APPENDIX A: SITE CHARACTERISATION FORM

File Reference:
1.0 GENERAL DETAILS (From planning application)
Prefix: Surname:
Address: Site Location and Townland:
5
Number of Bedrooms: Maximum Number of Residents:
Comments on population equivalent
Proposed Water Supply: Mains Private Well/Borehole Group Well/Borehole
2.0 GENERAL DETAILS (From planning application)
Soil Type, (Specify Type):
Subsoil, (Specify Type):
Bedrock Type:
Aquifer Category: Regionally Important Locally Important Poor
Vulnerability: Extreme High Moderate Low
Groundwater Body: Status
Name of Public/Group Scheme Water Supply within 1 km:
Source Protection Area: ZOC SI SO Groundwater Protection Response:
Presence of Significant Sites (Archaeological, Natural & Historical):
Past experience in the area:
Comments:
(Integrate the information above in order to comment on: the potential suitability of the site, potential targets at risk, and/or any potential site restrictions).

Note: Only information available at the desk study stage should be used in this section.

3.0 ON-SITE ASSESSMENT

3.1 Visual Assessm	ent		
Landscape Position:			
Slope:	Steep (>1:5)	Shallow (1:5-1:20)	Relatively Flat (<1:20)
Slope Comment			
Surface Features with	nin a minimum of 250m	(Distance To Features Should Be Note	d In Metres)
Houses:			:003
		aino Dept. Inspe	Silon Pull.
Existing Land Use:			
Vegetation Indicators			
	COL		
Groundwater Flow Di	rection:		
Ground Condition:			
914			
Site Boundaries:			

3.0 ON-SITE ASSESSMENT

3.1 Visual Assessment (contd.)

Roads:
Outcrops (Bedrock And/Or Subsoil):
Surface Water Ponding:
Lakes:
Insp
Beaches/Shellfish Areas:
Wetlands:
Plan.
Karst Features:
CONT
Watercourses/Streams:*
Kally Co

^{*}Note and record water level

3.0 ON-SITE ASSESSMENT

3.1 Visual Assessment (contd.)

Drainage Ditches:*
Springs:*
Inspection Pull
Wells:*
Planning
Ola.
COULD
Comments: (Integrate the information above in order to comment on: the potential suitability of the site, potential targets at risk, the suitability of the site to treat the wastewater and the location of the proposed system within the site).
and the location of the proposed system within the site).
A STATE OF THE STA

^{*}Note and record water level

3.2 Trial Hole (should be a minimum of 2.1m deep (3m for regionally important aquifers))

To avoid any accidental damage, a trial hole assessment or percolation tests should not be undertaken in areas which are at or adjacent to significant sites, (e.g. NHAs, SACs, SPAs, and/or Archaeological etc.), without prior advice from National Parks and Wildlife Service or the Heritage Service.

Depth of trial hole (m):					
Depth from ground surface to bedrock (m) (if present):		pth from grou water table (n			
Depth of water ingress:	Rock typ	De (if present):			65
Date and time of excavation:		Date a	and time of examina	ation:	
Depth of Surface and Subsurface Soil/Subsoil Percolation Texture & Classification	Plasticity and ** dilatancy***	Soil Structure	Density/ Compactness	Colour****	Preferential flowpaths
0.1 m	incill, plan		Set. Ins		

Likely Subsurface Percolation Value:

Likely Surface Percolation Value:

Note: *Depth of percolation test holes should be indicated on log above. (*Enter Surface or Subsurface at depths as appropriate).

^{**} See Appendix E for BS 5930 classification.

^{*** 3} samples to be tested for each horizon and results should be entered above for each horizon.

^{****} All signs of mottling should be recorded.

Control Control Office Planning PLANNING PL2 / 22 / 490 21 / 09 / 2022	
(
3	7

3.2 Iriai Hole (conta.) Evalua	HOH.		21 / 09 / 2022
3.3(a) Subsurface Percolatio	n Test for Subsoil		3503
Step 1: Test Hole Preparation			1190
Percolation Test Hole	1	2	3
Depth from ground surface to top of hole (mm) (A)		, in the second	
Depth from ground surface to base of hole (mm) (B)		5000	
Depth of hole (mm) [B - A]			
Dimensions of hole [length x breadth (mm)]	х	х	х
Step 2: Pre-Soaking Test Hole	s		
Pre-soak start Date Time			
2nd pre-soak Date start Time			
Each hole should be pre-soake	d twice before the test is car	ried out.	
Step 3: Measuring T ₁₀₀			
Percolation Test Hole No.	1	2	3
Date of test			
Time filled to 400 mm			
Time water level at 300 mm			
Time (min.) to drop 100 mm (T ₁₀₀)			
Average T ₁₀₀			

If $T_{100} > 300$ minutes then Subsurface Percolation value >120 – site unsuitable for discharge to ground If $T_{100} \le 210$ minutes then go to Step 4; If $T_{100} > 210$ minutes then go to Step 5;

Step 4: Standard Method (where $T_{100} \le 210$ minutes)

Percolation Test Hole	ו		1					2				3		
Fill no.	Star Time (at 30 mm)	90	Finish Time (at 200 _{mm)}	∆t (r	nin)	Start Time (at 300 mm)	٦ (3	Finish Fime at 200 nm)	∆t (min)	Sta Tim (at 3 mm)	e 00	Finish Time (at 200 mm)	Δt	(min)
1														5
2													Q ₂	
3														
Average ∆t Value														
	Average $\Delta t/4 =$ Average $\Delta t/4 =$ Average $\Delta t/4 =$ [Hole No.1] [Hole No.2] [Hole No.3] [(t_3)								(t ₃)					
Result of To	of Test: Subsurface Percolation Value = (min/25 mm)													
Comments	:							/						
Step 5: Modified Method (where T ₁₀₀ > 210 minutes)														
Percolation Test Hole No.		1				lull.		Percolation Test Hole No.		2				
Fall of water in hole (mm)	Time Factor = T _f	Start Time hh:mm	Finish Time hh:mm	Time of fall (mins) = T _m	K _{fs} = T _f / T _m	T – Value = 4.45 / K _{fs}		Fall of wate in hole (mm		Start Time hh:mm	Finish Time hh:mm	Time of fall (mins) = T _m	K _{fs} = T _f / T _m	T – Value = 4.45 / K _{fs}
300 - 250	8.1							300 - 250	8.1					
250 - 200	9.7							250 - 200	9.7					
200 - 150	11.9							200 - 150	11.9					
150 - 100	14.1							150 - 100	14.1					
Average	T- Valu	е	T- Value	e Hole 1	= (T ₁)			Average	T- Valu	е	T- Valu	e Hole 2	$= (T_2)$	
~(200							Result of	Test: Sub	surface	Percol	ation V	alue =	
Percolation Test Hole No.		3									(min/25	mm)	
Fall of water in hole (mm)	Time Factor = T _f	Start Time hh:mm	Finish Tim§e hh:mm	Time of fall (mins) = T _m	K _{fs} = T _f / T _m	T – Value = 4.45 / K _{fs}		Comment	S:					
300 - 250	8.1													
250 - 200	9.7													
200 - 150	11.9													
150 - 100	14.1													
Average	T- Valu	е	T- Value	e Hole 3	= (T ₂)									

3.3(b) Surface Percolation Test for Soil

Step 1: Test Hole Preparation

Percolation Test H	Hole	1	2	3
Depth from groun to top of hole (mm				
Depth from groun to base of hole (m				
Depth of hole (mn	٦)			60
Dimensions of hollength x breadth		Х	х	N/S
Step 2: Pre-Soak	ing Test Holes	8		
Pre-soak start	Date Time			
2nd pre-soak start	Date Time			
Each hole should	be pre-soaked	d twice before the test is	carried out.	

Step 3: Measuring T ₁₀₀			
Percolation Test Hole No.		2	3
Date of test	₽		
Time filled to 400 mm			
Time water level at 300 mm			
Time to drop 100 mm (T ₁₀₀)			
Average T ₁₀₀			

If $T_{100} > 300$ minutes then Surface Percolation value >90 – site unsuitable for discharge to ground If $T_{100} \le 210$ minutes then go to Step 4; If $T_{100} > 210$ minutes then go to Step 5;

Step 4: Standard Method (where $T_{100} \le 210$ minutes)

Percolation Test Hole	ו		1					2				3		
Fill no.	Star Time (at 30 mm)	e - 00 (Finish Time (at 200 mm)	ΔΤ (ι	min)	Start Time (at 300 mm)	T (a	Finish Z Fime at 200 nm)	AT (min)	Ti	me 300	Finish Time (at 200 mm)	ΔΤ	(min)
1														
2													9	
3 Average ∆ī Value	-													
		age ∆T/4 No.1]	1 =		(T ₁)	Average [Hole No		=	(T ₂		erage ∆T/ ble No.3]	/4 = 		(T ₃)
Result of T	est: Sur	face Pe	ercolatio	on Value	e =			(n	nin/25 m	ım)				
Comments	s:													
								skr.						
Step 5: Mo	dified N	/lethod	(where	T ₁₀₀ > 2	210 mir	nutes))							
Percolation Test Hole No.		1				lUII.		Percolation Test Hole No.			2			
Fall of water in hole (mm)	Time Factor = T _f	Start Time hh:mm	Finish Time hh:mm	Time of fall (mins) = T _m	K _{fs} = T _f / T _m	T – Value = 4.45 / K _{fs}		Fall of water in hole (mm)	Time Factor = T _f	Start Time hh:mm	Finish Time hh:mm	Time of fall (mins) = T _m	K _{fs} = T _f / T _m	T – Value = 4.45 / K _{fs}
300 - 250	8.1							300 - 250	8.1					
250 - 200	9.7		7),					250 - 200	9.7					
200 - 150	11.9							200 - 150	11.9					
150 - 100	14.1							150 - 100	14.1					
Average	T- Valu	e	T- Value	e Hole 1	= (T ₁)			Average	T- Valu	е	T- Valu	ıe Hole 2	$2 = (T_2)$	
_(<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>							Result of	Test: Su	ırface	Percola	tion Val	ue =	
Percolation Test Hole No.	(min/96 mm)													
Fall of water in hole (mm)	Time Factor = T _f	Start Time hh:mm	Finish Time hh:mm	Time of fall (mins) = T _m	K _{fs} = T _f / T _m	T – Value = 4.45 / K _{fs}		Comments	:					
300 - 250	8.1													
250 - 200	9.7													
200 - 150	11.9													
150 - 100	14.1													
Average	T- Valu	e	T- Value	e Hole 3	= (T ₂)									

3.4 The following associated Maps, Drawings and Photographs should be appended to this site characterisation form.

- 1. Discovery Series 1:50,000 Map indicating overall drainage, groundwater flow direction and housing density in the area.
- 2. Supporting maps for vulnerability, aquifer classification, soil, subsoil, bedrock.
- 3. North point should always be included.
- 4. (a) Scaled sketch of site showing measurements to Trial Hole location and
 - (b) Percolation Test Hole locations,
 - (c) wells and
 - (d) direction of groundwater flow (if known),
 - (e) proposed house (incl. distances from boundaries)
 - (f) adjacent houses,
 - (g) watercourses,
 - (h) significant sites
 - (i) and other relevant features.
- 5. Site specific cross sectional drawing of the site and the proposed layout should be submitted.
- 6. Photographs of the trial hole, test holes and site including landmarks (date and time referenced).
- 7. Pumped design must be designed by a suitably qualified person.

¹ The calculated percolation area or polishing filter area should be set out accurately on the site layout drawing in accordance with the code of practice's requirements.

4.0 CONCLUSION of SITE CHARACTERISATION

percolation tests) above and conclude the type of system(s) that to choose the optimum final disposal route of the treated wastev	
Slope of proposed infiltration / treatment area:	
Are all minimum separation distances met?	
Depth of unsaturated soil and/or subsoil beneath invert of grave (or drip tubing in the case of drip dispersal system)	
Percolation test result: Surface:	Sub-surface:
Not Suitable for Development	Suitable for Development
Identify all suitable options	Discharge Route 1
Septic tank system (septic tank and percolation area) (Chapter 7)	CilOl
2. Secondary Treatment System (Chapters 8 and 9) and soil polishing filter (Section 10.1)	Inspe
3. Tertiary Treatment System and Infiltration / treatment area (Section 10.2)	
5.0 SELECTED DWWTS	
Propose to install:	
and discharge to:	
Invert level of the trench/bed gravel or drip tubing (m)	
Site Specific Conditions (e.g. special works, site improvement w	orks testing etc.

Integrate the information from the desk study and on-site assessment (i.e. visual assessment, trial hole and

¹ A discharge of sewage effluent to "waters" (definition includes any or any part of any river, stream, lake, canal, reservoir, aquifer, pond, watercourse or other inland waters, whether natural or artificial) will require a licence under the Water Pollution Acts 1977-90. Refer to Section 2.4.

6.0 TREATMENT SYSTEM DETAILS

SYSTEM TYPE	: Septic	Tank S	ystems	(Chapter	7)
-------------	----------	--------	--------	----------	------------

Tank Capacity (m³)	pacity (m³) Percolation Area		Mounded Percolation Area		
	١	lo. of Trenches	No	o. of Trenches	
	L	ength of Trenches (m)	Le	ength of Trenches (m)	
	li	nvert Level (m)	Inv	vert Level (m)	
SYSTEM TYPE: Secon	ndary Treatm	ent System (Chapter	s 8 and 9) and pol	ishing filter (Section 10	0.1)
Secondary Treatment (Chapter 8)	t Systems rec	eiving septic tank ef	fluent	Packaged Second Treatment System receiving raw was (Chapter 9)	S
Media Type	Area (m²)*	Depth of Filter	Invert Level	Туре	
Sand/Soil					
Soil				Capacity PE	
Constructed Wetland				Sizing of Primary Co	mpartment
Other				m ³	
Polishing Filter*: (Section 10.1) Surface Area (m²)* Option 1 - Direct Discharge Surface area (m²) Option 2 - Pumped Discharge			Option 3 - Gravity Discharge Trench length (m) Option 4 - Low Pressure Pipe Distribution Trench length (m)		
Surface area (m²)	ان		Option 5 - Drip Surface area (m		
SYSTEM TYPE: Tertia	ry Treatment	System and infiltrat	ion / treatment are	ea (Section 10.2)	
treatment demons:		Provide performand demonstrating system required treatment	em will provide	Provide design inform	ation
SIACONU					
DISCHARGE ROUTE:					
Groundwater	Hydraulic L	oading Rate * (I/m².d)		Surface area (m²)	
Surface Water **	Discharge I	Rate (m³/hr)			

 $[\]ensuremath{^{\star}}$ Hydraulic loading rate is determined by the percolation rate of subsoil

^{**} Water Pollution Act discharge licence required

6.0 TREATMENT SYSTEM DETAILS

QUALITY ASSURANCE:
Installation & Commissioning
S S
On-going Maintenance
coection.
O.
7.0 SITE ASSESSOR DETAILS
Company:
Prefix: Surname:
Address:
Qualifications/Experience:
Date of Report:
Date of Fiebora.
Phone: E-mail
Indemnity Insurance Number:
meetining indulation realison.
Signature:

Figure 1. Trial Pit

4 Dec 2021 9:56.56 a.m.

Figure 2. Trial Pit

Figure 3. T – Trial Pit

Figure 4. T – Trial Pit

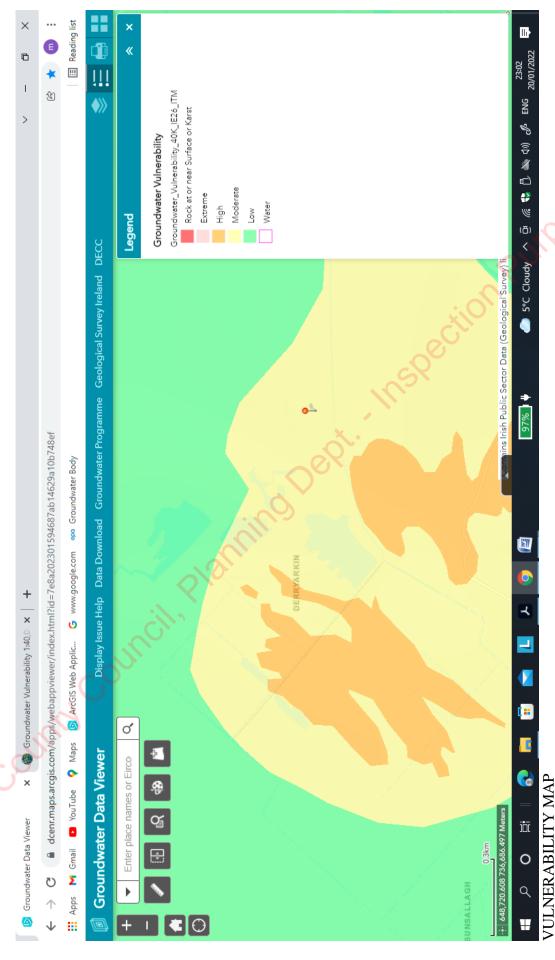
Figure 5. Trial Pit Arisings

Figure 6. T – Test 1

Figure 7. T - Test 2

Figure 8. T – Test 3

Figure 9. P – Test 1


Figure 10. P – Test 2

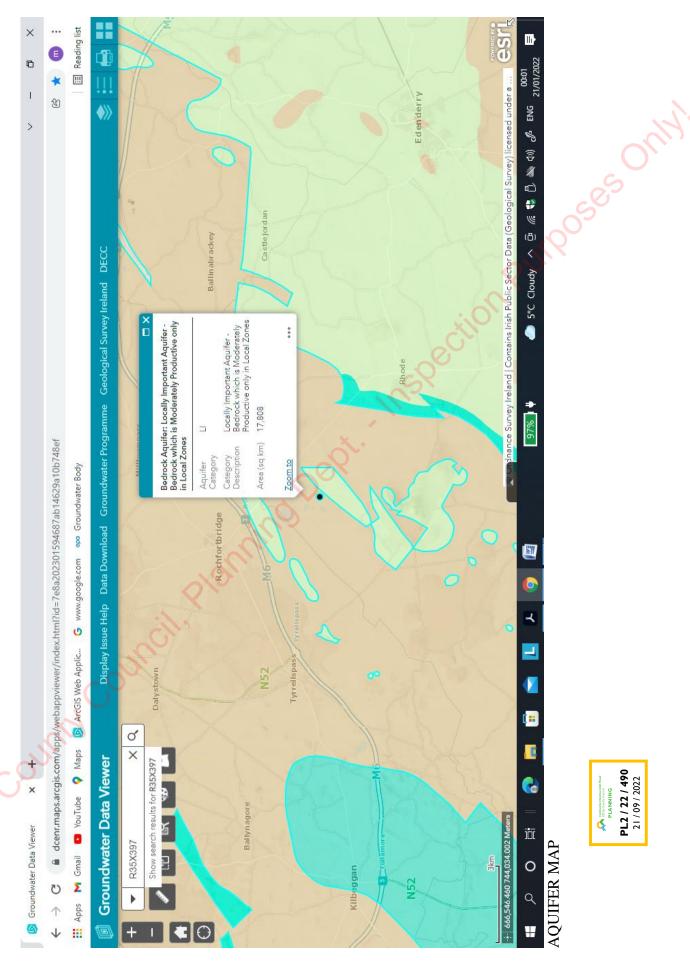
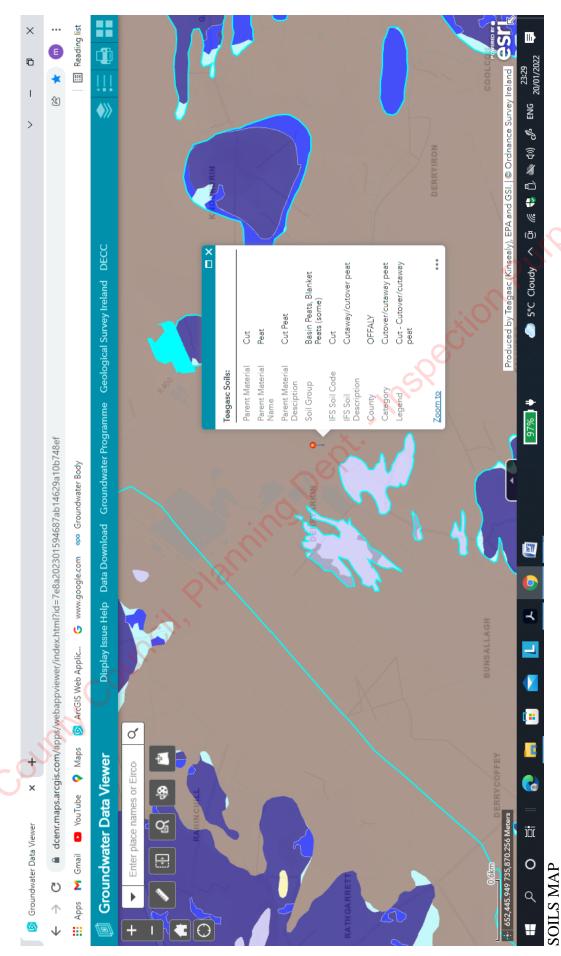
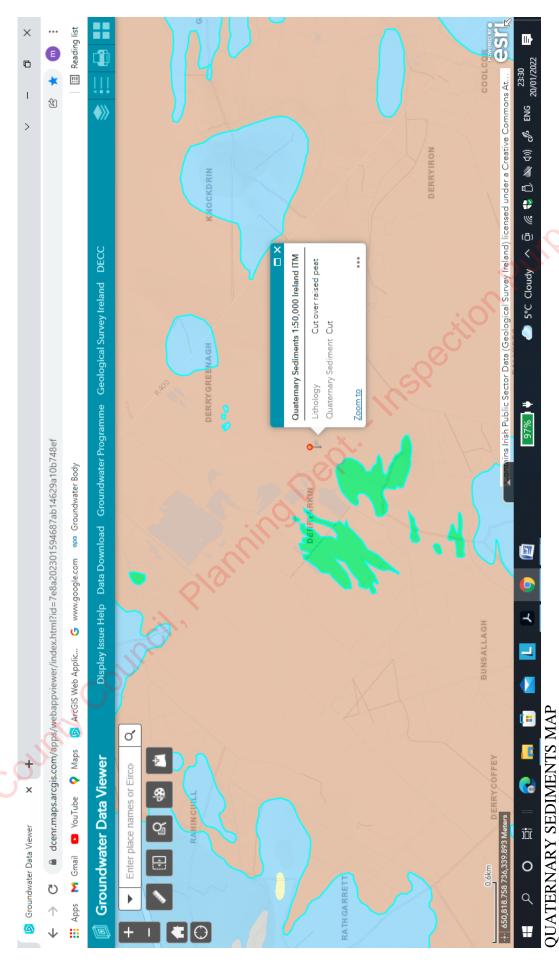

Figure 11. P – Test 3

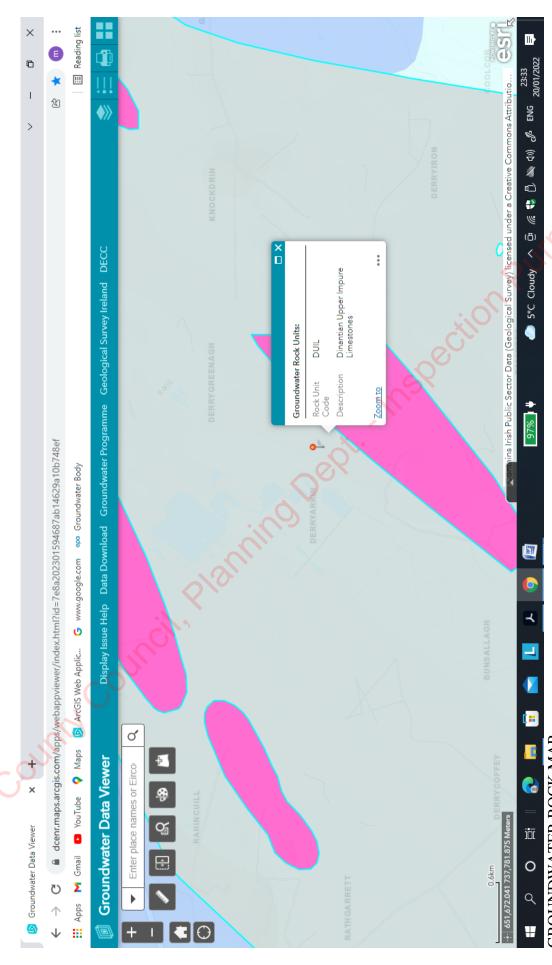
Figure 12. View of Site

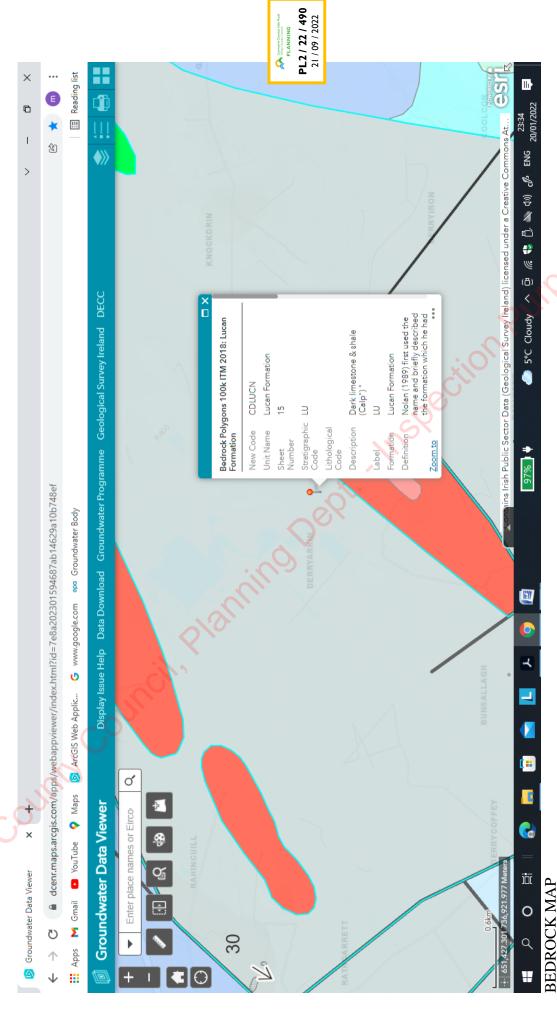


ses only



AQUIFER MAP





GROUNDWATER ROCK MAP

ses only

585 ONIY