storage system is provided in Figure 5.3 above in Section 5.1.

Residents will be required to take their segregated waste materials to their designated WSA and deposit their segregated waste into the appropriate bins. The location of all WSAs can be viewed in Appendix 1 and are illustrated in the drawings submitted with the planning application under separate cover.

Each bin / container in the residential WSAs will be clearly labelled and colour coded to avoid cross contamination of the different waste streams. Signage will be posted above or on the bins to show exactly which waste types can be placed in each bin.

Access to the residential WSA will be restricted to authorised residents, facilities management and waste contractors by means of a key or electronic fob access.

Other waste materials such as textiles, batteries, printer toner/cartridges and WEEE may be generated infrequently by the residents. Residents will be required to identify suitable temporary storage areas for these waste items within their own units and dispose of them appropriately. Further details on additional waste types can be found in Section 5.6.

5.3 Waste Storage - Crèche Unit

Staff will be required to segregate their waste into the following waste categories within their own units:

- DMR:
- MNR:
- Glass; and
- Organic waste.

As required, the staff will need to bring segregated DMR, MNR, glass and organic waste to the dedicated crèche WSA.

The crèche WSA will be located within the residential WSA space and will have its own separate bins which will be boxed off and locked to prevent cross contamination with residential waste.

Each bin/container in the WSA will be clearly labelled and colour coded to avoid cross contamination of the different waste streams. Signage will be posted above or on the bins to show exactly which waste types can be placed in each bin.

Access to the WSA will be restricted to authorised crèche staff and facilities management by means of a key or electronic fob access.

Based on the recommended bin requirements in Table 5.2, DMR, MNR and organic waste will be required to be collected weekly and glass will be collected as required.

Other waste materials such as textiles, batteries, printer toner/cartridges and WEEE may be generated infrequently by the crèche tenants. Crèche tenants will be required to identify suitable temporary storage areas for these waste items within their own units

and dispose of them appropriately. Further details on additional waste types can be found in Section 5.6.

5.4 Waste Storage – Restaurant / Café Unit

Tenants will be required to segregate their waste into the following waste categories within their own unit:

- DMR:
- MNR:
- Glass; and
- Organic waste.

The restaurant/cafe unit is located at basement level. The restaurant/cafe WSA is located at ground floor level.

The restaurant/cafe unit will be required to store waste temporarily in its unit and will then transport it on a daily basis or as required to the WSA. The location of the WSA can found on the plans submitted with the application.

Each bin/container in the WSA will be clearly labelled and colour coded to avoid cross contamination of the different waste streams. Signage will be posted above or on the bins to show exactly which waste types can be placed in each bin.

Access to the WSA will be restricted to authorised staff, facilities management and the waste contractor by means of a key or electronic fob access.

Based on the recommended bin requirements in Table 5.1, DMR, MNR, organic and glass bins will be collected on a weekly basis.

If any kitchens are allocated in the unit's area, this will contribute a significant portion of the volume of waste generated on a daily basis, and as such it is important that adequate provision is made for the storage and transfer of waste from these areas to the WSA.

If kitchens are required it is anticipated that waste will be generated in kitchens throughout the day, primarily at the following locations:

- Food Storage Areas (i.e. cold stores, dry store, freezer stores and stores for decanting of deliveries);
- Meat Preparation Area:
- Vegetable Preparation Area;
- Cooking Area;
- Dish-wash and Glass-wash Area; and
- Bar Area.

Small bins will be placed adjacent to each of these areas for temporary storage of waste generated during the day. Waste will then be transferred from each of these areas to the appropriate waste store within their unit.

Other waste materials such as textiles, batteries, printer toner/cartridges, textiles, lightbulbs, furniture / bulk items and WEEE may be generated infrequently by the commercial tenants. The restaurant/cafe tenant will be required to identify suitable temporary storage areas for these waste items within their own units and dispose of them appropriately. Further details on additional waste types can be found in Section 5.6

5.5 Waste Collection

There are numerous private contractors that provide waste collection services in the DLRCC area. All waste contractors servicing the proposed development must hold a valid waste collection permit for the specific waste types collected. All waste collected must be transported to registered/permitted/licensed facilities only.

Waste receptacles from the proposed development will be brought to designated staging areas prior to collection. From here, the bins will be brought to the waste collection vehicle for emptying. Following this, the waste receptacles will be returned to the staging area from where they will be promptly returned to their respective WSAs. The staging areas are such that they will not obstruct traffic or pedestrians (allowing a footway path of at least 1.8m, the space needed for two wheelchairs to pass each other) as is recommended in the Design Manual for Urban Roads and Streets (2019)

The location of the staging areas / collection points can be viewed in Appendix 1 and are illustrated in drawings submitted with the planning application under separate cover.

A bin truck autotracking has also be undertaken and can be seen in Appendix 2.

It is recommended that bin collection times/days are staggered to reduce the number of bins required to be emptied at once and the time the waste vehicle is onsite. This will be determined during the process of appointment of a waste contractor.

5.6 Additional Waste Materials

In addition to the typical waste materials that are generated on a daily basis, there will be some additional waste types generated from time to time that will need to be managed separately. A non-exhaustive list is presented below.

Green Waste

Green waste may be generated from internal plants / flowers. Green waste generated from internal plants / flowers can be placed in the organic waste bins. If substantial green waste is produced by the crèche tenants it can be removed by a landscape contractor.

Batteries

A take-back service for waste batteries and accumulators (e.g. rechargeable batteries) is in place in order to comply with the S.I. No. 283/2014 - European Union (Batteries and Accumulators) Regulations 2014, as amended. In accordance with these regulations, consumers are able to bring their waste batteries to their local civic amenity centre or can return them free of charge to retailers which supply the equivalent type of battery, regardless of whether or not the batteries were purchased at the retail outlet and regardless of whether or not the person depositing the waste battery purchases any product or products from the retail outlet.

The crèche and restaurant/cafe tenants cannot use the civic amenity centre. They must segregate their waste batteries and either avail of the take-back service provided by retailers or arrange for recycling / recovery of their waste batteries by a suitably permited / licenced contractor. Facilties management may arrange collection, depending on the agreement.

Waste Electrical and Electronic Equipment (WEEE)

The WEEE Directive (Directive 2002/96/EC) and associated Waste Management (WEEE) Regulations have been enacted to ensure a high level of recycling of electronic and electrical equipment. In accordance with the regulations, consumers can bring their waste electrical and electronic equipment to their local recycling centre.

In addition, consumers can bring back WEEE within 15 days to retailers when they purchase new equipment on a like for like basis. Retailers are also obliged to collect WEEE within 15 days of delivery of a new item, provided the item is disconnected from all mains, does not pose a health and safety risk and is readily available for collection.

As noted above, the crèche and restaurant/cafe tenants cannot use the civic amenity centre. They must segregate their WEEE and either avail of the take-back / collection service provided by retailers or arrange for recycling / recovery of their WEEE by a suitably permited / licenced contractor. Facilties management may arrange collection, depending on the agreement.

Printer Cartridge / Toners

It is recommended that a printer cartridge / toner bin is provided in the crèche and restaurant/cafe units, where appropriate. The crèche and restaurant/cafe tenants will be required to store this waste within their unit and arrange for return to retailers or collection by an authorised waste contractor, as required.

Waste printer cartridge / toners generated by residents can usually be returned to the supplier free of charge or can be brought to a civic amenity centre.

Chemicals

Chemicals (such as solvents, paints, adhesives, resins, detergents, etc) are largely generated from building maintenance works. Such works are usually completed by external contractors who are responsible for the off-site removal and appropriate recovery / recycling / disposal of any waste materials generated.

Any waste cleaning products or waste packaging from cleaning products generated in the crèche and restaurant/cafe units that is classed as hazardous (if they arise) will be appropriately stored within the tenant's own space. Facilties management may arrange collection, depending on the agreement.

Any waste cleaning products or waste packaging from cleaning products that are classed as hazardous (if they arise) generated by the residents should be brought to a civic amenity centre.

Light Bulbs

Waste light bulbs (fluorescent, incandescent and LED) may be generated by lighting at the crèche unit. It is anticipated that the crèche and restaurant/cafe tenants will be responsible for the off-site removal and appropriate recovery / disposal of these wastes. Facilties management may arrange collection, depending on the agreement.

Light bulbs generated by residents should be taken to the nearest civic amenity centre for appropriate storage and recovery / disposal.

Textiles

Where possible, waste textiles should be recycled or donated to a charity organisation for reuse. The crèche and restaurant/cafe tenants and residents will be responsible for disposing of waste textiles appropriately.

Waste Cooking Oil

If the crèche and restaurant/cafe tenants use cooking oil, waste cooking oil will need to be stored within the unit on a bunded area or spill pallet and regular collections by a dedicated waste contractor will need to be organised as required. Under sink grease traps will be installed in any cooking space.

If the residents generate waste cooking oil, this can be brought to a civic amenity centre or placed in the organic bin.

Furniture & Other Bulky Waste Items

Furniture and other bulky waste items (such as carpet, etc.) may occasionally be generated by the residents, crèche tenant and restaurant/cafe tenant. The collection of bulky waste will be arranged, as required by the crèche and restaurant/cafe tenants. If residents wish to dispose of furniture, this can be brought a civic amenity centre.

Abandoned Bicycles

Bicycle parking areas are planned for the development. As happens in other developments, residents sometimes abandon faulty or unused bicycles, and it can be difficult to determine their ownership. Abandoned bicycles should be donated to charity if they arise or facilties management may arrange collection by a licensed waste contractor.

5.7 Waste Storage Area Design

The WSAs will be designed and fitted-out to meet the requirements of relevant design Standards, including:

- Be fitted with a non-slip floor surface;
- Provide ventilation to reduce the potential for generation of odours;
- Provide suitable lighting a minimum Lux rating of 220 is recommended;
- Appropriate sensor controlled lighting;
- Be easily accessible for people with limited mobility;
- Be restricted to access by nominated personnel only;
- Be supplied with hot or cold water for disinfection and washing of bins:
- Be fitted with suitable power supply for power washers;
- Have a sloped floor to a central foul drain for bins washing run-off;
- Have appropriate graphical and written signage placed above and on bins indicating correct use;
- Have access for potential control of vermin, if required;
- Robust design of doors to bin area incorporating steel sheet covering where appropriate; and
- Be fitted with CCTV for monitoring.

The facility management company will be required to maintain bins and storage areas in good condition as required by the DLRCC *Waste Bye-*Laws.

5.8 Facility Management Responsibilities

Facilities Management of Greystar Developments are executed directly by Greystar staff.

It shall be the responsibility of Greystar / the Facilities Management Company to ensure that all domestic waste generated by apartment residents is managed to ensure correct storage prior to collection by an appropriately permitted waste management company.

Greystar / Facilities Management should provide the following items in accordance with the DLRCC the Guidance Notes for Waste Management in Residential and Commercial Developments:

- Provision of a Waste Management Plan document, prepared by the Greystar /
 Facilities Management Company to all residential units, which shall clearly
 state the methods of source waste segregation, storage, reuse and recycling
 initiatives that shall apply to the management of the development;
- Provision and maintenance of appropriate graphical signage to inform residents of their obligation to reduce waste, segregate waste and in the correct bin:

Preparation of an annual waste management report for all residential units;

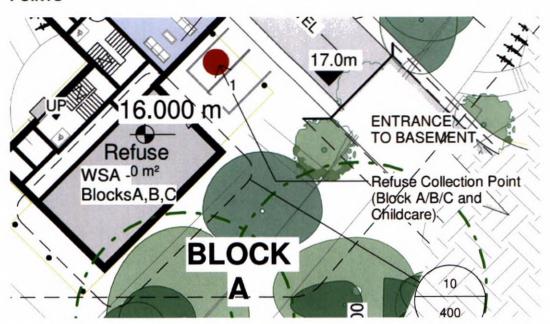
- Designation of access routes to common waste storage areas to ensure safe access from the apartment units by mobility impaired persons;
- Provision of an appropriately qualified and experienced staff member, who will be responsible for all aspects of waste management at the development;
- Daily inspection of waste storage areas and signing of a daily check list, which shall be displayed within the area; and
- Maintenance of a weekly register, detailing the quantities and breakdown of wastes collected from the development and provision of supporting documentation by the waste collector to allow tracking of waste recycling rates.

6.0 CONCLUSIONS

In summary, this OWMP presents a waste strategy that complies with all legal requirements, waste policies and best practice guidelines and demonstrates that the required storage areas have been incorporated into the design of the development.

Implementation of this OWMP will ensure a high level of recycling, reuse and recovery at the development. All recyclable materials will be segregated at source to reduce waste contractor costs and ensure maximum diversion of materials from landfill, thus achieving the targets set out in the *EMR Waste Management Plan 2015 – 2021*.

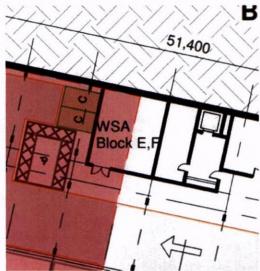
Adherence to this plan will also ensure that waste management at the development is carried out in accordance with the requirements outlined in the DLRCC Guidance Notes for Waste Management in Residential and Commercial Developments, the DLRCC Waste Bye-Laws and DLRCC Guidance Notes for Waste Management in Large Residential and Commercial Developments.


The waste strategy presented in this document will provide sufficient storage capacity for the estimated quantity of segregated waste. The designated area for waste storage will provide sufficient room for the required receptacles in accordance with the details of this strategy.

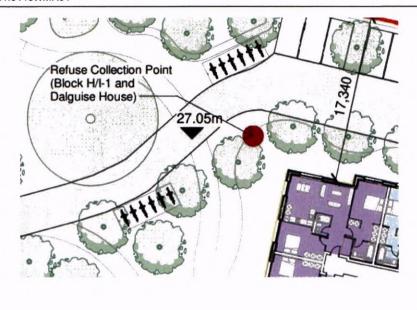
7.0 REFERENCES

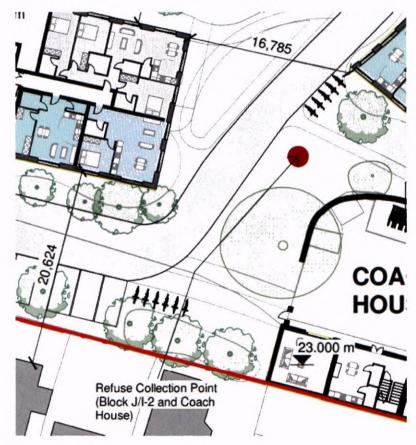
- Waste Management Act 1996 as amended.
- Environmental Protection Agency Act 1992 (Act No. 7 of 1992) as amended;
- Litter Pollution Act 1997 (Act No. 12 of 1997) as amended;
- Eastern-Midlands Waste Region, Eastern-Midlands Region (EMR) Waste Management Plan 2015 – 2021 (2015)
- Dún Laoghaire Rathdown County Council (DLRCC), Dún Laoghaire Rathdown County Council Segregation, Storage and Presentation of Household and Commercial Waste) Bye-laws (2019).
- DLRCC, Guidance Notes for Waste Management in Residential and Commercial Developments (2020).
- Department of Environment and Local Government (DoELG) Waste Management Changing Our Ways, A Policy Statement (1998).
- Department of Environment, Heritage and Local Government (DoEHLG) Preventing and Recycling Waste - Delivering Change (2002).
- DoELG, Making Ireland's Development Sustainable Review, Assessment and Future Action (World Summit on Sustainable Development) (2002).
- 10. DoEHLG, Taking Stock and Moving Forward (2004).
- Department of Communications, Climate Action and Environment (DCCAE), Waste Action Plan for the Circular Economy - Ireland's National Waste Policy 2020-2025 (Sept 2020).
- 12. DCCAE, Whole of Government Circular Economy Strategy 2022-2023 'Living More, Using Less' (2021).
- Environmental Protection Agency (EPA), National Waste Database Reports 1998 2012.
- 14. DLRCC, Dún Laoghaire Rathdown County Council Development Plan 2022 2028.
- Planning and Development Act 2000 (S.I. No. 30 of 2000) as amended 2010 (S.I. No. 30 of 2010) and 2015 (S.I. No. 310 of 2015).
- 16. European Waste Catalogue Council Decision 94/3/EC (as per Council Directive 75/442/EC).
- Hazardous Waste List Council Decision 94/904/EC (as per Council Directive 91/689/EEC).
- EPA, European Waste Catalogue and Hazardous Waste List (2002)
- EPA, Waste Classification List of Waste & Determining if Waste is Hazardous or Non-Hazardous (2015).
- BS 5906:2005 Waste Management in Buildings Code of Practice.
- DoHLGH, Sustainable Urban Housing: Design Standards for New Apartments, Guidelines for Planning Authorities (2020).
- Department of Transport, Tourism and Sport and Department of Housing, Planning and Local Government, Design Manual for Urban Roads and Streets (2019).

227501.0145WMR01 AWN Consulting Ltd.


APPENDIX 1: WASTE STORAGE AREAS AND STAGINGAREAS/COLLECTION POINTS

227501.0145WMR01





227501.0145WMR01 AWN Consulting Ltd.

227501.0145WMR01 AWN Consulting Ltd.

APPENDIX 2: WASTE COLLECTION ROUTE

Figure 9.1 Bin Truck Auto-tracking

Phoenix Environmental Safety Ltd.

ASBESTOS SURVEY REPORT

(Refurbishment / Demolition Survey)

Client: Greystar Ireland, Quayside Quarter, North Dock, Dublin 1

Location: Dalguise House, Monkstown Road, Monkstown, Co. Dublin

Date: 8th August 2022

Report No. PE22-842

Graigueswood, Freshford, Co. Kilkenny

Tel: 056 8832414 Fax: 056 8832950 admin@phoenixenv.ie www.phoenixenv.ie

Client: Greystar Ireland, Quayside Quarter, North Dock, Dublin 1

Property: Dalguise House, Monkstown Road, Monkstown, Co. Dublin

Asbestos Survey Type: Refurbishment/Demolition Asbestos Survey

Survey Company: Phoenix Environmental Safety Ltd.

Surveyors: Eoghan Hickey

Testing Laboratory: G & L Consultancy Ltd.

Date of Survey: 4th August 2022

Date of Survey Report: 8th August 2022

Report issue: Final

Signed: Copher Kiry. Date: 8th August 2022

This report cannot be used for contractual or engineering purposes unless this sheet is signed where indicated by Surveyor. The report must also be designated 'final' on the signatory sheet.

Please note that Phoenix Environmental Safety Ltd. cannot be held responsible for the way in which the Client interprets or acts upon the results. The report must be read in its entirety including any appendices. Phoenix Environmental Safety Ltd. accepts no responsibility for sub-division of this report. All measurements in this report are approximate and therefore should not be used by the asbestos removal contractor for pricing purposes. The asbestos removal contractors should ascertain for themselves, by site measurements and inspection, the exact nature and extent of the work to be done.

The survey information should be used to help in the tendering process for removal of ACMs from the building before work starts. The survey report should be supplied by the client to designers and contractors who may be bidding for the work, so that the asbestos risks can be addressed. In this type of survey, where the asbestos is identified so that it can be removed (rather than to manage it), the survey does not normally assess the condition of the asbestos, other than to indicate areas of damage or where additional asbestos debris may be present. However, where the asbestos removal may not take place for some time, the ACMs' condition will need to be assessed and the materials managed.

TABLE OF CONTENTS	PAGE
Cover sheet	1
Signatory Sheet	2
Table of Contents	3
Summary	4
Introduction	5-6
Appendix A (Asbestos materials in buildings)	7-8
Appendix B (Results of Laboratory Analysis)	9-11
Appendix C (Asbestos Data Sheets)	12-26
Appendix D (Non asbestos containing materials)	27-34
Appendix E (Non-accessible locations)	35
Appendix F (Floor plans & location of asbestos containing materials)	36-41

SUMMARY

Following a request made by Greystar Ireland, we have produced this Refurbishment/Demolition Asbestos Survey report for Dalguise House, Monkstown Road, Monkstown, Co. Dublin with the aim of finding asbestos containing materials (ACMs) within the scope of the asbestos survey.

The scope of the asbestos survey was confined to all accessible areas of the main house, gate lodges, modern buildings, stable block, derelict buildings at the rear of the site, glasshouses and wall garden, which is due for refurbishment and part demolition works.

During the asbestos survey at Dalguise House, the following asbestos containing materials were identified in the following locations:

MAIN HOUSE

- Asbestos containing toilet cisterns were identified in the W/C's (3)
- Asbestos containing floor tiles and bitumen adhesive was identified in the kitchen in the servants wing on the ground floor of the main house (8m² approx.)
- An asbestos containing rope seal was identified on the pipework in the basement kitchen pant room in the servant's wing
- Compressed Asbestos Fibre (CAF) gaskets were identified in the external boiler room

REAR DERELICT BUILDING

An asbestos containing cement board was identified on the ceiling (12m² approx.). Debris
from the ceiling was found in the room underneath

RED BRICK GATE LODGE

 Asbestos containing textured coating was identified on the ceiling in the kitchen and living room

GATE LODGE AT ROAD

- An asbestos containing toilet cistern was identified in the ground floor toilet
- Asbestos containing floor tiles and adhesive were identified in the kitchen and living room (18m² approx.)
- Asbestos containing paper backed lino was identified in the kitchen (6m² approx.)

See Appendix C & F for more details

INTRODUCTION

Background

Asbestos has been used extensively in the building industry for over one hundred years and has proved to be an excellent product for a variety of uses, having many qualities such as insulation, fire and chemical resistance to name a few. Its suitability across a wide range of uses and its relatively cheap cost made it very popular, with over 3,000 different asbestos products having been recorded.

The use of asbestos containing materials (ACM's) was most prevalent between the 1950's and 1970's when it provided an economic, easy to use and versatile material. Unfortunately, given the constitution and make up of asbestos it can give rise to microscopic airborne fibres being released into the working environment. The fibres have carcinogenic properties caused by inhalation of the fibres which can get lodged in the lining of the lungs causing disease and death.

Scope & Purpose

Greystar Ireland have commissioned Phoenix Environmental Safety Ltd. to undertake an asbestos survey at Dalguise House, Monkstown Road, Monkstown, Co. Dublin. The aim of the survey was to locate and identify the presence of asbestos containing materials (ACM's) or suspected ACM's. This report provides a record and assessment of the extent and characteristics of ACM's and is based on information made available on the 4th August 2022.

This particular survey comprised of a Refurbishment / Demolition Survey, carried out in accordance with S.I. No. 386 of 2006 Safety, Health and Welfare at Work (Exposure to Asbestos) Regulations 2006, the Health and Safety Executive's (UK) guidance document HSG 264 (Asbestos: The Survey Guide) and HSG 227 (A Comprehensive Guide to managing Asbestos in Premises).

This means that:

- As far as reasonably practicable, locate and describe all ACM's in all reasonably accessible areas within the scope of the survey
- A sampling programme is undertaken to identify possible ACM's and estimates of the volumes and the surface areas of ACM made
- A record of the condition of the ACM's or where additional asbestos debris may be expected to be present is produced

Refurbishment / Demolition Surveys (formerly type 3 surveys)

This type of survey is necessary prior to any refurbishment (including "minor") or demolition work being carried out. These "refurbishment / demolition" surveys will be much more intrusive and destructive compared with management surveys as their intention is to locate all the ACMs so that they can be removed before the refurbishment or demolition takes place. Refurbishment/demolition surveys are required as necessary when the needs or use of the building changes and the fabric of the building will be disturbed or complex fixed plant and equipment are to be dismantled.

The purpose of the report is to:

- Enable the client to take appropriate precautions so that people who work at Dalguise House during the forthcoming refurbishment works are not exposed to asbestos-related health risks
- Provide information to assist the client in developing and implementing an action plan before any
 refurbishment works or demolition is carried out

Presentation of Findings

Data Sheets

A series of data sheets have been prepared to provide assessments and recommendations for each of the locations where samples were taken. These data sheets are presented in Appendix C.

Figures

The schematic diagrams presented in Appendix F at the rear of this document shows the locations of all of the asbestos containing materials detected during the asbestos survey.

Caveats

All reasonable steps have been taken to ensure that the contents and findings of this report are true and accurate. Though as stated below, further undetected ACM's may still be present within the premises. The client should therefore be aware of his responsibilities for identifying, locating, removing and/or managing all ACM's within the premises, and for notifying the appropriate authorities where necessary.

Refurbishment / Demolition Surveys

This type of survey employs the use of destructive sampling techniques of an unfamiliar site. Although every effort is made to locate all asbestos containing materials, it is impossible to rule out the possibility that undiscovered asbestos materials may be present. If the building is to undergo major refurbishment or demolition, it is recommended that the persons carrying out the work are made aware of this and take sufficient precautions, as may be appropriate, to ensure the health and safety of their own employees and any other parties who may be affected by the works.

APPENDIX A

ASBESTOS MATERIALS IN BUILDINGS

Sprayed coatings applied in Ireland were typically a mixture of hydrated asbestos cement containing up to 85% asbestos, mainly amosite but crocidolite and mixtures have been used. Primarily used for anti-condensation and acoustic control and fire protection to structural steelwork. It is a friable material but if in a good condition and unlikely to be disturbed presents no immediate danger; however it is likely to release fibres, if disturbed especially during repair and maintenance work. As it ages the binding medium of sprayed asbestos may degrade with the consequent release of more fibres.

Thermal insulation to boilers, vessels, pipe work, valves, pumps etc also known as hand applied lagging. Lagging may have a protective covering of cloth, tape, paper, metal or a surface coating of cement. All types of asbestos may be found in lagging and the content can vary between 15 and 85% asbestos with the protective papers being up to 100% chrysotile. The likelihood of fibre release depends upon its composition, friability and state of repair, but it is particularly susceptible to damage and disturbance through maintenance work or the action of water leaks.

Asbestos insulating boards usually contain between 15 to 40% amosite, although boards may be found to contain other types of asbestos and in other quantities. Insulating boards were developed in the 1950s to provide an economical, lightweight, fire resisting insulating material. As insulation board is semi-compressed it is more likely to release fibres as a result of damage or abrasion. Work on asbestos insulation board can give rise to high levels of asbestos fibre.

Asbestos cement products as in roofing slates, wall cladding, permanent shuttering, flue, rain water and vent pipes generally contain 10 to 15% of asbestos fibre bounded in Portland cement, some flexible boards contain a small proportion of cellulose. All three types of asbestos have been used in the manufacture of asbestos cement. The asbestos fibres in asbestos cement are usually firmly bound in the cement matrix and will be released only if the material is mechanically damaged or as it deteriorates with age.

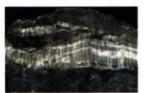
Ropes and yarns are usually high in asbestos content, approaching 100% and all three types of asbestos have been used in their manufacture. They were used as in the pipe lagging process and in pipe jointing and also for packing materials as in heat/fire resistant boiler, oven and flue sealing or anywhere thermal of fire protection was required. The risk of fibre release depends upon the structure of the material; bonded gasket material is unlikely to release asbestos but an unbonded woven material may give rise to high fibre release especially if when damaged or frayed.

Cloth thermal insulation and lagging, including fire resistant blankets, mattresses and protective curtains, gloves, aprons, overalls etc. All types of asbestos have been used in the manufacture but since the mid 60's the majority has been chrysotile, the content of which can be up to 100 %.

Millboard, **paper and CAF gaskets** usually have an asbestos content approaching 100% with all three types of asbestos being used in their manufacture. They were used for insulation of electrical equipment and for thermal insulation. Asbestos paper has been used as a laminate for fireproofing to various fibre panels. These materials are on some occasions not well bonded and will release asbestos fibres if subject to abrasion and wear.

Bitumen felts and coatings may contain asbestos either bound in the bitumen matrix or as an asbestos paper liner. These materials are not likely to present a hazard during normal installation or use, but should be removed and disposed of in compliance with any regulation applicable.

Thermoplastic floor tiles can contain up to 25% asbestos usually chrysotile, PVC vinyl floor tiles and unbacked PVC flooring normally 7-10% chrysotile and asbestos paper backed PVC flooring the paper backing may contain up to 100% chrysotile. Fibre release is not normally an issue but may occur when the material is cut or subjected to abrasion.


Textured coatings. Decorative coatings on walls and ceilings usually contain 3-5% chrysotile. Fibre release may occur when subjected to abrasion.

Mastics, sealants, putties and floor tile adhesives may contain small amounts of asbestos. The only possible risk is from sanding of hardened material when appropriate precautions should be taken.

Reinforced plastic and resin composites, used for toilet cisterns, seats, banisters, stair nosings, window seals, lab bench tops, brake shoes and clutches in machines. The plastics usually contain 1-10% chrysotile and were used in for example car batteries to improve the acid resistance. Resins may contain between 20 and 50% amosite, but because of its composition fibre release is likely to be low.

Nomenclature

ASBESTOS FIBRE TYPE COMMON NAMES		
Chrysotile	White Asbestos	
Amosite	Brown Asbestos	
Crocidolite	Blue Asbestos	
Fibrous Actinolite	N/A	
Fibrous Anthophyllite	N/A	
Fibrous Tremolite	N/A	

Chrysotile

Amosite

Crocidolite

Tremolite

Actinolite

Anthophyllite

APPENDIX B RESULTS OF LABORATORY ANALYSIS

BULK MATERIAL SAMPLE REPORT

Reference No: J665620 Client Order No: N/A

5 Aug 2022 Date Received:

Phoenix Environmental Safety Ltd (IE), Graigueswood, Freshford, Co. Kilkenny, Ireland Client Name and Address:

Signed:

ER

Site Address: Dalguise House Site, Monkstown, Co. Dublin

Emily Richardson

Sampling Officer: Phoenix Environmental Safety Ltd (IE)

Date of Analysis: 5 Aug 2022

Analyst: Andy Webster

Issue Date:

8 Aug 2022

ANALYSIS RESULTS

Approving Officer:

Sampling carried out by our own officers follows the procedures documented in our internal method M3: The Sampling of Bulk Materials, for Analysis to Determine the Presence of Asbestos. These samples have been analysed in accordance with internal method M2: The Identification of Asbestos, within Bulk Materials, by the Use of Optical Microscopy. Both these internal methods are based on the standard method as outlined in the HSE Document 'Asbestos: The analysts' guide for sampling, analysis and clearance procedures. Any deviations from these standard methods will be recorded in this report. No responsibility is taken for sampling that is not carried out by own officers. Opinions and interpretations expressed herein are outside the scope of our UKAS accreditation. Any comments regarding percentage content is outside the scope of our UKAS accreditation. The material classification is the opinion of the analyst, based on the samples' appearance, as received, and may not accurately reflect the source material on site. Where 'Trace Asbestos' has been reported, only 1 or 2 fibres or fibre bundles have been identified and analysed as asbestos following a thorough examination of the sample. All samples are analysed at one of our UKAS accredited laboratories in Somerset or Northern Ireland. This report must not be reproduced, except in full, without the written permission of the laboratory. These samples will be retained within this laboratory for a period of six months prior to disposal at a licensed asbestos disposal site, unless the client makes alternative arrangements. For advice concerning these materials, risk assessments, removal procedures or information regarding the current legislation for work with asbestos containing materials, please contact G&L Consultancy Ltd.

Site Ref	Lab Ref	Description	Analysis Result	Classification
S1	BS194672	Main House - 1st floor - w/c - cistern	Chrysotile	Reinforced Composite
S2	BS194673	Main House - 1st floor - servant wing - bedroom - lino	No Asbestos Detected	Not Applicable
S3	BS194674	Main House - Ground floor - Servant wing - corridor - floor tile (beige)	No Asbestos Detected	Not Applicable
S4	BS194675	Main House - Ground floor - servant wing - kitchen - floor tile & adhesive	Chrysotile	Reinforced Composite + Well Bound Material

G&L Consultancy Ltd

54A Huntly Road, Banbridge, Co. Down, Northern Ireland, BT32 3UA

Tel: 028 4062 3566 Email: ni@gnl.org.uk Web: www.gnl.org.uk

Company Directors: Mrs J Lewis and Mr P Lewis. VAT Registration Number 729 1092 34 Registered Office: Unit 5A, Castle Road, Chelston Business Park, Wellington, Somerset, TA21 9JO G&L Consultancy Ltd is a company registered in England and Wales with a Company Number: 3687929

Page 1 of 2 Template.22.12.21.77.8W

J665620 Version 1

BULK MATERIAL SAMPLE REPORT (CONTINUATION)

Site Ref	Lab Ref	Description	Analysis Result	Classification
S5	BS194676	Main House - Basement - servants wing - under stairs - lino	No Asbestos Detected	Not Applicable
S6	BS194677	Main House - Basement - kitchen plant room - pipework insulation	No Asbestos Detected	Not Applicable
S7	BS194678	Main House - Basement - kitchen plant room - pipework - rope	Chrysotile	Asbestos Textiles/Paper
S8	BS194679	Main House - boiler room - flange - gasket	Chrysotile	Asbestos Textiles/Paper
S9	BS194680	Glasshouse - window - putty	No Asbestos Detected	Not Applicable
S10	BS194681	Rear derelict buildings - ceiling - cement board	Chrysotile	Asbestos Cement
S11	BS194682	Red brick gate lodge - kitchen - ceiling - textured coating	Chrysotile	Textured Coating
S12	BS194683	Gate lodge at road - living room - floor tile	Chrysotile	Reinforced Composite + Well Bound Material
S13	BS194684	Gate lodge at road - kitchen - lino	Chrysotile	Asbestos Textiles/Paper

APPENDIX C

ASBESTOS DATA SHEETS

Dalguise House, Monkstown Road, Monkstown, Co. Dublin

ASBESTOS DATA SHEET

Created By

Eoghan Hickey

Date

8th August 2022

Site Details

Dalguise House, Monkstown Road, Monkstown, Co. Dublin

Client Name

Greystar Ireland

Survey Type

R/D Asbestos Survey

Site Ref

PE 22-842

Building Ref.

Main House

3

W/C's - cisterns

Location

Extent/ Amount

Survey Date

4 8 2022

Sample No.

BS 194672

Survey Company

Phoenix Environmental Safety Ltd.

Testing Laboratory. G & L Consultancy Ltd.

Product type Toilet Cistern Extent of damage Low Surface treatment Composite material Asbestos type Amosite Material assessment score: N/A

	PRIORITY ASSESSMENT
Normal occupant activity	
Likelihood of disturbance	N/A
Human exposure potential	N/A
Maintenance activity	N/A
OTAL SCORE: N/A	Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

The resin toilet cisterns identified in the W/C's on the 1st floor and ground floor in the main house contains Amosite (brown) asbestos fibres. Resin products may contain between 20 and 50% asbestos fibres

The asbestos containing toilet cisterns should be removed by an asbestos removal contractor and disposed of as asbestos waste before the refurbishment works commence

See Appendix F for more details

DETAIL OF THE ASBESTOS CONTAINING TOILET CISTERNS

Toilet cistern in the 1st floor W/C in the servant's wing

Toilet cistern in the ground floor W/C behind the stairs

ASBESTOS DATA SHEET

Created By

Eoghan Hickey

Date

8th August 2022

Site Details

Dalguise House, Monkstown Road, Monkstown, Co. Dublin

Client Name

Greystar Ireland

Survey Type

R/D Asbestos Survey

Ground Floor - kitchen

Site Ref

PE 22-842

Building Ref.

Main House

Location

Amount

Extent/ 8m² approx.

Survey Date

4.8.2022

Sample No.

RS 194675

Survey Company

Phoenix Environmental Safety Ltd.

Testing Laboratory. G & L Consultancy Ltd.

	MATERIAL ASSESSMENT
Product type	Floor Tile & Adhesive
Extent of damage	Low
Surface treatment	Composite & well bound material
Asbestos type	Chrysotile
Ī	Material assessment score: N/A

PRIORITY ASSESSMENT
N/A
N/A
N/A

TOTAL SCORE: N/A

Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

The floor tiles and bitumen adhesive identified in the ground floor kitchen on the servant's wing contain Chrysotile (white) asbestos fibres. Thermoplastic floor tiles can contain up to 25% asbestos fibres. Bitumen adhesives contain a small quantity of asbestos fibres.

The asbestos containing floor tiles and adhesive should be removed by an asbestos removal contractor and disposed of as asbestos waste before the refurbishment works commence.

See Appendix F for more details

ASBESTOS DATA SHEET

Created By

Eoghan Hickey

Date

8th August 2022

Site Details

Dalguise House, Monkstown Road, Monkstown, Co. Dublin

Client Name

Greystar Ireland

Survey Type

R/D Asbestos Survey

Site Ref

PE 22-842

Building Ref.

Main House

Location

1.5 linear meters approx.

Extent/ Amount

Testing Laboratory

Survey Date

4.8.2022

Sample No.

Priority assessment score: N/A

BS 194678

Survey Company

Phoenix Environmental Safety Ltd.

tory. G & L Consultancy Ltd.

Product type Rope Seal

Extent of damage Low

Surface treatment Unsealed

Asbestos type Chrysotile

Material assessment score: N/A

PRIORITY ASSESSMENT

Normal occupant activity

Likelihood of disturbance

N/A

Human exposure potential

Maintenance activity

N/A

CONCLUSIONS AND RECOMMENDATIONS

TOTAL SCORE: N/A

The rope seals identified on the pipework in the basement kitchen plant room contain Chrysotile (white) asbestos fibres. Rope seals can contain up to 100% asbestos fibres

The asbestos containing rope seals should be removed by an asbestos removal contractor and disposed of as asbestos waste before the refurbishment works commence

See Appendix F for more details

ASBESTOS DATA SHEET

Created By

Eoghan Hickey

Date

8th August 2022

Site Details

Dalguise House, Monkstown Road, Monkstown, Co. Dublin

Client Name

Greystar Ireland

Survey Type

R/D Asbestos Survey

Site Ref

PE 22-842

Building Ref.

Main House Boiler Room

Location

Amount

Extent/ 1 per flange

Survey Date

4.8.2022

Sample No.

BS 194679

Survey Company

Phoenix

Phoenix Environmental Safety Ltd.

Testing Laboratory. G & L Consultancy Ltd.

	MATERIAL ASSESSMENT
Product type	CAF Gasket
Extent of damage	Low
Surface treatment	Sealed
Asbestos type	Chrysotile
	Material assessment score: N/A

PRIORITY ASSESSMENT

Normal occupant activity

Likelihood of disturbance N/A

Human exposure potential N/A

Maintenance activity N/A

TOTAL SCORE: N/A

Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

The Compressed Asbestos Fibre (CAF) gaskets identified between the flanges in the boiler room contain Chrysotile (white) asbestos fibres. CAF Gaskets contain almost 100% asbestos fibres, with a small amount of binder

The CAF Gasket should be removed by an asbestos removal contractor and disposed of as asbestos waste before the refurbishment works commence.

See Appendix F for more details

Rear derelict buildings

ASBESTOS DATA SHEET

Created By

Eoghan Hickey

Date

8th August 2022

Site Details

Dalguise House, Monkstown Road, Monkstown, Co. Dublin

Client Name

Greystar Ireland

Survey Type

R/D Asbestos Survey

Site Ref

PE 22-842

Building Ref.

Rear Derelict Building

Location

Extent/ Amount Ceiling 12m² approx. Survey Date

4.8.2022

Sample No.

BS 194681

Survey Company

Testing Laboratory.

Phoenix Environmental Safety Ltd.

G & L Consultancy Ltd.

Product type Cement Board Extent of damage High Surface treatment Asbestos type Chrysotile Material assessment score: N/A

Normal occupant activity

Likelihood of disturbance N/A

Human exposure potential N/A

Maintenance activity N/A

TOTAL SCORE: N/A

Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

The cement sheeting identified on the ceiling of the rear derelict building contains Chrysotile (white) asbestos fibres. Asbestos cement products usually contain between 10-15% asbestos fibres, bound in Portland cement

The cement board may be left in situ and managed in place. However, if the forthcoming refurbishment works are likely to disturb the ceiling, the asbestos containing cement board should be removed by an asbestos removal contractor and disposed of as asbestos waste before the refurbishment works commence.

See Appendix F for more details


DETAIL OF THE ASBESTOS CEMENT BOARDS

Asbestos cement ceiling board in the rear derelict building

Asbestos cement board debris in the rear derelict building

Red Brick Gate Lodge

ASBESTOS DATA SHEET

Created By

Eoghan Hickey

Date

8th August 2022

Site Details

Dalguise House, Monkstown Road, Monkstown, Co. Dublin

Client Name

Greystar Ireland

Survey Type

R/D Asbestos Survey

Site Ref

PE 22-842

Building Ref.

Red Brick Gate Lodge

Location

Kitchen & Living Room

Extent/ Amount

25m² approx.

Survey Date 4.8.2022 Sample No. BS 194682

Survey Company Phoenix Environmental Safety Ltd.

Testing Laboratory. G & L Consultancy Ltd.

	MATERIAL ASSESSMENT		PRIORITY ASSESSMENT
Product type	Textured Coating	Normal occupant activity	
Extent of damage	Low	Likelihood of disturbance	N/A
Surface treatment	Painted	Human exposure potential	N/A
Asbestos type	Chrysotile	Maintenance activity	N/A
	Material assessment score: N/A	TOTAL SCORE: N/A	Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

The textured coating identified on the ceilings in the kitchen and living room in the Red Brick Gate Lodge contains Chrysotile (white) asbestos. Asbestos textured coating usually contains between 3-5% asbestos fibres

The asbestos containing textured coating should be removed by an asbestos removal contractor and disposed of as asbestos waste before the refurbishment works commence.

See Appendix F for more details

Gate Lodge at Road

ASBESTOS DATA SHEET

Created By

Eoghan Hickey

Date

8th August 2022

Site Details

Dalguise House, Monkstown Road Monkstown, Co. Dublin

Client Name

Greystar Ireland

Survey Type

R/D Asbestos Survey

Site Ref

PE 22-842

Building Ref.

Gate Lodge at Road

1 Toilet Cistern

Location

Amount

Survey Date

4.8.2022

Sample No.

Survey Company

Phoenix Environmental Safety Ltd.

Testing Laboratory.

G & L Consultancy Ltd.

MATERIAL ASSESSMENT Product type **Resin Toilet Cistern** Extent of damage Low Composite material Surface treatment Amosite (presumed) Asbestos type TOTAL SCORE: N/A Material assessment score: N/A

PRIORITY ASSESSMENT Normal occupant activity Likelihood of disturbance Human exposure potential Maintenance activity

Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

The resin toilet cistern identified in the main house was presumed to contain Amosite (brown) asbestos fibres. Resin products may contain between 20 and 50% asbestos fibres

The aspestos containing toilet cistern should be removed by an aspestos removal contractor and disposed of as asbestos waste before the refurbishment works commence

See Appendix F for more details

ASBESTOS DATA SHEET

Created By

Eoghan Hickey

Date

8th August 2022

Site Details

Dalguise House, Monkstown Road, Monkstown, Co. Dublin

Client Name

Greystar Ireland

Survey Type

R/D Asbestos Survey

Site Ref

PE 22-842

Building Ref.

Gate Lodge at Road

Kitchen & Living Room

Location

Amount

Extent/ 18m² approx.

Survey Date

4 8 2022

Sample No.

RS 194683

Survey Company

Phoenix Environmental Safety Ltd.

Testing Laboratory. G&LC

G & L Consultancy Ltd.

	MATERIAL ASSESSMENT
Product type	Floor Tile & bitumen adhesive
Extent of damage	Low
Surface treatment	Composite & well bound material
Asbestos type	Chrysotile
1	Material assessment score: N/A

PRIORITY ASSESSMENT

Normal occupant activity

Likelihood of disturbance N/A

Human exposure potential N/A

activity N/A

Maintenance activity

Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

TOTAL SCORE: N/A

The floor tiles and bitumen adhesive identified in the kitchen and living room contain Chrysotile (white) asbestos fibres. Thermoplastic floor tiles can contain up to 25% asbestos fibres. Bitumen adhesives contain a small quantity of asbestos fibres

The asbestos containing floor tiles and bitumen adhesive should be removed by an asbestos removal contractor and disposed of as asbestos waste before the refurbishment works commence

See Appendix F for more details

ASBESTOS DATA SHEET

Created By

Eoghan Hickey

Date

8th August 2022

Site Details

Dalguise House, Monkstown Road, Monkstown, Co. Dublin

Client Name

Greystar Ireland

Survey Type

R/D Asbestos Survey

Site Ref

PE 22-842

Kitchen

6m² approx.

Building Ref.

Gate Lodge at Road

Location

Extent/

Amount

Survey Date

4.8.2022

22 Sample No.

BS 194684

Survey Company

ally

Phoenix Environmental Safety Ltd.

Testing Laboratory. G & L Consultancy Ltd.

	MATERIAL ASSESSMENT	
Product type	Asbestos paper	
Extent of damage	Low	
Surface treatment	Well bound material	
Asbestos type	Chrysotile	
	Material assessment score: N/A	

PRIORITY ASSESSMENT

Normal occupant activity

Likelihood of disturbance

Human exposure potential

Maintenance activity

N/A

N/A

N/A

TOTAL SCORE: N/A

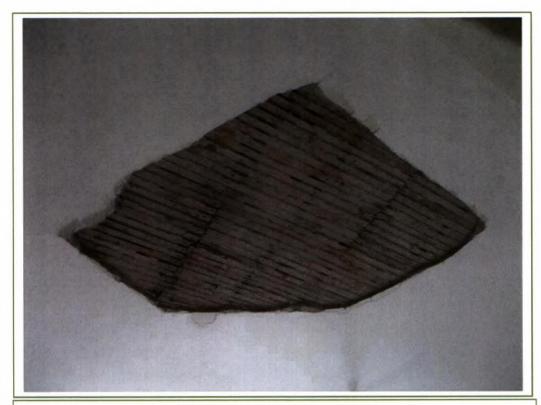
Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

The paper backed linoleum identified on the floor in the kitchen contains Chrysotile (white) asbestos fibres. Asbestos paper can contain up to 100% asbestos fibres

The asbestos containing lino should be removed by an asbestos removal contractor and disposed of as asbestos waste before the refurbishment works commence

See Appendix F for more details


APPENDIX D

Slates on the main roof

Water tanks in the attic in the main house

Lath and mortar ceilings in the main house

Floor covering in the 1st floor bedroom in the main house

Floor tiles in the corridor on the ground floor in the main house

Lino under the stairs in the basement in the main house

Pipework insulation in the basement kitchen plant room in the main house

Boiler unit in the external boiler room in the main house

Putty on the glass in the glasshouses

Natural slates on the roof of the rear derelict buildings

NON ASBESTOS CONTAINING MATERIALS

Natural slates on the roof of the swimming pool

Natural slates on the roof of the stable block

NON ASBESTOS CONTAINING MATERIALS

Plasterboard and fibre glass insulation in the occupied gate lodge

Ceramic tiles in the kitchen in the occupied gate lodge

NON ASBESTOS CONTAINING MATERIALS

Ceramic tiles in the kitchen in the red brick gate lodge

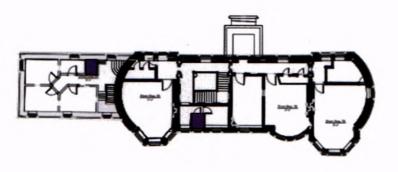
Ceiling tiles in the living room in the gate lodge at the road

APPENDIX E

NON ACCESSIBLE LOCATIONS

The below gate lodge was occupied and in use during the survey. Intrusive sampling
was kept to a minimum where possible so as not to damage the integrity of the house
and its finishes

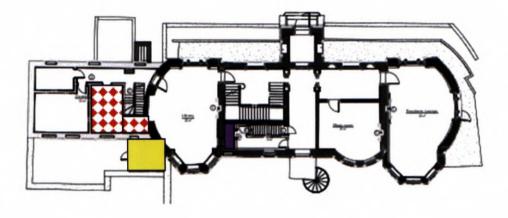
- No inspection was carried on flues, ducts, voids and similar enclosed areas, the access to which would necessitate the use of specialist equipment or tools, or which would have caused damage to decorations, fixtures, fittings or the structure of the building
- Floors which could not be easily lifted and resealed e.g. ceramic tiles, wet-room floors and timber flooring, were only visually inspected in the live areas
- No access was possible to the 1st floor of the gate lodge on the road as the building was in very poor condition and not deemed safe to enter
- No inspection of live electrical or mechanical plant or similar requiring the attendance of a specialist engineer was carried out
- No inspection of any areas requiring specialist access equipment other than telescopic ladder was carried out
- Samples have not been taken where the act of sampling would endanger the surveyors or affect the functional integrity of the item concerned
- All contractors working on site should always remain vigilant to the possibility that
 other asbestos containing materials may be concealed within the fabric of the building
 or equipment. If any suspect asbestos containing materials are uncovered during the
 course of the work, works must stop in that area and the suspect material should be
 sampled and analysed immediately for the presence of asbestos


APPENDIX F

FLOOR PLANS & LOCATION OF ASBESTOS CONTAINING MATERIALS

Schematic diagram only
Not to scale
8th August 2022

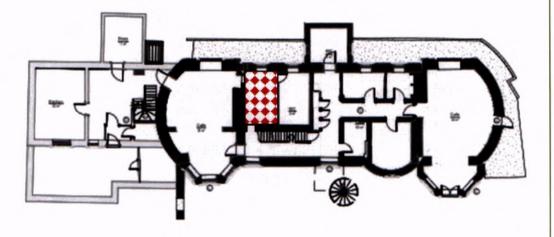
Dalguise House,
Monkstown,
Co. Dublin


MAIN HOUSE - FIRST FLOOR PLAN

Area where asbestos containing toilet cisterns were identified

Schematic diagram only Not to scale 8th August 2022 Dalguise House, Monkstown, Co. Dublin

MAIN HOUSE - GROUND FLOOR PLAN



	Area where asbestos containing toilet cistern	was identified
Area where asbestos containing CAF gasket was identified	Area where asbestos containing CAF gasket	vas identified
Area where asbestos containing CAF gasket was identified	Area where asbestos containing CAF gasket v	vas identified

Schematic diagram only
Not to scale
8th August 2022

Dalguise House,
Monkstown,
Co. Dublin

MAIN HOUSE - BASEMENT FLOOR PLAN

*****	Area where asbestos containing rope was identified on pipework	

Dalguise House, Schematic diagram only Monkstown, Not to scale 8th August 2022 Co. Dublin **RED BRICK GATE LODGE - FLOOR PLAN** Area where asbestos containing textured coating was identified

Dalguise House, Schematic diagram only Not to scale Monkstown, 8th August 2022 Co. Dublin GATE LODGE AT ROAD - FLOOR PLAN Area where asbestos containing floor tile and bitumen adhesive was identified Area where asbestos containing toilet cistern was identified Area where asbestos containing paper backed linoleum was identified Please Note: no access to 1st floor due to unsafe floors

	Table 22.1: Schedule of Proposed Environmental Commitments	
Mitigation/ Monitoring No.	Description of Mitigation/Environmental Commitment	Phase
	Population and Human Health (Chapter 7)	
	Mitigation	
P_1	To ensure there is no impact on Seapoint Beach (local amenity), all works in proximity to the Stradbrook Stream will follow best practice guidance, as per the following documents: • Guidelines for the crossing of Watercourses During Construction of National Road Schemes (TII, 2008). • Guidelines on Protection of Fisheries during Construction Works in and adjacent to Waters (IFI, 2016). • C532 Control of water pollution from construction sites: guidance for consultants and contractors (CIRIA, 2001).	Construction
P_2	To ensure there is no impact on Seapoint Beach (local amenity), as per the project specific Construction Management Plan: Prior to commencement on site, as part of the overall Construction Management Plan for the works detailed meetings will be conducted between the relevant members of the appointed Design team, the Main Contractor for the project and DLRCC so that site parameters can be agreed regarding the protection of the Stradbrook Stream for construction spillages including soil run off, silts and general pollutants resulting from construction activities. The "Guidelines on Protection of Fisheries during Construction Works in and adjacent to Waters" 2016 produced by Inland Fisheries Ireland must be used as a baseline publication in the protection of the Stradbrook Stream and surrounds and the detailed recommendations contained within should be adhered to where applicable.	Construction

Pre-construction, the Contractor must establish, with the assistance of an approved testing consultant, a series of recommended baseline levels in the stream such as existing pollution levels, water quality etc, During the construction works, continuous monitoring must be carried out to confirm that established water quality levels have not dropped below specified/agreed levels set in conjunction with the OPW/ Inland Fisheries and the Local Authority.

The existing Irish Water/ DLRCC main foul line running adjacent to the Stradbrook Stream must be protected at all times from excessive discharge. Agreement 26 regarding such discharges, if permitted, will be confirmed with the relevant Statutory bodies prior to commencement on site.

The requirements of the DLRCC document "Special Requirements for the protection of Water Quality in the Management of Civil Engineering Contacts" must be adhered to during the construction phase of the development particularly in proximity to the Stradbrook Stream, subject to agreed adjustments, where permissible, with the Local Authority.

Some baseline considerations to be taken during the proposed works are:

- Double silt fences will be installed along the extent of works adjacent to the Stradbrook Stream to contain any potential silt or sediment run-off
- Stockpiling, temporary or otherwise, of construction material or topsoil will be prohibited within 10m of the watercourse, in order to minimize sources of sediment runoff.
- Site compounds shall not be located within 5m of the Stradbrook Stream, if required in that location, fuel storage, temporary or otherwise, shall be permitted within site compounds areas and not within 10m of the watercourse at these locations.
- In order to limit the potential for pollution due to run-off from construction, all run off waters must be directed through sedimentation ponds prior to discharge. These ponds must be in place prior to the main construction works. The purpose of a temporary sedimentation basin/pond is to provide an area where sediment laden runoff is allowed to pond and suspended solids are allowed to settle

ppendix 22.: P_3	A Traffic Management Plan will be prepared by the contractor and agreed with Dún Laoghaire Rathdown	Construction
-	County Council's Transportation Department and An Garda Siochana, to mitigate any impact of construction	
	on the surrounding road network and hence the local population.	
P_4	In order to mitigate the potential dust-related health impacts during the construction phase, a dust	Construction
	minimisation plan will be formulated. This plan will draw upon best practice mitigation measures from Ireland,	14
	the UK and the USA to ensure the highest level of mitigation possible.	
P_5	With regard to construction activities, best practice control measures for noise and vibration from	Construction
	construction sites are found within BS 5228 (2009 +A1 2014) Code of Practice for Noise and Vibration Control	
	on Construction and Open Sites Parts 1 and 2. Whilst construction noise and vibration impacts are expected	
	to vary during the construction phase depending on the distance between the activities and noise sensitive	
	buildings, the contractor will ensure that all best practice noise and vibration control methods will be used,	
	as necessary in order to ensure impacts at off-site NSLs are minimised.	
	The best practice measures set out in BS 5228-1 and BS 5228-2 includes guidance on several aspects of	
	construction site mitigation measures, including, but not limited to:	
	selection of quiet plant;	
	 noise control at source; 	
	 screening; and, 	
	liaison with the public.	
	Construction activities will vary depending on the phase of construction.	
P_6	As detailed in Chapter 9 (Land, Soils, Geology and Hydrogeology) of this EIAR, appropriate waste management	Operational
	practises will be implemented to avoid leaks/spills/runoff/accidental release or escape of fuels, oils and	
	lubricants, bulk liquid cement, contaminated leachate into the ground, and hence avoid impacts to the	
	Stradbrook Stream which may result in impacts to Seapoint Beach (local amenity).	
P_7	As detailed in Chapter 10 (Hydrology) of this EIAR, mitigation measures include a surface water drainage	Operational
	system for rainwater from the roofs and roads which will consist of a petrol interceptor, ponds, swales, rain	
	gardens and attenuation tanks, prior to discharge to the Stradbrook Stream. All foul water will be pumped to	
	Ringsend WWTP for treatment. As previously mentioned, during high rainfall, overflows of foul water occur	
	at Seapoint pumping station Maintenance of the Stradbrook Stream will be undertaken to ensure flow is	
	maintained and risk of flooding is not increased by removing blockages and routine clearing.	

P_8	The proposed development will implement SuDS measures across the development in compliance with the	Operational
	requirements of the Greater Dublin Strategic Drainage Study reducing runoff volumes, pollution concentration and enhancing groundwater recharge, and therefore will have a positive impact on the catchment, and contribute to avoiding impacts to the Stradbrook Stream which may result in impacts to Seapoint Beach (local amenity).	
P_9	Best practice guidance details an assessment methodology to derive appropriate noise limits at the nearest noise sensitive properties that must be achieved in order to ensure the effect of plant noise is acceptable. To achieve these noise limits consideration will be given, at the detailed design stage, to a variety of mitigation measures and forms of noise control techniques.	Operational

Mitigation/ Monitoring No.	Description of Mitigation/Environmental Commitment	Phase
	Biodiversity (Chapter 8)	
	Mitigation	
B_1	The contractor will appoint a suitably qualified Ecological Clerk of Works (ECoW) for the duration of the construction contract to ensure that the mitigation and monitoring proposed in this chapter are implemented during the construction phase. The EcoW will have at least five years' experience in ecological consultancy. The contractor will also appoint a bat specialist who holds NPWS licences to disturb bat roosts and handle bats in the course of normal survey work. The EcoW and the bat specialist role may be undertaken by the same person provided they have the necessary qualifications and experience.	Construction
B_2	Any lighting being used at night on site during construction should be considerate of the impacts it might have on nocturnal species in the area. The lights will not be left on overnight. If lighting is required during construction the lights will only be illuminating work areas when necessary and will avoid illuminating any woodland habitats and trees.	Construction
B_3	Trees which are being retained will be protected by fencing in accordance with BS 5837:2012, as defined in the 'Tree Survey, Arboricultural Impact Assessment and Tree Protection Scheme to BS 5837:2012' report, which is included as part of the planning application. See Part 5 – Tree Protection Scheme of the report for full descriptions of the tree protection measures that will be implemented during the construction phase of the proposed development. An Arborist be retained as required by the principal contractor to monitor and	Construction

ippendix 22.1		
	advise on any works within the Root Protection Area (RPA) of retained trees to ensure successful tree retention and planning compliance. All recommendations contained in the 'Tree Survey, Arboricultural Impact Assessment and Tree Protection Scheme to BS 5837:2012' will be followed.	
B_4	The mitigation measures presented in other chapters of this EIAR, including, but not limited to Chapter 10 'Hydrology' and Chapter 13 'Landscape and Visual' will be implemented in full.	Construction
B_5	All works in proximity to the Stradbrook Stream will follow best practice guidance, as per the following documents: • Guidelines for the crossing of Watercourses During Construction of National Road Schemes (TII, 2008); and, • Guidelines on Protection of Fisheries during Construction Works in and adjacent to Waters (IFI, 2016). • C532 Control of water pollution from construction sites: guidance for consultants and contractors (CIRIA, 2001).	Construction
B_6	No instream works will be carried out as part of the proposed development, other than the removal of block walls and other river channel improvement measures.	Construction and Operational
B_7	Double silt fences will be installed along the extent of works adjacent to the Stradbrook Stream to contain any potential silt or sediment run-off.	Construction and Operational
B_8	Stockpiling, temporary or otherwise, of construction material or topsoil will be prohibited within 10m of the watercourse, in order to minimize sources of sediment runoff.	Construction and Operational
B_9	Site compounds shall not be located within 5m of the Stradbrook Stream, if required in that location, fuel storage, temporary or otherwise, shall be permitted within site compounds areas and not within 10m of the watercourse at these locations.	Construction and Operational
B_10	In order to limit the potential for pollution due to run-off from construction, all run off waters will be directed through sedimentation ponds prior to discharge. These ponds will be in place prior to the main construction works. The purpose of a temporary sedimentation basin/pond is to provide an area where sediment laden runoff is allowed to pond and suspended solids are allowed to settle.	Construction and Operational
B_11	When working in or near the surface water and the application of in-situ materials cannot be avoided, the use of alternative materials such as biodegradable shutter oils shall be used.	Construction

B_12	Any plant operating close to the water will require special consideration on the transport of concrete from the point of discharge from the mixer to final discharge into the delivery pipe (tremie). Care will be exercised	Construction
	when slewing concrete skips or mobile concrete pumps over or near the watercourses.	
B_13	Placing of concrete in or near the watercourses will be carried out only under the supervision of a suitably qualified Environmental Manager.	Construction
B_14	There will be no hosing into surface water drains of spills of concrete, cement, grout or similar materials. Such spills shall be contained immediately, and runoff prevented from entering watercourses.	Construction
B_15	Concrete waste and wash-down water will be contained and managed on site to prevent pollution of the watercourses.	Construction
B_16	On-site concrete batching and mixing activities will only be allowed at the identified construction compound.	Construction
B_17	Washout from concrete lorries, with the exception of the chute, will not be permitted on site and will only take place at the construction compound (or other appropriate facility designated by the supplier).	Construction
B_18	Chute washout will be carried out at designated locations only. These locations will be signposted. The Concrete Plant and all Delivery Drivers will be informed of their location with the order information and on arrival on site; and	Construction
B_19	Chute washout locations will be provided with appropriate designated, contained impermeable area and treatment facilities including adequately sized settlement tanks. The clear water from the settlement tanks shall be pH corrected prior to discharge (which shall be by means of one of the construction stage settlement facilities) or alternatively disposed of as waste in accordance with the Contractor's Waste Management Plan.	Construction
B_20	Method statements that are prepared for the works will be reviewed / approved by the Client Project Manager and were necessary the relevant Environmental Specialist. All method statements for works in, near or liable to impact on a waterway must have prior agreement with IFI and NPWS.	Construction
B_21	Surface runoff from the compound will be minimised by ensuring that the paved/ impervious area is minimised. All surface water runoff will be intercepted and directed to appropriate treatment systems (settlement facilities and oil trap) for the removal of pollutants and/or silt prior to discharge. The site compound will be fenced off as part of the site establishment period.	Construction
B_22	Fuel storage tanks shall have secondary containment provided by means of an above ground bund to capture any oil leakage.	Construction

B_23	Storage tanks and associated provision, including bunds, will conform to the current best practice for oil	Construction
	storage and will be undertaken in accordance with Best Practice Guide BPGCS005 – Oil Storage Guidelines (Enterprise Ireland).	
B_24	Wastewater drainage from all site offices and construction facilities will be contained and disposed of in an appropriate manner to prevent water pollution and in accordance with the relevant statutory requirements.	Construction
B_25	The landscape design has been carefully co-ordinated to retain as many high-value trees as possible. There are currently 346 No. trees on the proposed development site. 95 No. trees will be lost to the proposed development. Of these 95 No. trees, 68 No. are considered to be low-quality trees (Category 'C') representing 72% of trees lost, 24 No. are good-quality trees (Category 'B'), representing 25% of trees lost and 3 No. are high-quality trees (Category 'A'), representing 3% of trees lost. There are 213 No. trees of high-quality and large girth standard proposed for planting in order to compensate for those lost. In addition, 109 Category 'R' trees will be lost. Category R trees are trees that are deemed to be of no value within 10 years of the assessment and should be removed. It should be noted that the 'value' of a tree in the arboricultural assessment is not comparable to the biodiversity value of a tree, and is in fact often the inverse, however, in general, Category A and B trees are large trees and of higher biodiversity value than smaller trees.	Operational
B_26	The Landscape design for the proposed development includes tree, shrub, climber, swale and marginal planting around the site. Species selected includes native and nectar rich flowering plants to increase the availability of nectar for pollinators, and indirectly food for bats and birds. These species include, but are not limited to: Dog rose (Rosa canina), Crab apple (Malus sylvestris), Creeping blue blossom (Ceanothus thyrsiflorus var. repens), Mexican orange blossom (Choidya ternata), Mountain hydrangea (Hydrangea serrata), Snowdrop (Galanthus nivalis), Snake's head fritillary (Fritillaria meleagris) and Common camas (Camassia quamash).	Operational
B_27	The landscape design includes an edible forest in the existing walled garden. This will mimic the stable ecosystem at the periphery of the site. The edible plants will be perennials specific to their location and climate and stacked in layers (eight layers in total). Each layer of this edible forest will have a high percentage of fruit, food and nut species. Species which will be planted includes Sweet Chestnut (Castanea sativa), Walnut (Juglans regia), Plum (Prunus domestica), Apple (Malus domestica), Rosemary (Rosmarinus officionalis), Wild strawberry (Fragaria vesca), Wild garlic (Allium ursinum) and Blackberries (Rubus allegheniensis).	Operational
B_28	The landscape design also includes a pond on the western boundary. The pond has been designed to hold water year-round and have deeper areas to provide habitat for a range of freshwater species. The edges of	Operational

Appenaix 22.1		
	the pond will be planted with native riparian species such as Purple loosestrife (Lythrum salicaria), Yellow flag	
	iris (Iris pseudacorus) and Soft rush (Juncus effusus).	
B_29	No laurel-leaved evergreens will be planted. This includes Cherry Laurel	Operational
B_30	Three trees will be retained as ecopoles (Table 8-19). Transforming the trees into ecopoles will involve removing the tree crown to a set height and using veteranisation techniques to create features that mimic an ancient tree. These techniques will create habitats for fungi, insects, birds and bats. Techniques include: Coronette cutting of the main trunk, approx. 3 m high. Vertical cuts & crevices	Operational
	HollowsWounds	
B_31	 The public lighting has been designed will comply with the following: Lux levels on roads and paths will be set to the minimum required by BS 5489-1:2013, P4. Bollard lighting will be used in wooded areas which will avoid light spill above the horizontal. Lighting outside the intended area of illumination will be minimised. Where light spill cannot be avoided, louvres, cowls or shields will be fitted to the columns. Lighting will be LED and have no upward light spill (apart from intentional up-lighting) and a sharp horizontal cut off. Lighting will be a warm-white colour of 3000K or less. There will be no lighting on the pond. Up-lighting will be limited to discreet points of interest. 	Operational
B_32	During the operational phase, rainwater from the roofs and roads will be conveyed directly to a surface water drainage system (designed following SUDS principles), which will include a petrol interceptor, a pond, swales and rain gardens, and attenuation tanks.	Operational
B_33	Measures will be employed to improve the physical characteristics of the Stradbrook Stream. The location of these measures will be limited to the south bank of the river which is within the ownership of the Applicant. The measures will include the removal of block walls which were constructed to form the bank, the setting back of mesh fencing. The riverbank will be regraded to provide a more natural channel. The regrading of the	Operational

ppendix 22.1		
	bank will need to be cognisant of, and may be restricted by, the root protection zones of trees. The use of coir or similar may be required to prevent erosion while natural vegetation becomes established.	
B_34	A pre-construction bat suitability assessment will be carried out prior to site clearance. Any moderate or high potential features will be examined by a suitably qualified bat specialist to ensure no bats are present.	Pre – Construction
B_35	A suitably qualified bat specialist is required to supervise the felling of all trees and the demolition of any buildings classified as having low to moderate suitability for supporting bat roosts, and which may contain features invisible from ground level. If any bats are found, they will be removed by the bat specialist and placed in a box and released on site at dusk.	Construction
B_36	Following the completion of the elements of the construction phase which could lead to the disturbance of a bat roost (to be dictated by the EcoW), twenty-six bat boxes will be placed on mature trees that will be retained. Twenty-six equates to one bat box for every tree and building with' low potential', and three bat boxes for every tree with 'moderate potential'. Schwegler type crevice bat boxes (available from www.nhbs.com) that are self-cleaning will be used. The bat boxes will be positioned by a suitably qualified bat specialist to maximise the likelihood of use.	Construction
B_37	These bat boxes will be protected during the construction phase of the project through the establishment of Root Protection Areas and any artificial lighting that will be used during this phase of the proposed development will avoid illuminating any of these trees at night.	Construction
B_38	The felling of trees and demolition of outbuildings will take place in the months of September to November inclusive, or in February and March in order to avoid the months when bats are most sensitive to disturbance. Note that this programme must also consider the presence of nesting birds.	Construction
B_39	The final lighting plan for the proposed development will be designed in accordance with <i>Bats and Lighting in the UK</i> (BCT, 2018). The design should consider this and only have as much lighting as necessary and should not exceed the baseline requirements.	Pre – Operational
B_40	Site clearance during construction and tree and shrub maintenance during operation will take place outside the nesting bird season (1st March - 31st August inclusive). If site clearance is required during the nesting bird season, the area will be checked by a suitably qualified ecologist. If nesting birds are found to be present, the site clearance works will cease until the chicks have fledged, or, until the NPWS have been consulted to determine the course of action.	Construction

Appendix 22.1		
B_41	In order to protect the heronry from disturbance which could lead to nest abandonment, no site clearance works will commence during the pre-nesting and nesting season (February- July). The absence of active nests will be confirmed by the ECoW.	Construction
B_42	A Grey Heron Conservation Plan has been developed to ensure the protection of Grey Heron within the site and will be followed during both construction and operational phases of the proposed development. This Conservation Plan can be found in Appendix 8.4.	Construction and Operational
B_43	Fencing will be erected around the trees containing the heronry within the site as part of the tree protection plan. These will also serve to reduce disturbance close to the trees. The tree protection fencing will be retained for the duration of the construction phase.	Construction
B_44	Bird-friendly glass (e.g., ornilux) will be used on all windows, doors and glass facades in the new development which will increase the reflectivity of the windows and significantly reduce the risk of collision.	Operational
B_45	Twenty-five no. bird boxes will be erected.	Construction and Operational
B_46	Five no. 17A Schwegler Swift Nest Boxes (triple cavity) will be incorporated into the development. These will be positioned on the north faces of the buildings out of the prevailing wind and at least 4.5m high. The type and position should be confirmed by the ECoW. <i>Notes on the Common Swift and Setting up nest boxes</i> (Linda Huxley, 2014) provides guidance on setting up swift boxes.	Construction
B_47	Two No. Grey wagtail / Dipper nest boxes will be provided under the newly constructed bridge over the Stradbrook Stream.	Construction
B_48	All bird boxes will be positioned by the ECoW to maximise the likelihood of use.	Construction
B_49	The heronry will be surveyed during the breeding season for three consecutive years. The tree number of each tree containing a nest will be recorded (using the numbering convention in the tree report for this application), and any signs of activity will also be recorded. The results will be sent to the NPWS and Dún Laoghaire Rathdown County Council following each survey. Should a noticeable decline in the heronry be discovered, protective measures will be put in place, in consultation with the NPWS.	Operational
B_50	An Invasive Species Control and Management Plan has been developed in accordance with objective GIB28 of the County Development Plan (DLRCC, 2022) and can be found in Appendix 8.5. This management plan will be followed during construction to ensure invasive species are eradicated from the site and that all works shall be executed in accordance with best practice for biosecurity in construction.	Construction

ppendix 22.3		
B_51	All plant and equipment employed on the construction site (e.g., excavators) will be thoroughly cleaned down using a power washer unit prior to arrival on site to prevent the spread of IAPS.	Construction
B_52	All washing must be undertaken in areas with no potential to result in the spread of IAPS, as detailed in the Construction Environmental Management Plan.	Construction
B_53	Any soil and topsoil required on the site will be sourced from a stock that has been screened for the presence of any IAPS and where it is confirmed that none are present.	Construction
B_54	In advance of the works, the extent of Three-cornered Garlic established will be fenced off. Under the direction of the ECoW, the bulbs will be excavated by hand to avoid damaging the roots of nearby trees.	Pre – Construction
B_55	The bulbs will be broken up using a spade and buried on site to a minimum depth of 1 m.	Construction
B_56	The site will be resurveyed the following year to check if any plants have re-established. If Three-cornered Garlic is found, the process will be repeated until none re-appear.	Operational
B_57	If the infestation of Three-cornered Garlic cannot be eradicated prior to construction, it should be fenced off at the outset and the access prohibited except for monitoring for treatment purposes. All site staff shall be made aware of the Contractor's Biosecurity Protocol and receive training in the importance of good site biosecurity.	Pre – Construction

Mitigation/ Monitoring No.	Description of Mitigation/Environmental Commitment	Phase
	Land and Soils (Chapter 9)	THE CHARLES
VIVIII TEEL	Mitigation	
LS_1	Appropriate due diligence to be undertaken in the sourcing of materials from responsible and audited suppliers, and in the testing of materials prior to use, to determine both suitability and presence of contaminated materials.	Construction
LS_2	If contamination is encountered in geology, soils or hydrogeology, suitable measures will be put in place to avoid mobilising the contamination based on the most appropriate industry best practice guidance for contaminated land management.	Construction
LS_3	The management of surplus excavated material or temporarily stored materials at the site compounds will be determined by the classification of the material (i.e., contaminated, or not, in line with the European Waste	Construction

Construction
Construction
Pre – Construction
Construction
Construction
Construction
Construction
Construction
Construction
Construction

An adequate supply of spill kits and hydrocarbon adsorbent packs will be stored at each work area. The Site	Construction
As part of the site Environmental Induction Training all staff will be informed of the spill contingency plan and	Construction
the location and use of the spill adsorbents.	
If a spillage does occur, the adsorbents will be treated as a hazardous waste and disposed of accordingly.	Construction
Vehicles and equipment will be maintained by a suitably trained person and checked on a regular basis. Daily	Construction
vehicle and equipment checks will include a visual assessment for oil or lubricant leaks prior to use.	
Vehicles will be parked on hardstanding areas overnight or when not in use, as applicable.	Construction
	Construction
Where practicable, compaction of any soil or sub soil which is to remain in situ in the works area will be	Construction
avoided.	
Significant project vehicle and equipment movements will be along agreed predetermined routes along	Construction
existing national, regional and local routes. Where compaction occurs due to truck movements and other	
construction activities on unfinished surfaces, remediation works will be undertaken to reinstate the ground	
to a condition if at least equal quality to the original surface.	
Re-fuelling of construction vehicles and the addition of hydraulic oils or lubricants to vehicles, will take place	Construction
in a designated area (or where possible off the site) with appropriate hardstand and drainage.	
Drip trays will be placed underneath any standing machinery to prevent pollution by oil/fuel leaks during	Construction
refuelling. Where practicable, cleaning and refuelling of vehicles and machinery will be carried out on an	
impermeable surface in designated areas.	
Good housekeeping in line with industry best practises (e.g., CIRIA) will be adhered to including daily site	Construction
clean-ups, use of disposal bins, etc.).	
Movement of material to be minimised in order to reduce degradation of soil structure and generation of	Construction
dust.	
All excavated material will, where possible, be reused as construction fill. The appointed contractor will ensure	Construction
acceptability of the material for reuse for the proposed development with appropriate handling, processing	
and segregation of the material.	
Excavated soil materials will be stockpiled locally within the working area where possible, using an appropriate	Construction
method to minimise the impacts of weathering. Care will be taken in reworking this material to minimise dust	
generation, hydrogeology infiltration and generation of runoff.	
	Environmental Manager will maintain an inventory of spill kits on site to ensure all are properly equipped. As part of the site Environmental Induction Training all staff will be informed of the spill contingency plan and the location and use of the spill adsorbents. If a spillage does occur, the adsorbents will be treated as a hazardous waste and disposed of accordingly. Vehicles and equipment will be maintained by a suitably trained person and checked on a regular basis. Daily vehicle and equipment checks will include a visual assessment for oil or lubricant leaks prior to use. Vehicles will be parked on hardstanding areas overnight or when not in use, as applicable. Vehicles will minimise tracking over natural, exposed or unfinished surfaces, where practicable. Where practicable, compaction of any soil or sub soil which is to remain in situ in the works area will be avoided. Significant project vehicle and equipment movements will be along agreed predetermined routes along existing national, regional and local routes. Where compaction occurs due to truck movements and other construction activities on unfinished surfaces, remediation works will be undertaken to reinstate the ground to a condition if at least equal quality to the original surface. Re-fuelling of construction vehicles and the addition of hydraulic oils or lubricants to vehicles, will take place in a designated area (or where possible off the site) with appropriate hardstand and drainage. Drip trays will be placed underneath any standing machinery to prevent pollution by oil/fuel leaks during refuelling. Where practicable, cleaning and refuelling of vehicles and machinery will be carried out on an impermeable surface in designated areas. Good housekeeping in line with industry best practises (e.g., CIRIA) will be adhered to including daily site clean-ups, use of disposal bins, etc.). Movement of material to be minimised in order to reduce degradation of soil structure and generation of dust. All excavated material will, where possible

appendix 22.3		
LS_27	Wastewater drainage from all site offices and construction facilities will be contained and disposed of in an	Construction
	appropriate manner to prevent water pollution and in accordance with the relevant statutory requirements.	
LS_28	During the operational phase, rainwater from the roofs and roads will be conveyed directly to a surface water	Operational
	drainage system (designed following SUDS principles), which will include a petrol interceptor, a ponds, swales	
	and rain gardens, and attenuation tanks.	
LS_29	Foul water from the proposed development will be pumped to Ringsend WWTP. This treatment facility is	Operational
	currently operating at levels in excess of its intended design capacity and is therefore, not in compliance with	
	the European Union's Urban Wastewater Treatment Directive. Irish Water have begun to upgrade the current	
	infrastructure to achieve compliance with the Urban Wastewater Treatment Directive (91/271/EEC), with	
	aims to have these works completed in 2025.	
LS_30	Implementation of appropriate waste management practises to minimise leachate into the ground.	Operational

Mitigation/ Monitoring No.	Description of Mitigation/Environmental Commitment	Phase
	Hydrology (Chapter 10)	
	Mitigation	
H_1	All works in proximity to the Stradbrook Stream will follow best practice guidance, as per the following documents: • Guidelines for the crossing of Watercourses During Construction of National Road Schemes (TII, 2008). • Guidelines on Protection of Fisheries during Construction Works in and adjacent to Waters (IFI, 2016). • C532 Control of water pollution from construction sites: guidance for consultants and contractors (CIRIA, 2001).	Construction
H_2	Double silt fences will be installed along the extent of works adjacent to the Stradbrook Stream to contain any potential silt or sediment run-off.	Construction
H_3	Stockpiling, temporary or otherwise, of construction material or topsoil will be prohibited within 10m of the watercourse, in order to minimize sources of sediment runoff.	Construction
H_4	Site compounds shall not be located within 5m of the Stradbrook Stream, if required in that location, fuel storage, temporary or otherwise, shall be permitted within site compounds areas and not within 10m of the watercourse at these locations.	Construction

Appendix 22.1		
H_5	In order to limit the potential for pollution due to run-off from construction, all run off waters must be directed through sedimentation ponds prior to discharge. These ponds must be in place prior to the main construction works. The purpose of a temporary sedimentation basin/pond is to provide an area where sediment laden runoff is allowed to pond, and suspended solids are allowed to settle.	Construction
H_6	When working in or near the surface water and the application of in-situ materials cannot be avoided, the use of alternative materials such as biodegradable shutter oils shall be used.	Construction
H_7	Any plant operating close to the water will require special consideration on the transport of concrete from the point of discharge from the mixer to final discharge into the delivery pipe (tremie). Care will be exercised when slewing concrete skips or mobile concrete pumps over or near the watercourses.	Construction
H_8	Placing of concrete in or near the watercourses will be carried out only under the supervision of a suitably qualified Environmental Manager.	Construction
H_9	There will be no hosing into surface water drains of spills of concrete, cement, grout or similar materials. Such spills shall be contained immediately, and runoff prevented from entering watercourses.	Construction
H_10	Concrete waste and wash-down water will be contained and managed on site to prevent pollution of the watercourses.	Construction
H_11	On-site concrete batching and mixing activities will only be allowed at the identified construction compound.	Construction
H_12	Washout from concrete lorries, with the exception of the chute, will not be permitted on site and will only take place at the construction compound (or other appropriate facility designated by the supplier).	Construction
H_13	Chute washout will be carried out at designated locations only. These locations will be signposted. The Concrete Plant and all Delivery Drivers will be informed of their location with the order information and on arrival on site.	Construction
H_14	Chute washout locations will be provided with appropriate designated, contained impermeable areas and treatment facilities including adequately sized settlement tanks. The clear water from the settlement tanks shall be pH corrected prior to discharge (which shall be by means of one of the construction stage settlement facilities) or alternatively disposed of as waste in accordance with the Contractor's Waste Management Plan Method statements that are prepared for the works will be reviewed / approved by the Client Project Manager and were necessary the relevant Environmental Specialist. All method statements for works in, near or liable to impact on a waterway must have prior agreement with IFI and NPWS.	Construction
H_15	Surface runoff from the compound will be minimised by ensuring that the paved/ impervious area is minimised. All surface water runoff will be intercepted and directed to appropriate treatment systems	Construction

(settlement facilities and oil trap) for the removal of pollutants and/or silt prior to discharge. The site compound will be fenced off as part of the site establishment period.	
Fuel storage tanks shall have secondary containment provided by means of an above ground bund to capture any oil leakage.	Construction
Storage tanks and associated provision, including bunds, will conform to the current best practice for oil storage and will be undertaken in accordance with Best Practice Guide BPGCS005 – Oil Storage Guidelines (Enterprise Ireland).	Construction
Wastewater drainage from all site offices and construction facilities will be contained and disposed of in an appropriate manner to prevent water pollution and in accordance with the relevant statutory requirements.	Construction
The guidance documents 'Control of Water Pollution from Construction Sites – Guidance for Consultants and Contractors' published by CIRIA (2001) and NRA Guidelines (2006) are to be adhered to due to the close proximity to nearby watercourses.	Construction
Preparation and implementation of a contingency plan for accidental leaks and spillages, in line with the CIRIA	Construction
An adequate supply of spill kits and hydrocarbon adsorbent packs will be stored at each work area. The Site Environmental Manager will maintain an inventory of spill kits on site to ensure all are properly equipped.	Construction
As part of the site Environmental Induction Training all staff will be informed of the spill contingency plan and the location and use of the spill adsorbents.	Construction
Vehicles and equipment will be maintained by a suitably trained person and checked on a regular basis. Daily vehicle and equipment checks will include a visual assessment for oil or lubricant leaks prior to use.	Construction
An appropriate dewatering methodology will be selected for works. This will consider the risk of any ground instability arising from dewater activities to potentially sensitive receptors in proximity to the works area. Where required, discharge from the dewatering process will be passed to a proprietary silt removal system located within the working area before discharge to any watercourses.	Construction
During the operational phase, rainwater from the roofs and roads will be conveyed directly to a surface water drainage system (designed following SUDS principles), which will include a petrol interceptor, a ponds, swales and rain gardens, and attenuation tanks.	Operational
Foul water from the proposed development will be pumped to Ringsend WWTP. This treatment facility is currently operating at levels in excess of its intended design capacity and is therefore, not in compliance with the European Union's Urban Wastewater Treatment Directive. Irish Water have begun to upgrade the current	Operational
	compound will be fenced off as part of the site establishment period. Fuel storage tanks shall have secondary containment provided by means of an above ground bund to capture any oil leakage. Storage tanks and associated provision, including bunds, will conform to the current best practice for oil storage and will be undertaken in accordance with Best Practice Guide BPGCS005 — Oil Storage Guidelines (Enterprise Ireland). Wastewater drainage from all site offices and construction facilities will be contained and disposed of in an appropriate manner to prevent water pollution and in accordance with the relevant statutory requirements. The guidance documents 'Control of Water Pollution from Construction Sites — Guidance for Consultants and Contractors' published by CIRIA (2001) and NRA Guidelines (2006) are to be adhered to due to the close proximity to nearby watercourses. Preparation and implementation of a contingency plan for accidental leaks and spillages, in line with the CIRIA guidance 741 Environmental good practice on site. An adequate supply of spill kits and hydrocarbon adsorbent packs will be stored at each work area. The Site Environmental Manager will maintain an inventory of spill kits on site to ensure all are properly equipped. As part of the site Environmental Induction Training all staff will be informed of the spill contingency plan and the location and use of the spill adsorbents. Vehicles and equipment will be maintained by a suitably trained person and checked on a regular basis. Daily vehicle and equipment checks will include a visual assessment for oil or lubricant leaks prior to use. An appropriate dewatering methodology will be selected for works. This will consider the risk of any ground instability arising from dewater activities to potentially sensitive receptors in proximity to the works area. Where required, discharge from the dewatering process will be passed to a proprietary silt removal system located within the working area before discharge to any watercourses. During

appendix 22.1		
	infrastructure to achieve compliance with the Urban Wastewater Treatment Directive (91/271/EEC), with	
	aims to have these works completed in 2025.	
H_27	Implementation of appropriate maintenance of the Stradbrook Stream watercourse and associated culverts to ensure flow is maintained and risk of flooding is not increased. This will include the removal of blockages	
	and conduct of routine clearing.	

Mitigation/ Monitoring No.	Description of Mitigation/Environmental Commitment	Phase
	Air Quality and Climate (Chapter 11)	
	Mitigation	
AC_1	Hard surface roads will be swept to remove mud and aggregate materials from their surface while any unsurfaced roads will be restricted to essential site traffic.	Construction
AC_2	Any road that has the potential to give rise to fugitive dust must be regularly watered, as appropriate, during dry and/or windy conditions.	Construction
AC_3	Vehicles exiting the site shall make use of a wheel wash facility where appropriate, prior to entering onto public roads.	Construction
AC_4	Vehicles using site roads will have their speed restricted, and this speed restriction must be enforced rigidly. On any un-surfaced site road, this will be 20 kph.	Construction
AC_5	Public roads outside the site will be regularly inspected for cleanliness and cleaned as necessary	Construction
AC_6	Material handling systems and site stockpiling of materials will be designed and laid out to minimise exposure to wind. Water misting or sprays will be used as required if particularly dusty activities are necessary during dry or windy periods.	Construction
AC_7	During movement of materials both on and off-site, trucks will be stringently covered with tarpaulin at all times. Before entrance onto public roads, trucks will be adequately inspected to ensure no potential for dust emissions.	Construction
AC_8	The prevention of on-site or delivery vehicles from leaving engines idling, even over short periods.	Construction
AC_9	Minimising waste of materials due to poor timing or over ordering on site will aid to minimise the embodied carbon footprint of the site.	Construction

Mitigation/ Monitoring No.	Description of Mitigation/Environmental Commitment	Phase
	Noise and Vibration (Chapter 12)	
	Mitigation Mitigation	
N_1	Noise Control at Source If replacing a noisy item of plant is not a viable or practical option, consideration will be given to noise control "at source". This refers to the modification of an item of plant or the application of improved sound reduction methods in consultation with the supplier. For example, resonance effects in panel work or cover plates will be reduced through stiffening or application of damping compounds; rattling and grinding noises can often be controlled by fixing resilient materials in between the surfaces in contact. Referring to the potential noise generating sources for the works under consideration, the following best practice migration measures will be implemented: • The lifting of bulky items, dropping and loading of materials will be restricted to normal working hours. • Mobile plant should be switched off when not in use and not left idling. • For piling plant, noise reduction can be achieved by enclosing the driving system in an acoustic shroud. • For concrete mixers, control measures will be employed during cleaning to ensure no impulsive hammering is undertaken at the mixer drum. • For all materials handling ensure that materials are not dropped from excessive heights, lining drops chutes and dump trucks with resilient materials. • Demountable enclosures can also be used to screen operatives using hand tools and will be moved around site as necessary. • All items of plant will be subject to regular maintenance. Such maintenance can prevent unnecessary increases in plant noise and can serve to prolong the effectiveness of noise control measures.	Construction

N_2	Piling		Construction
	•	Piling is the construction activity which is most likely to cause disturbance. General guidance in relation to piling is outlined in the following paragraphs.	
	•	Piling programmes will be arranged so as to control the amount of disturbance in noise and vibration sensitive areas at times that are considered of greatest sensitivity. If piling works are in progress on a	
		site at the same time as other works of construction or demolition that themselves may generate significant noise and vibration, the working programme will be phased so as to prevent unacceptable disturbance at any time.	
	•	Prior to construction the planner, developer, architect and engineer, as well as the local authority, will be made aware of the proposed method of working of the piling contractor. The piling contractor	
		will in turn have evaluated any practicable and more acceptable alternatives that would economically achieve, in the given ground conditions, equivalent structural results.	
		On typical piling sites the major sources of noise are essentially mobile and the noise received at any control points will therefore vary from day to day as work proceeds. The duration of piling works is typically relatively short in relation to the length of construction work as a whole, and the amount of time spent working near to noise sensitive areas can represent only a part of the piling period.	
		Noise reduction can be achieved by enclosing the driving system in an acoustic shroud. For steady continuous noise, such as that generated by diesel engines, it may be possible to reduce the noise	
		emitted by fitting a more effective exhaust silencer system or utilising an acoustic canopy to replace the normal engine cover. Impact noise when piling is being driven can be reduced by introducing a non-metallic dolly between the hammer and the driving helmet.	
		Screening by barriers and hoardings is less effective than total enclosure but can be a useful adjunct to other noise control measures. For maximum benefit, screens should be close either to the source of noise (as with stationary plant) or to the listener. Removal of a direct line of sight between source	
		and listener can be advantageous both physically and psychologically. In certain types of piling works there will be ancillary mechanical plant and equipment that may be stationary, in which case, care should be taken in location, having due regard also for access routes. When appropriate, screens or enclosures should be provided for such equipment.	

N_3	Screening	Construction
	Screening is an effective method of reducing the noise level at a receiver location and can be used successfully	
	as an additional measure to all other forms of noise control. It is understood that the existing concrete	
	perimeter wall will remain during the construction process and provide a degree of screening.	
	In addition, careful planning of the site layout will also be considered. The placement of site buildings such as	
	offices and stores will be used, where feasible, to provide noise screening when placed between the source and the receiver.	
N_4	Liaison with the Public	Construction
	A designated environmental liaison officer will be appointed to site during construction works. Any noise	
	complaints will be logged and followed up in a prompt fashion by the liaison officer. In addition, where a	
	particularly noisy construction activity is planned or other works with the potential to generate high levels of	
	noise, or where noisy works are expected to operate outside of normal working hours etc., the liaison officer	
	will inform the nearest noise sensitive locations of the time and expected duration of the noisy works.	
N_5	Project Programme	Construction
	The phasing programme will be arranged so as to control the amount of disturbance in noise and vibration	
	sensitive areas at times that are considered of greatest sensitivity. During excavation/ piling or other high	
	noise generating works are in progress on a site at the same time as other works of construction that	
	themselves may generate significant noise and vibration, the working programme will be phased so as to	
	prevent unacceptable disturbance at any time	
N_6	Monitoring	Construction
	Construction noise monitoring will be undertaken at periodic sample periods at the nearest noise sensitive	
	locations to the development works to check compliance with the construction noise criterion. Noise	
	monitoring will be conducted in accordance with the International Standard ISO 1996: 2017: Acoustics –	
	Description, measurement and assessment of environmental noise.	
	Vibration monitoring stations will continually log vibration levels using the Peak Particle Velocity parameter	
	(PPV, mm/s) in the X, Y and Z directions, in accordance with BS ISO 4866: 2010: Mechanical vibration and	
	shock – Vibration of fixed structures – Guidelines for the measurement of vibrations and evaluation of their	
	effects on structures.	

N_7	General Good Practice. General good practice measures include:	Construction
_	 The contractor will appoint a site representative responsible for matters relating to noise. A noise and vibration monitoring specialist will be appointed to periodically carry out independent monitoring of noise and vibration during random intervals and at sensitive locations for comparison with limits and background levels. All ancillary pneumatic percussive tools shall be fitted with mufflers or silences of the type recommended by the manufacturers, and where commercially available, dampened tools and accessories shall be used. 	
N_8	Duct mounted attenuators on the atmosphere side of air moving plant.	Operational
N_9	Splitter attenuators or acoustic louvres providing free ventilation to internal plant areas.	Operational
N_10	Solid barriers screening any external plant.	Operational
N_11	Anti-vibration mounts on reciprocating plant.	Operational
N_12	All mechanical plant items e.g., motors, pumps etc. shall be regularly maintained to ensure that excessive noise generated any worn or rattling components is minimised	Operational
N_13	Any new or replacement mechanical plant items, including plant located inside new or existing buildings, shall be designed so that all noise emissions from site do not exceed the noise limits outlined in this document	Operational

Mitigation/ Monitoring No.	Description of Mitigation/Environmental Commitment	Phase
	Landscape and Visual (Chapter 13)	
	Mitigation	
	No specific mitigation measures required	

bb annum mene		
Mitigation/ Monitoring No.	Description of Mitigation/Environmental Commitment	Phase
	Cultural Heritage and Archaeology (Chapter 14)	
	Mitigation	
CH_1	All topsoil stripping associated with the proposed development will be monitored by a suitably qualified archaeologist. If any features of archaeological potential are discovered during the course of the works further archaeological mitigation may be required, such as preservation in-situ or by record. Any further mitigation will require approval from the National Monuments Service of the DoHLGH.	Construction
CH_2	Prior to the commencement of construction, an underwater wade survey will be carried out on the section of the stream to be affected by the construction of a new access bridge. This will be carried out under licence to the DoHLGH. Dependent on the results of the assessment, further mitigation may be required such as preservation in-situ or by record and/or archaeological monitoring. Any further mitigation will require approval from the National Monuments Service of the DoHLGH.	Construction

Mitigation/ Monitoring No.	Description of Mitigation/Environmental Commitment	Phase
	Architectural Heritage (Chapter 15)	
	Mitigation	
AH_1	Careful location of the apartment blocks so as to retain the spatial centrality of Dalguise House itself and to allow views of the House to visitor as they approach along the historic carriage route, between Blocks D, E & F. The House defines the symmetrical relationship between Blocks F & G and has a direct axial relationship with Block E, the tallest. The new apartment blocks are located at such a distance from the house that its form can be still clearly seen and understood. The same is true of the relationship to the walled garden, in which Block H is pushed east so as to retain the legibility of the broad sweep of the brick wall on its inside face.	Construction
AH_2	The special interest of the landscape of the grounds lies in the retention of half of a large landscaped oval which paired the house with Carrickbrennan House to the west. The eastern half of this oval is retained at Dalguise in the form of the graceful approach road. This route will be retained as the major circulation through	Construction

appendix 22.3		
	the site to the south and this represents a significant retention of heritage significance and mitigation of impact.	
AH_3	Fabric repair works to the two historic lodges the buildings will give rise to positive effects on the architectural heritage of these structures themselves and on the heritage of the Dalguise lands.	Construction
AH_4	Loss of any original fabric from the Dalguise House will be minimal and the removal of non-original fabric will give rise to positive effects.	Construction
AH_5	The provision of long term sustainable use for Dalguise House will also give rise to 'moderate' positive effects architectural heritage.	Construction
AH_6	Works to the fabric of the walled garden will give rise to a positive effect on the architectural heritage of these structures themselves and on the heritage of the Dalguise lands.	Construction
AH_7	Works to the fabric the Stable Yard and Stable buildings will give rise to positive effects on the architectural heritage of these structures themselves and on the heritage of the Dalguise lands.	Construction
AH_8	The provision of long term sustainable use for these structures will also give rise to 'moderate' positive effects architectural heritage	Construction

Mitigation/ Monitoring No.	Description of Mitigation/Environmental Commitment	Phase
	Microclimate – Wind (Chapter 16)	
	Mitigation	
W_1	Porous Mesh Panels to Balconies to Improve Pedestrian Comfort Porous mesh panels improve comfort levels compared with solid panels, as solid panels cause an increase in velocity over them which can cause discomfort. Porous mesh panels allow wind to partially penetrate, leading to reduced velocities. Figures 16.5.1.1, 16.5.1.2 and 16.5.1.3 show contour plots of pedestrian comfort in winter, pedestrian comfort in the summer, and pedestrian distress/safety on the balconies and terraces of the proposed development respectively.	Construction

	Exceptions to the Lawson Comfort and Safety Criteria were observed at high level balconies located on south and west facades, and close to the building corners. These balconies are higher than surrounding buildings and are more exposed to the prevailing winds.	
	Mitigation measures for the balconies will be in form of porous mesh panels (50%-65% porosity) with a height of 1.5-1.8m on the sides of the balconies. This would only be required only for higher level balconies facing the south and west.	
W_2	Soft Landscaping adjacent to Block H Mitigation has been provided in the form of evergreen soft landscaping in the areas between Block H and Dalguise House.	Construction
	With introduction of the recommended mitigation, all pedestrian spaces outlined above will be safe and comfortable for their intended purpose.	

Mitigation/ Monitoring No.	Description of Mitigation/Environmental Commitment	Phase
	Roads and Traffic (Chapter 17)	
	Mitigation	
RT_1	Tracked excavators will be moved to and from the Site on low-loaders and will not be permitted to drive onto the adjacent roadway.	Construction
RT_2	The applicant shall at all times keep all public and private roads and footpaths entirely free of excavated materials, debris and rubbish.	Construction
RT_3	Public roads outside the Site shall be regularly inspected for cleanliness, as a minimum on a daily basis, and cleaned as necessary. A road sweeper will be made available to ensure that public roads are kept free of debris.	Construction
RT_4	The applicant shall be responsible for and make good any damages to existing roads or footpaths caused by his own contractors or suppliers transporting to and from the Site.	Construction

ppendix 22.1		
RT_5	The contractor shall confine his activities to the area of the Site occupied by the works and the builders' compound, as far as practicably possible, during any particular phase of the works.	Construction
RT_6	All construction workers will be encouraged to use public transport, and also to car share where appropriate through the implementation of mobility management practices at the construction stage. On site staff car parking will also be provided to ensure no construction workers will be required to park on adjacent roads or streets.	Construction
RT_7	No daytime or night-time parking of site vehicles or construction staff vehicles will be permitted outside agreed areas.	Construction
RT_8	Construction work will be limited to normal working hours; that are 08.00 – 19.00 on weekdays and 08.00 – 14.00 on Saturdays. All deliveries of materials, plant and machinery to the Site and removals of waste or other material will take place within the permitted hours of work. Vehicle movements will be planned to ensure arrival and departure times are maintained inside the agreed working hours.	Construction
RT_9	Deliveries will be co-ordinated to prevent queuing of vehicles adversely affecting traffic flow and to minimise disruption to local traffic. They will be timed and coordinated to avoid conflict with collection of waste, other deliveries (particularly to adjoining owners), and rush hour traffic. Large deliveries will be scheduled outside peak traffic hours to minimise disruption.	Construction
RT_10	Properly designed and designated access and egress points to the construction site will be used to minimise impact on external traffic.	Construction
RT_11	Firm, level, and well-drained pedestrian walkways will be provided.	Construction
RT_12	Adequate visibility will be provided at the proposed access point to the proposed development off Monkstown Road.	Construction
RT_13	Footpaths will not be blocked resulting in pedestrians having to step onto the carriageway.	Construction
RT_14	The final Construction Traffic Management Plan with be submitted and agreed with the local authority prior to commencement.	Construction
RT_15	A Travel Plan / Mobility Management Plan has been prepared for the proposed development which includes mitigation measures to reduce usage of private cars and increase the use by residents and patrons within the development of more sustainable modes of travel, such as including good cycle parking provision, will further promote the greater use of sustainable travel modes. Successful implementation of the Travel Plan / Mobility Management Plan measures included will reduce the vehicular trip generation from the proposed	Operational

ippendix EE.I		
	development below that included for in the Transport Impact Assessment for the proposed development. For further details refer to the accompanying TIA and MMP.	
RT_16	A Stage 1 Road Safety Audit (RSA) was undertaken on the design to identify any design deficiencies. This has been responded to and the issues raised addressed. A Stage 2 RSA should be undertaken on the Detailed Design to ensure that the final design is in accordance with the TII Road Safety Audit Guidelines (December 2017) prior to the commencement of construction. A Stage 3 post construction and pre-opening of the proposed development in accordance with RSA guidelines to address any potential road safety issues related to the completed scheme.	Operational
RT_17	During the operational phase of the development, it is projected that the adjoining road network can readily accommodate the additional traffic from the proposed development.	Operational
RT_18	The impact on the DART system will be negligible and the impact on the bus system will be accommodated by the ongoing rollout of the BusConnects programme, which is designed to cater for increasing bus patronage across the city.	Operational
RT_19	Wider national, regional and local policy objectives combined with planned investment in sustainable travel modes will further mitigate the impact of the development over time.	Operational

Mitigation/ Monitoring No.	Description of Mitigation/Environmental Commitment	Phase
	Material Assets – Waste (Chapter 18)	
	Mitigation	
WM_1	As previously stated, a project specific RWMP has been prepared in line with the requirements of the requirements of the <i>Best Practice Guidelines for the Preparation of Resource & Waste Management Plans for Construction and Demolition Projects</i> (EPA, 2021), and is included as Appendix 18.1. The mitigation measures outlined in the RWMP will be implemented in full and form part of mitigation strategy for the site. The mitigation measures presented in this RWMP will ensure effective waste management and minimisation, reuse, recycling, recovery and disposal of waste material generated during the demolition, excavation and construction phases of the Proposed Development.	Construction

ppendix 22.1		
	 Prior to commencement, the appointed Contractor(s) will be required to refine / update the RWMP (Appendix 18.1) in agreement with DLRCC and in compliance with any planning conditions, or submit an addendum to the RWMP to DLRCC, detailing specific measures to minimise waste generation and resource consumption, and provide details of the proposed waste contractors and destinations of each waste stream. The contractor will be required to fully implement the RWMP throughout the duration of the proposed construction phase. A quantity of topsoil, sub soil, clay and made ground will need to be excavated to facilitate the Proposed Development. The project engineers, Byrne Looby, have estimated that 68,123m³ of material will require excavation. 	
WM_2	Any suitable excavated material will be temporarily stockpiled for reuse as fill, where possible, with remaining soil to be removed off-site for appropriate reuse, recycling, recovery and / or disposal. Correct classification and segregation of the excavated material is required to ensure that any potentially contaminated materials are identified and handled in a way that will not impact negatively on workers as well as on water and soil environments, both on and off site.	Construction
WM_3	Building materials will be chosen with an aim to 'design out waste'.	Construction
WM_4	On-site segregation of waste materials will be carried out to increase opportunities for off-site reuse, recycling, and recovery. The following waste types, at a minimum, will be segregated: Concrete rubble (including ceramics, tiles, and bricks); Plasterboard; Metals; Glass; and Timber	Construction
WM_5	Left over materials (e.g., timber off-cuts, broken concrete blocks / bricks) and any suitable construction materials shall be re-used on-site, where possible (alternatively, the waste will be sorted for recycling, recovery or disposal).	Construction
WM_6	All waste materials will be stored in skips or other suitable receptacles in designated areas of the site.	Construction

ppendix 22.1		
WM_7	Any hazardous wastes generated (such as chemicals, solvents, glues, fuels, oils) will also be segregated and will be stored in appropriate receptacles (in suitably bunded areas, where required).	Construction
WM_8	A Construction and Demolition Resource & Waste Manager (CDRWM) will be appointed by the main Contractor(s) to ensure effective management of waste during the excavation and construction works.	Construction
WM_9	All construction staff will be provided with training regarding the waste management procedures.	Construction
WM_10	All waste leaving site will be reused, recycled, or recovered, where possible, to avoid material designated for disposal;	Construction
WM_11	All waste leaving the site will be transported by suitably permitted contractors and taken to suitably registered, permitted, or licenced facilities.	Construction
WM_12	All waste leaving the site will be recorded and copies of relevant documentation maintained.	Construction
WM_13	Nearby sites requiring clean fill material will be contacted to investigate reuse opportunities for clean and inert material, if required. If any of the material is to be reused on another site as by-product (and not as a waste), this will be done in accordance with Article 27 of the EC (Waste Directive) Regulations (2011). EPA approval should be obtained prior to moving material as a by-product. However, it is not currently anticipated that Article 27 will be used. These mitigation measures will ensure that the waste arising from the construction phase of the Proposed Development is dealt with in compliance with the provisions of the Waste Management Act 1996 as amended, associated regulations and the Litter Pollution Act 1997 and the 'EMR Waste Management Plan 2015-2021'. It will ensure optimum levels of waste reduction, reuse, recycling and recovery are achieved and will promote more sustainable consumption of resources.	Construction
WM_14	The operator / facilities management company of the site during the operational phases will be responsible for ensuring – allocating personnel and resources as needed – the ongoing implementation of this OWMP, ensuring a high level of recycling, reuse and recovery at the site of the Proposed Development.	Operational
WM_15	Residents in individual houses will be responsible for the implementation of the OWMP with regards to the management of their own waste.	Operational
WM_16	The operator / facilities management company will ensure on-site segregation of all waste materials into appropriate categories, including (but not limited to): Organic waste; Dry Mixed Recyclables;	Operational

ppendix 22.1	Mixed Non-Recyclable Waste;	
	• Glass;	
	 Waste electrical and electronic equipment (WEEE); 	
	 Batteries (non-hazardous and hazardous); 	
	Cooking oil;	
	Light bulbs;	
	 Cleaning chemicals (pesticides, paints, adhesives, resins, detergents, etc.); 	
	 Furniture (and from time-to-time other bulky waste); and 	
	Abandoned bicycles	
WM_17	The operator / facilities management company will ensure that all waste materials will be stored in colour	Operational
	coded bins or other suitable receptacles in designated, easily accessible locations. Bins will be clearly	
	identified with the approved waste type to ensure there is no cross contamination of waste materials.	
WM_18	The operator / facilities management company will ensure that all waste collected from the site of the	Operational
	Proposed Development will be reused, recycled, or recovered, where possible, with the exception of those	
	waste streams where appropriate facilities are currently not available.	
WM_19	The operator / facilities management company will ensure that all waste leaving the site will be transported	Operational
	by suitable permitted contractors and taken to suitably registered, permitted, or licensed facilities.	

Mitigation/ Monitoring No.	Description of Mitigation/Environmental Commitment	Phase
	Material Assets – Built Services (Chapter 19)	
	Mitigation	
BS_1	A method statement for all works to be carried out will be prepared by the contractor and agreed with DLRCC prior to commencement of works to outline what measures are to be taken to ensure there is no loss of service during the works.	Construction
BS_2	Dewatering measures should only be employed where necessary.	Construction
BS_3	Tree-root protection and inclusion zones are proposed where minor services are required for site lighting.	Construction

DC 4	All and a second and a second as a second	Camatanatian
BS_4	All major service routes have been designed to run on one side of the main access avenue, to avoid trees identified for retention. In addition, the proposed basement will be used as a service route between the front part of the site and the rear blocks (H-I)	Construction
BS_5	All new-build service infrastructure is to be designed in accordance with the relevant service provider and asset owner's code of practice, which require due cognisance of the receiving environment. Design depths of proposed infrastructure are to be optimised so that excessive excavations are avoided where possible, and by association a reduction in resultant waste and machinery operation time. It is proposed that products and materials are supplied locally, where practicable and available; in order to reduce carbon footprint of travel and production.	Construction
BS_6	 The following mitigation measures are recommended for the construction phase of the development: Consultation with relevant services providers in advance of works to ensure works are carried out to relevant standards and specifications including procedures to ensure safe working practices are implemented for works in the vicinity of services such as live gas mains, works in the vicinity of overhead electricity lines and live electricity lines and works to distribution watermains. Neighbouring sites are to be advised of construction methodologies in advance of works, in situations which may affect them. Protection in place of all underground services for which diversions are not required. All decommissioned infrastructure will have to be sent to an accepting landfill for disposal. Construction methods used by the contractor are to be tailored to reduce, where possible, dust noise and air pollution; to minimise interference with the environment and the neighbouring areas. Any spoil or waste material generated from the construction process is to be temporarily stored at an approved location on site, before being removed to an accepting licensed waste disposal facility. All new infrastructure is to be installed and constructed to the relevant codes of practice and guidelines. Potable water supply networks and waste water infrastructure are to be pressure tested by an approved method during the construction phase and prior to connection to the public networks, all in accordance with Irish Water Requirements. Connections to the service providers are to be carried out to the approval and / or under the supervision of the Local Authority or relevant utility service provider, prior to commissioning. 	Construction

Appendix 22.1		
	 All new sewers are to be inspected by CCTV survey post construction; to identify any possible physical defects for rectification prior to operational phase. Prior to the commencement of excavations in public areas, all utilities and public services are to be identified and checked; to ensure that adequate protection measures are implemented to minimise the risk of service disruption. All excavations within the public area are to be back-filled in a controlled manner and surface reinstated to the satisfaction of the Local Authority. Where possible, trenchless techniques should be used for the placement of service utilities., to avoid contamination of sub-soils and groundwater. 	
BS_7	An appropriate Remediation Plan should be put into place for the de-commissioning and removal of the existing septic tank on site, in the event that contaminated soils are encountered on site. Further mitigation with regards to the treatment of hazardous and contaminated materials is outlined in Chapter 9 'Land, Soils, Geology and Hydrogeology'.	Construction
BS_8	The design and construction of the required services infrastructure in accordance with the relevant guidelines and codes of practice will in an attempt to mitigate any potential impacts during the operational phase of the development, with the exception of any routine maintenance of the site services. Any additional mitigation measures required for the proposed built services, if required, during the operational phase will be as advised by the relevant service provider.	Operational
BS_9	Use of water conservation measures will be included as part of the design development, including dual flush water cisterns, low flow taps etc.	Operational