

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US

> Tel: (01244) 528700 Fax: (01244) 528701

email: haward encustomers er vices@alsglobal.com

Website: www.alsenvironmental.co.uk

Fehily Timoney 3rd Floor North Park Offices North Park Business Park North Road Dublin Dublin 11

Attention: Daniel Hayden

CERTIFICATE OF ANALYSIS

Date of report Generation:30 June 2021Customer:Fehily TimoneySample Delivery Group (SDG):210623-68Your Reference:P2344

Location: Oxigen Derryarkin

Report No: 603905

We received 3 samples on Wednesday June 23, 2021 and 3 of these samples were scheduled for analysis which was completed on Wednesday June 30, 2021. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By

Contacts (Abunda (Ab

Sonia McWhan
Operations Manager

P2344 SDG: 210623-68 Client Reference: Report Number: 603905 Oxigen Derryarkin Z2770 Superseded Report: Location: Order Number:

Received Sample Overview

ab Sample No(s) 24496498	Customer Sample Ref. SW1	AGS Ref. Depth (m) 0.00 - 0.00	Sampled Date
24496498 24496513	SW2	0.00 - 0.00	22/06/2021 22/06/2021
24496524	SW3	0.00 - 0.00	22/06/2021
	ave had analysis scheduled will be show		
			25
			00
		and the second s	
		ot. Inspection Pu	
		Cilia	
		600	
		1021	
		, , , ,	
	Planning	OZ.	
		SX	
	ins		
	Ola.		
	CITY		
	ON!		
les,			
JILIS			
M			
Hally County			
)`			
		Combailet Chorase With Phalii Offs Course Course	I.

SDG:

P2344 Report Number: Superseded Report: 210623-68 Client Reference: 603905 Location: Oxigen Derryarkin Order Number: Z2770

Results Legend																					\Box
X Test No Determination	Lab Sample N	lo(s)							24496498						24496513					24496524	
Possible	Custome								SW1							SW2					SW3
Sample Types -	Sample Refer	ence							/1							12					/3
S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refere	nce																C	0	j)
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (m)							0.00 - 0.00							0.00 - 0.00	?	0,			0.00 - 0.00
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Containe	r	0.5l glass bottle (ALE227)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)	Vial (ALE297)	0.5l glass bottle (ALE227)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)	Vial (ALE297)	0.5l glass bottle (ALE227)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)
	Sample Ty _l	ре	WS	WS	WS	WS	WS	WS	WS	WS	WS	WS	WS	WS	WS	WS	WS	WS	WS	WS	WS
Alkalinity as CaCO3	All	NDPs: 0 Tests: 3			X					1	9	X							X		
Ammonium Low	All	NDPs: 0 Tests: 3				Х		Ä	,*				Х							X	
Anions by Kone (w)	All	NDPs: 0 Tests: 3			X			X				X							X		
BOD True Total	All	NDPs: 0 Tests: 3		X	4)					Х							X			
COD Unfiltered	All	NDPs: 0 Tests: 3	S	X							х							Х			
Conductivity (at 20 deg.C)	All	NDPs: 0 Tests: 3	0		Х							X							X		
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 3					Х							Х							Х
EPH CWG (Aliphatic) Aqueous GC (W)	All	NDPs: 0 Tests: 3	Х							X							Х				
EPH CWG (Aromatic) Aqueous GC (W)	All	NDPs: 0 Tests: 3	Х							Х							X				
GRO by GC-FID (W)	All	NDPs: 0 Tests: 3							X							X					
Mercury Dissolved	All	NDPs: 0 Tests: 3					Х							Х							Х
Nitrite by Kone (w)	All	NDPs: 0 Tests: 3						Х							Х						
pH Value	All	NDPs: 0 Tests: 3			X							X							X		
Phosphate by Kone (w)	All	NDPs: 0 Tests: 3			X							Х							х		
Suspended Solids	All	NDPs: 0 Tests: 3			X							x		<i></i>	Comhairle Cl Offaly County	nantae Uibh Fh Coundi	aili		х		

PL2 / 22 / 490 21 / 09 / 2022

24496524 County Council, Planning Dept., Inspection Purposes Only SW3 0.00 - 0.00 NaOH (ALE245) Vial (ALE297) WS WS Χ X

Lab Sample No(s) Customer Sample Reference Sample Reference Sylva Customer Sample Reference Sylva Sylva AGS Reference AGS Reference AGS Reference AGS Reference Land Leachate L-Prepared Leachate L-Roof ALEZAS JOHN BOOM Pleastic JOS Glass Stories JOS Glass Somite JOS Gla	SDG: Location:	210623-68 Oxigen Derrya	rkin	Client Order	t Refei r Numl		Z2	344 770					ort N ersed			6	60390)5		
Customer Sample Reference SWI	No Determination	Lab Sample	No(s)						24496498							24496513				
- Soil/Soild NS - Unspecified Solid WS - Ground Water W - Surface Water E - Land Leachate L - Prepared Leachate E - Process Water A - Saline Water E - Trade Effluent S - Treated Sewage E - Recreational Water W - Source Water E - Trade Effluent S - Treated Sewage E - Recreational Water W - Container Container Container Container Container All NDPs: 0 Tests: 3									SW1							SW2				
R Process Water A. Saline Water A. Saline Water E Trade Effluent S Treated Sewage S Untreated Sewage S Untreated Sewage S Untreated Sewage S O.	S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refere	ence																0	6
E - Recreational Water W - Drinking Water Non-regulatory NL - Unspecified Liquid L - Studge - Gas TH - Other Container	PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage	Depth (m	n)						0.00 - 0.00							0.00 - 0.00	9	0,		
Sample Type Sampl	RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Containe	er	0.5l glass bottle (ALE227)	(ALE208) 250ml BOD (ALE212)	500ml Plastic	HNO3 Filtered (ALE204) H2SO4 (ALE244	NaOH (ALE245)	Vial (ALE297)	0.5l glass bottle (ALE227)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	HNO3 Filtered	NaOH (ALE245)	Vial (ALE297)	0.5l glass bottle (ALE227)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244
Tests: 3		Sample Ty	/pe		WS			WS			SW	WS		WS	_	_		WS	WS	
PH CWG (W) All NDPs: 0 Tests: 3 X X	Total Organic and Inorganic Carbon	All				Y				~	5		Y							Y
	TPH CWG (W)	All	NDPs: 0				`						^`							^
			Tests: 3		iil		0	Ř	,	X							X			

	24496524
	SW3
	0.00 - 0.00
NaOH (ALE245)	Vial (ALE297)
WS	WS

OHAN COUNTY COUNCIL, PLANNING DEPT. INERESTION PURPOSES ONN

210623-68 Oxigen Derryarkin SDG: Client Reference: P2344 Location:

Order Number:

Z2770

Report Number: Superseded Report:

603905

Results Legend # ISO17025 accredited.	C	Customer Sample Ref.	SW1	SW2	SW3			
M mCERTS accredited. aq Aqueous / settled sample.								
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Depth (m) Sample Type	0.00 - 0.00 Surface Water (SW)	0.00 - 0.00 Surface Water (SW)	0.00 - 0.00 Surface Water (SW)			
 Subcontracted - refer to subcontractor report accreditation status. 	t for	Date Sampled	22/06/2021	22/06/2021	22/06/2021			
** % recovery of the surrogate standard to chec efficiency of the method. The results of indivi		Sample Time Date Received	23/06/2021	23/06/2021	23/06/2021			
compounds within samples aren't corrected to recovery		SDG Ref	210623-68	210623-68	210623-68			
(F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	24496498	24496513	24496524			
Component	LOD/Units	Method						
Suspended solids, Total	<2 mg/l	TM022	4.65	4.4	3.75			
All II II 7	0 "	711010	#	#	#			
Alkalinity, Total as CaCO3	<2 mg/l	TM043	320 #	314 #	325 #			
BOD, unfiltered	<1 mg/l	TM045	<1	<1	<3			5
BOD, unintered	1 mg/i	1100-10	#	#	#			-60
Organic Carbon, Total	<3 mg/l	TM090	14.7	14.7	15.2			5
	Ů		#	#	#			
Ammoniacal Nitrogen as N (low	<0.01 mg/l	TM099	0.15	0.162	0.162			
level)			#	#	#			
COD, unfiltered	<7 mg/l	TM107	43.6	29.6	42.9		00	
0 1 11 11 0 00 1 0	0.00	T11100	#	#	#			
Conductivity @ 20 deg.C	<0.02 mS/cm	TM120	0.677 #	0.67	0.68 #	_ <		
Arsenic (diss.filt)	ms/cm <0.5 μg/l	TM152	0.953	0.823	0.991			
rusonio (uiss.iiit)	-υ.υ μg/i	i IVI I JZ	0.955	0.023	0.991			
Cadmium (diss.filt)	<0.08 µg/l	TM152	<0.08	<0.08	<0.08			
	ישיין בניינ		#	#	#		<u> </u>	<u> </u>
Chromium (diss.filt)	<1 µg/l	TM152	<1	<1	1.17	V		
			#	#	#)		
Copper (diss.filt)	<0.3 µg/l	TM152	2.27	2.15	5.24			
		=	#	#	#			
Lead (diss.filt)	<0.2 µg/l	TM152	0.367	0.238	0.461			
Nickel (diss.filt)	<0.4 µg/l	TM152	8.51	8.03	9.34			
Nickel (diss.iiit)	νο.4 μg/ι	1101132	0.51 #	#	#			
Selenium (diss.filt)	<1 µg/l	TM152	<1	<1	<1			
(,	"		#	#	#			
Zinc (diss.filt)	<1 µg/l	TM152	11.1	7.43	12.6			
			#	#	#			
Mercury (diss.filt)	<0.01 µg/l	TM183	0.0244	<0.01	0.0272			
Nitrite as NO2	<0.0E mall	TM184	0.095	0.095	0.098			
Nitrite as NO2	<0.05 mg/l	1101104	0.095	0.095	0.096			
Sulphate	<2 mg/l	TM184	69.5	68.9	71.5			
			#					
Chloride	<2 mg/l	TM184	15.1	15.2	15.3			
			#	#	#			
Phosphate (Ortho as P)	<0.02 mg/l	TM184	<0.02	<0.02	<0.02			
NPC / AI	.0.0077	TIMO	4.77	4 77	# #			
Nitrate as N	<0.0677 mg/l	TM184	1.77	1.77	1.83			
pH	<1 pH Units	TM256	7.94	7.95	7.9			
ľ	, 5 01110	200	#	#	#			
	W							
	177							
	<u> </u>							
(2)								
							 	
<i>L</i>								
X								
							-	
		 					 	
						Comhairte Offaly Cou	: Chontas Uibh Fhaili	
						PLAN	nty Coundl NING	
						PL2 / 2	2 / 490	
		_				• • • • •		

PL2 / 22 / 490 21 / 09 / 2022

ALS

SDG: 210623-68 Location: Oxigen Derryarkin

623-68 Client Reference: gen Derryarkin Order Number:

P2344 Z2770 Report Number: Superseded Report: 603905

TPH CWG (W)						_			_
Results Legend # ISO17025 accredited.		Customer Sample Ref.	SW1	SW2	SW3				
M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. Subcontracted - refer to subcontractor report accreditation status. " recovery of the surrogate standard to cheefficiency of the method. The results of indivi	k the	Depth (m) Sample Type Date Sampled Sample Time Date Received	0.00 - 0.00 Surface Water (SW) 22/06/2021 23/06/2021	0.00 - 0.00 Surface Water (SW) 22/06/2021 23/06/2021	0.00 - 0.00 Surface Water (SW) 22/06/2021 23/06/2021				
compounds within samples aren't corrected f recovery (F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix)	or the	SDG Ref Lab Sample No.(s) AGS Reference	210623-68 24496498	210623-68 24496513	210623-68 24496524				
Component GRO Surrogate % recovery**	LOD/Units %		70	102	102				
GRO >C5-C12	<50 µg/l	TM245	<50	<50	<50				0//
Methyl tertiary butyl ether	<3 µg/l	TM245	# <3	# <3	# <3				65
(MTBE) Benzene	<7 μg/l	TM245	# <7	# <7	# <7				5
Toluene	<4 µg/l	TM245	# <4	# <4	# <4		۵	·O:	
Ethylbenzene	<5 µg/l	TM245	# <5	# <5	# <5		0		
m,p-Xylene	<8 µg/l	TM245	# <8	# <8	# <8	•	<u> </u>		
o-Xylene	<3 µg/l	TM245	# <3	<3	<3	:(0)			
Sum of detected Xylenes	<11 µg/l	TM245	<11	<11	** <11	C.C.			
Sum of detected BTEX	<28 µg/l	TM245	<28	<28	<28	0			
Aliphatics >C5-C6	<10 µg/l	TM245	<10	<10	<10) \			
Aliphatics >C6-C8	<10 µg/l	TM245	10	<10	<10				
Aliphatics >C8-C10	<10 µg/l	TM245	<10	<10	<10				
Aliphatics >C10-C12	<10 µg/l	TM245	<10	<10	<10				
Aliphatics >C12-C16 (aq)	<10 µg/l	TM174	<10	<10	<10				
Aliphatics >C16-C21 (aq)	<10 µg/l	TM174	<10	<10	<10				
Aliphatics >C21-C35 (aq)	<10 µg/l	TM174	<10	<10	<10				
Total Aliphatics >C12-C35 (aq)	<10 µg/l	TM174	<10	<10	<10				
Aromatics >EC5-EC7	<10 µg/l	TM245	<10	<10	<10				
Aromatics >EC7-EC8	<10 µg/l	TM245	> <10	<10	<10				
Aromatics >EC8-EC10	<10 µg/l	TM245	<10	<10	<10				
Aromatics >EC10-EC12	<10 µg/l	TM245	<10	<10	<10				
Aromatics >EC12-EC16 (aq)	<10 µg/l	TM174	<10	<10	<10				
Aromatics >EC16-EC21 (aq)	<10 µg/l	TM174	<10	<10	<10				
Aromatics >EC21-EC35 (aq)	<10 µg/l	TM174	<10	<10	<10				
Total Aromatics >EC12-EC35 (aq)	<10 µg/l	TM174	<10	<10	<10				
Total Aliphatics & Aromatics > C5-35 (aq)	<10 µg/l	TM174	19	<10	<10				
Aliphatics >C16-C35 Aqueous	<10 µg/l	TM174	<10	<10	<10				
						Comhairte Offsly Cou	Chontae Uibh Fhaili ity Council		
						PI 2 / 2			

 SDG:
 210623-68
 Client Reference:
 P2344
 Report Number:
 603905

 Location:
 Oxigen Derryarkin
 Order Number:
 Z2770
 Superseded Report:

Table of Results - Appendix

Method No	Reference	Description
TM022	Method 2540D, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part120 1981;BS EN 872	Determination of total suspended solids in waters
TM043	Method 2320B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part109 1984	Determination of alkalinity in aqueous samples
TM045	MEWAM BOD5 2nd Ed.HMSO 1988 / Method 5210B, AWWA/APHA, 20th Ed., 1999; SCA Blue Book 130	Determination of BOD5 (ATU) Filtered by Oxygen Meter on liquids
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser
TM107	ISO 6060-1989	Determination of Chemical Oxygen Demand using COD Dr Lange Kit
TM120	Method 2510B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part 9:1970	Determination of Electrical Conductivity using a Conductivity Meter
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS
TM174	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	Determination of Speciated Extractable Petroleum Hydrocarbons in Waters by GC-FID
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM245	By GC-FID	Determination of GRO by Headspace in waters
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter

NA = not applicable.

offally Country Countr Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

603905

CERTIFICATE OF ANALYSIS

ALS

SDG: 210623-68 Client Reference: P2344 Report Number: Location: Oxigen Derryarkin Order Number: Z2770 Superseded Report:

Test Completion Dates

 SDG:
 210623-68
 Client Reference:
 P2344
 Report Number:
 603905

 Location:
 Oxigen Derryarkin
 Order Number:
 Z2770
 Superseded Report:

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

- 2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 month after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.
- 3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 6. NDP No determination possible due to insufficient/unsuitable sample.
- 7. Results relate only to the items tested.
- 8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.
- 9. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.
- 10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 12. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.
- 14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
- 16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17. **Tentatively Identified Compounds (TICs)** are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

18. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples
§	Sampled on date not provided

19. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Chrysof le	White Asbests
Amosite	Brown Asbestos
Cro d dolite	Blue Asbe stos
Fibrous Act nolite	-
Fib to us Anthop hyll ite	-
Fibrous Tremolite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μ m diameter, longer than 5 μ m and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Standing Committee of Analysts, The Quantification of Asbestos in Soil (2017).

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

