

Peat Stability Risk Assessment (PSRA) for Carrig Renewables Wind Farm

000

Client MKO

Document Ref. 22063-R-001-02-PSRA

Project Title Carrig Renewables Wind Farm

Date 14/09/2023

Project Title: Carrig Renewables Wind Farm

Report Title: Peat Stability Risk Assessment (PSRA) for Carrig Renewables

Wind Farm

Document Reference: 22063-R-001-02-PSRA

Client: MKO

Ultimate Client: Carrig Renewable Energy Ltd

Confidentiality Client Confidential

REVISION HISTORY

Rev	Date	Reason for Issue	Originator	Checker	Reviewer	Approver
00	29/05/2023	First Issue	Chris Engleman	Alastair Lewis	Paul Quigley	Paul Quigley
01	10/07/2023	Updated with client comments	Chris Engleman	Alastair Lewis	Paul Quigley	Paul Quigley
02	14/09/2023	Updated with further client comments	Chris Engleman	Stephen Curtis	John O'Donovan	John O'Donovan

DISCLAIMER

Gavin & Doherty Geosolutions Ltd. (GDG) has prepared this report for the sole use of MKO (hereafter the "Client") in accordance with the terms of a contract between the Client and GDG. No other warranty, express or implied, is made as to the professional advice contained in the report or any other services provided by GDG. This report is confidential to the Client and may not be shared with or relied upon by any other party without the prior and express written agreement of GDG. GDG assumes no liability or duty of care to any third party in respect of or arising out of or in connection with this report and/or the professional advice contained within.

This report is the copyright of Gavin & Doherty Geosolutions Ltd. Any unauthorised reproduction or usage (in whole or in part) by any person other than the Client is strictly prohibited.

REVISION SUMMARY

00 29/05/2023 AI	All First issue	PRICE AND SECONDARY OF THE PROPERTY OF THE PRO
01 10/07/2023 Al	Updated with client	comments
02 14/09/2023 AI	Updated with addition	onal client comments
aryplan	Rino	anal client comments

Peat Stability Risk Assessment (PSRA) for Carrig Renewables Wind Farm GDG | Carrig Renewables Wind Farm | 22063-R-001-02-PSRA

TABLE OF CONTENTS

Fire and the Common of	
Executive Summary	Page
1 Introduction	10
 1.1 Background 1.2 Proposed Development 1.3 Overview of Peat Landslides 1.3.1 Peat Landslide Types 1.3.2 Controls of Peat Instability 1.3.3 Pre-failure Indicators 	10 10 12 12 13 14
1.4 Peat Stability Risk Assessment Workflow	14
2 Desk Study	16
 2.1 Bedrock Geology 2.2 Quaternary Sediments 2.3 Soil Composition 2.4 Moisture 2.5 Multi-temporal Aerial / Satellite Imagery 2.6 Hydrogeology 2.7 Tanagraphy 	17 17 17 18 20 22
2.7 Topography2.8 Landslide Mapping	22 23
2.9 Hydrology	24
2.10 Land Cover and Land Use	24
3 Site Reconnaissance and Ground Investigation	24
3.1 Ground Investigation Summary	26
4 Peat Stability Assessment	27
4.1 Main Approaches to Assess Peat Stability4.2 The Factor of Safety (FoS) concept	27 27
4.3 Methodology Adopted and Parameters 4.3.1 Undrained Conditions 4.3.2 Drained conditions	28 29 29
4.4 FoS Results 4.4.1 FoS for Undrained Conditions 4.4.2 FoS for Undrained Condition and Surcharge of 10 kPa 4.4.3 FoS for drained conditions 4.4.4 FoS for Drained Condition and Surcharge of 10 kPa	31 32 32 32 32
4.5 Assessment and Interpretation of FoS Results	32
4.6 Safety Buffer Zones 5. Root Stability Biol: Accessment (BSBA)	33
5 Peat Stability Risk Assessment (PSRA)	34
 5.1 Risk Definition 5.2 General Methods for Risk Assessment 5.3 Hazard Assessment 5.4 Adverse consequences assessment 5.5 Risk calculation 	34 34 36 37

6 7	Geote							
7		echnical Risk Reg	gister				, CV	·
	Concl	usions and reco	mmendations					160. 200
	7.1	Contingency N	/leasures					. 62
Ref	erences	5						,00
App	endix A	A Location and A	Administrative	Limits				99/
App	endix E	B Geology						
App	endix (C Soils						
App	endix [D Moisture						O.
App	endix E	E Hydrogeology						400
App	endix F	F Topography						
App	endix (G Slope Instabili	ty Mapping					
App	endix F	H Hydrology						
App	endix I	Land Cover and	Land Use			X		
App	endix J	Geo-Investigat	ions			O'C		
	J.1	Trial Pit Logs				Q		
App	endix k	K Factor of Safet	ty		10			
App	endix L	L Safety Buffers						
			NO AUTY	0,				
		Plamin	NO AUT	OI.				

LIST OF TABLES

Table 1-1: Peat landslide types.	12
Table 1-1: Peat landslide types. Table 4-1: Factor of Safety limits assumed in this report. Table 4-2: Effective cohesion and friction angle values from the literature Table 5-1: Factors affecting peat stability and hazard.	28
Table 4-2: Effective cohesion and friction angle values from the literature	31
Table 5-1: Factors affecting peat stability and hazard.	5 35
Table 5-2: Consequences considered for the PSRA	36
Table 6-1: Geotechnical risk register	39
Table J- 1: Site reconnaissance of the Turbine 1 site.	63
Table J- 2: Site reconnaissance of the Turbine 2 site.	64
Table J- 3: Site reconnaissance of the Turbine 3 site.	65
Table J- 4: Site reconnaissance of the Turbine 4 site.	66
Table J- 5: Site reconnaissance of the Turbine 5 site.	67
Table J- 6: Site reconnaissance of the Turbine 6 site.	68
Table J- 7: Site reconnaissance of the Turbine 7 site.	69
Table J- 8: Site reconnaissance of the Construction Compound site.	70
Table J- 9: Site reconnaissance of substation site.	71
Table J- 10: Site reconnaissance of the Met mast site.	72
Table K- 1: Example of calculation of Factor of Safety for undrained conditions (with and without	
surcharge).	74
Table K- 2: Example of calculation of Factor of Safety for drained conditions (with and without	
surcharge).	75
Table M- 1: Peat risk assessment at turbine 1.	86
Table M- 2: Peat risk assessment at turbine 2.	87
Table M- 3: Peat risk assessment at turbine 3.	88
Table M- 4: Peat risk assessment at turbine 4.	89
Table M- 5: Peat risk assessment at turbine 5.	90
Table M- 6: Peat risk assessment at turbine 6.	91
Table M- 7: Peat risk assessment at turbine 7.	92
Table M- 8: Peat risk assessment at Construction Compound 1.	93
Table M- 9: Peat risk assessment at Construction Compound 2.	94
Table M- 10: Peat risk assessment at the Substation.	95
Table M- 11: Peat risk assessment at the Met Mast.	96
Table M- 12: Peat risk assessment at PRA 1.	97
Table M- 13: Peat risk assessment at PRA 2.	98
Table M- 14: Peat risk assessment at PRA 3.	99
Table M- 15: Peat risk assessment at PRA 4.	100
Table M- 16: Peat risk assessment at SRA 1.	101
Table M- 17: Peat risk assessment at SRA 2.	102
Table M-18: Peat risk assessment at SRA 3.	103

LIST OF FIGURES

Figure 1-1: Closest recorded landslide to the site boundary (GSI, 2022).	13
Figure 1-2: Workflow of the PSRA methodology for the acceptability of the proposed site layout	
(Scottish Executive, 2017).	16
Figure 2-1: Multitemporal Satellite Imagery (Google Earth, 2010). White dots indicate the propos	ed
WTG layout.	20

♠	
Figure 2-2: Multitemporal Satellite Imagery (Google Earth, 2017). White dots indicate the pro-	oposed
WTG layout.	2
Figure 2-3: Multitemporal Satellite Imagery (Google Earth, 2022). White dots indicate the pro-	oposed
WTG layout.	2
Figure 2-4: Digital Elevation Model for the proposed development, showing the low lying, ge	rerally
flat topography (Bluesky, 2018).	22
Figure 3-1: Harvested peat close to T05.	.0
Figure 3-2: Waterlogged cut-over peat bog 200m to the west of T02.	2!
Figure 3-3: Histogram of peat thickness results across the site.	2
Figure 4-1: Balance of forces in a slope (Scottish Executive, 2017).	2
Figure 5-1: Risk ratings at the proposed turbine locations.	3
Figure 5-2: Risk ratings at the proposed infrastructure element sites.	3
Figure A- 1: Location of the proposed site and administrative limits.	4
Figure B- 1: Bedrock geology 100k (GSI).	47
Figure B- 2: Quaternary sediments (GSI).	48
Figure C- 1: Soils.	49
Figure D- 1: Moisture Index developed from Landsat 8 and the USGS.	50
Figure E- 1: Bedrock Aquifers (GSI).	5:
Figure E- 2: Subsoil Permeability (GSI).	52
Figure F- 1: 5-meter Digital Elevation Model and 1m Contours sourced from BlueSky (2018).	53
Figure F- 2: Slope Angle (°) sourced from BlueSky (2018).	5
Figure G- 1: Landslide from national database (GSI) and rainfall (Met Éireann, 2018)	5!
Figure G- 2: Landslide Susceptibility (GSI).	5
Figure H- 1: Hydrology.	57
Figure I- 1: Land cover map (Corine, 2018).	58
Figure J- 1: Geo-investigation map (1 of 2).	59
Figure J- 2: Geo-investigation map (2 of 2)	60
Figure J- 3: Interpolated peat depth map (1 of 2).	6:
Figure J- 4: Interpolated peat depth map (2 of 2).	6:
Figure K- 1: FoS for undrained conditions (1 of 2).	70
Figure K- 2: FoS for undrained conditions (2 of 2).	7
Figure K- 3: FoS for undrained conditions and surcharge of 1 m (i.e. 10 kPa) (1 of 2).	7
Figure K- 4: FoS for undrained conditions and surcharge of 1 m (i.e. 10 kPa) (2 of 2)	7
Figure K- 5: FoS for drained conditions (1 of 2).	8
Figure K- 6: FoS for drained conditions (2 of 2).	8
Figure K-7: FoS for drained conditions and surcharge of 1 m (i.e. 10 kPa) (1 of 2).	8
Figure K-8: FoS for drained conditions and surcharge of 1 m (i.e. 10 kPa) (2 of 2).	8:
Figure L- 1: Safety buffers (1 of 2).	8
Figure L- 2: Safety buffers (2 of 2).	8
rigure 2.2. Surety buriers (2.01.2).	O

EXECUTIVE SUMMARY

Gavin and Doherty Geosolutions (GDG) was commissioned by MKO to undertake a Peat Stability Risk Assessment (PSRA) for the proposed Carrig Renewables Wind Farm (the "Proposed Development). In accordance with planning guidelines compiled by the Department of the Environment, Heritage and Local Government (DoEHLG), where peat is present on a proposed wind farm development, a peat stability assessment is required.

The purpose of this report is to outline the potential for peat instability at the proposed development, and to outline a quantitative peat stability risk assessment rating in line with the Peat Landslide Hazard and Risk Assessments: Best Practice Guide for Proposed Electricity Generation Developments (PLHRAG, Scottish Government, 2017) for the proposed permanent development footprint.

The findings of the peat stability risk assessment showed that the site has an acceptable margin of safety and low risk of peat failure and is suitable for the proposed renewable energy development.

Consultation with published GSI maps and the observations from site investigations indicate that a large proportion of the site consists of cut-over Raised Peat. Peat is mapped across the site, aside from small areas at the far eastern, southern and western site boundaries. Recorded peat thicknesses range from 0-4.5m across the site, with an average thickness of 1.6m recorded. In total, 40.8% of recorded peat thicknesses were under 1m, and 78.2% were under 2m. Areas of deep peat of >2m in thickness have been recorded near T01, T02, T06, northeast of T03, and between T05 and the proposed construction compound. An area of particularly deep peat between T05 and the construction compound has been avoided during the design process.

A desk study, site walkovers, ground investigation campaigns, stability analyses and a risk assessment were carried out to assess the risks posed by peat failures within the site of the Proposed Development. The risks were assessed following the principles in Peat Landslide Hazard and Risk Assessments: Best Practice Guide for Proposed Electricity Generation Developments (Scottish Executive, 2017).

The stability analysis aims to determine the stability, i.e., the Factor of Safety (FoS) of the peat slopes. The FoS provides a direct measure of the degree of stability of a peat slope. A FoS of less than 1.0 indicates that a slope is unstable; a FoS between 1.0 and 1.29 indicates that a slope is stable but not safe, and an acceptable FoS for slopes is 1.3 or greater.

A risk assessment was carried out considering the FoS value calculated in the stability analysis and other factors that could influence peat stability, considering how damaging a peat slide would be to this particular site's environment.

The site was found to have both acceptable factors of safety and levels of risk against peat instability at all infrastructure locations. Twenty-three small areas, referred to as safety buffers (see Appendix L), have been highlighted and will have restricted construction activities; they should not be used for

these areas

The standard Political Purposes

The standard Politic

Peat Stability Risk Assessment (PSRA) for Carrig Renewables Wind Farm GDG | Carrig Renewables Wind Farm | 22063-R-001-02-PSRA

1 Introduction

1.1 BACKGROUND

Gavin and Doherty Geosolutions (GDG) was commissioned by MKO to undertake a Peat Stability Risk Assessment (PSRA) for the Carrig Renewables Wind Farm site.

Gavin & Doherty Geosolutions Ltd. (GDG) is a specialist geotechnical and marine civil design consultancy, providing innovative engineering solutions to a broad infrastructure problem. Established in 2010, GDG has since grown to more than 200 people. Our aim is to provide an innovative, cost effective and reliable service tailored to meet and exceed our clients' requirements. We strive to attain the highest possible standards and are consistently looking to pioneer and develop new technologies and techniques while ensuring that all relevant design codes and practices are met.

GDG brings together state of the art research and direct industry experience and offers a bespoke engineering service, delivering the most progressive, reliable, and efficient designs across a wide variety of projects and technical areas, including offering forensic engineering and expert witness services to the Insurance and Legal sectors. Our clients include large civil engineering contractors, renewable energy developers, semi-state bodies and engineering and environmental consulting firms.

GDG has been involved in many wind farm developments in both Ireland and the UK at various stages of development, i.e. preliminary feasibility, planning, peat stability assessment, design and construction. In addition to this, the GDG team made up of engineering geologists, geomorphologists, geotechnical engineers and environmental scientists, has developed expertise in landslide hazard mapping, including leading a recent national landslide hazard mapping pilot study which included extensive landslide runout and hazard mapping and calculation in Irish blanket peat.

This Report was written by Alastair Lewis (GDG Head of Infrastructure, MEng (Hons) Civil Engineering) and Chris Engleman (GDG Graduate Geologist, MGeol Geological Sciences). Alastair is GDG's Head of Infrastructure and has twenty-five years' experience in civil engineering and ground engineering. Chris is a Graduate Geologist with GDG and has 4 years' experience in geotechnical engineering and geology. All onsite GDG site walkovers and ground investigation activities on this project have been led by Chris with remote supervision by Alastair.

GDG visited the proposed development on four occasions between July 2022 and March 2023 to conduct site walkovers and ground investigation.

1.2 PROPOSED DEVELOPMENT

The proposed Carrig Renewables Wind Farm is located in Co. Tipperary, approximately 7km southwest of Birr, Co. Offaly. It encompasses all or part of the townlands of Lissernane, Sharragh, Arragh More, Faddan More, Arragh Beg, Coolderry and Cloncorig. The site is approximately 544 hectares in size.

A site location map is provided in Figure A- 1 in Appendix A.

The Proposed Development infrastructure will comprise of the following:

- Construction of 7 wind turbines and associated hardstand areas with the following parameters:
 - o a total tip height of 185m;
 - o hub height 104m; and
 - o the rotor diameter of 162m.
 - Each turbine will be capable of generating 6.2MW, with an overall installed capacity of 43.4MW;
- One 38kV permanent electrical substation including a control building with welfare facilities, all associated electrical plant and equipment, battery energy storage system, security fencing, all associated underground cabling, wastewater holding tank and all ancillary works;
- 1no. meteorological mast with a height of 104 metres, and associated foundation and hard-standing area;
- All associated underground electrical and communications cabling connecting the turbines to the proposed wind farm substation;
- All works associated with the connection of the proposed wind farm to the national electricity grid via underground cabling to the existing Dallow substation;
- Upgrade of existing tracks and roads, provision of a new site access roads and hardstand areas:
- All works associated with the provision of a new site entrance off the L5040 local road;
- Six peat and spoil repository areas
- Two temporary construction compounds;
- Junction accommodation works to facilitate turbine delivery;
- Spoil Management;
- Site Drainage;
- Tree Felling;
- Operational stage site signage; and
- All ancillary works and apparatus.

The Proposed Development has been designed with an operational life of 35 years, at the end of which it can be decommissioned. The Applicant is therefore seeking a ten-year permission and a 35-year operational life from the Proposed Development's commissioning date.

Refer to Chapter 4 of the EIAR for a detailed description of the development.

This report examines the conditions at the Proposed Development Site, located within the EIAR Site Boundary as defined in Chapter 1 of the EIAR and does not analyse the transport delivery route. The transport delivery route has not been included in this report as no peat stability risk is expected along the route. Works on the transport delivery route are not expected to be carried out in peat material and will not require the excavation or placement of significant amounts of material. Very little peat or soft ground has been identified on the grid connection route, as this is located entirely

Ireland

within existing roads and tracks, and therefore this has also not been included in the report. The "Proposed Development Site" or "Site" as referred to in this report is in reference to the core of the Proposed Development as defined in Chapter 4 of the EIAR.

1.3 OVERVIEW OF PEAT LANDSLIDES

1.3.1 PEAT LANDSLIDE TYPES

Spatial distribution

The literature typically refers to two general groups of peat landslides: peat slides and bog bursts. Some descriptions of each type are provided in Table 1-1.

Characteristics Peat slide Bog burst Particularly fluid failures without necessarily a clear scar margin. The **Outstanding characteristic** Shallow translational failures liquefied basal material is expelled through surface tears followed by settlement of the overlying mass. Shear failure along discrete shear Mechanism surfaces, typically at the peat-Subsurface creep, swelling substrate interface Peat depth ≤ 2 m ≥ 1.5 m 2 – 10° (gentle), where deeper peat is 5 - 15° (moderate) Slope angle more likely

Table 1-1: Peat landslide types.

The slope angle within the Proposed Development Site ranges from 0° to 16°. Evidence of past landslides has not been identified within the proposed wind farm site and the near surroundings on the available Google Earth imagery (available from 2010 onwards), nor during the fieldwork.

Scotland, England and Wales

According to the GSI landslide inventory (GSI, 2022), the closest landslide is located around 10 km northeast of the closest turbine (T02) and around 9.7km from the site boundary. The area of the peat slide was not recorded, but it is recorded to have occurred around 1900 and resulted in "an old road (being) swallowed in the bog". Little other information is available, but this location appears to be a relatively flat, deep raised peat bog, and therefore the failure mechanism was likely a bog burst. Figure 1-1 shows the landslide event closest to the site boundary. The locations of the past landslide events identified in the GSI landslide archive are shown in Figure G-1 in Appendix G.

Figure 1-1: Closest recorded landslide to the site boundary (GSI, 2022).

Although there is no evidence of landslides within the Proposed Development Site, this does not necessarily mean that landslides have never occurred at the proposed site location. It is noted that the geomorphological features associated with peat landslides (peat slides and bog bursts) are softened with time through erosion, drying and re-vegetation (Feldmeyer-Christe & Küchler, 2002; Mills, 2003). Additionally, the peat harvesting activities across the proposed site obscure the identification of possible historical landslides.

1.3.2 CONTROLS OF PEAT INSTABILITY

The spatial and temporal occurrence of landslides, including peat landslides, is controlled by conditioning and triggering factors.

The conditioning factors explain the spatial distribution of landslides and are related to the inherent properties of the terrain, such as soil type, slope angle, curvature (convex/concave) of the slopes and drainage.

The triggering factors explain the frequency of landslides. They can be distinguished between fast and slow triggers:

- Fast triggers:
 - Intense rainfall (the most frequent trigger);
 - Snowmelt (very frequent trigger; Warburton, 2022);

- Rapid ground accelerations (e.g. from blasting rock);
- Undercutting of peat by natural processes (e.g. fluvial) or man-made
- Loading the peat.

Slow triggers:

- Low intensity but constant rainfall;
- o Afforestation / Deforestation (wildfires, pollution-induced vegetation change); or
- Weathering (physical, chemical, biological).

Slow triggers can start landslides by themselves and can also act as *preparatory factors* for fast triggers by lowering their threshold to start landslides.

1.3.3 PRE-FAILURE INDICATORS

The presence of conditioning factors and low-pace triggers before failure is often indicated by ground conditions, features and morphologies that can be identified remotely or during the fieldwork by the geomorphologist or through basic monitoring techniques.

According to the updated guidelines provided by the Scottish-Executive (2017), the following critical features are indicative of the susceptibility or proneness to failure in peat environments:

- Presence of historical and recent failure scars and debris;
- Presence of features indicative of tension (e.g. cracks);
- Presence of features indicative of compression (e.g. ridges, thrusts, extrusion features);
- Evidence of peat creep (typically associated with tension and compression features);
- Presence of subsurface drainage networks or water bodies;
- Presence of seeps and springs;
- Presence of artificial drains or cuts down to substrate;
- Presence of drying and cracking features;
- The concentration of surface drainage networks;
- Presence of soft clay with organic staining at the peat and (weathered) bedrock interface;
- Presence of iron pans or similar hardened layers in the upper part of the mineral substrate.

Other evidence of peat instability unrelated to landslides has been considered, namely quaking peat in horizontal areas with very low bearing capacity.

1.4 PEAT STABILITY RISK ASSESSMENT WORKFLOW

GDG has carried out the PSRA for the Proposed Development Site following the principles set out in the *Proposed electricity generation developments: peat landslide hazard best practice guide* (Scottish Executive, 2017). This guide has been used in this report as it provides best practice methods to

identify, mitigate and manage peat slide hazards and associated risks concerning consent applications for electricity generation projects.

Figure 1-2 shows a workflow diagram showing the general methodology for the PSRA. The methodology can be summarised into the following steps:

- 1. Completion of the desk study including:
 - Geology and Quaternary sediments (subsoils);
 - Soils;
 - Moisture;
 - Hydrogeology;
 - Multi-temporal aerial / Satellite imagery;
 - Topography;
 - Landslide inventories and landslide susceptibility;
 - Hydrology;
 - Land cover and land use;
- 2. Relevant academic literature and publications. Undertaking a walkover and fieldwork to:
 - Carry out geo-investigations especially concentrated at the proposed infrastructure areas, including peat probing, hand shear vane testing and trial pitting;
 - Record geological and geomorphological features, including exposures of the soil profile and evidence of peat instability; and
 - Record hydrologic and vegetation features.
- 3. Risk assessment, including:
 - Interpolation of the peat probe values and generation of the peat depth map;
 - Creation of the Factor of Safety (FoS) maps using a deterministic approach (Bromhead, 1986) for drained and undrained conditions;
 - Qualitative hazard assessment by combining the FoS with observations of the peat condition identified both on aerial imagery and during fieldwork.
 - Qualitative consequences assessment;
 - Calculation of the peat landslide risk by multiplying hazards and consequences;
 - O Classification of the risk values into four classes:
 - Negligible;
 - Low;
 - Medium; and

Serious.

4. Proposal of actions required for each infrastructure element.

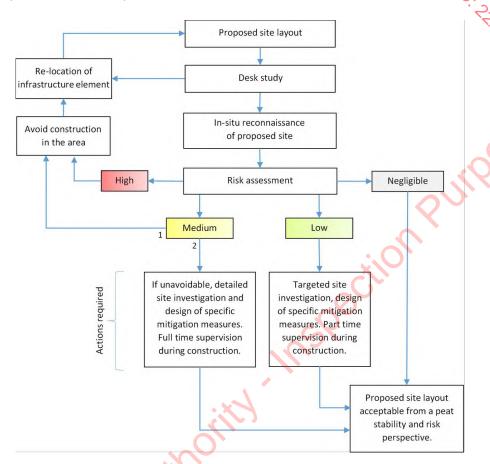


Figure 1-2: Workflow of the PSRA methodology for the acceptability of the proposed site layout (Scottish Executive, 2017).

2 DESK STUDY

For a preliminary site suitability analysis and background knowledge of local peat stability and ground conditions, the following areas have been considered:

- Geology and Quaternary sediments (subsoils);
- Soils;
- 3. Moisture;
- 4. Hydrogeology;
- 5. Multi-temporal aerial / Satellite imagery;
- 6. Topography;
- 7. Landslide inventories and landslide susceptibility;
- 8. Hydrology;
- 9. Land cover and land use;

10. Relevant academic literature and publications.

2.1 BEDROCK GEOLOGY

According to the GSI bedrock geological map of Ireland at 1:100,000 scale (Figure B- 1 in Appendix B) (GSI, 2018a), the bedrock underlying the proposed site is limestone of Carboniferous age. The north part of the site (including T06 and T02) is underlain by Waulsortian Limestone of lower Carboniferous (Tournasian-Visean) age. This lithology is characterised pale grey, crudely bedded or massive limestone.

T01, T03, T04 and T05, along with the eastern cable route, are underlain by grey calcarenitic and oolitic limestones of the Terryglass Formation, of Lower Carboniferous (Dinantian) age. The lithology is characterised by medium to pale grey, very well-sorted calcarenites, which are essentially oolitic. Grain size varies from fine to medium.

The southern part of the site is underlain by micritic limestones of the Lismaline Micrite Formation (Lower Carboniferous) and muddy limestones and calcareous shales of the Slevoir Formation (Lower Carboniferous). Bedrock is not mapped as outcropping at the surface within the site boundary.

As the underlying geology of the site is dominated by limestones, karstic features may be present and present additional risks. One karstic enclosed depression is mapped by the GSI (2015) roughly 900m north of the site boundary close to T06, within the Waulsortian Limestone. The presence of further karstic features unmapped by the GSI, obscured under the quaternary sediments, must not be discounted and should be taken into account in future site investigations.

2.2 QUATERNARY SEDIMENTS

The map of Quaternary sediments at 1:50,000 scale shown in Figure B- 2 in Appendix B (GSI, 2021) shows that the wind farm site is located primarily on cut-over raised peat. Cut-over raised peat consists of discreet, raised, dome-shaped masses of peat which have had part of their peat volume removed by anthropogenic peat harvesting methods.

Alluvium deposits are not mapped within the site boundary; however, it is expected that some form of alluvium would be present adjacent to most of the minor watercourses that cross the site.

Three pockets of Till derived from limestones are mapped along the southern boundary of the Proposed Development, largely corresponding with small ridge features mapped by the GSI as drumlins. An additional area in the eastern part of the site is also mapped as Till derived from limestones. A small patch of gravels derived from limestones is mapped near T04; however, a Trial Pit at this location identified cohesive Glacial Till.

2.3 SOIL COMPOSITION

The Irish soil map at a 1:250,000 scale is shown in Figure C- 1 in Appendix C (EPA, Teagasc, & Cranfield University, 2018). The Proposed Development Site is covered mainly by peat. The east of the Proposed Development Site contains some soils classified as Luvisols of the 1000a and 1000c associations: Luvisols associated with Surface-water Gleys, Stagnic Brown Earths and Calcareous

Brown Earths, on drift with limestones (1000a) and Luvisols associated with histic and humic Groundwater Gleys and calcareous Brown Earths, on drift with limestones and Basin Peat (1000c). It is noted that the presence or absence of peat cover in the regional scale maps (Figure B-2 and Figure C-1) must not be taken as exact. The depth and extent of peat deposits may vary over short distances as a function of local underlying geology, past and ongoing geomorphological activity and management history. Therefore, these maps have been complemented by peat probes and field observations described in Section 3.

2.4 MOISTURE

Water reaching a slope can produce the following processes:

- <u>Lubrication</u>. It reduces the friction along discontinuities (joints or stratification) in rock or soil (Wu, 2003). In clay soils, lubrication is due to the presence of water that produces a repulsion or separation between the clay particles.
- <u>Softening</u>. It mainly affects the physical properties of filler materials in fractures and fault planes in rocks.
- Pore pressure. Water in soil pores exerts pressure on soil particles, changing the effective pressure and the shear strength. The negative impact of pore pressure changes is particularly evident in partially saturated or unsaturated soils, where the increase in moisture content causes the development of a wetting front that converts beneficial negative suction stresses within the capillary structure of the soil to a fully saturated positive pore pressure. When soil is saturated, capillary stresses and adhesion between particles diminish, and, as a result, soil shear strength decreases.
- <u>Confined water pressures</u>. The confined underground water acts as an uplifting pressure on the impermeable layers, decreasing the shear strength and producing hydrostatic pressures on the layers where permeability changes. These lifting stresses can cause material deformation or failure, and pore pressure decreases soil resistance.
- <u>Fatigue failure due to fluctuations in the water table</u>. Some landslides occur in episodes of rain with lower intensity than previous ones. This phenomenon is explained by Santos et al. (1997) as a case of soil fatigue due to cyclical pore pressures. In temperate climates, seasonal variations in temperature can lead to slight variations in the water table. These changes are much more significant in tropical climates (Xue & Gavin, 2008).
- Washing away of cement material. The groundwater flow can remove the soluble cement (e.g. calcium carbonate) from the soil and, thus, decreases the cohesion and the friction angle. This process is usually progressive.
- <u>Density increase</u>. The presence of water in soil pores increases the bulk density and weight
 of the materials in the slope. Therefore, shear stress increases, and the slope safety factor
 decreases.

- <u>Internal hydraulic forces</u>. The movement of groundwater currents creates hydrodynamic pressure on the ground in the direction of flow. This force acts as a destabilizing element on the groundmass and can appreciably decrease the safety factor of the slope. The hydrodynamic or seepage/flow force can also cause the movement of the particles and the destruction of the soil mass (piping).
- <u>Collapse</u>. Collapsible soils (alluvial soils deposited very rapidly and wind soils or loess) are very sensitive to changes in humidity. When water content increases, their volume decreases, and the microstructure collapses.
- <u>Desiccation cracks</u>. Changes in humidity can cause cracking, and these cracks can determine
 the extension and location of the surface of failure and have a very important effect on the
 safety factor or possibility of sliding.
- <u>Piping in clays</u>. Some clayey soils disperse and lose their cohesion when saturated. The result can be the total collapse of the soil structure and the activation of landslides.
- <u>Chemical weathering</u>: Processes of ion exchange, dissolution, hydration, hydrolysis, corrosion, oxidation, reduction and precipitation (Wu, 2003).
- <u>Erosion</u>. The detachment, dragging, and deposition of soil particles by water flows modifies
 the relief and the stresses on slopes and can produce the activation of a landslide, especially
 when erosion undercuts slopes.

The Normalized Difference Moisture Index Colorized GIS service or the United States Geological Survey (USGS) has been used to estimate levels of moisture in the soil across the Proposed Development site. This service is based on the analysis of multispectral Landsat 8¹ OLI images. Using data processing, the raw digital number (DN) values for each Landsat band are transformed to scaled (0 - 10000) apparent reflectance values, and then, the Normalised Difference Moisture Index is obtained using Equation 2.4-1 (Gao, 1996):

NDMI = (Band
$$5^2$$
 – Band 6^3) / (Band 5 + Band 6) Equation 2.4-1

Figure D- 1 in Appendix D illustrates the levels of estimated soil moisture across the Proposed Development Site as calculated by the above method. Wetlands and other vegetated areas with high levels of moisture appear as dark blue. Regions of lower values of moisture are represented as light blue and green. The map indicates that the proposed development site as a whole displays a high moisture content.

³ Short Wave Infrared 1 (SWIR1)

_

¹ Landsat 8 includes 8-band multispectral scenes at 30-meter resolution which are typically used for mapping and change detection of agriculture, soils, moisture, vegetation health, water-land features and boundary studies.

² Near Infrared (NIR)

2.5 MULTI-TEMPORAL AERIAL / SATELLITE IMAGERY

The aerial / satellite imagery used for this report is the ESRI orthophoto (OTF) and the cogle Earth multi-temporal imagery (2010 onwards). This imagery has been used to:

- Identify any evidence of peat failures;
- Identify pre-conditioning factors for failure (where visible at the resolution of the imagery);
- Observe, where possible, vegetation cover, drainage regime and dominant drainage pathways; and
- Identify evidence for land management practices with the potential to influence ground conditions (e.g. burning, artificial drainage, peat cutting and forestry). The advancing peat cutting from 2010 to 2022 onsite can be seen in Figure 2-1 to Figure 2-3.

It is noted that the time-lapse of the available imagery is too short to identify old peat instability evidence that may have been eroded or re-vegetated with time or changes in land management.

Figure 2-1: Multitemporal Satellite Imagery (Google Earth, 2010). White dots indicate the proposed WTG layout.

Figure 2-2: Multitemporal Satellite Imagery (Google Earth, 2017). White dots indicate the proposed WTG layout.

Figure 2-3: Multitemporal Satellite Imagery (Google Earth, 2022). White dots indicate the proposed WTG layout.

2.6 HYDROGEOLOGY

According to the GSI Bedrock Aquifer map (2018), shown in Figure E-1 in Appendix E, much of the site is underlain by a Regionally Important Aquifer – Karstified (diffuse). This aquifer corresponds with the Terryglass Formation and is classed as capable of supporting large public water supplies sufficient to support a large town. The northern and southern boundary areas of the site are mapped as being Locally Important Aquifers which are either generally moderately productive or productive only in local zones. These are classed as aquifers which are capable of supporting smaller public water supplies or group schemes.

The GSI Subsoil Permeability map (2018), shown in Figure E- 2 in Appendix E, indicates that almost the entirety of the site is of medium permeability. A small area close to T04 is mapped as being of high permeability.

A topographic low identified to the west of T02 appears from site reconnaissance and aerial imagery to be persistently waterlogged, indicating high water tables in this area.

2.7 TOPOGRAPHY

A Digital Terrain Model derived from Bluesky (2018) orthophoto data was used for the topographical analysis and is shown in Figure 2-4 and in Figure F- 1 in Appendix F.

The topography of the site is largely low-lying and flat, with low NW-SE oriented ridges mapped by the GSI as drumlins located around the site boundary. The peat bogs on site occupy low-lying, generally flat depressions between the drumlins. The topography of the site can be described as flat to undulating raised bog plain. The elevation varies between 52 m to 85 mOD (meters above ordnance datum). A topographically low area of <60mOD is identified to the west of T02, which remains persistently waterlogged, based on site observations and aerial imagery.

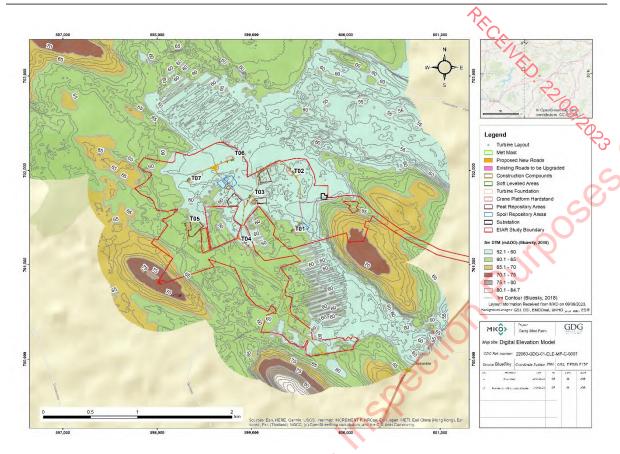


Figure 2-4: Digital Elevation Model for the proposed development, showing the low lying, generally flat topography (Bluesky, 2018).

One additional map has been derived from the digital terrain model (DTM):

• The slope angle map shown in Figure F- 2 in Appendix F shows the slope angles range between 0° and 16.

2.8 LANDSLIDE MAPPING

The GSI landslide inventory (GSI, 2022a), the multi-temporal aerial / satellite imagery, the DEM, the landslide susceptibility map (GSI, 2016), and the rainfall information of Met Éireann data 1981-2010 have been used for this part of the desk study.

Figure G- 1 in Appendix G depicts the spatial relationship between records of previous landslide events (GSI, 2022a, 2022b) and rainfall across Ireland from the Met Éireann (2018) average annual rainfall dataset. The study area is in a region of high rainfall and relatively flat topography, and there is no record of past landslide events from the national landslide database nor from the desk study and fieldwork for this project. However, there is one landslide event in the database within 10km of the eastern boundary of the site, with the closest landslide according to the GSI database occurring on flat, heavily worked peat bog around 10km from the Proposed Development red line boundary. The likely cause of the landslide instabilities is from the extraction of peat from the raised bog.

Figure G- 2 in Appendix G illustrates the landslide susceptibility (GSI, 2016) across the Proposed Development Site. This map was obtained by using an empiric probabilistic method at a regional scale and did provide input into site-specific scale engineering studies. The entirety of the site is

mapped as having low susceptibility due to the low slope angles encountered. The field visits of the geotechnical team support that the site is stable.

2.9 HYDROLOGY

According to the Ordnance Survey Ireland (OSi) shapefile of rivers, lakes and catchments/basins (Figure H- 1 in Appendix H), the site is located within the watershed of the Little Brosna River – a tributary of the River Shannon. One minor watercourse, labelled Faddan Beg by the OSI, crosses the site to the south of T06.

Further details are outlined in the Chapter 9: Hydrology and Hydrogeology of the EIAR.

2.10 LAND COVER AND LAND USE

According to the Corine Land cover map shown in Figure I- 1 in Appendix I, the surrounding landscape of the proposed site comprises mixed forest, peat bog and pastures. Land use within the site is mixed, with peat cutting and pastoral agriculture dominating.

3 SITE RECONNAISSANCE AND GROUND INVESTIGATION

GDG conducted a site reconnaissance as part of the assessment. This comprised four site visits (July 2022, August 2022, November 2022 and March 2023) to record geomorphological features concerning the Proposed Development, peat depths and peat strength. An indication of the site conditions (harvested peat, peat bogs, wetlands and forestry) with flat topography are shown in Figure 3-1 and Figure 3-2.

Figure 3-1: Harvested peat close to T05.

Figure 3-2: Waterlogged cut-over peat bog 200m to the west of T02.

Four ground investigations (GI) were carried out on the site:

- 1. MKO (June 2022): 67 peat probes
- 2. GDG (July 2022): 32 peat probes and 6 hand shear vanes.
- 3. GDG (August 2022): 25 peat probes.
- 4. GDG (November 2022): 9 trial pits.
- 5. MKO (February 2023): 34 peat probes.
- 6. GDG (March 2023): 27 peat probes and 6 trial pits.

In summary, intrusive ground investigations were carried out at a total of 206 locations.

The site investigation locations (Figure J- 1 and Figure J- 2 in Appendix J) considered the following criteria:

- Spatial distribution of the proposed infrastructure;
- Distance between probe points to avoid interpolation of peat depths across large distances;
- Changes in slope angle, as peat depths are likely to be shallower on steeper slopes;
- Changes in vegetation, which can reflect changes in peat condition;
- Changes in hydrological conditions; and
- Changes in land use.

No evidence of any previous landslides or peat instability indicators as described in section 1.3.3 were identified during the walkovers.

A raster map was created in GIS software presenting the interpolated peat depth across a site from the peat probe points using the Inverse Distance Weighted (IDW) method. This interpolated raster of peat depth is represented in Figure J- 3 to Figure J- 4 in Appendix J.

Table J- 1 to Table J- 10 in Appendix J present the observations made at the proposed infrastructure. The trial pit logs can be seen in Appendix A.1.1.1(a)J.1.

3.1 GROUND INVESTIGATION SUMMARY

The ground investigations indicate that the ground conditions at the site comprise predominantly of areas of cut-over raised peat of up to 4.5m in depth, with areas of glacial till to the south, east and west of the site. Trial pit locations (Appendix A.1.1.1(a)J.1) suggest that the peat material is sometimes underlain by granular or cohesive glacial material or weathered rock, or by soft lacustrine silt, or directly on limestone bedrock.

Peat thickness encountered by intrusive investigations across the site varies from 0m to a maximum of 4.5m, with an average of 1.68m recorded. The frequency of different peat thicknesses are shown in Figure 3-3. In total, 40.8% of recorded peat thicknesses were under 1m, and 78.2% were under 2m. Laterally extensive regions of >2m in depth were encountered, particularly in the vicinity of T01, T02, T06, northeast of T03, and between T05 and the proposed construction compound. The depths encountered are considered moderate to deep in places: with probes identifying peat thicknesses of up to 4.5m.

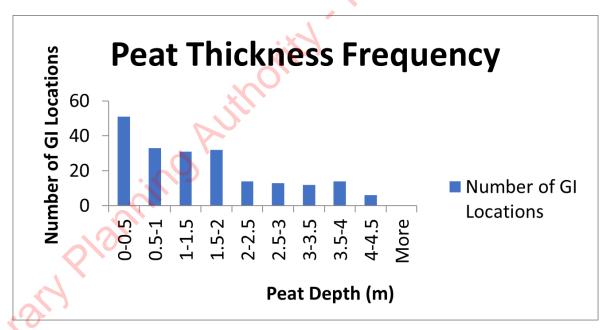


Figure 3-3: Histogram of peat thickness results across the site.

The walkover indicated that the peat is being cut in several areas and has drained significantly, with the observed peat classified as the catotelm. The surface condition of the peat can be described as being varied, with some areas having bare peat at the surface where cutting is active as shown in Figure 3-1, and other areas are vegetated with grass/rushes or forestry, as shown in Figure 3-2.

4 PEAT STABILITY ASSESSMENT

The peat stability assessment is one of the inputs required for the peat hazard assessment and risk calculation. This section presents:

- A review of the general approaches to assess peat stability;
- The concept of Factor of Safety (FoS);
- The methodology adopted for this report and the parameters required; and
- The resulting FoS delineates safety buffers and peat stockpile restricted areas.

The eastern cable route is not included in this analysis.

4.1 MAIN APPROACHES TO ASSESS PEAT STABILITY

The main approaches for assessing peat stability for wind farm developments include the following:

- 1. Qualitative geomorphological judgement; and
- 2. Quantitative assessment:
 - a. Empirical probabilistic approach.
 - b. Physically based deterministic approach (Factor of Safety FoS).

Approach 1 is subjective and thus not adopted for this study. Approach 2a is objective and quantitative but is more appropriate for land planning and decisions making studies at a regional scale. Additionally, the method does not provide an engineering indication of physical stability as Approach 2b does. In this report, the peat stability assessment is carried out by using Approach 2b: deterministic (FoS) approach (Bromhead, 1986).

4.2 THE FACTOR OF SAFETY (FOS) CONCEPT

The factor of safety is a measure of the stability of a slope. For any slope, the degree of stability depends on the balance between the landslide driving forces (weight of the slope) and its inherent shear strength, illustrated in Figure 4-1.

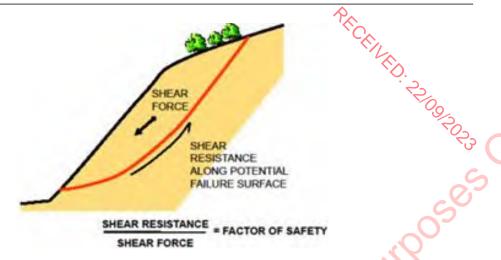


Figure 4-1: Balance of forces in a slope (Scottish Executive, 2017).

Therefore, the factor of safety provides a direct measure of the degree of stability of a slope by the ratio of the shear resistance along a potential surface of failure and the landslide driving forces acting on such surface. Multiple potential surfaces of failure are possible, but the FoS assigned to a slope is that of the surface of failure with the lowest value of FoS.

- FoS < 1 indicates a slope is unstable and prone to fail.
- FoS = 1 indicates a slope is theoretically stable but not safe.
- FoS ≥ 1.3 indicates the acceptable safety threshold. The previous code of practice for earthworks BS 6031:1981 (BSI, 1981) provided advice on the design of earthworks slopes. It stated that for a first-time failure with a good standard of site investigation, the design FoS should be greater than 1.3. This way, the slope is stable and safe.

As a general guide, the FoS limits for peat slopes assumed in this report are summarised in Table 4-1.

Factor of Safety limitsSlope stabilityFoS < 1</td>Unstable $1 \le FoS < 1.3$ Stable but not safeFoS ≥ 1.3 Stable and safe

Table 4-1: Factor of Safety limits assumed in this report.

Eurocode 7 (EC7) (IS EN 1997-1:2005) now serves as the reference document and basis for design geotechnical engineering works. The design philosophy used in EC7 applies partial factors to soil parameters, actions and resistances. Unlike the traditional FoS approach, EC7 does not provide a direct measure of stability, as global factors of safety are not used.

Therefore, to provide a direct measure of the peat stability across the site, the previous FoS method has been used for this assessment, rather than EC7 partial factors.

4.3 METHODOLOGY ADOPTED AND PARAMETERS

The stability of a peat slope is dependent on several factors working in combination, namely the slope angle, the shear strength of the peat, the depth of the peat, the pore water pressure and the

loading conditions. An adverse combination of these factors could potentially result in peat failure. An adverse value of one of the above-mentioned factors alone is unlikely to result in peat failure. The infinite slope model (Skempton and DeLory, 1957) is used to combine these factors to determine a factor of safety for peat sliding in the study area. This model is based on a translational slide, which is a reasonable representation of the dominant mode of movement for peat failures.

To determine the stability of the peat slopes in the study area, undrained (short-term stability during construction) and drained (long-term stability during operation) analyses have been carried out.

4.3.1 UNDRAINED CONDITIONS

The undrained loading condition applies in the short-term during construction and until construction induced pore water pressures dissipate.

Undrained shear strength values (c_u) for peat are used for the total stress analysis. Based on the findings of the Derrybrien failure, undrained loading during construction was found to be the critical failure mechanism.

Among the shear strength values obtained by GDG by using the hand shear vane tests in the proposed site, the lowest registered value was 8 kPa. However, based on GDG's experience in the assessment of similar blanket peats and values reviewed in the literature, a more conservative value of 5 kPa has been adopted for the undrained shear strength (Cu). The shear vane testing was carried out in summer and is not considered to be representative of winter undrained conditions.

The formula used to determine the factor of safety for the undrained condition in the peat (Bromhead, 1986) is as follows:

$$F = \frac{c_u}{\gamma z sin\alpha cos\alpha}$$
 Equation 4.3-1

Where,

F = Factor of Safety;

 c_u = Undrained strength 5 kPa in the study area);

 γ = Bulk unit weight of the material (assumed 10 kN/m³);

z = Depth to failure plane assumed as the depth of peat (this is the interpolated raster of peat depth); and

 α = Slope angle (in each pixel of 1 m. This is obtained from the 1-m DEM provided by the Client).

4.3.2 DRAINED CONDITIONS

The drained loading condition applies in the long-term. The condition examines the effect of the change in groundwater level as a result of rainfall on the existing stability of the natural peat slopes.

A drained analysis requires effective cohesion (c') and effective friction angle (ø') values for the calculations. These values can be difficult to obtain because of the disturbance experienced when sampling peat and the difficulties in interpreting test results due to the excessive strain induced within the peat. To determine suitable drained strength values, a review of published information on peat was undertaken. Table 4-2 shows a summary of the drained parameters used is published

literature. Based on GDG's experience in the assessment of similar raised peats, and the values reviewed in the literature, it was considered appropriately conservative to use design values below the averages, namely c' = 4 kPa and $\phi' = 25^\circ$.

The formula used to determine the factor of safety for the drained condition in the peat (Bromhead, 1986) is as follows:

$$F = \frac{c' + (\gamma z - \gamma_w h_w) \cos^2 \alpha \tan \phi}{\gamma z \sin \alpha \cos \alpha}$$

Equation 4.3-2

Where,

F = Factor of Safety;

c' = Effective cohesion (4 kPa);

 γ = Bulk unit weight of the material (10 kN/m³);

z = Depth to failure plane assumed as the depth of peat (this is the interpolated peat depth);

 γ_w = Unit weight of water (9.81 kN/m³);

 h_w = Height of the water table above the failure plane (= z i.e.at surface level);

 α = Slope angle (in each pixel. This is obtained from the 1-m contour lines provided by the Client);

 ϕ' = Effective friction angle (25°).

Table 4-2: Effective cohesion and friction angle values from the literature

Reference	Cohesion, c' (kPa)	Friction Argle, ø'	
Hanrahan et al. (1967)	5 to 7	36 to 43	
Rowe and Mylleville (1996)	2.5	28	
Landva (1980)	2 to 4	27.1 to 32.5	
Landva (1980)	5 to 6	-	
Carling (1986)	6.5	0	
Farrell and Hebib (1998)	0	38	
Farrell and Hebib (1998)	0.61	31	
Rowe, Maclean and Soderman	3	27	
(1984)		(2	
McGreever and Farrel (1988)	6	38	
McGreever and Farrel (1988)	6	31	
Hungr and Evans (1985)	3.3	-	
Madison et al. (1996)	10	23	
Dykes and Kirk (2006)	3.2	30.4	
Dykes and Kirk (2006)	4	28.8	
Warburton et al (2003)	5	23.9	
Warburton et al (2003)	8.74	21	
Entec (2008)	3.8	36.8	
Komatsu et al (2011)	8	34	
Zhang and O'Kelly (2014)	0	28.9 to 30.3	

Several general assumptions were made as part of the analysis:

- 1. Peat depths are based on the maximum peat depths recorded in each probe from the walkover surveys.
- 2. The slope angles derived from the DEM, as outlined in Section 2.7, accurately represent slope angles on site.
- 3. The surface of failure is assumed to be parallel to the ground surface.
- 4. The peat stability is calculated in pixels of 1 m across the fringe containing information of peat depth and the proposed infrastructure.

Two surcharging conditions are considered for the stability analysis:

- No surcharging load; and
- Surcharging load of 10 kPa, equivalent to 1 m of stockpiled or side-cast peat.

4.4 FoS Results

The factors of safety obtained for the two different conditions (undrained and drained) and for the two surcharge scenarios (no surcharge and 1 m of peat surcharge) are presented in both in table format and map format.

Table K- 1 and Table K- 2 in Appendix K show the FoS calculation process in the proposed turbine sites only for undrained and drained conditions, respectively. The FoS calculation for the rest of the sites, i.e. the proposed substation, temporary construction compound, existing and upgraded access roads, borrow pits and met mast (more than 5000 pixels of 5 m), has been carried out semi-automatically in GIS by implementing Equation 4.3-1 and Equation 4.3-2 in the GIS raster calculator.

4.4.1 FoS FOR UNDRAINED CONDITIONS

The spatial distribution of the FoS values calculated for undrained conditions (no surcharge) is shown in Figure K- 1 and Figure K- 2 in Appendix K. At each turbine location, the construction compound, the substation and met mast location, the pixels exhibit a FoS > 1.3 (green: stable and safe).

4.4.2 FoS for Undrained Condition and Surcharge of 10 kPa

Figure K- 3 and Figure K- 4 in Appendix K depict the spatial distribution of the FoS values calculated for undrained conditions and with a 10 kPa surcharge. The 10kPa simulated the placement of 1m of peat material on the ground surface. In terms of factor of safety results, the undrained condition with the 10kPa surcharge is considered to be the critical stability scenario. Almost all of the pixels are shown to be stable and safe (FoS > 1.3, green), including the entirety of the proposed permanent development footprint. Several additional areas of factor of safety >1 but <1.3 (yellow: stable but not safe), and one area of factor of safety <1 (red: not stable) are identified. These occur away from site infrastructure and are associated with steep turf banks at recent peat cut faces and are not considered to present a significant peat landslide risk.

4.4.3 FoS FOR DRAINED CONDITIONS

The spatial distribution of the FoS values calculated for undrained conditions (no surcharge) is shown in Figure K- 5 and Figure K- 6 in Appendix K. Each of the pixels exhibits a FoS > 1.3 (green: stable and safe).

4.4.4 FoS FOR Drained Condition and Surcharge of 10 kPa

The spatial distribution of the FoS values calculated for undrained conditions (no surcharge) is shown in Figure K- 7 and Figure K- 8 in Appendix K. At all permanent hardstanding infrastructure location, the pixels exhibit a FoS > 1.3 (green: stable and safe).

4.5 ASSESSMENT AND INTERPRETATION OF FOS RESULTS

The interpretation of the factor of safety analysis and accurate assessment of the peat stability conditions is a semi-automated approach which combines the developed polygon areas of the FoS results, areas of risk identified during the site walkovers and potential risk areas identified from the examination of peat depths and site topography. It is noted that the results from all FoS analyses (drained/undrained, with and without surcharge) are used, highlighting any areas indicative as having a FoS of less than 1.3 in the worst-case surcharged condition with 10kPa. These areas were then cross examined with the observations from the site visits and topographic models.

This analysis was used throughout the development process to aid in the siting and design of the proposed development layout including turbines, hardstands, and other key infrastructure locations.

The undrained scenario with a 1m peat surcharge has been considered as the critical scenario, however, the FoS of all elements of the site was examined in both the drained and undrained conditions.

None of the proposed infrastructure locations overlap with any of the areas identified as being ow factor of safety (<1.3), aside from PRA 2. In PRA 2, one 5m x 5m pixel was identified as having a Foso of 1.288. This is likely related to a very localised slope caused by a relict turf bank and is not considered to present a peat stability risk. It is recommended that this area, along with all other peat and spoil repository areas, be levelled prior to construction.

Much of the Proposed Development Site contains flat lying, deep peat with active peat cutting. Steep peat cuttings of <1m generate low factors of safety but are considered to be generally of low landslide risk. Raised bog environments such as this site may be susceptible to bog burst type failures, which can occur at very low slope angles and which may not be fully quantified by the FoS calculation, as they are driven by hydrological factors rather than being slope driven. For this reason, the locations need to be assessed on-site and 'ground truthed' to identify true hazards. GDG site walkovers identified no evidence of bog burst features, however this does not preclude the possibility that these may occur. Further inspection will be required during the detail design and construction stage to inspect for peat instabilities, including bog burst features. This will be carried out by the detail designer and Contractors team. The design team shall develop their own inspection and testing criteria to satisfy and de-risk the possibility peat landslides at these locations.

4.6 SAFETY BUFFER ZONES

From the site reconnaissance and the calculations of the FoS for the peat slopes, a series of safety buffer zones and peat stockpile restriction (PSR) areas are proposed and presented in Figure L- 1 and Figure L- 2 in Appendix L.

Safety Buffer zones are areas identified during the development phase of the wind farm which are highlighted as possessing a potential instability risk. The development of the safety buffer zones is a semi-automated approach which combines the developed polygon areas of the FoS results, areas of risk identified during the site walkovers and potential risk areas identified from the examination of peat depths and site topography. It is noted that the results from all FoS analyses (drained/undrained, with and without surcharge) are used, highlighting areas indicative as having a FoS < 1.3 in the worst-case surcharged condition with 10kPa. This analysis was used throughout the development process to aid in the siting and design of the proposed development layout including turbine, hardstands, and other key infrastructure locations.

The proposed development layout and the safety buffer zone do not overlap, and as construction is not required as part of the proposed development the safety buffer areas should be treated as peat storage and plant restriction areas and construction activities should not be carried out here without further assessment.

Safety buffer zones are outlined in Appendix L, Figure L- 1 to Figure L- 2.

5 PEAT STABILITY RISK ASSESSMENT (PSRA)

A peat stability risk assessment (PSRA) has been carried out at each of the proposed structures taking into consideration the landslide hazard probability and potential consequences at each location. The peat stability factor of safety is the most significant factor in generating a risk rating. The production of a PSRA risk rating for the site access tracks is not possible as they are linear structures which cover significant distances, but the same considerations were used in the design and assessment of the stability of the access road alignment.

5.1 RISK DEFINITION

Risk is the potential or probability of adverse consequences, including economic losses, environmental or social harm or detriment. Risk is expressed as the product of a hazard (e.g. peat landslide) and its adverse consequences (Lee & Jones, 2004; Corominas et al., 2014) (Equation 5.1-1). Some use approximate synonyms and refer to risk as the product of the likelihood and the impact or the product of susceptibility and the exposure.

Risk = (Hazard) x (Adverse Consequences)

Equation 5.1-1

5.2 GENERAL METHODS FOR RISK ASSESSMENT

There are various levels of risk assessment, ranging between:

- Detailed quantitative risk assessments (QRA) where the objective is to generate more precise measures of the risks (e.g. expressing risk as a specific probability of loss). These require a large amount of quantitative input and time; and
- High-level qualitative assessments where the objective is to develop an approximate estimate of the risks, particularly in relative terms (e.g. low, medium and high levels of risk).

Qualitative risk assessments are typically used for PSRA reports, given the availability of information and the time frame. To apply Equation 5.1-1, the quantitative information (e.g. FoS) and the qualitative information (e.g. geomorphic observations relevant to the stability of peat) that determine the hazard and the consequences need to be transformed into subjective ratings. The following sections address the calculation of the two risk components: hazard and consequence.

5.3 HAZARD ASSESSMENT

Landslide hazard is the likelihood or probability of landslide occurrence in each location and a given period. The likelihood or hazard of peat landslides has been determined according to the guidelines for geotechnical risk management given by Clayton (2001), taking into account the approach of MacCulloch (2005) and using the available data from the desk study, site reconnaissance and site investigations.

The hazard is calculated from a variety of weighted factors, including the FoS and thirteen secondary factors related to geomorphic observations, topography, hydrology, vegetation, peat workings,

existing loads and slide history (Appendix M). These secondary factors are difficult to quantify in a stability calculation but may contribute to peat instability.

In accordance with the Scottish Guidance (2017), each hazard factor has been reclassified into one of four classes with rating values ranging from 0 to 3 (Appendix M). A rating of 0 indicates that the hazard factor is not relevant; ratings 1, 2 and 3 indicate low, moderate and high correlation to peat slide hazard, respectively.

Weighting values have been assigned to these factors to reflect their relative importance in peat stability. Both the rating and the weighting values have been assigned according to the expert criteria of the project team and are presented in Appendix M. The hazard score of each factor is the multiplication of its rating value and weight value. These factors and their corresponding weightings are presented in Table 5-1.

The hazard values for a given wind farm element are the sum of the scores of all the hazard factors divided by the maximum hazard value possible to obtain a normalised hazard value ranging from 0 to 1 (see tables in Appendix M). Hazard is grouped into four categories: Negligible, low, medium and high.

Table 5-1: Factors affecting peat stability and hazard.

	Hazard fa	ctors	Role in peat stability	Weight
	Factor of S	afety	This is the most critical factor, including the slope angle, the peat depth, the peat density, the peat cohesion in the drained and undrained conditions, as well as the effective friction angle. This is the complete factor. See Section 4 for further details.	10
		Curvature Plan (across the slope)	This represents the curvature across the slope and the funnelling / dispersion of the runoff.	
	Topography	Curvature Profile (downslope)	This represents the curvature down-slope and, therefore, the capacity of water retention and infiltration. Convex slopes are typically more prone to landslides.	
factors	Hydrology	Distance from watercourse (m)	This tends to affect the likelihood of landslides, especially in sectors where this distance is short.	
Secondary factors		Moisture index (NDMI)	This Landsat-derived factor indicates the water content or moisture of the vegetation, which can be considered as a proxy of the terrain moisture.	1
10		Evidence of piping	The presence of piping is clear evidence of potential peat instability.	
		The direction of existing drainage ditches	Drainage ditches that are aligned cross slope can affect the overall stability of a slope face.	
	Vegetation	Bush	This is an indicator of the type of peat at the site and the hydrological nature of the site.	

		₽	
Hazard factors		Role in peat stability	Weight
	Forestry	The vigour of forestry is another indicator of peat stability, with stunted trees more frequent in unstable sectors.	2 2
Peat workings	Peat cuts presence Peat cuts vs contour lines	This factor evaluates the effect of various peat workings on the stability of the peat. Where the peat cuts parallel the contour lines, the potential instability increases.	109/2023
Existing loads	Roads	Side-cast of solid roads and floating roads pose a load to the peat blanket.	60
	Distance to previous slides (km)	This suggests that landslides at the site are likely if a peat slide has occurred at the site or within a 10-kilometre radius. The weight assigned is doubled the weights for the other secondary factors	50,
Slide history	Evidence of peat movement (e.g. tension cracks, compression features).	This factor evaluates the effect of any existing peat movement indicators on-site, such as tension cracks. The weight assigned is doubled the weights for the other secondary factors	2

5.4 ADVERSE CONSEQUENCES ASSESSMENT

The impacts of peat landslides on the wind farm elements, surrounding environment, and existing assets may typically generate a variety of adverse consequences. This report assessed these consequences qualitatively following the Peat Landslide Hazard and Risk Assessments: Best Practice Guide for Proposed Electricity Generation Developments (Scottish-Executive, 2017).

Table 5-2 summarises the consequences considered for the PSRA of the development.

Table 5-2: Consequences considered for the PSRA

Consequence factors	Description	Weight
Volume of potential peat flow (function of distance from the nearest watercourse and peat depth in the area)	This is the second most heavily weighted factor. It is estimated based on the distance from the nearest defined watercourse and the depth of peat in the area. The longer the distance and the deepest the peat depth, the larger landslide.	3
Downslope features	This factor accounts for the type/shape of downslope features that may hamper or favour the propagation downhill of the peat flow.	1
Proximity from the defined valley (m)	This is the distance from the site to the nearest defined river valley. Rivers close to potential landslide sectors are more vulnerable to a landslide event.	1

S

Consequence factors	Description	Weight
Downhill slope angle	This factor accounts for the runout distance as a matter of	
Downlin slope angle	slope angle.	
Downstream aquatic environment	Reflects the severity of a peat slide event's impact on the	5
Downstream aquatic environment	receiving aquatic environment.	09/3
Public roads in the potential peat	Rates the impact of a peat slide striking a public road.	705
flow path	Rates the impact of a peat slide striking a public road.	V
Overhead lines in the potential	Rates the impact of a peat slide striking a service line.	
peat flow path	rates the impact of a peat slide striking a service line.	C.
Buildings in the potential peat	Rates the impact of a peat slide striking a habitable	60
flow path	structure.	0
Capability to respond (access and	Rates the capability of the site staff to respond to a peat	
resources)	instability event.	

The nine consequence factors considered have been reclassified in the same fashion the hazard factors were reclassified (Appendix M). A rating of 0 indicates that the consequence factor is not relevant and a rating of 3 indicates high consequences.

'Volume of potential landslide' has been assigned a weight of 3 to reflect its relative importance in the potential consequences. The rest of the factors have been assigned a weight of 1. Both the rating and the weighting values have been assigned according to the expert criteria of the project team. The score of each consequence factor is the multiplication of its rating value and its weight value (Appendix M).

The consequences value for a given wind farm element is the sum of the nine consequences scores. This total value is then divided by the maximum consequence value possible to obtain a normalised consequence value ranging from 0 to 1 (see tables in Appendix M). Consequences are grouped into four categories: Negligible, low, medium and high.

5.5 RISK CALCULATION

Risk in each wind farm infrastructure element is calculated with Equation 5.1-1, i.e. multiplying the scores of the hazard and the scores of the consequences. The risk rating ranges between 0 and 1, and the following levels of risk rating have been distinguished (Table 5-1 and Table 5-2):

- <u>High (0.6 to 1)</u>: Avoid project development at these locations. Mitigation is generally not feasible.
- Medium (0.4 to 0.6): Project should not proceed unless risk can be avoided or mitigated at these locations without significant environmental impact to reduce risk ranking to low or negligible.
- Low (0.2 to 0.4): Project may proceed pending further investigation to refine assessment and mitigate hazard through relocation or re-design at these locations.
- <u>Negligible (0 to 0.2)</u>: Project should proceed with monitoring and mitigation of peat landslide hazards at these locations as appropriate.

Figure 5-1: Risk ratings at the proposed turbine locations.

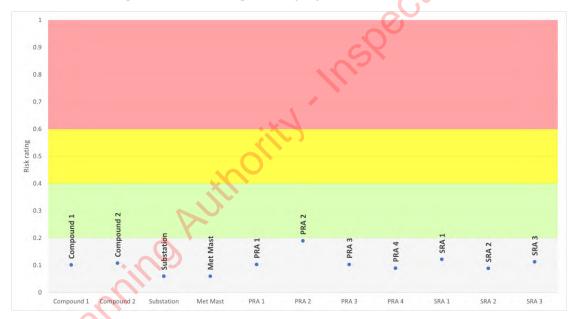


Figure 5-2: Risk ratings at the proposed infrastructure element sites.

Appendix M gathers the risk calculation process at each turbine considering the four scenarios of hazard: Undrained; undrained with a surcharge of 1 m; drained; and drained with a surcharge of 1 m (Table M- 1 to Table M- 11). Figure 5-1 and Figure 5-2 summarise the risk rating obtained at the turbines and compound locations. All the turbines and infrastructure elements are located in sectors of negligible to low risk.

It is stressed that the resulting risk rating does not indicate a probability of landslide occurring; it simply expresses a rating of the potential risk.

6 GEOTECHNICAL RISK REGISTER

This register lists significant potential peat geotechnical hazards and associated risks with respect to construction and operation of the proposed development, and recommended mitigations.

Table 6-1: Geotechnical risk register

Ref.	Risk	Contributing	Mitigation
		factor	0
			The soil parameters are based on the hand shear
			vane test carried out by GDG at each turbine location.
			Shear vane testing was carried out at 0.5m intervals
			through the peat to assess variation within the peat
			body. The interpreted undrained shear strength
			values take into account a conservative reduction
			factor for the influence of the fibres within the peat.
			Extensive sampling ground investigation at
			infrastructure location including trial pitting to assess
			the composition and strength of the peat and collect
			samples for testing.
			The derived values were compared with a literature
			review of the most common general drained and
			undrained parameters for each type of soil and on
	The collapse		the descriptions.
	of the dried	soil strength	The GI completed to date is considered to be
1	peat berm/		thorough and robust for the purposes of the EIAR,
	peat slippage		however it is expected that further testing and
	hear slibbage		assessment of the peat during further ground
		Ο,	investigation campaigns will be required before
	* .		construction. This will allow for a robust
			understanding of the ground conditions and the
			detail design of access roads and structures.
	rd blar		An extensive testing protocol shall be developed by
			Construction stage contractor and the design team.
			These tests shall be observed by a suitably qualified
			engineer and reported to the owner's engineer.
1.0			It would be expected that an observational approach
5			will be required when constructing on peat due to the
			limitations associated with testing and verifying its
			strength and the contractor is required to frequently
			inspect the peat material and providing proof of
			inspection.

			^ _
Ref.	Risk	Contributing factor	Mitigation
2	The collapse of berm/peat slippage	Underestimation of peat depth	Extensive ground investigation including trial pitting and peat probing has been carried out across the site. GI locations have been carried out at location where access was possible. Access was limited to some areas of the site with restriction relating to forestry and terrain limiting coverage. Further GI will be required at these locations during the detail and construction stage to assess peat depths. This will be carried out by the detail designer and Contractors team. The design team shall develop their own testing criteria to satisfy and de-risk the possibility of larger peat depth occurring at these locations.
3	Failure of peat slope due to loading or agitation of existing instability	Failure to identify existing instability/ peat deformation at the site	Assessment of satellite imagery and topographical data for evidence of past landslide events was carried out as part of the desk study, finding no evidence of past instabilities or landslide events within the site area. The Geological Survey of Ireland (GSI) landslide database was examined identifying no landslide events in the local region within 5km of the site, the closest approx. 9.7km from the site boundary and 10km from the nearest turbine, TO2. During the site walkovers the site GDG engineers examined the landscape and the areas surrounding the proposed infrastructure of evidence of instability or past landslide events. No past landslide or instability events was identified. Although there is no evidence of landslides within the Proposed Development Site, this does not necessarily mean that landslides have never occurred at the proposed site location. It is noted that the geomorphological features associated to peat landslides (peat slides and bog bursts) are softened with time through erosion, drying and re-vegetation, particularly given the forestry and peat harvesting activities which have taken place at this site. Access was limited to some areas of the site with restriction relating to dense forestry and terrain limiting visibility and inspection areas — particularly in the vicinity of T2. Further inspection will be required during the detail design and construction stage to inspect for peat instabilities. This will be carried out

			<u></u>
Ref.	Risk	Contributing factor	Mitigation
			by the detail designer and Contractors team. The design team shall develop their own inspection and testing criteria to satisfy and de-risk the possibility of larger peat depth occurring at these locations.
4	The collapse of peat berm/peat slippage	Failure due of excessive loading of peat	The peat stability analysis factor of safety exercise examines the peat in the drained and undrained condition both without and with the addition of a surcharge equating to 1m of peat loading. Areas indicative of a low or moderate FoS result with the 1m peat surcharge within or adjacent to the proposed site infrastructure have been designated as safety buffer zones as outlined in Section 4.6. Requirements for the safe and sustainable storage of peat and spoil material are outlined in the associated Peat and Spoil Management Plan (PSMP) document (GDG, 2023). The requirements and restrictions for peat and spoil management outlined in this document must be adhered to during the constriction stage.
5	Instability of peat slippage	Variation in the ground water conditions at the site	The ground water conditions were examined during the walkovers and within the trial pit locations. Areas of saturated surface peat were identified during the walkovers as outlined in Section 3 and these have been considered in the risk assessment and findings of the report. Water strikes, peat water content and groundwater conditions are noted in the trial pit locations (GDG, 2022). The groundwater conditions and peat moisture content way vary seasonally and/or more frequently with the immediate weather conditions. Long term groundwater monitoring across the site should be considered in further design stage ground investigations and further lab testing of the peat in its in-situ condition will need to be assessed for the construction design. Hydrology of the area should be maintained as far as possible by implementing and maintaining an appropriate drainage system.
6	Instability due to unmapped subsurface	Voids and subsidence due to karstic weathering of the	The existing geological mapping and GI indicate the proposed development sits on limestone bedrock, which may be susceptible to karstic weathering. One karstic feature (an enclosed depression) is mapped

A.

Ref.	Risk	Contributing factor	Mitigation
	karst	underlying	900m from the site boundary. It is possible that
	features	limestone	additional karstic features occur within the site
		bedrock.	boundary but are obscured by overlying quaternary
			sediments. Confirmatory ground investigations to
			investigate the presence and extent of any karstic
			features in proximity to the infrastructure locations
			should be undertaken at design stage.
			03

7 CONCLUSIONS AND RECOMMENDATIONS

Following the guidance of the Scottish-Executive (2017), a review of the published thematic geographic information (e.g. geology, soils, protected areas) and relevant background literature was undertaken for the proposed development. Site reconnaissance and site investigations were carried out to validate and enhance the desk study information. Based on the available data, the fieldwork and GDG's professional judgement, it is concluded that significant peat slides are unlikely on the site with diligent peat management and careful consideration of the peat conditions at the site at the design and construction stage.

A deterministic Factor of Safety was calculated across the proposed element locations, and from this, a robust peat stability risk assessment (PSRA) was performed. The findings of the peat assessment showed that the site has an acceptable margin of safety and is suitable for the proposed development, provided appropriate mitigation measures, as outlined below, are implemented:

- All earthworks shall be designed by a competent geotechnical designer, informed by;
- Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.
- Detailed site investigation to be conducted by experienced geotechnical staff.
- Maintain hydrology of area as far as possible by implementing and maintaining an appropriate drainage system.
- Use of experienced contractors and trained operators to carry out the work.

The peat stability risk for the proposed infrastructure is negligible. However, the results of the factor of safety deterministic calculation and the site walkover allowed for the identification of safety buffer areas outlined in Section 4.6 and shown in Appendix L. These must be adhered to in future stages of the proposed development.

To minimise the risk of construction activity causing potential peat instability the Construction Method Statements (CMSs) for the project will implement in full, but not be limited to, the recommendations above.

Construction works shall follow the recommendations of the peat and spoil management plan: Peat and spoil management plan (GDG, 2023). During construction, it is strongly recommended to carry out frequent monitoring works, especially after heavy rainfall events or prolonged rainfall.

7.1 CONTINGENCY MEASURES

Due to the high factors of safety and negligible risk of peat landslides identified on site, it is not anticipated that peat failure will occur on site. However, in the event of peat failure (e.g. tension cracking, surface rippling, sliding), the following measures should be implemented:

- 1. All activities within the affected area shall cease immediately.
- 2. Where possible action shall be taken to prevent a potential peat slide from reaching any watercourse. In this instance, priority should be given to the one watercourse which crosses the site (>100m to the south of T06 and T07). This will usually take the form of the construction of check barrages on land if this is possible after due consideration of the speed of the failure and accessibility of the terrain.
- 3. All relevant authorities should be notified if a peat slide event occurs on site.
- 4. Localised peat slides which do not present a risk to watercourses shall be stabilised where possible by rock infill and granular material. The area shall then be assessed by competent engineers and further stabilisation measures implemented where necessary.
- 5. In the event of a peat slide which presents a risk to watercourses, a check barrage shall be installed within the watercourse, downstream of the likely point of entry. This shall consist of the placement of granular fill across the watercourse to prevent the passage of peat debris while allowing water flow.

REFERENCES

Bromhead, E. (1986). The stability of slopes. CRC Press.

Carling, P. A. (1986). Peat slides in Teesdale and Weardale, Northern Pennines, July 1983: description and failure mechanisms. *Earth Surface Processes and Landforms*, *11*(2), 193-206.

Clayton, C. R. I. (2001). Managing geotechnical risk: time for change? *Proceedings of the Institution of Civil Engineers-Geotechnical Engineering*, 149(1), 3–11.

Corominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J.-P., Fotopoulou, S., ... others. (2014). Recommendations for the quantitative analysis of landslide risk. *Bulletin of Engineering Geology and the Environment*, 73(2), 209–263.

Dykes, A.P. and Kirk, K.J. (2006). Slope instability and mass movements in peat deposits. In Martini, I. P., Martinez Cortizas, A. and Chesworth, W. (Eds.) Peatlands: Evolution and Records of Environ mental and Climatic Changes. Elsevier, Amsterdam

European Environmental agency (EEA), (2022). European Digital Elevation Model (EU-DEM), version 1.1. https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1?tab=metadata.

EPA, Teagasc, & Cranfield University (2018). Irish soil map 250k. Retrieved from

http://gis.teagasc.ie/soils/downloads.php

Farrell, E. R., & Hebib, S. (1998). The determination of the geotechnical parameters of ganic soils. In *Problematic soils* (pp. 33-36).

Feldmeyer-Christe, E., & Küchler, M. (2002). Onze ans de dynamique de la végétation dans une tourbière soumise à un glissement de terrain. *Bot. Helv, 112*(2), 103–120.

Gao, B.-C. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. *Remote Sensing of Environment*, *58*(3), 257–266.

GDG (2023) Carrig Renewables Wind Farm – Peat and spoil management plan. Report: 22063-R002-00 PMP

Google Earth (2010, 2015, 2020) Multitemporal Satellite Imagery. Retrieved from

GSI (2015) Karst.shp

GSI (2016). Landslide_Susceptibility.shp.

GSI (2018). Bedrock map of Ireland 100k.

GSI (2021). Quaternary geology of Ireland - Sediments map (shapefiles).

GSI (2022a). Landslide_Event_Perimeter.shp.

GSI (2022b). Landslides_DB_29052018.shp.

Hanrahan, E. T. (1967). Shear strength of peat. In *Proceedings of Geotechnical Conference* (Vol. 1, pp. 193-198).

Hungr, O. and Evans, S.G. (1985). An example of a peat flow near Prince Rupert, British Columbia. C anadian Geotechnical Journal, 22.

IS EN 1997 1.2005+AC.2009 - Eurocode 7. Geotechnical design. Part 1 General rules (including Irish National Annex 2007)

Komatsu, J., Oikawa, H., Ogino, T., Tsushima, M., & Igarashi, M. (2011, June). Ring shear test on peat. In *ISOPE International Ocean and Polar Engineering Conference* (pp. ISOPE-I). ISOPE.

Landva, A. O. (1980). Vane testing in peat. Canadian Geotechnical Journal, 17(1), 1-19.

Landva, A. O., & Pheeney, P. E. (1980). Peat fabric and structure. *Canadian Geotechnical Journal*, 17(3), 416-435.

Lee, E. M., & Jones, D. K. C. (2004). *Landslide risk assessment*. Thomas Telford London.

Lindsay, R. A., & Bragg, O. M. (2004). Wind Farms and Blanket Peat: The Bog Slide of 16th October 2003 at Derrybrien, Co. Galway, Ireland. Unpublished report to unspecified clients. London, University of East London.

MacCulloch, F. (2006). Guidelines for the risk management of peat slips on the construction of low volume/low cost roads over peat. The ROADEX II Project.

McGeever J. and Farrell E. (1988). The shear strength of an organic silt. Proc. 2nd Baltic Conf., 1, Tall in USSR.

Met Éireann (2018) - 12 Average annual rainfall (mm) over Ireland for the period 1981-2010.

Mills, A. J. (2003). Peat slides: morphology, mechanisms and recovery. Durham University.

Minerex Environmental Ltd (2008). Construction Phase Environmental Audit Report. Dec. Ref.: 1914-

Rowe, R. K., MacLean, M. D., & Soderman, K. L. (1984). Analysis of a geotextile-reinforced embankment constructed on peat. *Canadian Geotechnical Journal*, *21*(3), 563-576.

Rowe, R. K., & Mylleville, B. L. (1996). A geogrid reinforced embarkment on peat over organic silt: A case history. *Canadian Geotechnical Journal*, *33*(1), 106-122.

Scottish-Executive. (2017). Peat Landslide Hazard and Risk Assessments: Best Practice Guide for Proposed Electricity Generation Developments. Scottish Executive. 69p.

Skempton, A. W., & DeLory, F. A. (1957). Stability of natural slopes in London Clay. In *Proc 4th Int. Conf. On Soil Mechanics and Foundation Engineering, vol. 2.* (pp. 72–78). Rotterdam.

Warburton, J., Higgett, D. and Mills, A. (2003). Anatomy of a Pennine Peat Slide. Earth Surface Processes and Landforms.

Warburton, J., Holden, J. and Mills, A. J. (2003). Hydrological controls of surficial mass movements in peat. Earth-Science Reviews 67 (2004), pp. 139-156.

Warburton, J. (2022). *Peat landslides*. In *Landslide Hazards, Risks, and Disasters* (pp. 165-198). Elsevier.

Wu, Y. (2003). Mechanism analysis of hazards caused by the interaction between groundwater and geo-environment. *Environmental Geology*, 44(7), 811–819.

Xue, J., & Gavin, K. (2008). Effect of rainfall intensity on infiltration into partly saturated slopes. *Geotechnical and Geological Engineering*, 26(2), 1

Zhang, L., & O'Kelly, B. C. (2014). The principle of effective stress and triaxial compression testing of peat. *Proceedings of the Institution of Civil Engineers-Geotechnical Engineering*, *167*(1), 40-50.

Peat Stability Risk Assessment (PSRA) for Carrig Renewables Wind Farm GDG | Carrig Renewables Wind Farm | 22063-R-001-02-PSRA

Appendix A Location and Administrative Limits

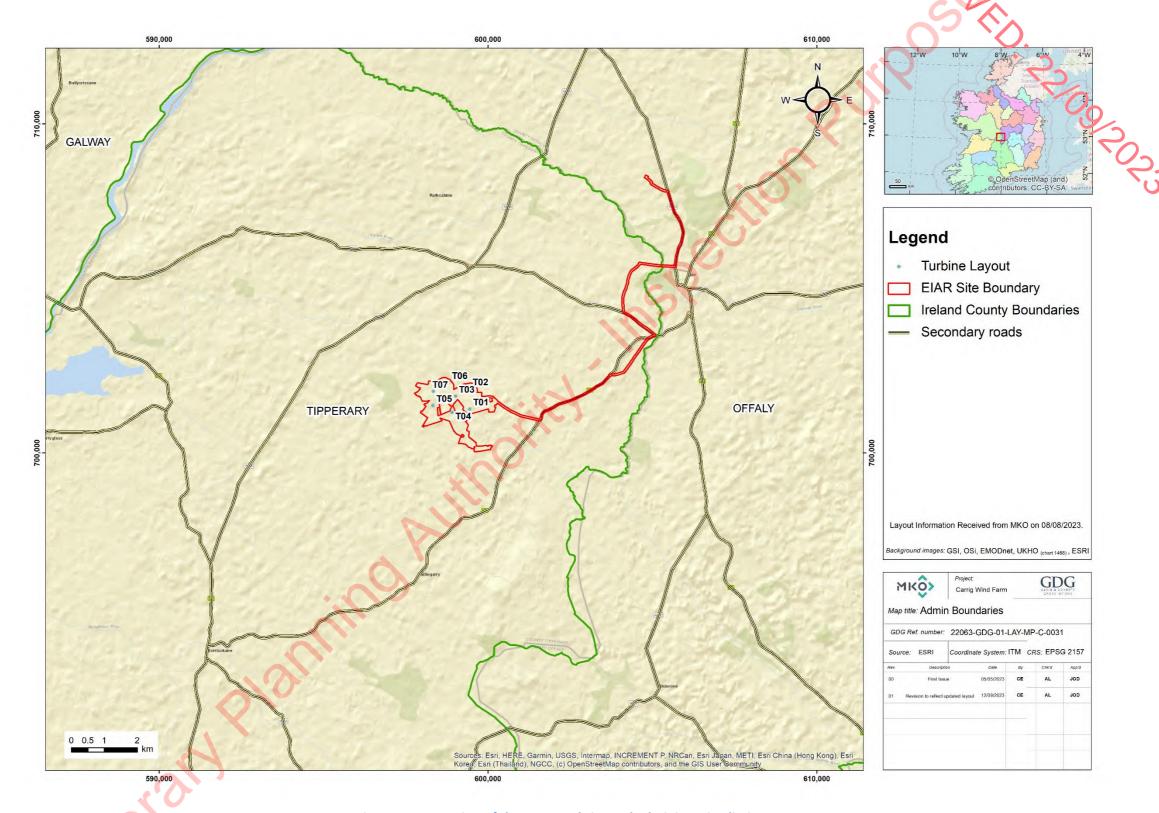


Figure A- 1: Location of the proposed site and administrative limits.

Appendix B GEOLOGY

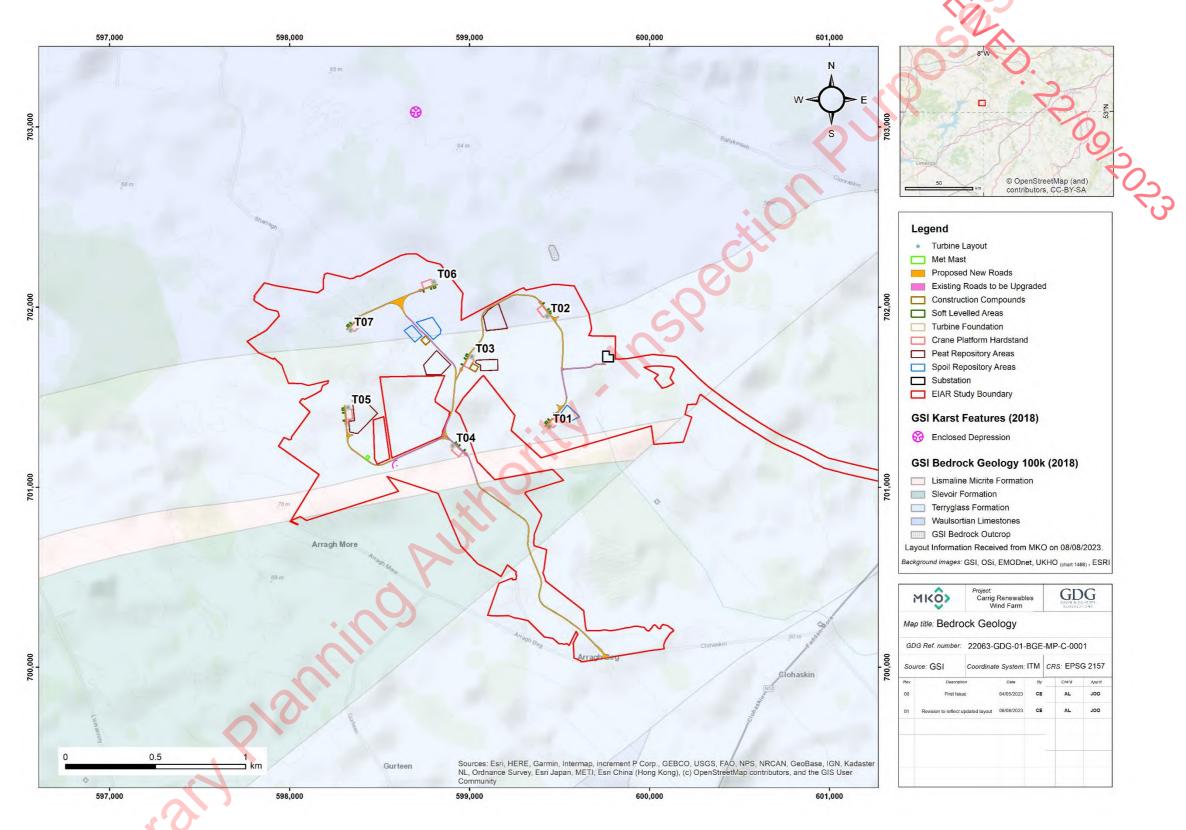


Figure B- 1: Bedrock geology 100k (GSI).

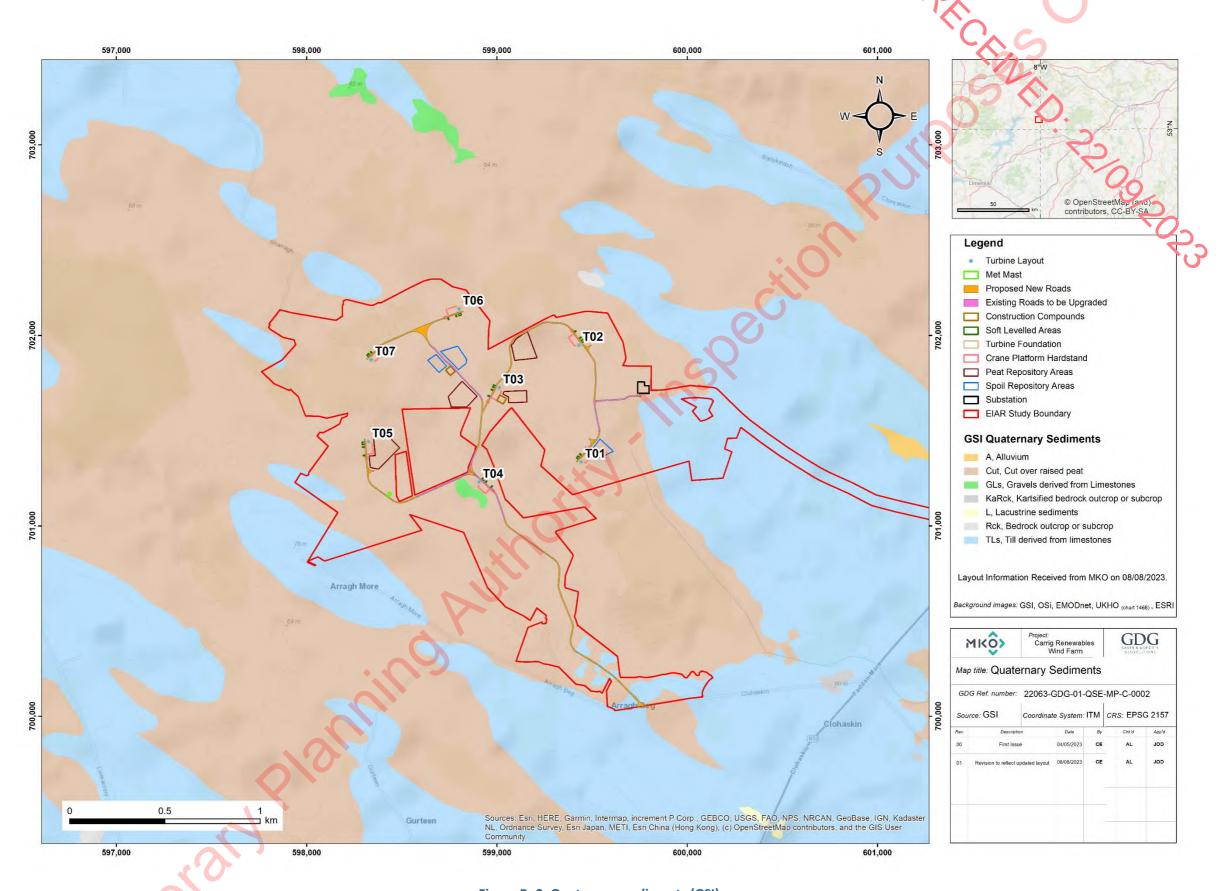


Figure B- 2: Quaternary sediments (GSI).

Appendix C Soils

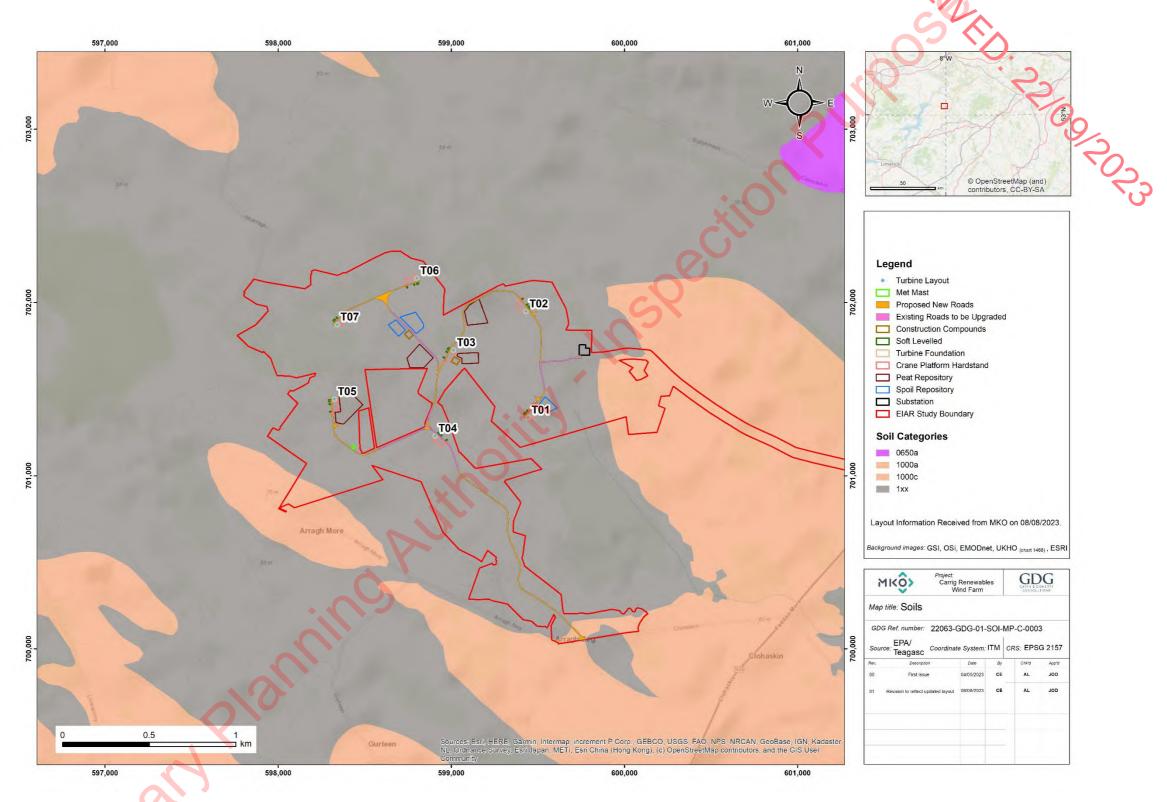


Figure C- 1: Soils.

Appendix D MOISTURE

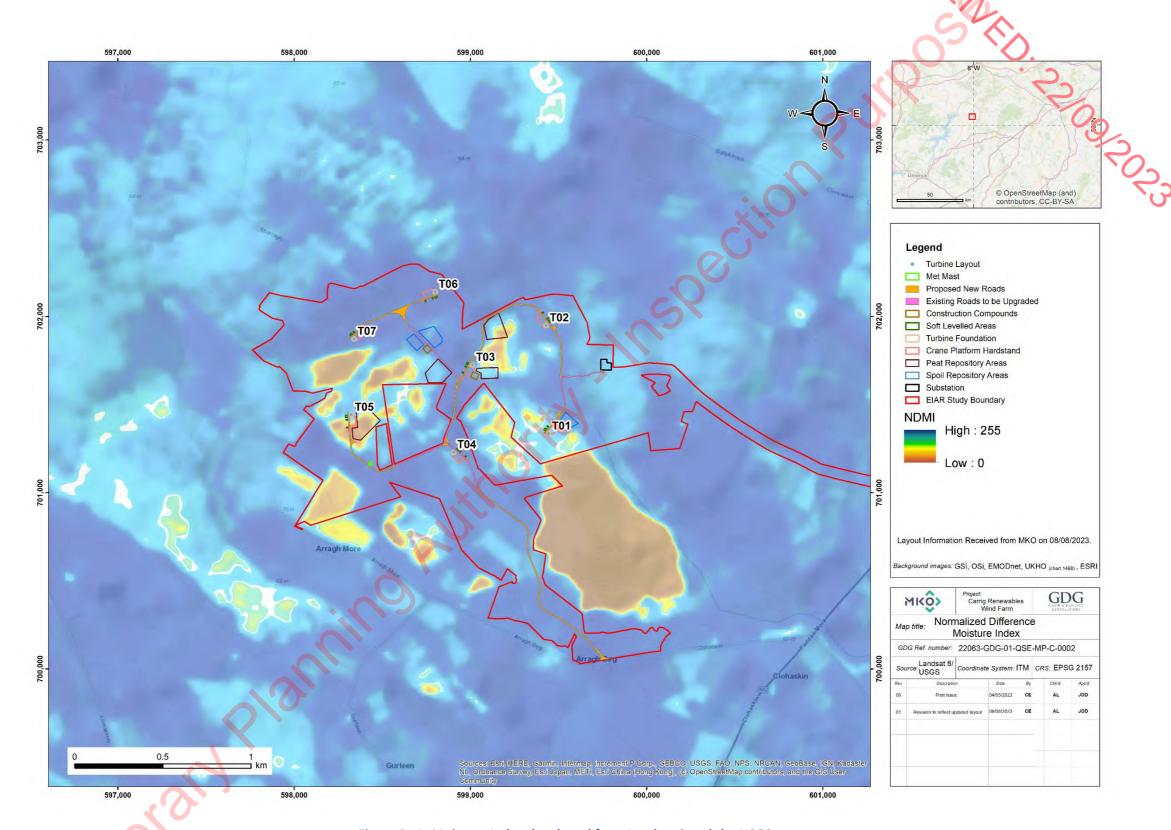


Figure D- 1: Moisture Index developed from Landsat 8 and the USGS.

Appendix E HYDROGEOLOGY

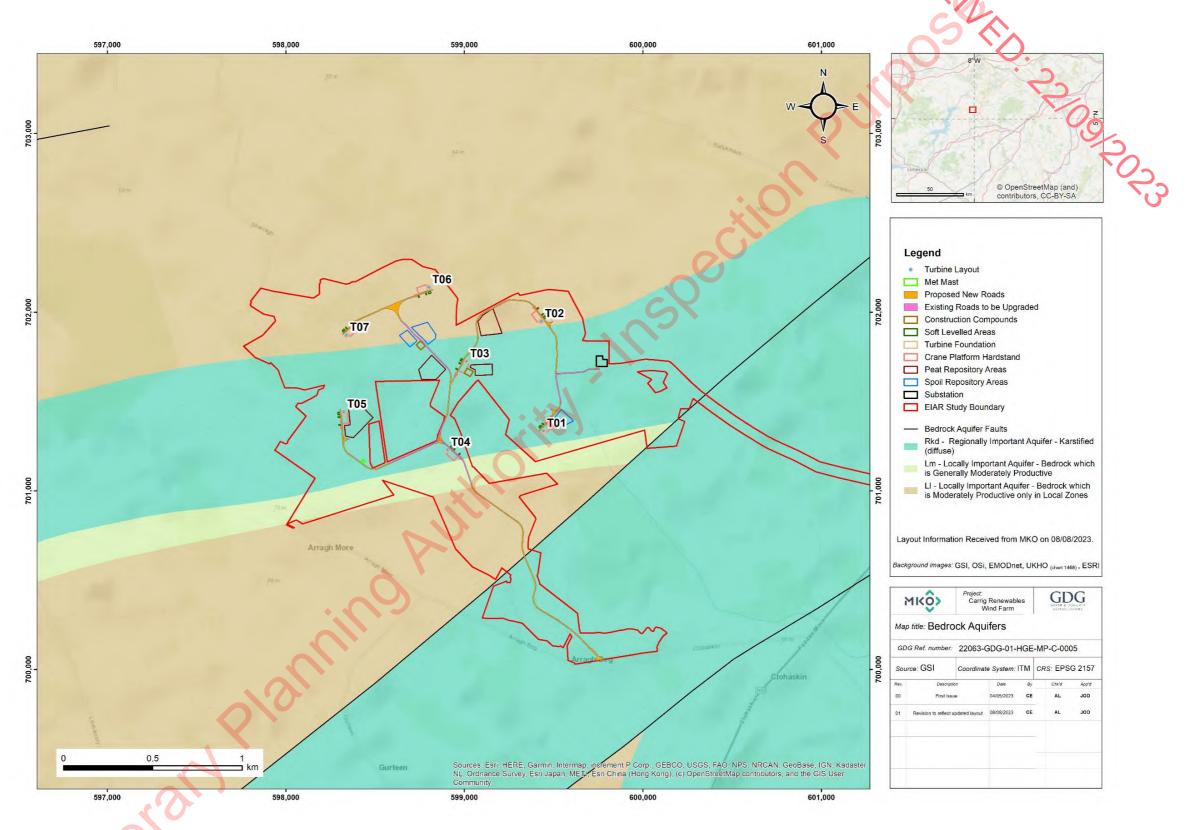


Figure E- 1: Bedrock Aquifers (GSI).

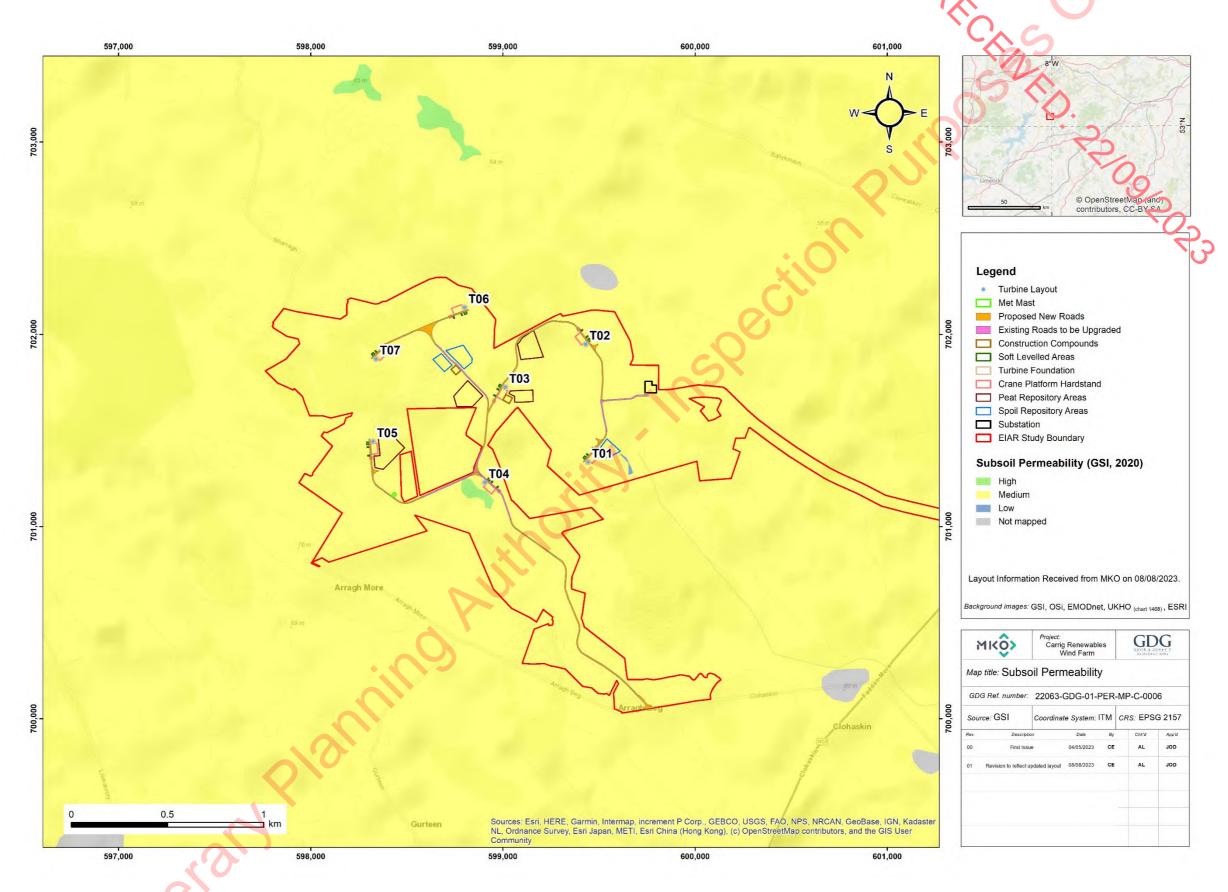


Figure E- 2: Subsoil Permeability (GSI).

Appendix F Topography

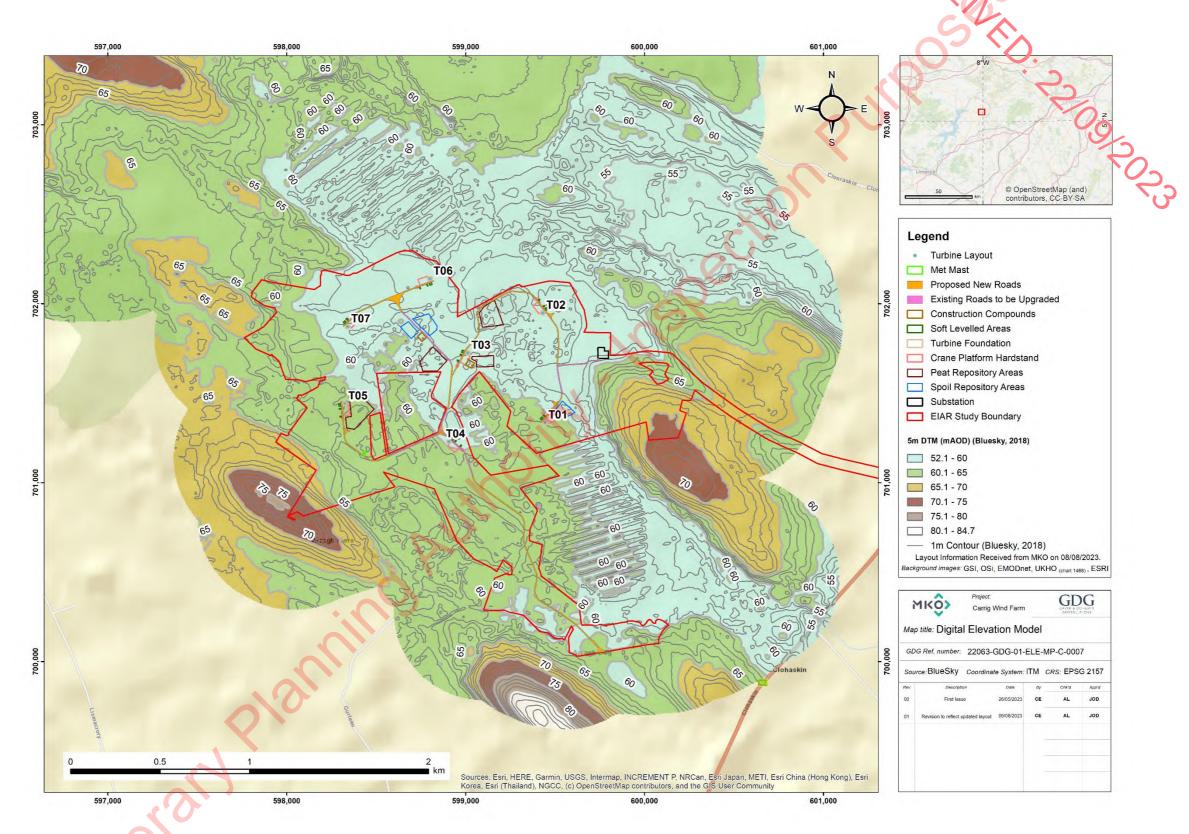


Figure F- 1: 5-meter Digital Elevation Model and 1m Contours sourced from BlueSky (2018).

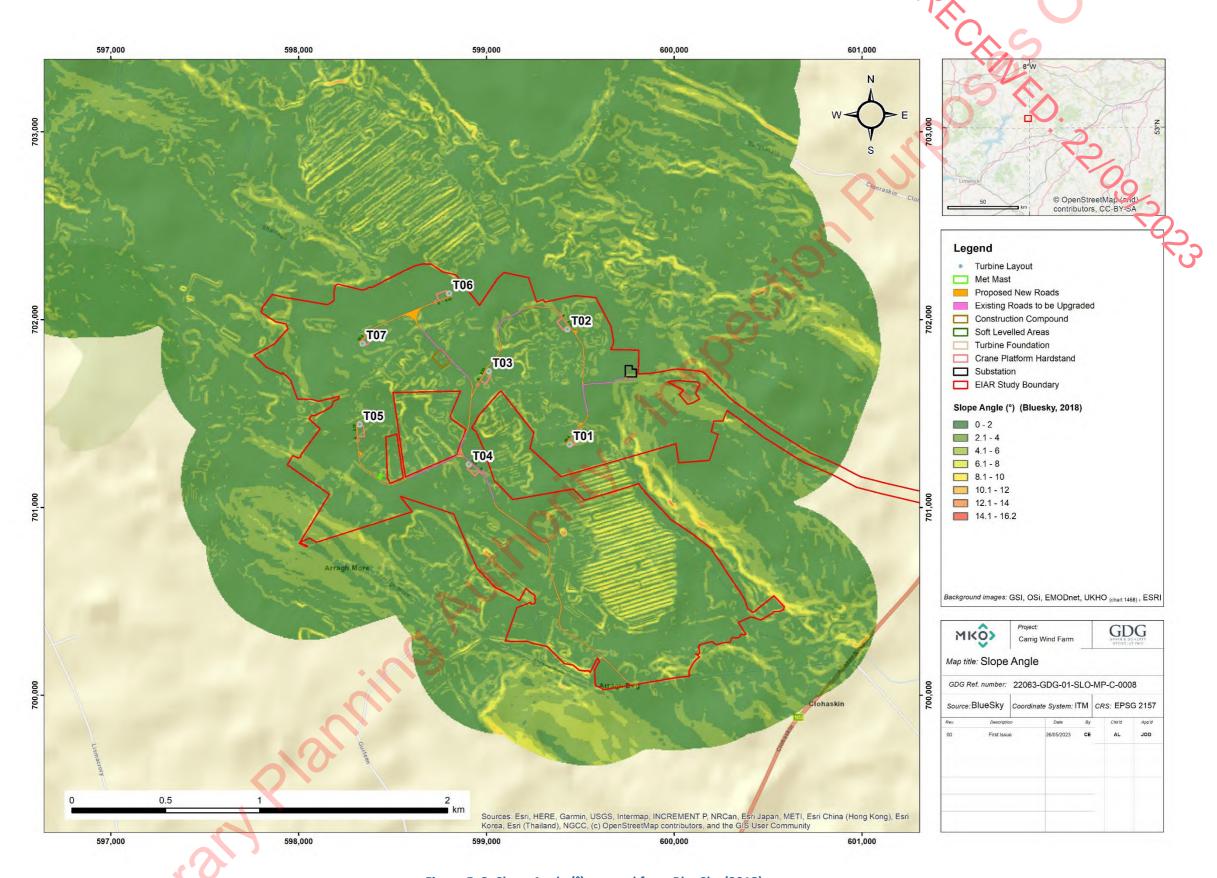


Figure F- 2: Slope Angle (°) sourced from BlueSky (2018).

Appendix G SLOPE INSTABILITY MAPPING

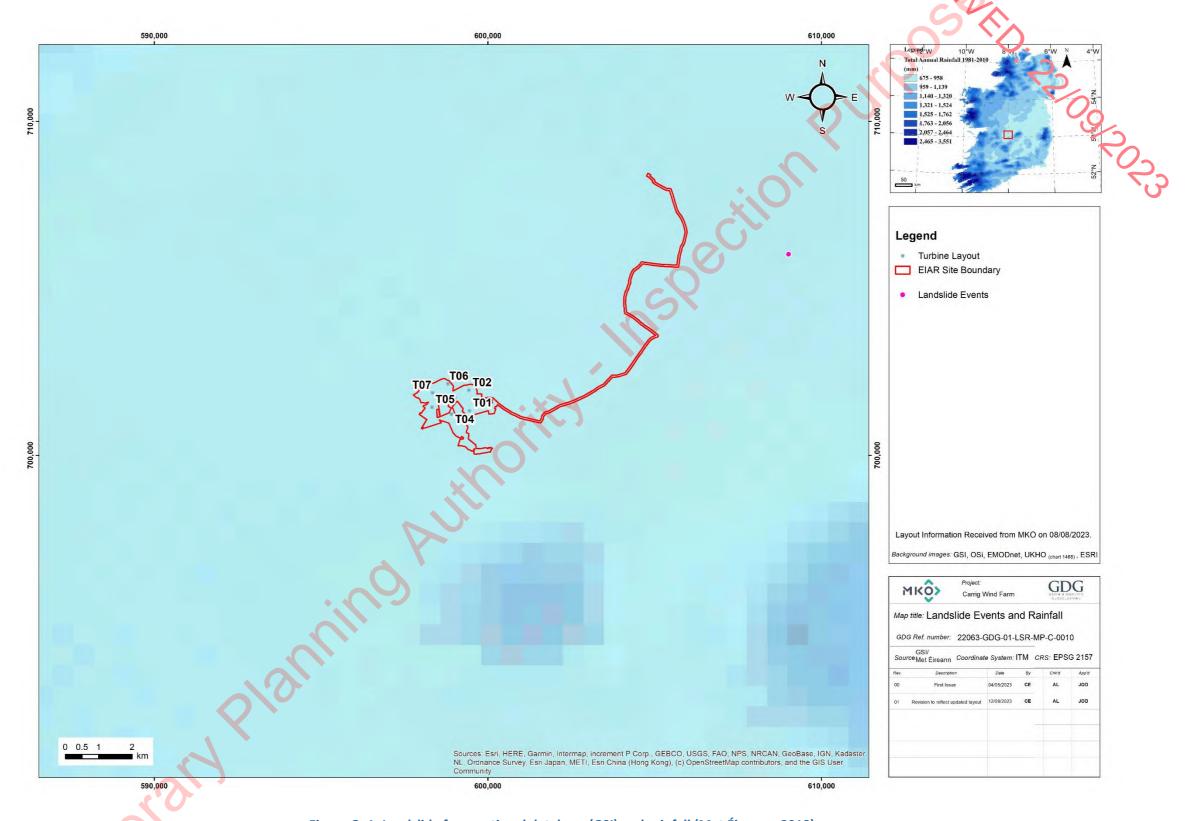


Figure G- 1: Landslide from national database (GSI) and rainfall (Met Éireann, 2018)

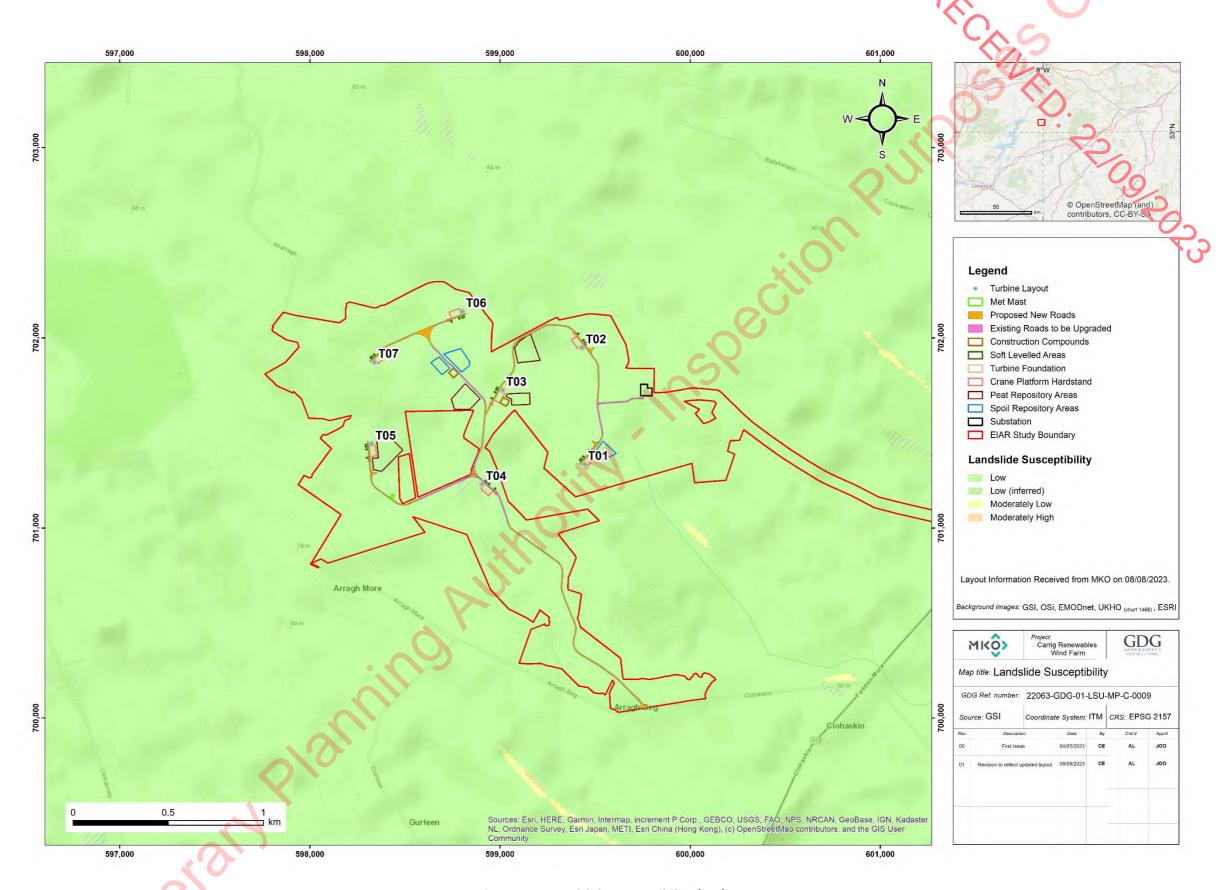


Figure G- 2: Landslide Susceptibility (GSI).

Appendix H HYDROLOGY

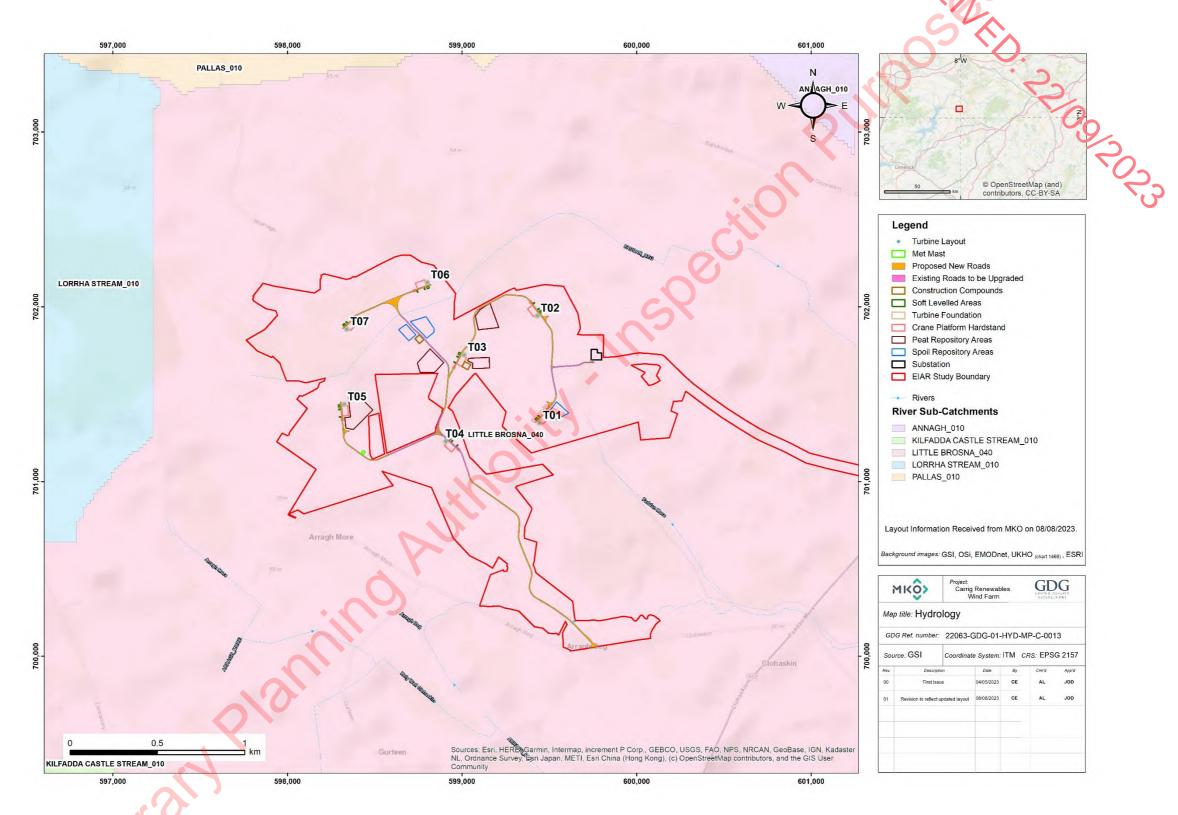


Figure H- 1: Hydrology.

Appendix I Land Cover and Land Use

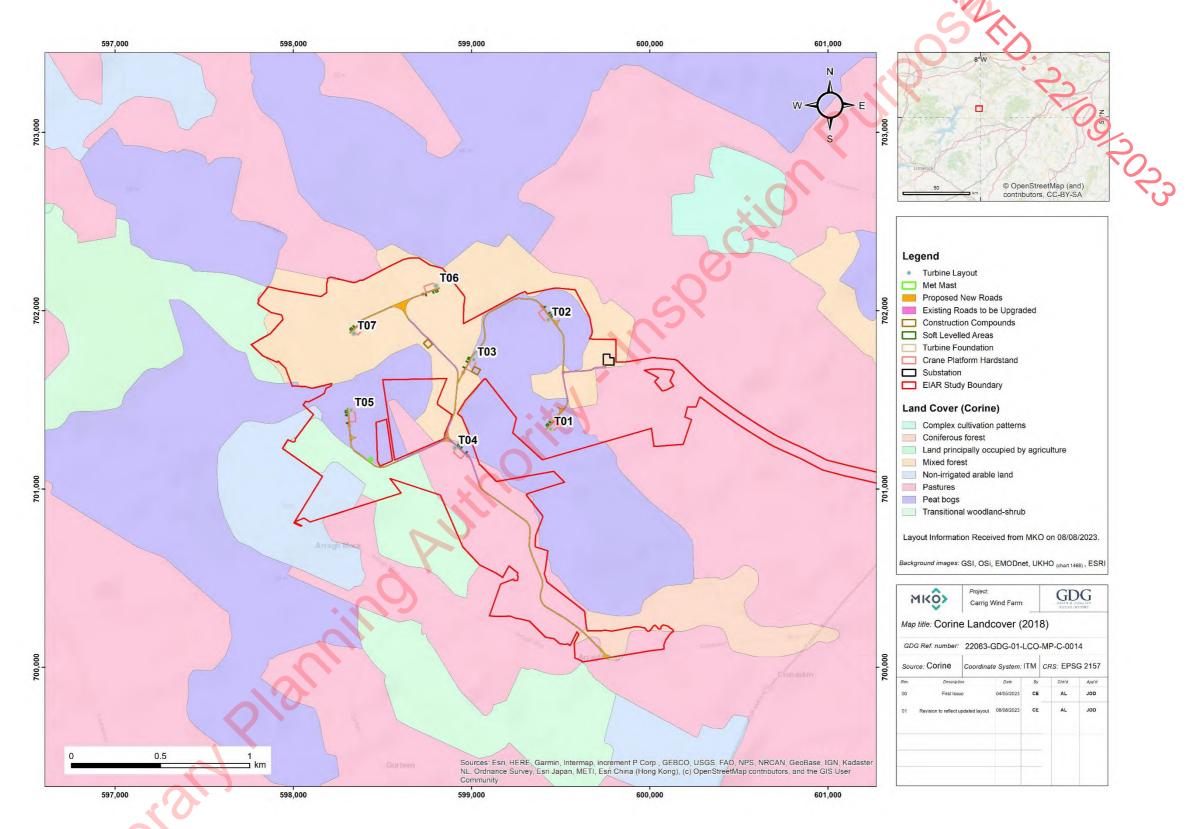


Figure I- 1: Land cover map (Corine, 2018).

Appendix J GEO-INVESTIGATIONS

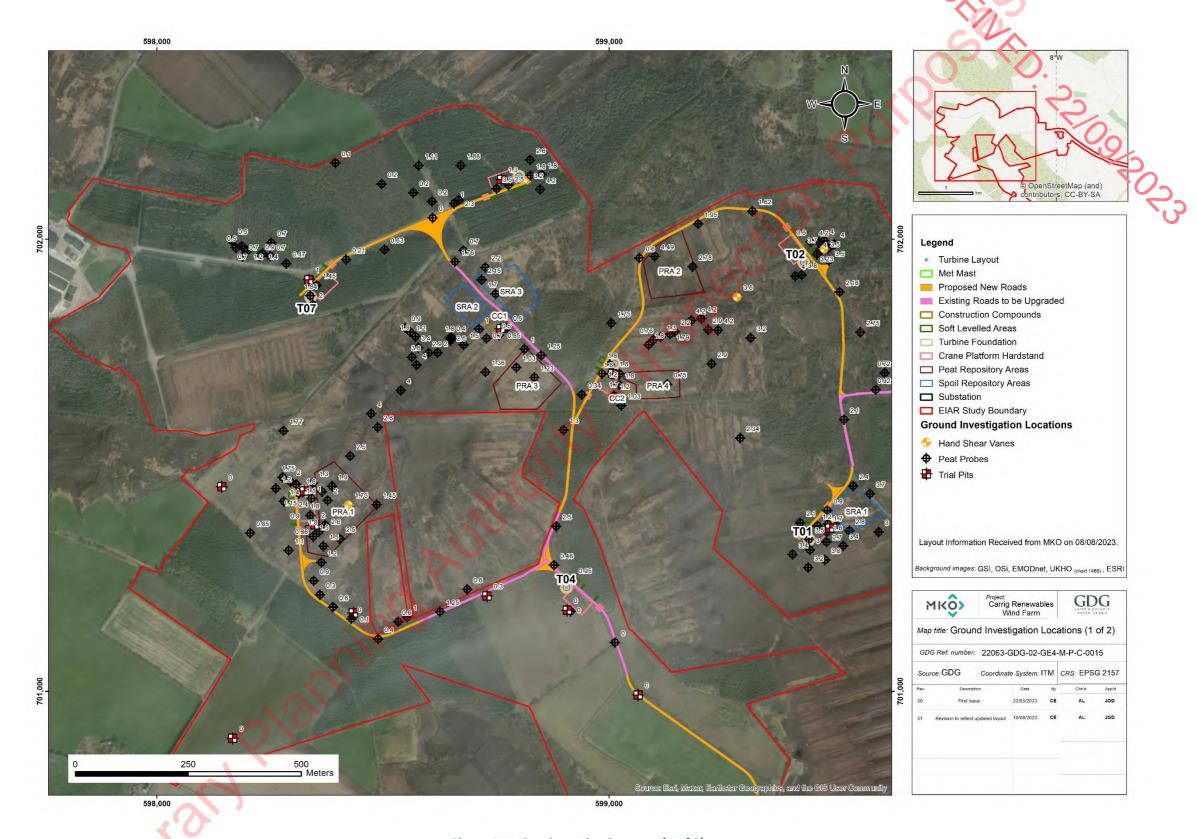


Figure J- 1: Geo-investigation map (1 of 2).

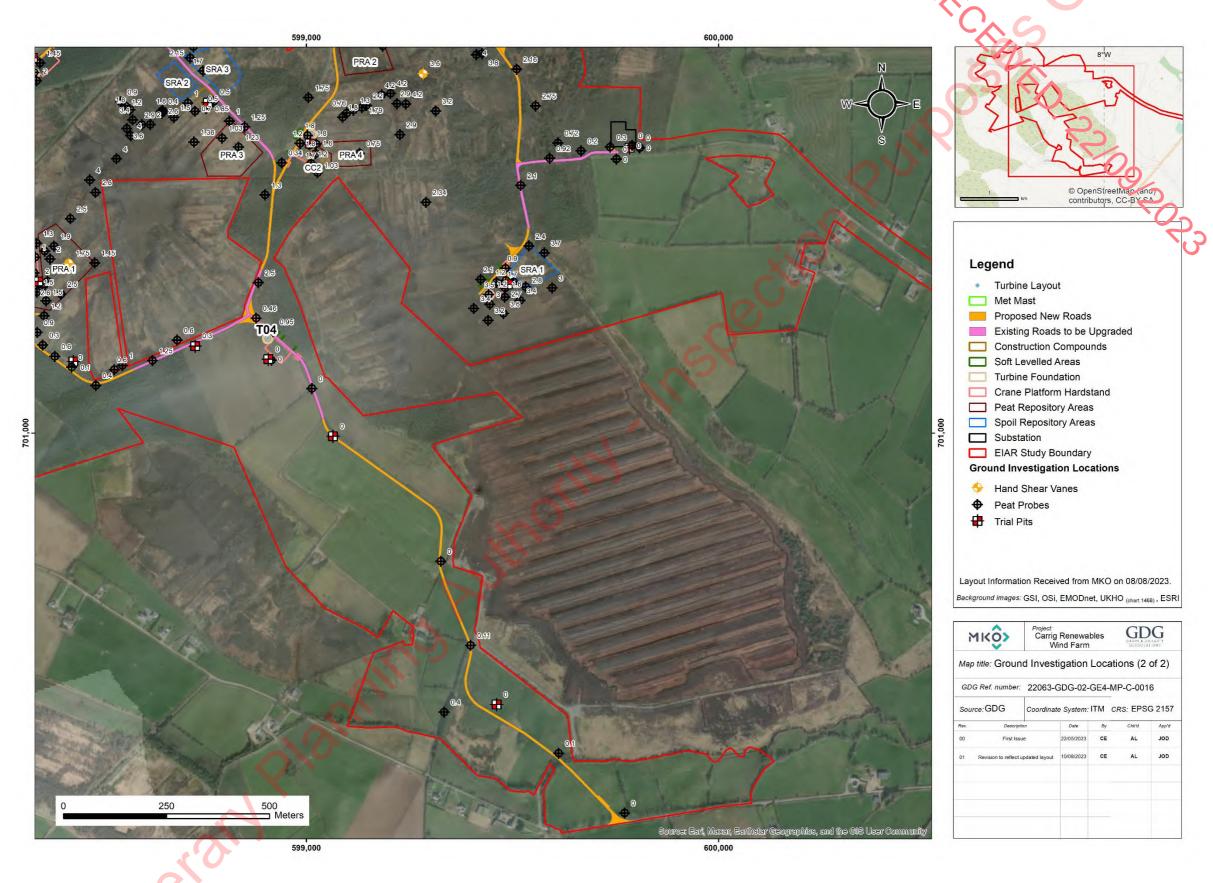


Figure J- 2: Geo-investigation map (2 of 2)

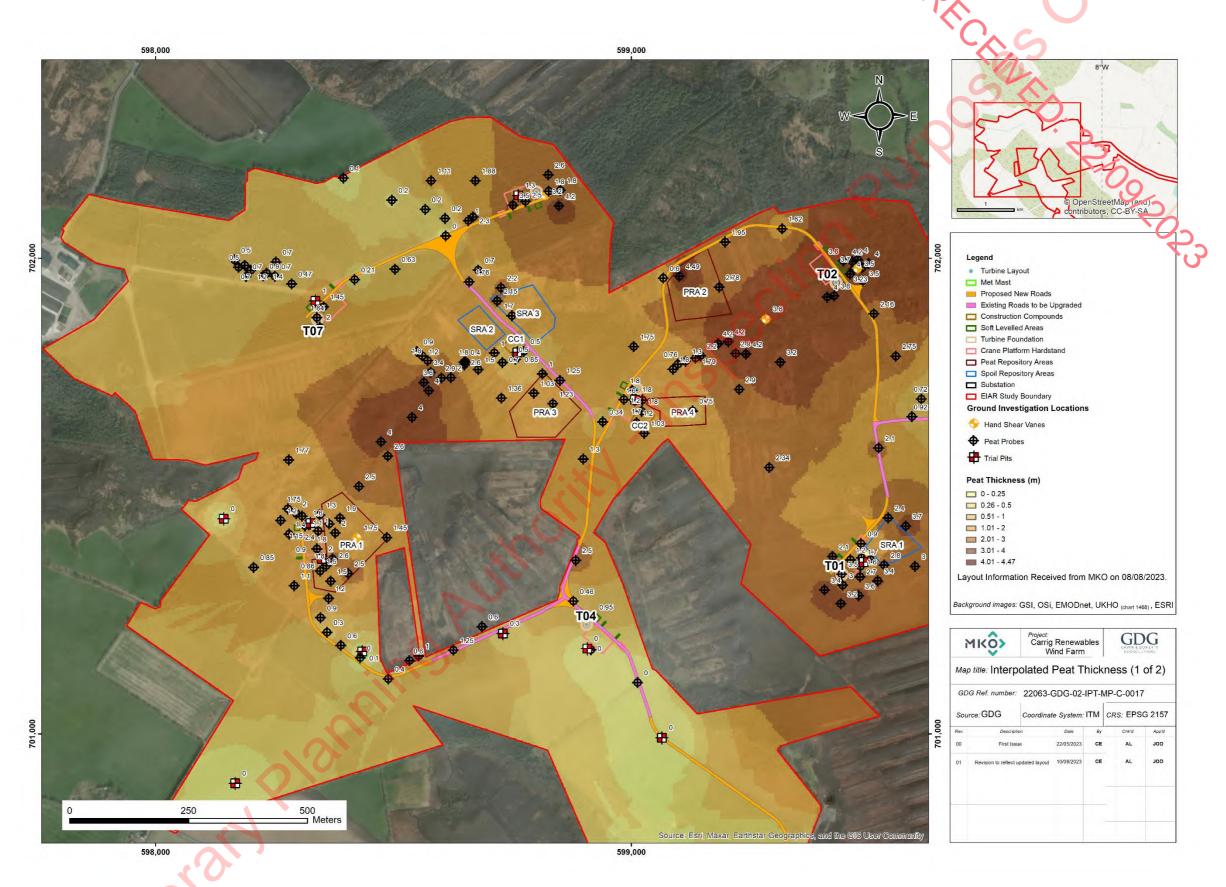


Figure J- 3: Interpolated peat depth map (1 of 2).

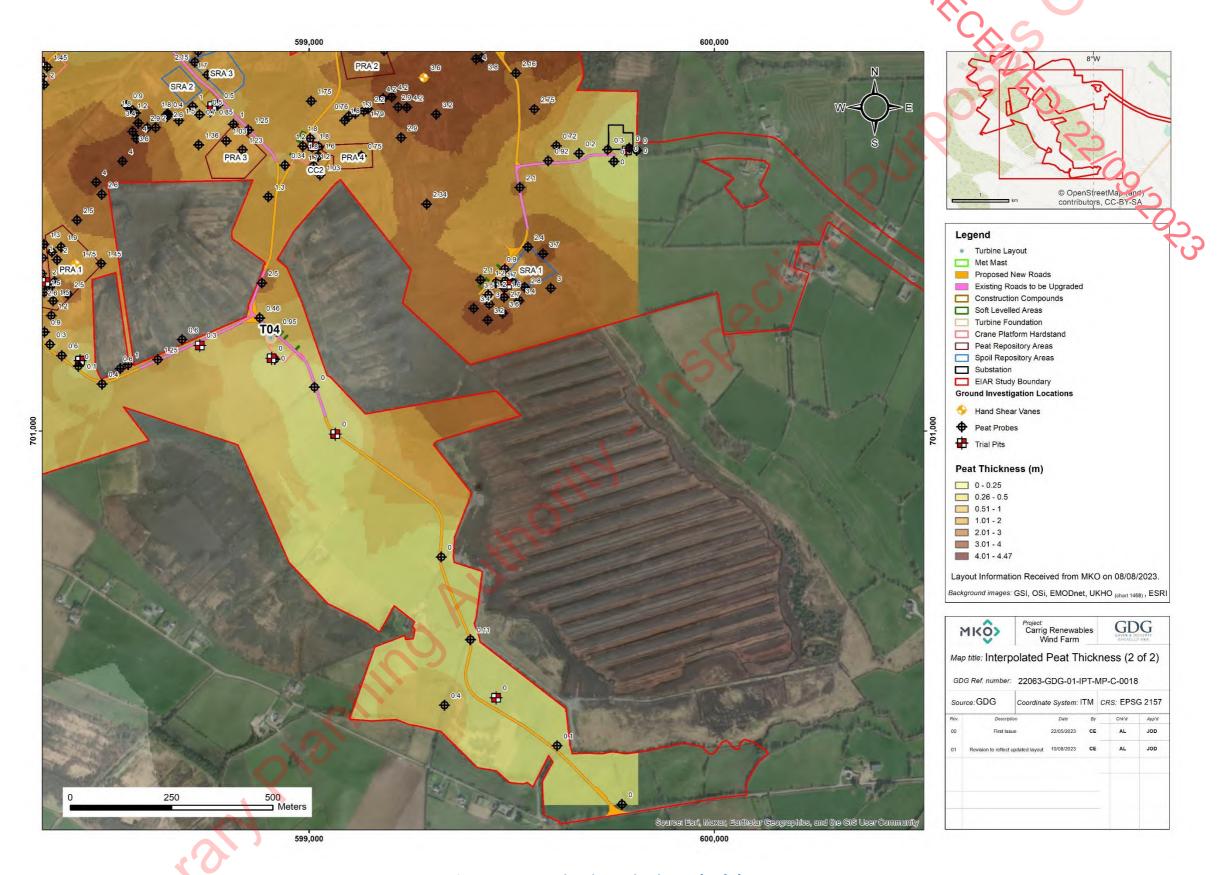
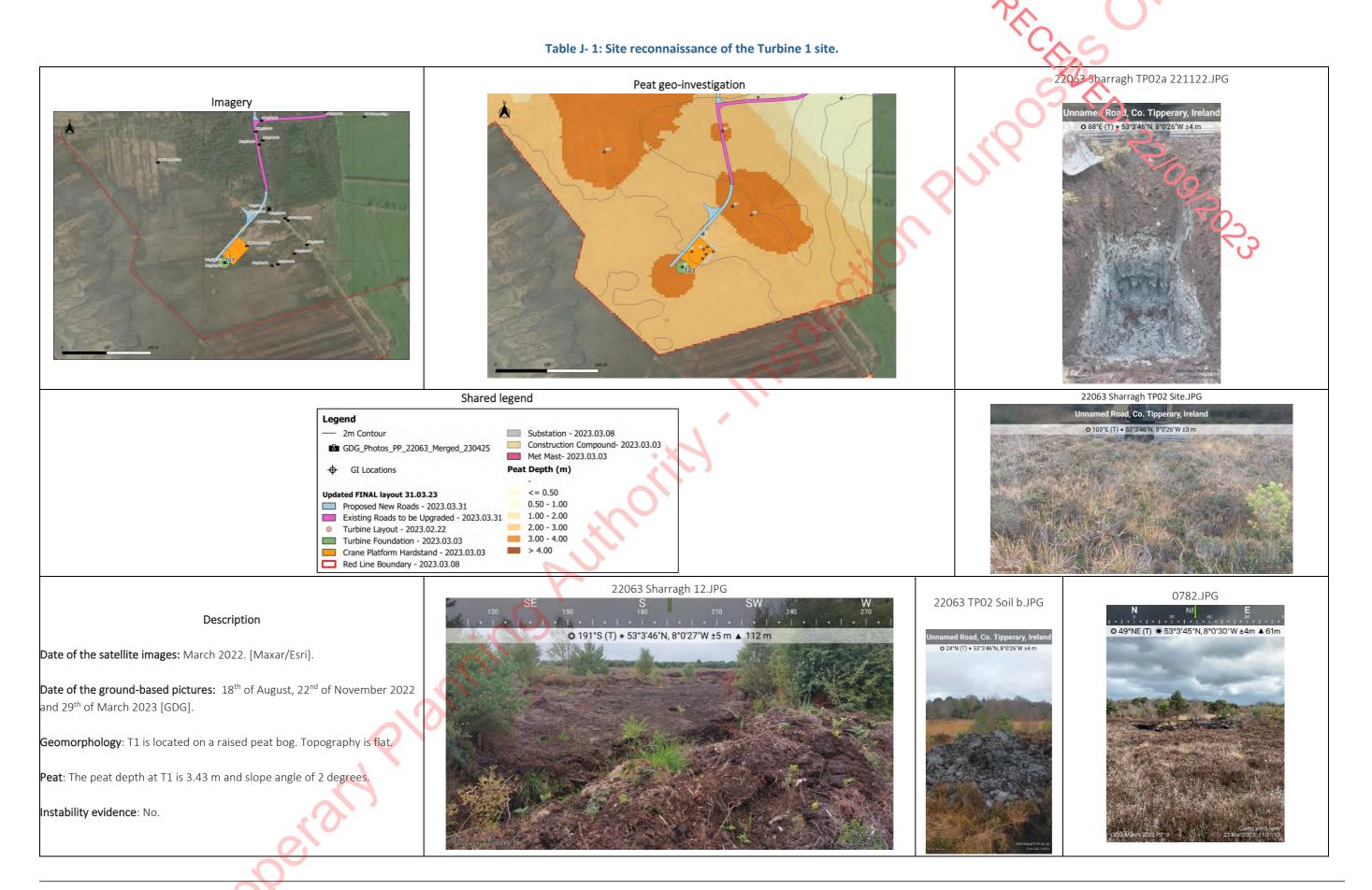
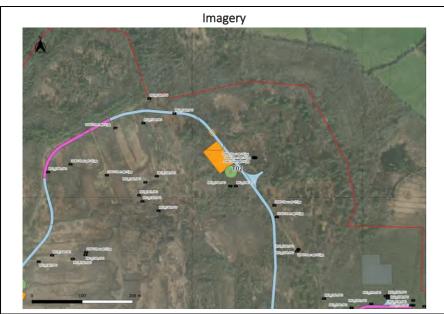
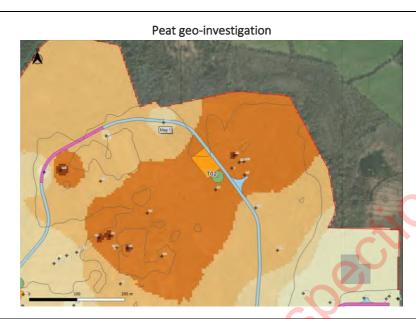
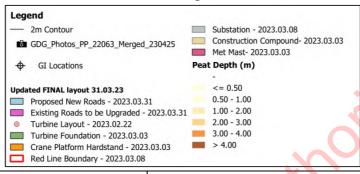


Figure J- 4: Interpolated peat depth map (2 of 2).


Table J- 2: Site reconnaissance of the Turbine 2 site.

Shared legend

Description

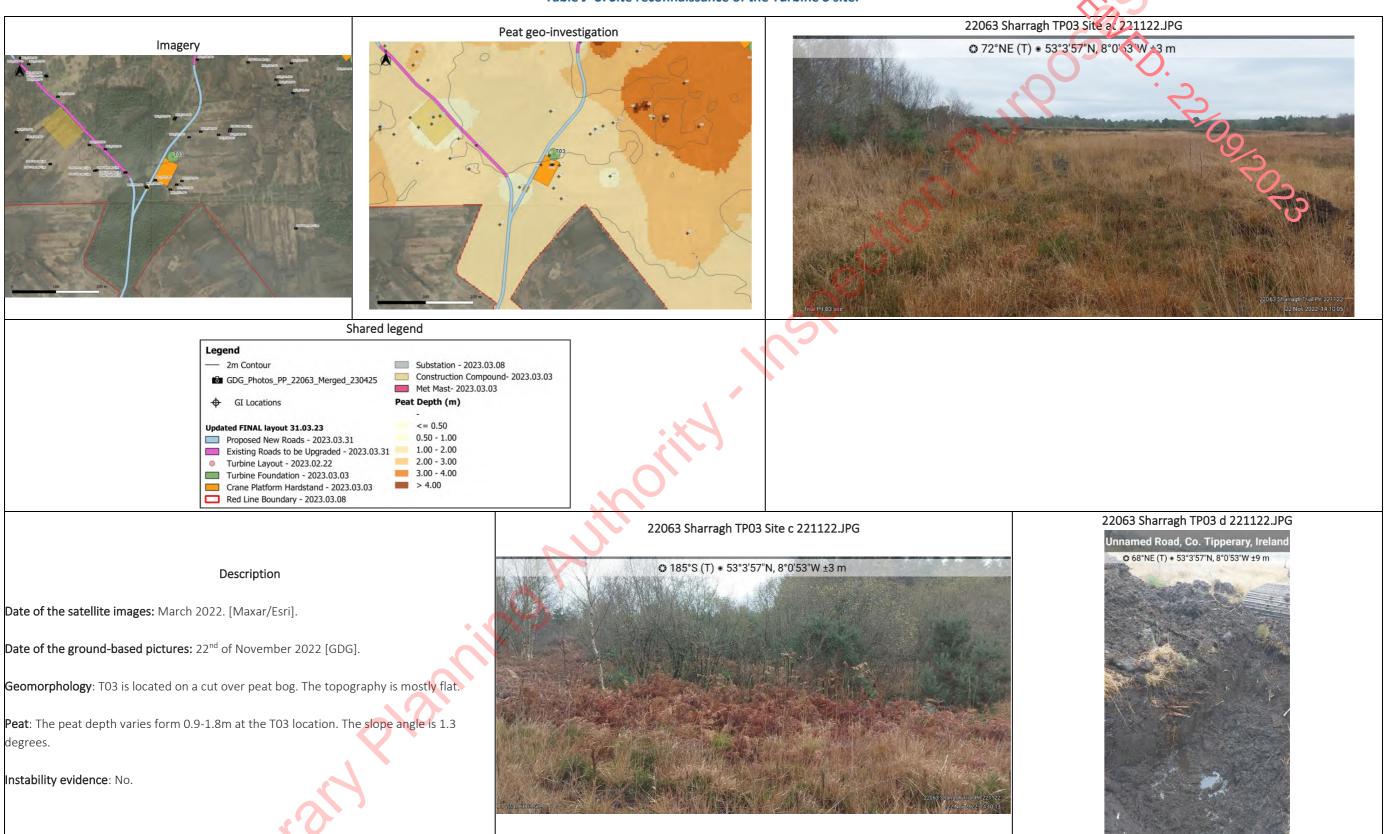
Date of the satellite images: March 2022. [Maxar/Esri].

Date of the ground-based pictures: 18th of August 2022 [GDG].

Geomorphology: The topography is flat, with mixed forestry and thick undergrowth.

Peat: The peat depth at T2 is 3.7m with a slope angle of 0.22 degrees

Instability evidence: No.



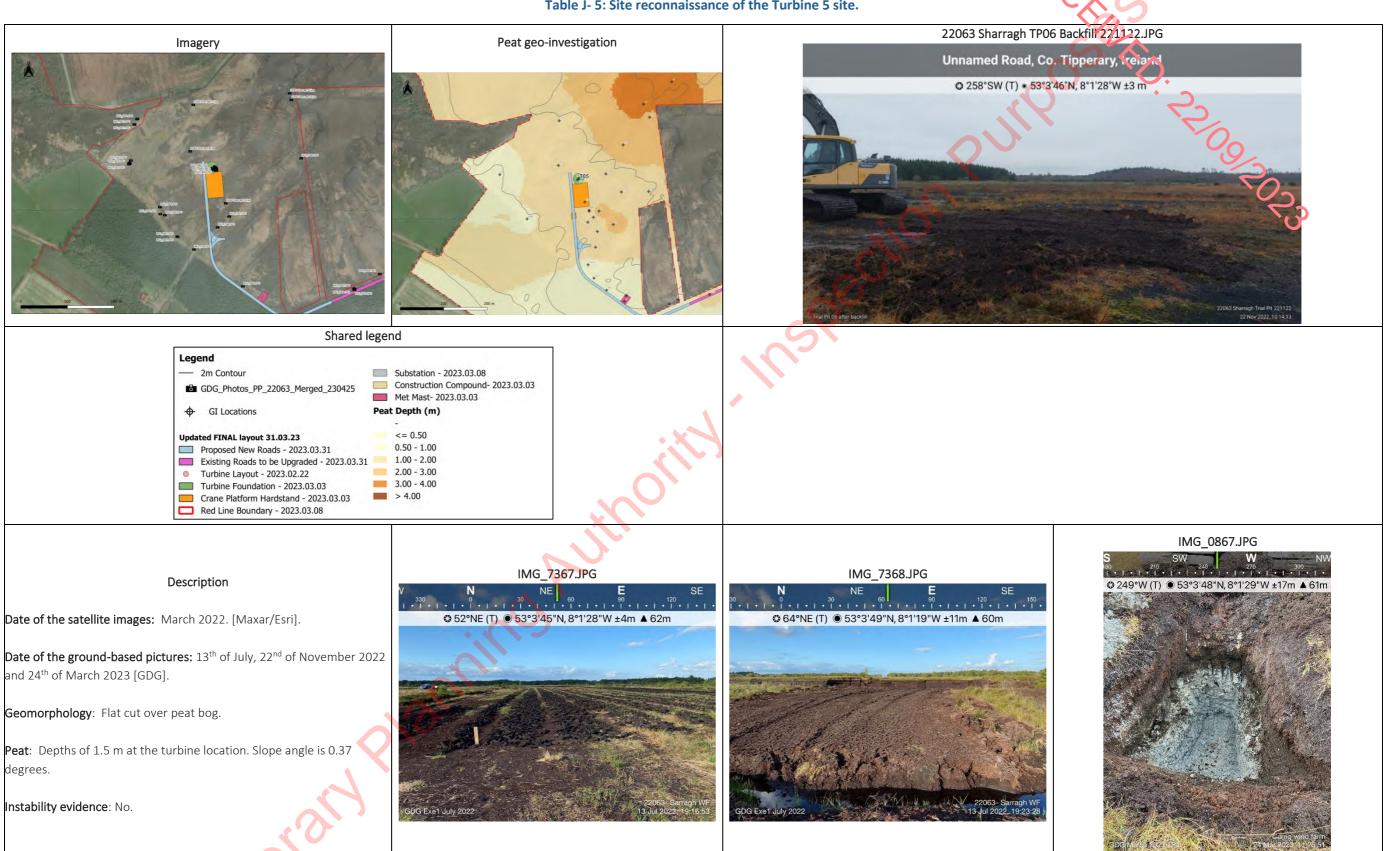


Table J- 4: Site reconnaissance of the Turbine 4 site.

Table J- 5: Site reconnaissance of the Turbine 5 site.

Table J- 6: Site reconnaissance of the Turbine 6 site.



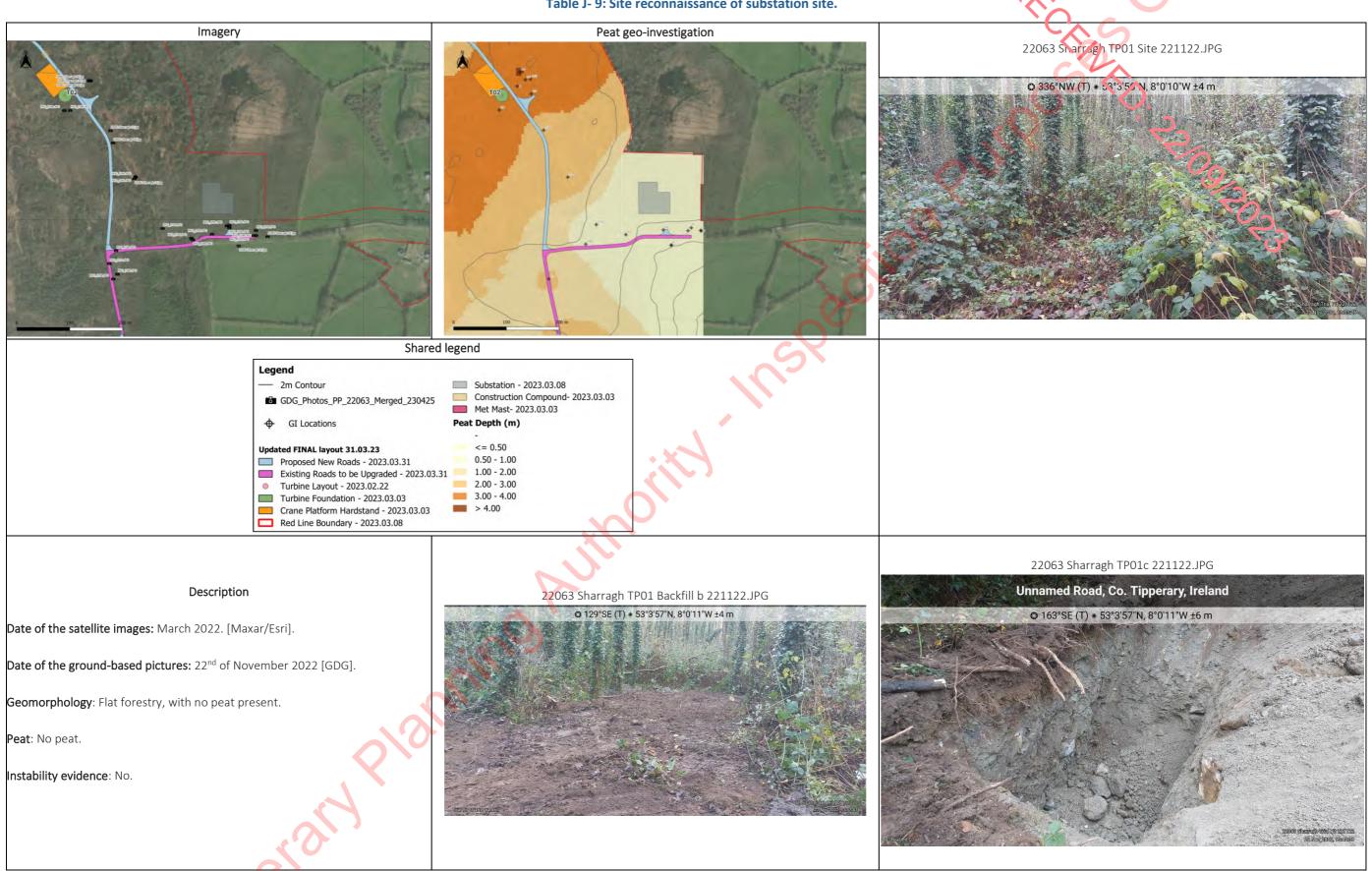


Table J- 8: Site reconnaissance of the Construction Compound site.

Table J- 9: Site reconnaissance of substation site.

Table J- 10: Site reconnaissance of the Met mast site.

J.1 TRIAL PIT LOGS

	DG & DOHERTY					Tr	ial Pit I	Log	TrialPit No
	OLUTIONS			D	4 NI -		0	704000 40	Sheet 1 of 1
Project Name:	Sharragh \	Wind F	arm	220 220	ect No.		Co-ords: 599783 Level: 58.80	3.90 - 70 1692.49	Date 22/11/2022
Location	n: Sharragh,	Co. Tip	perary				Dimensions (m):	04.	Scale 1:25
Client:	McCarthy	Keville	O'Sullivan Ltd. (MI	KO)			Depth 2.30	÷ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Logged CE
ter ke	Samp	les & In S	Situ Testing	Depth	Level	1		Charles Description	Ó _O
Water Strike	Depth	Туре	Results	(m)	(m)	Legend		Stratum Description	2
				0.40	58.40		Firm light grey sli moderate cobble coarse, gravel is subrounded of lin	BAILE	CLAY with re fine to
				2.30	56.50		nspecti	End of Pit at 2.30m	2 -
		(nin ^o P	Sill					3 -
201/3	airy Pi	(0)	ninop						4 -

Remarks: No water encountered. Terminated due to confined space in forested area - limited space for excavator to move and to store spoil. Elevation taken from DEM.

Stability: Stable.

GEO	DG & DOHERTY SOLUTIONS	Y Y		D., .	ant NI-	Tr	ial Pit Log	TrialP TP Sheet
Project Name:	Sharragh	Wind F	arm	Proj 2200	ect No. 63		Co-ords: 599488.37 - 701360.83 Level: 59.60	Dat 22/11/2
Locatio	n: Sharragh	, Co. Tip	perary				Dimensions (m):	Sca 1:2
Client:	McCarthy	Keville	O'Sullivan Ltd. ((MKO)			(m): Depth 2, 2	Log _!
Water Strike		T	Situ Testing	Depth	Level	Legend	Stratum Description)_
≥ ∞	Depth	Туре	Results	(m)	(m)	عادد عادد عاد		vith
				0.50	59.10	e alle alle alle alle alle alle alle al	Spongy black slightly decomposed PEAT (H4) v moderate wood and coarse fibre content.	S
						e alle alle alle alle alle alle alle al	Plastic black pseudofibrous decomposed PEAT strong organic odour.	(H7) with
				1.70	57.90	e able	Firm grey slightly sandy slightly gravelly CLAY we moderate cobble and low boulder content. Sand gravel are fine to coarse, gravel is angular to su Cobbles and boulders are subangular to subroulimestone.	d and ibangular.
			A P	Silve				
	ary P	Si		4.00	55.60		End of Pit at 4.00m	
	•							
Remark	ks: No water	encour	tered. Terminate	ed at target	depth. I	 Elevation	taken from DEM.	

GI	DG & DOHERTY	-				Tr	rial Pit Log	TrialPit I	3
Project	OLUTIONS			Pro	ject No.		Co-ords: 599007.56 - 701702.47	Sheet 1 o	of 1
Name:	Sharragh \	Wind Fa	arm	220			Level: 58.30	22/11/20	
Location:	: Sharragh,	Co. Tip	perary				Dimensions (m):	Scale 1:25	
Client:	McCarthy	Keville	O'Sullivan Ltd. (MI	KO)			Depth 1.80	Logged	d
Water Strike	Samp	les & In S	Situ Testing	Depth	Level	Legend	Stratum Description		
Str	Depth	Туре	Results	(m)	(m)		7		
				0.20	58.10	alte alte alte te alte alte alte alte alte alte alte alte te alte alte alte alte alte alte alte alte alte te alte alte te alte	(H6) with low coarse fibre content. Strong odour.	derate	
				0.90	57.40	alle alle alle le alle alle le alle alle	Plastic black decomposed amorphous PEAT (H8)) with	1 —
				1.80 1.80	56.50 56.50	to able	Weathered LIMESTONE bedrock. End of Pit at 1.80m		2 —
		~S	nin ^O A	Silv					3 —
	A STAN								4
Remarks	; Rapid wa	ter ingr	ess at 0.9m bgl. Te	erminate	d as bedi	rock enc	ountered. Elevation taken from DEM.		5 — —

Stability: Poor.

GAVIN	DG & DOHERTY	-				Tr	rial Pit Log	TrialPit No TP04
	SOLUTIONS			Droi	io at Nia		Co-ords: 598760.37 - 701801.88	Sheet 1 of 1 Date
Project Name:	Sharragh \	Wind Fa	arm	220	ect No. 63		Level: 59.10	22/11/2022
Location	n: Sharragh,	Co Tin	nerary				Dimensions 4.00	Scale
							(m): 04.	1:25 Logged
Client:			O'Sullivan Ltd. (M	IKO)			2.80	CE
Water Strike	Samp Depth	Type	Results	Depth (m)	Level (m)	Legend	Stratum Description	09/20
				0.20	58.90	alle alle alle alle alle alle alle alle	and coarse fibre content. Plastic black pseudofibrous PEAT (H5) with fibre content. Moderate organic odour.	, o ()
•				0.85	58.25	R. MR. MR. MR. MR. MR. MR. MR. MR.	Stiff bluish grey gravelly CLAY with moderat content. Gravel is fine to coarse, angular to Cobbles are angular of limestone.	e cobble subrounded.
				20	Silic		SPECT	2 -
	, Q	S.	nin ^O A	2.80 2.80	56.30 56.30		LIMESTONE bedrock. End of Pit at 2.80m	3 -
Sex	ard							5 -
Remark	s: Moderate	water i	ngress at 1m bgl.	Pit termi	nated as	bedrock	encountered. Elevation taken from DE	M. .
Stability	/: Poor.							AGS

	DC							Pit No
GAVIN	& DOHERTY					Tr	rial Pit Log □ ਾ	205
	SOLUTIONS						Sheet	
Project Name:	Sharragh V	Vind Fa	arm		ject No.		\sim	ate
				220	63		· ()	/2022 ale
Locatio	n: Sharragh,	Co. Tip	perary				(m): 0 1::	25
Client:	McCarthy I	Keville	O'Sullivan Ltd. (M	1KO)			Depth 2.60 Log	iged E
Water Strike	· ·		itu Testing	Depth (m)	Level (m)	Legend	Stratum Description	
▼	Depth	Туре	Results	0.30	56.90	alike alike alike a alike alike a alike alike a alike	Plastic black pseudofibrous PEAT (H5) with strong organic odour. Plastic black highly decomposed PEAT (H8) with strong organic odour. Very soft damp light grey slightly sandy SILT with occasional rootlets. Sand is fine.	1-
				2.60	54.60	****** ***** ***** ***** ***** ***** *****	End of Pit at 2.60m	2 -
	ald R	Silver	nino					4 -

Remarks: Water seepage at base of PEAT at 1.3m bgl. Pit terminated due to walls collapsing. Elevation taken from DEM.

Stability: Poor.

	DG & DOHERTY OLUTIONS	-				Tr	rial Pit Log	TrialPit No TP06 Sheet 1 of 7
Project	Sharragh \	Wind Fa	arm		ject No.		Co-ords: 598348.71 - 701367.84	Date
Name:				220)63		Level: 61.60 Dimensions	22/11/2022 Scale
ocation	: Sharragh,						(m): 9	1:25 Logged
Client:			O'Sullivan Ltd. (M	KO)			Depth	CE
Water			Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	<u>.</u>
> 0)	Depth	Туре	Results	,		عالد عالد عال	Spongy dark brown oxidising to black_fibrous PEA	AT (114)
				0.40	61.20	e alle alle alle alle alle alle alle al	with moderate coarse fibres and wood fragments. organic odour. Spongy black H6 pseudofibrous PEAT (H6) with low wood content. Moderate organic odour.	Slight
			o P	2.00	59.60	Alle Alle Alle Alle Alle Alle Alle Alle	Soft damp grey slightly sandy slightly gravelly CLA moderate cobble and boulder content. Sand is fine coarse, gravel is fine to coarse, angular to subang Cobbles and boulders are subangular of limestone boulder is 70cm.	e to Jular.
	A P	S. S	Million	3.70	57.90		End of Pit at 3.70m	4
X	Tormingto	ad dua t	o moderate waters	ingress	at 3.6m k	ogl and w	nstable sides. Elevation taken from DEM.	5

Stability: Poor

Project No. Name: Sharragh Wind Farm 22063 Devel: 62.20 Dimensions (In): Depth Coged CE Samples & In Situ Testing Depth Type Results Double Results Double CE Some Some Some Some Some Some Some Some		DG & DOHERTY OLUTIONS					Tr	rial Pit Log	TrialPit No TP07 Sheet 1 of 1
Localion: Sharragh, Co. Tipperary Client: McCarthy Keville O'Sullivan Ltd. (MKO) Sarayee & in Stat Testing Depth Type Results 0.10 62.10 Socrey black forcus PEAT (15) with moderate content. Social soci	Project	Sharragh \	Wind F	arm				\mathcal{N}_{\bullet}	
Location Sharragn, Co. Tupperary (in) Depth Type Results Depth Depth					220)63			
Signary basis fibrous PEAT (15) with moderate coales and builder content. Samples a fibrous PEAT (15) with moderate coales are fibrous PEAT (15) with mode	Location	n: Sharragh,	Co. Tip	pperary				(m):	1:25
Depth Type Results O.10 62.10 Spanny black fibrous PEAT (Hs) with moderante coalest fibrous persons with the content. Spanny black fibrous PEAT (Hs) with moderante coalest fibrous content. Spanny black fibrous PEAT (Hs) with moderante coalest fibrous content. With high cobble and boulders content. Sand and gravel coalest coales	Client:	McCarthy	Keville	O'Sullivan Ltd. (M	KO)	_		2.20	
Springly black (Brouse PEAT (HS) with moderate coding of the content. Soft grey slightly andly slightly gravelly slightly since the national design and gravely slightly slig	Nater Strike			1			Legend	Stratum Description	ò
· · · · · · · · · · · · · · · · · · ·	Remark	s: No water		ntered. Terminated	2.20	60.00		fibre content. Soft grey slightly sandy slightly gravelly slightly silt with high cobble and boulder content. Sand and g are fine to coarse, gravel is angular to subrounded Cobbles and boulders are subrounded of limeston.	ty CLAY ravel sine.

Stability: Poor

	DOHERTY DLUTIONS					Tr	rial Pit Log	TrialPit No TP08 Sheet 1 of
Project	Sharragh V	Vind Fa	ırm	I	ect No.		Co-ords: 598907.34 - 701179.10	Date
Name:				220	63		Level: 60.60 Dimensions 3.50	22/11/2022 Scale
Location:	: Sharragh,						(m):	1:25
Client:			O'Sullivan Ltd. (M	IKO)		1	Depth 2.50	Logged CE
Water	Sample Depth	es & In Si Type	itu Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	23
			nino	2.50	60.50		Black organic rich TOPSOIL. Firm grey mottled orange slightly sandy slightly CLAY with moderate cobble and low boulder or Sand and gravel are fine to coarse, gravel is sul to subrounded. Cobbles and boulders are subn limestone. End of Pit at 2.50m End of Pit at 7.50m	ontent. pangular

Stability: Poor

GAVI GE	DG IN & DOHERTY OSOLUTIONS	-				Tr	ial Pit	Log	TrialPit TP0 Sheet 1	9
Projed Name	ct Sharragh	Wind Fa	arm		ect No.		1	4.09 - 700991.90	Date	
	ion: Sharragh,	Co. Tin	nerary	220	63		Level: 61.50 Dimensions	4.00	22/11/20 Scale	е
Client				KO)			(m): Depth	1.40	1:25 Logge	
	-		O'Sullivan Ltd. (M itu Testing				2.10		ČĒ	
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend		Stratum Description	2	
			rinop	2.10	59.40		CLAY with mode and gravel are f subrounded. Co	ed orange slightly sandy slightly erate cobble and boulder conterfine to coarse, gravel is subanguabbles and boulders are subrout boulder is 80cm. End of Pit at 2.10m	nt. Sand ılar to	2
									,	5 —
	arks: No water	encoun	tered. Terminated	due to p	it walls c	ollapsing	j. Elevation taker	n from DEM.	AC	I S

	DG N & DOHERTY	1 1 Y				Tr	rial Pit Log	TrialP TP1
GEC	SOLUTIONS	_		Proi	ect No.		Co-ords: 599461.00 - 700341.00	Sheet
Projec Name:	t Sharragh	Wind Fa	arm	220			Level: 60.00	24/03
Locati	on: Sharragh,	, Co. Tip	perary				Dimensions (m):	Sca
Client:			O'Sullivan Ltd. (MKO)			(m): Depth	1:: Log
			Situ Testing				3.50	IP
Water	Depth	Type	Results	Depth (m)	Level (m)	Legend	Stratum Description	25
				0.30	59.70		Dark brown slight sandy clay with presence of c [TOPSOIL] Large rounded boulders in a granular matrix	Sobbles 6
				1.00	59.00		Grey slightly gravelly sandy CLAY. Sand is fine subangular to subrounded. Presence of rounder	to coarse, d cobbles.
				1.60	58.40		Gery very gravelly CLAY. Gravel is medium to a angular to subrounded. Presence of rounded or	oarse,
			P	Jil	Sill			
	Q	Si	Miles	3.50	56.50		End of Pit at 3.50m	
Sel	ary							
	r _{ks:} Elevation ty: Stable.	extract	ed from Google	Earth. Gro	undwate	r encoun	tered at 2.2 mBGL	A

	DG & DOHERTY OLUTIONS	-				Tr	rial Pit Log	TrialPit No TP102 Sheet 1 of
Project Name:	Sharragh \	Wind Fa	arm	Proj 220	ect No.		Co-ords: 598730.00 - 701211.00 Level: 61.00	Date 23/03/2023
	: Sharragh,	Co Tin	nerary	220	03		Dimensions	Scale
Client:			O'Sullivan Ltd. (N	IKU)			(m): Depth	1:25 Logged
			Situ Testing	1	Ι		2.05	IPP
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description	So.
	w Elevation	eytract	ed from Google E	0.30 0.35	60.70 60.65	slike	Spongy black pseudofibrous PEAT (H3) with more coarse fibre and high wood content. Moderate of Grey mottled orange slightly sandy CLAY. Sand in medium, subangular to subrounded. Grey very gravelly sandy CLAY. Gravel is fine to subangular to subrounded. Sand is fine to coarse subangular to subrounded. High presence of column and boulders End of Pit at 2.05m	s fine to
	Stable.	CAHACI	oa nom Google E	aiui. Giu	anawat	. GHOOUII	ac 1.0 mboL	AGS

_ocation: Sharr		ırm		ject No.			
Location: Sharr						Co-ords: 598336.00 - 701910.00	Da
Client: McCa		nerary	220	03		Level: 59.00 Dimensions	24/03 Sc
rike		O'Sullivan Ltd. (MKO)			(m): Depth	Log
# \(\frac{1}{2} \)	Samples & In Si			11		2.70	
		Results	Depth (m)	Level (m)	Legend	Stratum Description	2
	Right	nino	2.70	56.30	SMC	Black psudo-fibrous PEAT (H3). High content of the bottom of the layer. Grey very gravelly very sandy CLAY. Sand is fine coarse, angular to subrounded. Gravel is fine to angular to subrounded. End of Pit at 2.70m	e to

G	DG	-				Tr	rial Pit Log	TrialPit No TP104	
	N & DOHERTY SOLUTIONS	-				• •		Sheet 1 of	1
Projec Name:	t Sharragh '	Wind F	arm	Proj 220	ject No.		Co-ords: 598325.00 - 701443.00 Level: 60.00	Date	
				220	03		Level: 60.00 Dimensions	24/03/2023 Scale	<u> </u>
Locatio	on: Sharragh,	Co. Hp	pperary ———————————————————————————————————				(m):	1:25	
Client:	McCarthy	Keville	O'Sullivan Ltd. (MI	KO)	,	,	Depth 3.50	Logged IPP	
Water Strike			Situ Testing	Depth	Level	Legend	Stratum Description	_	
≤ છ	Depth	Туре	Results	(m)	(m)	और और औ	Soft to firm spongy dark brown pseudofibrous PE	AT (H3)	C
▼	ke: Flevation	extract	ed from Google Ea	1.60	56.50	r encoun	Light grey sandy CLAY [MARL]. Sand if fine to m subangular to subrounded. Presence of cobbles (15-30cm). Presence of white loose fine to mediu	edium, um sand.	2 -

Stability: Unstable.

	DG & DOHERTY	<u></u>				Tr	rial Pit Log	TrialP
-	SOLUTIONS			Pro	ject No.		Co-ords: 598167.00 - 700896.00	Sheet
Project Name:	Sharragh	Wind Fa	arm	220			Level: 68.00	24/03/
Locatio	n: Sharragh	Co. Tip	perary				Dimensions	Sca
Client:			O'Sullivan Ltd. (N	ΛΚΟ)			(m): Depth	1:2 Log
			itu Testing				2.60	IP
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description	99/2
							Brown slightly gravelly CLAY [TOPSOIL]. Preblack organic material at the bottom of the la	esence of yer.
								Co
								-6,5
				0.60	67.40			5
							Large subangular to rounded boulders (>1m	
						000		
						0,00	Q	
						000	:\O'\	
				1.50	66.50		Very gravelly sandy CLAY. Gravel is fine to c	oarse,
							angul <mark>ar to sub</mark> rounded. Sand is fine to coars subrounded.	e, angular to
							S	
					. X			
					11/2			
				2.60	65.40		End of Pit at 2.60m	
			-0,					
			100					
	O							
5								
Remark	s: Elevation	extract	ed from Google E	Earth.				
	r: Stable.							P

	& DOHERTY OLUTIONS	,				Tr	rial Pit Log	Trial TP Shee
Project	Sharragh	Wind Ea	rm	Pro	ject No.		Co-ords: 598143.00 - 701452.00	D
Name:	Sharragh	vviilu ra		220	63		Level: 60.00	24/0
Location	n: Sharragh,	Co. Tipp	perary				Dimensions (m):	S ₁
Client:	McCarthy	Keville (D'Sullivan Ltd. (MKO)			Depth O.	Lo
i e	-	les & In Si		Depth	Level		2.10	<u> </u>
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description	2
				0.10	59.90		Black organic CLAY [TOPSOIL] Orangeish brown CLAY	₹;
							Grangeish brown CEAT	
				0.40	59.60			
							Light grey slightly sandy gravelly CLAY. Sand is medium, subangular to subrounded. Gravel is c subangular to subrounded. Presence of cobbles	oarse,
							boulders.	and
							95.	
							:\O`	
							CO	
							3	
				2.10	57.90		5 1 (5) 10 40	
							End of Pit at 2.10m	
					:10			
			0	7				
			~ Y					
			*					
	0.							
6,								
2								
Remark	s: Elevation	extracte	ed from Google	Earth. Gro	undwate	r encoun	tered at 1.6 mBGL	

Appendix K FACTOR OF SAFETY

Table K- 1: Example of calculation of Factor of Safety for undrained conditions (with and without surcharge).

Proposed				Undrained shear	Bulk unit weight				FoS	6
infrastructure	Slope	Cos Slope	Sin Slope	strength	of Peat	Peat depth	Factor of Safety	Surcharge	surcharge	lope
	(⁰)			Cu (kPa)	Y (kN/m³)	(m)		(m)		Rad
T1	2.0	0.999	0.035	5	10	3.42667	4.14	1	3.21	0.03526
T2	0.2	1.000	0.004	5	10	3.70744	34.39	1	27.09	0.003921
T3	1.3	1.000	0.022	5	10	1.67289	13.56	1	8.48	0.022056
T4	0.8	1.000	0.014	5	10	0.677805	51.29	1	20.72	0.014384
T5	0.4	1.000	0.006	5	10	1.58833	48.70	1	29.89	0.006464
Т6	0.3	1.000	0.004	5	10	2.54301	44.27	1	31.77	0.004442
T7	0.4	1.000	0.007	5	10	1.83752	37.60	1	24.35	0.007237
CC 1	1.2	1.000	0.020	5	10	0.85	29.32	1	13.47	0.020071
CC 2	2.4	0.999	0.042	5	10	1.5	7.97	1	4.78	0.041888
Substation	2.8	0.999	0.049	5	10	0.0002	51605.94	1	10.32	0.04852
Met Mast	2.6	0.999	0.045	5	10	0.1	110.34	1	10.03	0.045379
PRA 1	2	0.999	0.035	5	10	1.8	7.96	1	5.12	0.034907
PRA 2	5	0.996	0.087	5	10	3.5	1.65	1	1.28	0.087266
PRA 3	1.5	1.000	0.026	5	10	1.1	17.37	1	9.10	0.02618
PRA 4	2.2	0.999	0.038	5	10	0.75	17.38	1	7.45	0.038397
SRA 1	6	0.995	0.105	5	10	2.4	2.00	1	1.41	0.10472
SRA 2	2	0.999	0.035	5	10	1	14.34	1	7.17	0.034907
SRA 3	2	0.999	0.035	5	10	2.5	5.73	1	4.10	0.034907

$$F = \frac{c_u}{\gamma z \sin \alpha \cos \alpha}$$

Where,

Undrained conditions

F = Factor of Safety

 c_u = Undrained strength

 γ = Bulk unit weight of material

z = Depth to failure plane assumed as depth of peat

 α = Slope angle

Table K- 2: Example of calculation of Factor of Safety for drained conditions (with and without surcharge).

Proposed	Drained shear	Bulk unit weight of		Bulk unit weight of	Height of water table above failure								Surcharge	
infrastructure	strength	Peat	Peat depth	water	surface	Slope	Cos Slope	Cos ² Slope	Sin Slope	φ'	Tan φ'	FoS	(m)	FoS Surcharge
	C' (kPa)	Y (kN/m³)	(m)	Y (kN/m³)	(m)	(⁰)								
T1	4	10	3.42667	9.8	3.42667	2.0	0.999	0.999	0.035	25	0.466	3.58	73	5.76
T2	4	10	3.70744	9.8	3.70744	0.2	1.000	1.000	0.004	25	0.466	29.89	T	11.27
T3	4	10	1.67289	9.8	1.67289	1.3	1.000	1.000	0.022	25	0.466	11.27	100	14.96
T4	4	10	0.677805	9.8	0.677805	0.8	1.000	1.000	0.014	25	0.466	41.68	1	36.16
T5	4	10	1.58833	9.8	1.58833	0.4	1.000	1.000	0.006	25	0.466	40.40	1	52.67
Т6	4	10	2.54301	9.8	2.54301	0.3	1.000	1.000	0.004	25	0.466	37.51	1	56.55
T7	4	10	1.83752	9.8	1.83752	0.4	1.000	1.000	0.007	25	0.466	31.37	1	43.02
CC 1	4	10	0.85	9.8	0.85	1.2	1.000	1.000	0.020	25	0.466	23.92	1	23.55
CC 2	4	10	1.5	9.8	1.5	2.4	0.999	0.998	0.042	25	0.466	6.60	1	8.41
Substation	4	10	0.0002	9.8	0.0002	2.8	0.999	0.998	0.049	25	0.466	41284.94	1	17.86
Met Mast	4	10	0.1	9.8	0.1	2.6	0.999	0.998	0.045	25	0.466	88.47	1	17.38
PRA 1	4	10	1.8	9.8	1.8	2	0.999	0.999	0.035	25	0.466	6.64	1	9.04
PRA 2	4	10	3.5	9.8	3.5	5	0.996	0.992	0.087	25	0.466	1.42	1	2.29
PRA 3	4	10	1.1	9.8	1.1	1.5	1.000	0.999	0.026	25	0.466	14.25	1	15.95
PRA 4	4	10	0.75	9.8	0.75	2.2	0.999	0.999	0.038	25	0.466	14.15	1	13.00
SRA 1	4	10	2.4	9.8	2.4	6	0.995	0.989	0.105	25	0.466	1.69	1	2.50
SRA 2	4	10	1	9.8	1	2	0.999	0.999	0.035	25	0.466	11.74	1	12.54
SRA 3	4	10	2.5	9.8	2.5	2	0.999	0.999	0.035	25	0.466	4.85	1	7.28

Drained Conditions

$$F = \frac{c' + (\gamma z - \gamma_w h_w) \cos^2 \alpha \tan \phi'}{\gamma z \sin \alpha \cos \alpha}$$

Where,

F = Factor of Safety

c' = Effective cohesion

Bulk unit weight of material

z = Depth to failure plane assumed as depth of peat

 $y_w =$ Unit weight of water

 h_w = Height of water table above failure plane

 α = Slope angle

 \emptyset' = Effective friction angle

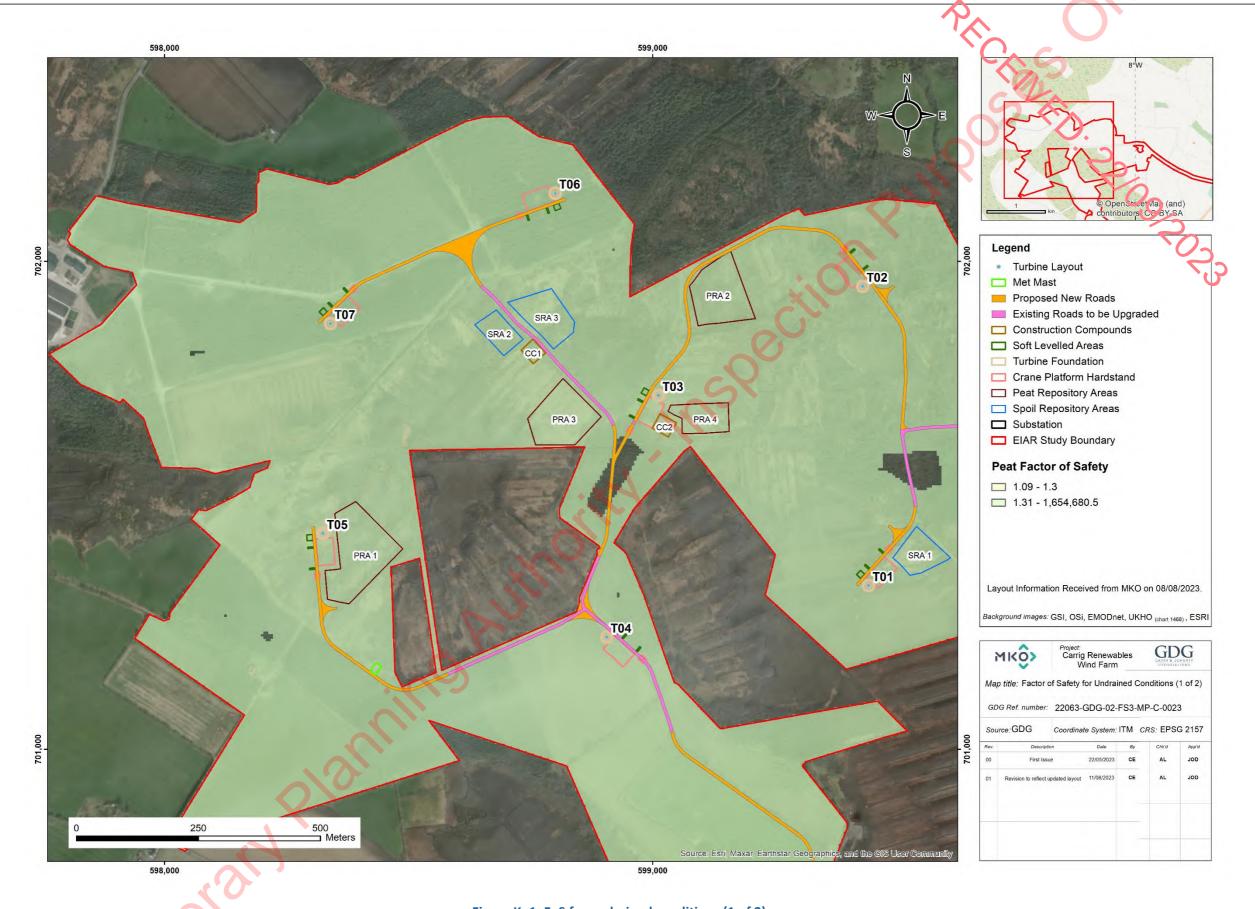


Figure K- 1: FoS for undrained conditions (1 of 2).

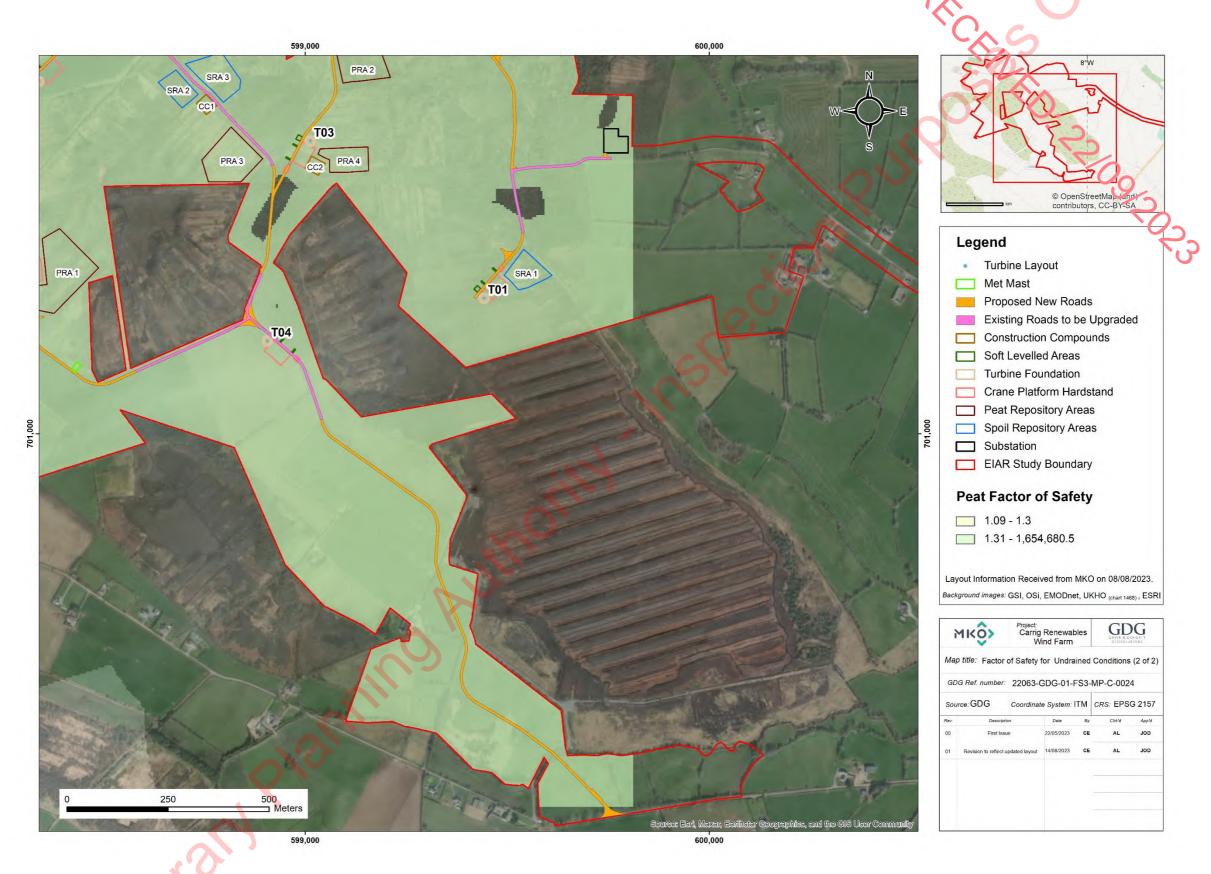


Figure K- 2: FoS for undrained conditions (2 of 2).

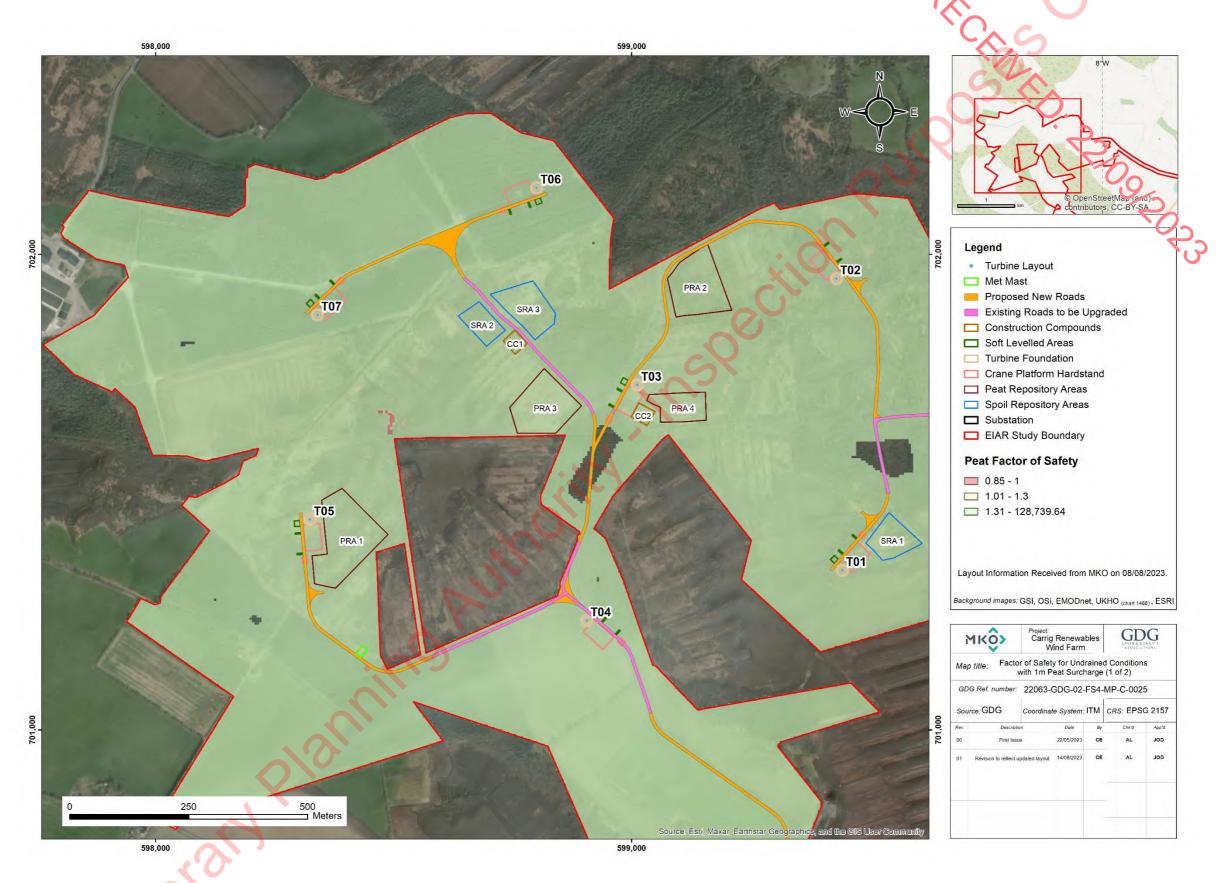


Figure K- 3: FoS for undrained conditions and surcharge of 1 m (i.e. 10 kPa) (1 of 2).

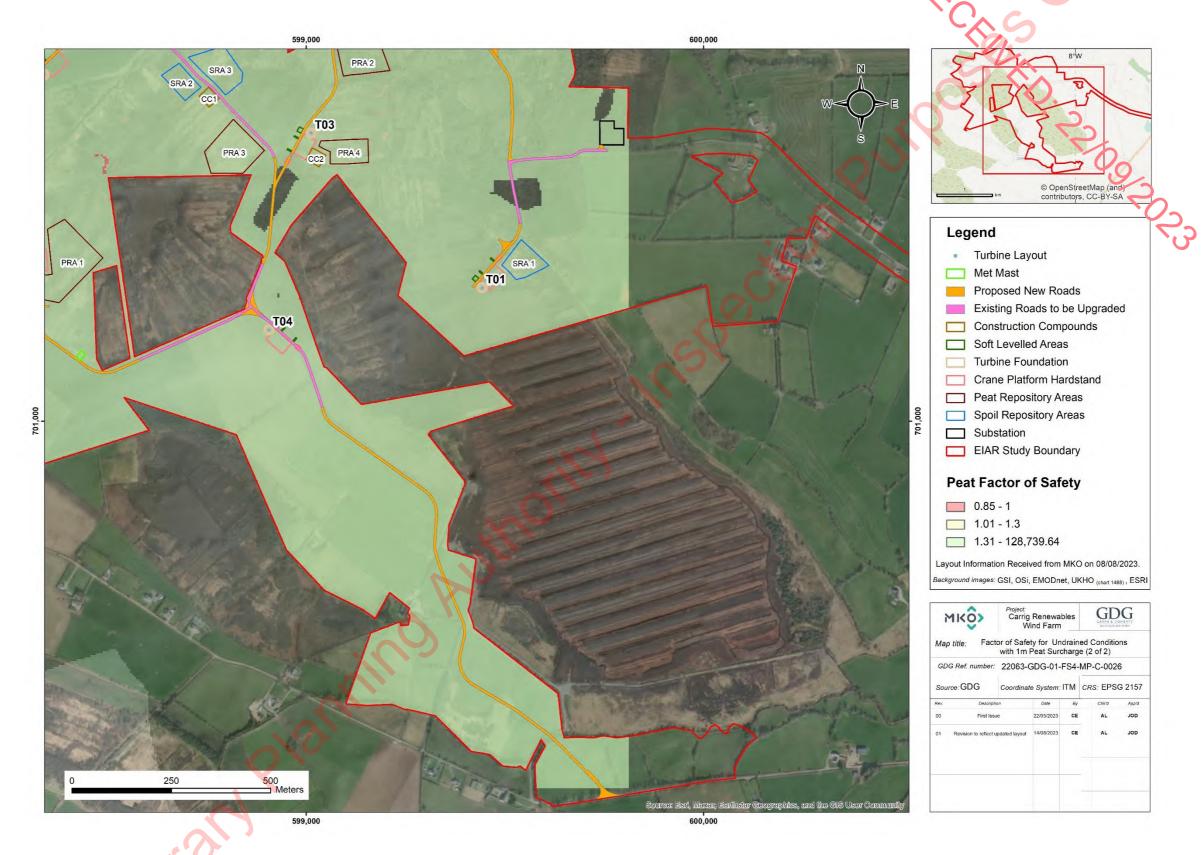


Figure K- 4: FoS for undrained conditions and surcharge of 1 m (i.e. 10 kPa) (2 of 2)

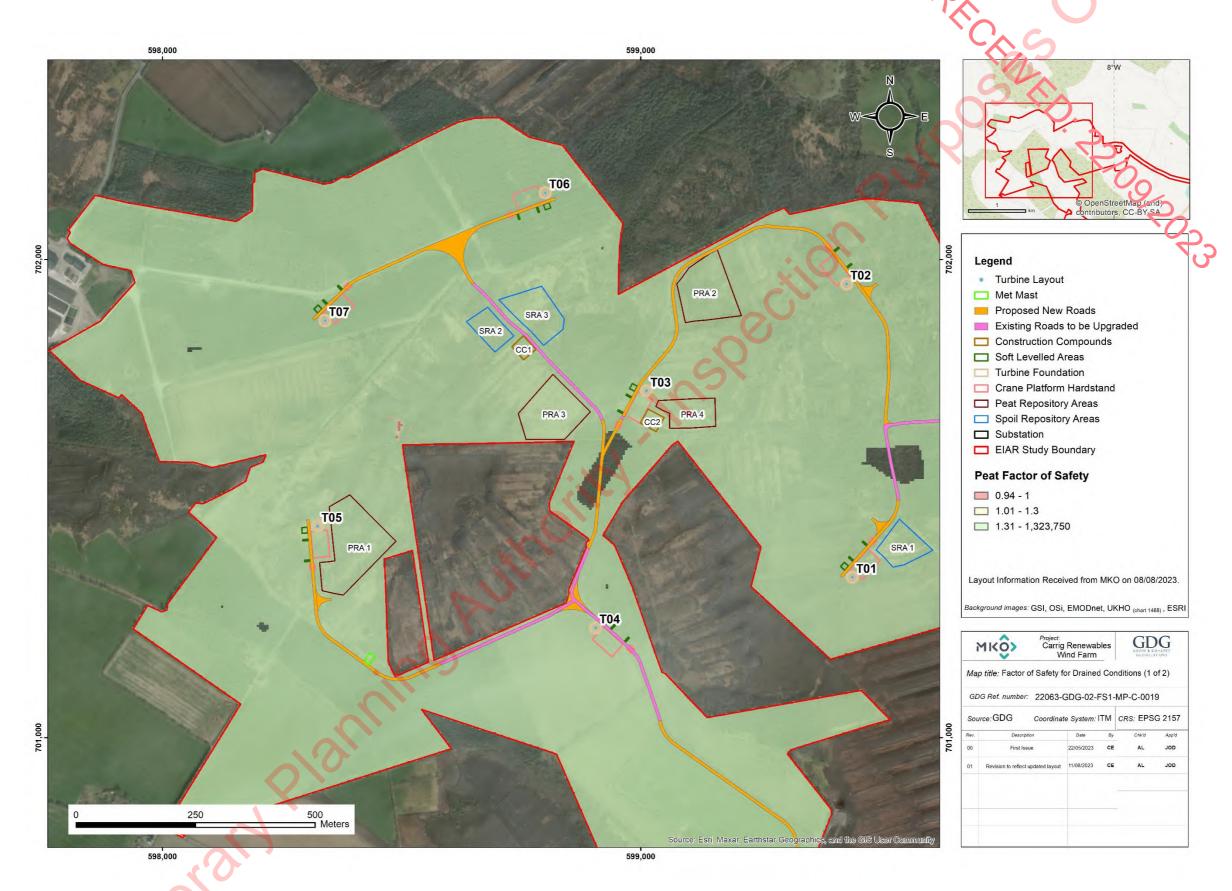


Figure K- 5: FoS for drained conditions (1 of 2).

Figure K- 6: FoS for drained conditions (2 of 2).

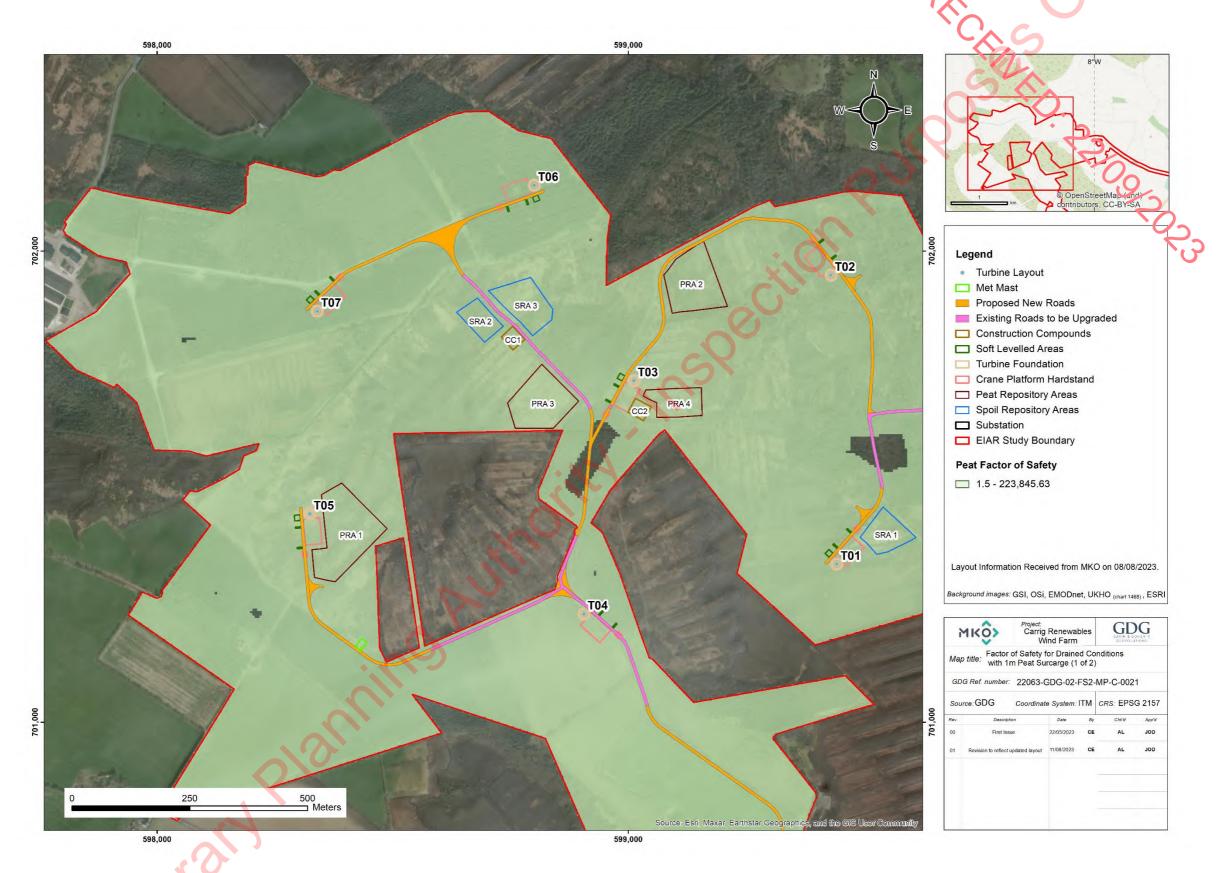


Figure K-7: FoS for drained conditions and surcharge of 1 m (i.e. 10 kPa) (1 of 2).

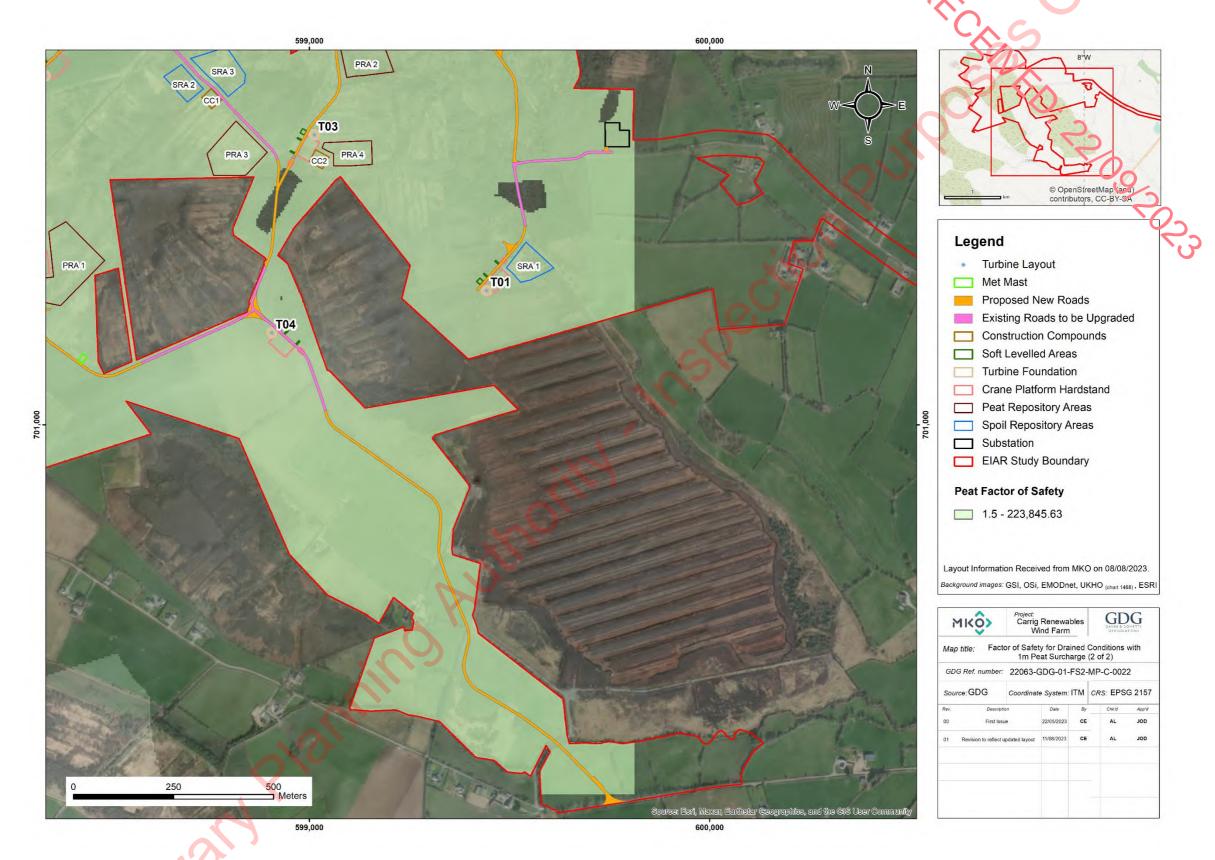


Figure K- 8: FoS for drained conditions and surcharge of 1 m (i.e. 10 kPa) (2 of 2).

Appendix L SAFETY BUFFERS

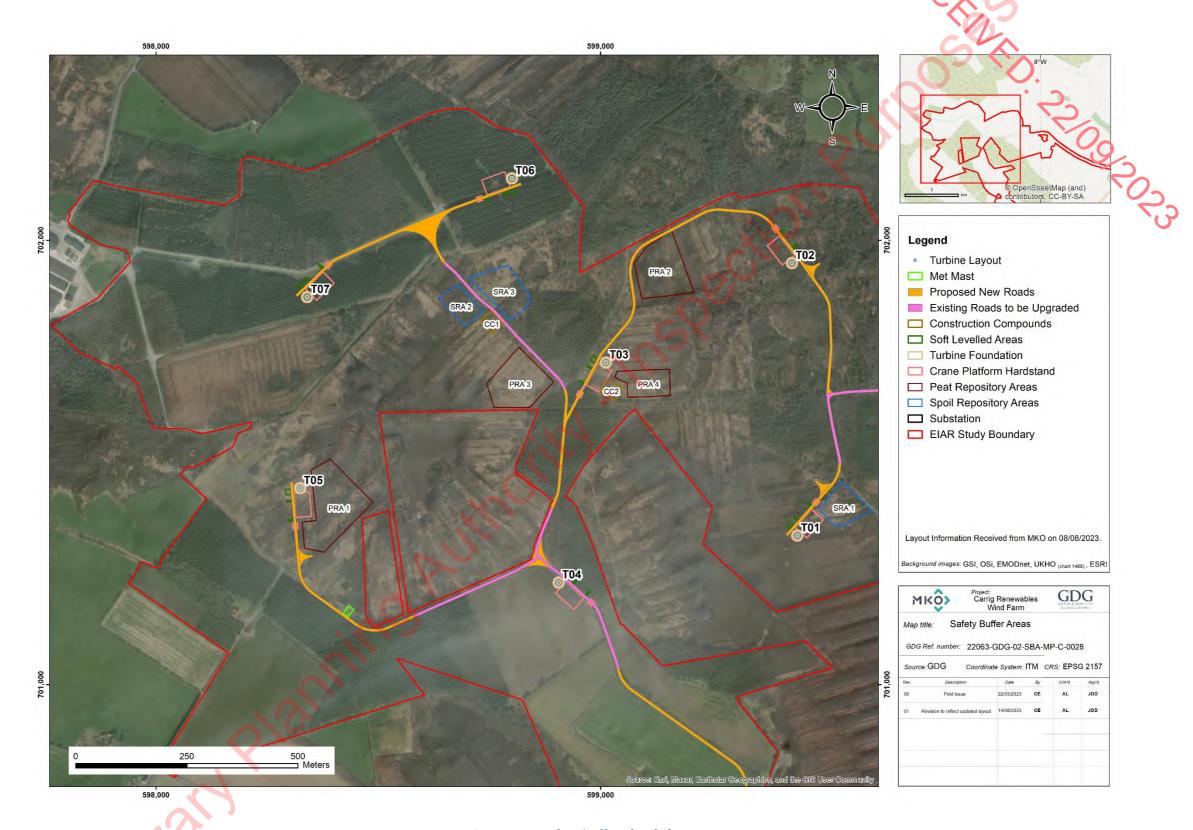


Figure L- 1 : Safety buffers (1 of 2).

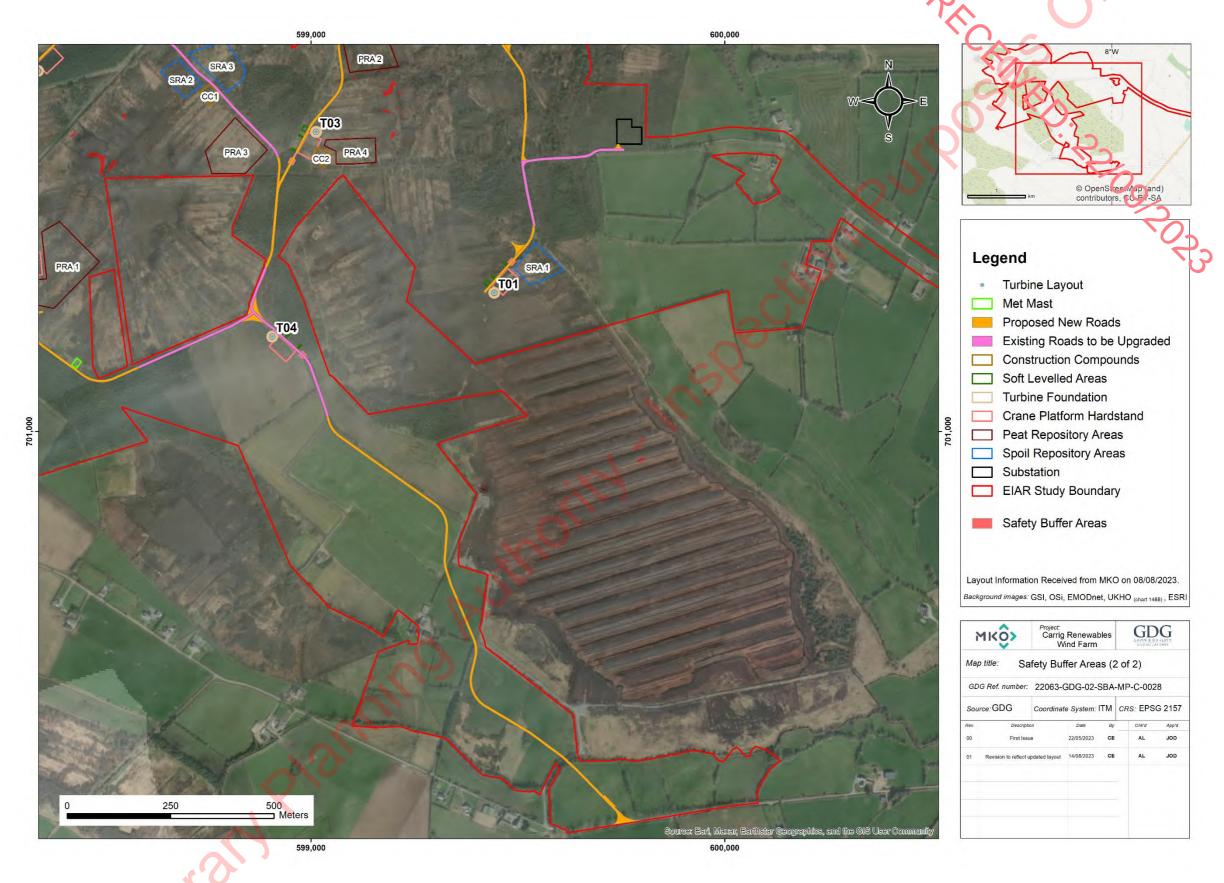


Figure L- 2: Safety buffers (2 of 2).

Appendix M PEAT STABILITY RISK CALCULATION

Table M- 1: Peat risk assessment at turbine 1.

Peat Stability Risk Assessment (PSRA)

мк<mark>ô</mark>>

Carrig Wind Farm

Location:	Turbine 1
Conditions:	Undrained (U), undrained surcharge (US), drained (D), drained surcharge (DS)
Inspected on:	Mar-23
Inspected by:	IPP
Constituted by	CF.

		Uses of factors		Value				Rating criteria		Dating unles	Mainhtinn	C	7.2
		Hazard factors	U	US [DS	0	1	2	3	Rating value	Weighting	Score	Comment
Factor	of Safety		4.1	3.2	5.8	-	≥ 1.3	1.3 - 1.0	≤ 1.0	1	10	10	Peat depth: ~3.4m. Slope angle: 2.02º.
		Distance to previous slides (km)		NA		NA	5 - 10	< 5	On site	0	2	0	-5
	Slide history	Evidence of peat movement (e.g. tension cracks, step features, compression features).		NA		NA	-	-	Yes	0	2	0	200
	Subsoil conditions (visible in trial pits)	Subsoil type		ravel / I glacial t		NA	Gravel / Firm glacial till	Smooth rock	Soft sensitive clay	1	1	1	Nearest TP (TP02): Firm grey slightly sandy slightly gravelly CLAY with moderate cobble and low boulder content. Sand and gravel are fine to coarse, gravel is angular to subangular. Cobbles and boulders are subangular to subrounded of limestone.
	(visible iii triai pits)	Peat fibres across transition to subsoil		No		NA	Yes	Partially	No	3	1	3	
		Peat wetness				NA	Dry / Stands well	Slowly squeezing	Extremely wet / Undiggable	1	2	2	
		General curvature downslope		NA		NA	-	Planar	Convex	0	1	0	Flat topography.
	Topography	Distance to the convexity break (only if previous factor is Convex)		NA		NA	> 100 m	50 - 100 m	< 50 m	0	1	0	
		Slope aspect (for high latitudes in northern hemisphere)		NA		NA	SW, S, SE	W, E	NW, N, NE	0	1	0	
ctors		Distance from watercourse (m)		> 300		NA	> 300	200 - 300	< 200	1	1	1	
lary fa		Surface moisture index (NDMI)		96 -13	5	NA	0 - 96	96 -135	135 - 174	2	1	2	
Secondary factors		Surface water (water table level indicator)	Pon	ded in	drains	NA	Localised	Ponded in drains	Springs	2	1	2	
	Hydrology	Evidence of piping (subsurface flow)		NA		NA	-	-	Yes	0	1	0	
		Significant surface desiccation (previous summer was dry?)		NA		NA	-	-	Yes	0	1.5	0	
		Existing drainage ditches	Var	ied / Ol	olique	NA	Down slope	Varied / Oblique	Across slope	2	1	2	Flat topography, but drains perpendicular to contours.
		Annual rainfall	< 1	.000 m	m/yr	NA	< 1000 mm/yr	1000 - 1400 mm/yr	> 1400 mm/yr	1	1	1	
	Vacatatian	Bush		Wetlan	ds	NA	Dry heather	Grassland	Wetlands	3	1	3	
	Vegetation	Forestry (if applicable)		NA		NA	Good growth	Fair	Stunted growth	0	1.5	0	
	Doot workings	Peat cuts presence	Cuta	way / T	urbary	NA	-	Cutaway / Turbary	Machine cut	2	1	2	In very close proximity to turbary cutting
	Peat workings	Peat cuts vs contour lines		Obliqu	e	NA	Perpendicular	Oblique	Parallel	2	1	2	
	Existing loads	Roads		NA		NA	Solid		Floating	0	1	0	
	Time of year for const	truction		te Sum Autum	,	NA	Spring	Winter, Early Summer	Late Summer, Autumn	3	1	3	Wost case estimate

Hazard

0.0 - 0.3 Negligible

0.3 - 0.5 Low

0.5 - 0.7 Medium

0.7 - 1.0 High

Hazard total 34

Max. possible 102

Hazard 0.1 0.33

Consequence factors	Value			Rating criteria		Rating value	Weighting	Score	Comment
Consequence factors	Value	0	1	2	3	Rating value	Weighting	Score	Comment
Volume of potential peat flow (function of distance from nearest watercourse and peat depth in the area)	Small	NA	Small	Medium	Large	1	3	3	
Downslope hydrology features	Minor undefined watercourse	NA	Bowl / contained	Minor undefined watercourse	Valley	2	1	2	
Proximity from defined valley (m)	> 500	NA	> 500	200 - 500	< 200	1	1	1	
Downhill slope angle	Horizontal	NA	Horizontal	Intermediate	Steep	1	1	1	
Downstream aquatic environment	Sensitive	NA	Non-sensitive	Sensitive	Drinking water supply	2	1	2	
Public roads in potential peat flow path	NA	NA	Minor road	Local road	Regional road	0	1	0	
Overhead lines in potential peat flow path	NA	NA	Phone lines	Electricity (LV)	Electricity (MV, HV)	0	1	0	
Buildings in potential peat flow path	NA	NA	Farm out-houses	-	Dwelling	0	1	0	
Capability to respond (access and resources)	Fair	NA	Good	Fair	Poor	2	1	2	
10					•	Со	nsequences _{total}	11	

Risk rating

Consequences

0.0 - 0.3 Negligible

0.3 - 0.5 Low

0.5 - 0.7 Medium

0.7 - 1.0 High

Consequences ₀₋₁ 0.33

Max. possible 33

R	isk	Action required
0.00 - 0.20	Negligible	Normal site investigation
0.20 - 0.40	low	Targeted site investigation, design of specific mitigation measures. Part time supervision during construction.
0.40 - 0.60	Medium	Avoid construction in the area if possible. If unavoidable, detailed site investigation and design of specific mitigation measures. Full time supervision during construction.
0.60 - 1.00	High	Avoid construction in this area.

 Risk rating =
 Hazard * Consequences

 Risk rating =
 0.33
 0.33
 =
 0.11

Table M- 2: Peat risk assessment at turbine 2.

Peat Stability Risk Assessment (PSRA)

Carrig Wind Farm

Location:	Turbine 2
Conditions:	Undrained (U), undrained surcharge (US), drained (D), drained surcharge (DS)
Inspected on:	Aug-22
Inspected by:	CE
Completed by:	CE
Date:	Apr-23

			Value			Rating criteria					
		Hazard factors	U US D DS	0	1	2	3	Rating value	Weighting	Score	Comment
actor	of Safety		34.4 c 27.1 g 29.9 c 48.8 g	-	≥ 1.3	1.3 - 1.0	≤ 1.0	1	10	10	Peat depth: ~3.7m. Slope angle: 0.2º.
		Distance to previous slides (km)	NA	NA	5 - 10	< 5	On site	0	2	0	
	Slide history	Evidence of peat movement (e.g. tension cracks, step features, compression features).	NA	NA	-	-	Yes	0	2	0	G
	Subsoil conditions	Subsoil type	NA	NA	Gravel / Firm glacial till	Smooth rock	Soft sensitive clay	0	1	0	No TP at location
	(visible in trial pits)	Peat fibres across transition to subsoil	NA	NA	Yes	Partially	No	0	1	0	No TP at location
		Peat wetness		NA	Dry / Stands well	Slowly squeezing	Extremely wet / Undiggable	0	2	0	No TP at location
		General curvature downslope	NA	NA	-	Planar	Convex	0	1	0	
	Topography	Distance to the convexity break (only if previous factor is Convex)	NA	NA	> 100 m	50 - 100 m	< 50 m	0	1	0	
		Slope aspect (for high latitudes in northern hemisphere)	NA	NA	SW, S, SE	W, E	NW, N, NE	0	1	0	
tors		Distance from watercourse (m)	> 300	NA	> 300	200 - 300	< 200	1	1	1	
ary fac		Surface moisture index (NDMI)	135 - 174	NA	0 - 96	96 -135	135 - 174	3	1	3	
Secondary factors		Surface water (water table level indicator)	Ponded in drains	NA	Localised	Ponded in drains	Springs	2	1	2	
S	Hydrology	Evidence of piping (subsurface flow)	NA	NA	-	-	Yes	0	1	0	
		Significant surface desiccation (previous summer was dry?)	NA	NA	-	-	Yes	0	1.5	0	
		Existing drainage ditches	Varied / Oblique	NA	Down slope	Varied / Oblique	Across slope	2	1	2	
		Annual rainfall	< 1000 mm/yr	NA	< 1000 mm/yr	1000 - 1400 mm/yr	> 1400 mm/yr	1	1	1	
	Vegetation	Bush	Wetlands	NA	Dry heather	Grassland	Wetlands	3	1	3	
	Vegetation	Forestry (if applicable)	Good growth	NA	Good growth	Fair	Stunted growth	1	1.5	1.5	
	Peat workings	Peat cuts presence	-	NA	-	Cutaway / Turbary	Machine cut	1	1	1	
	reat workings	Peat cuts vs contour lines	Parallel	NA	Perpendicular	Oblique	Parallel	3	1	3	
	Existing loads	Roads	Floating	NA	Solid	•	Floating	3	1	3	
	Time of year for construction		Late Summer, Autumn	NA	Spring	Winter, Early Summer	Late Summer, Autumn	3	1	3	Wost case estimate

Negligible 0.0 - 0.3

Hazard _{total} 33.5

Max. possible 93

Hazard ₀₋₁ 0.36

Consequence factors	Value			Rating criteria		Rating value	Weighting	Score	Comment
Consequence factors	Value	0	1	2	3	Rating value	weighting	Score	Comment
Volume of potential peat flow (function of distance from nearest watercourse and peat depth in the area)	Medium	NA	Small	Medium	Large	2	3	6	
Downslope hydrology features	Minor undefined watercourse	NA	Bowl / contained	Minor undefined watercourse	Valley	2	1	2	
Proximity from defined valley (m)	> 500	NA	> 500	200 - 500	< 200	1	1	1	
Downhill slope angle	Horizontal	NA	Horizontal	Intermediate	Steep	1	1	1	
Downstream aquatic environment	Sensitive	NA	Non-sensitive	Sensitive	Drinking water supply	2	1	2	
Public roads in potential peat flow path	NA	NA	Minor road	Local road	Regional road	0	1	0	
Overhead lines in potential peat flow path	NA	NA	Phone lines	Electricity (LV)	Electricity (MV, HV)	0	1	0	
Buildings in potential peat flow path	NA	NA	Farm out-houses	-	Dwelling	0	1	0	
Capability to respond (access and resources)	Fair	NA	Good	Fair	Poor	2	1	2	
	_					Со	nsequences _{total}	14	

Consequences 0.0 - 0.3 Negligible 0.3 - 0.5 0.5 - 0.7 Medium

Max. possible 33 Consequences ₀₋₁ 0.42

Risk	rating

1	R	tisk	Action required							
	0.00 - 0.20	Negligible	Normal site investigation							
	0.20 - 0.40	Low	Targeted site investigation, design of specific mitigation measures. Part time supervision during construction.							
	0.40 - 0.60	Medium	Avoid construction in the area if possible. If unavoidable, detailed site investigation and design of specific mitigation measures. Full time supervision during construction.							
	0.60 - 1.00	High	Avoid construction in this area.							

Hazard * Consequences Risk rating = Risk rating = 0.42 0.36

Table M- 3: Peat risk assessment at turbine 3.

Peat Stability Risk Assessment (PSRA)

Carrig Wind Farm

Turbine 3 Location: Undrained (U), undrained surcharge (US), drained (D), drained surcharge (DS) Conditions: Nov-22 Inspected on: Inspected by: CE Completed by: CE Date: Apr-23

				Valu	Ie.			Rating criteria					<u>`</u>
		Hazard factors	U		D D	s 0	1	2	3	Rating value	Weighting	Score	Comment
Factor	of Safety		13.6		11.3	_	≥ 1.3	1.3 - 1.0	≤ 1.0	1	10	10	Peat depth: ~1.6 m. Slope angle: 1.3º.
	Clida bisham	Distance to previous slides (km)		N.A	١	NA	5 - 10	< 5	On site	0	2	0	5
	Slide history	Evidence of peat movement (e.g. tension cracks, step features, compression features).		NA	٨	NA	-	-	Yes	0	2	0	
		Subsoil type	S	mooth	rock	NA	Gravel / Firm glacial till	Smooth rock	Soft sensitive clay	2	1	2	Nearest TP (TP03) records: Bed rock.
	Subsoil conditions (visible in trial pits)	Peat fibres across transition to subsoil		NA		NA	Yes	Partially	No	0	1	0	
		Peat wetness	Slov	wly sq	ueezin	g NA	Dry / Stands well	Slowly squeezing	Extremely wet / Undiggable	2	2	4	
General curvature downslope NA NA - Pla	Planar	Convex	0	1	0								
	Topography	Distance to the convexity break (only if previous factor is Convex)		NA	١	NA	> 100 m	50 - 100 m	< 50 m	0	1	0	
		Slope aspect (for high latitudes in northern hemisphere)		NA		NA	SW, S, SE	W, E	NW, N, NE	0	1	0	
	Distance from watercourse (m) > 300 NA > 300 200 - 300 < 200 1 Surface moisture index (NDMI) 96 - 135 NA 0 - 96 96 - 135 135 - 174 2	1	1	1									
actors		Surface moisture index (NDMI)		96 -1	.35	NA	0 - 96	96 -135	135 - 174	2	1	2	
Secondary factors		Surface water (water table level indicator)	Por	nded ir	n drain	s NA	Localised	Ponded in drains	Springs	2	1	2	
Secor	Hydrology	Evidence of piping (subsurface flow)		Ye	s	NA	-	-	Yes	3	1	3	Rapid water ingress at 0.9m bgl - possible peat pipe.
		Significant surface desiccation (previous summer was dry?)		NA	١	NA	-	-	Yes	0	1.5	0	
		Existing drainage ditches		own s	slope	NA	Down slope	Varied / Oblique	Across slope	O 1	1	1	Very low slope angle, but drains perpendicular to contours.
		Annual rainfall	< 1	1000 r	nm/yr	NA	< 1000 mm/yr	1000 - 1400 mm/yr	> 1400 mm/yr	1	1	1	
	Vegetation	Bush		Wetla	ınds	NA	Dry heather	Grassland	Wetlands	3	1	3	
	regetation	Forestry (if applicable)		NA	١	NA	Good growth	Fair	Stunted growth	0	1.5	0	
	Peat workings	Peat cuts presence		Cutaw Turba		NA	-	Cutaway / Turbary	Machine cut	2	1	2	
	r cat workings	Peat cuts vs contour lines		Para	llel	NA	Perpendicular	Oblique	Parallel	3	1	3	
	Existing loads	Roads		Soli	id	NA	Solid		Floating	1	1	1	
	Time of year for con	struction	La	te Sur Autu		NA	Spring	Winter, Early Summer	Late Summer, Autumn	3	1	3	Wost case estimate

Negligible 0.0 - 0.3 0.3 - 0.5 Low 0.5 - 0.7

Hazard total 38 Max. possible 102

0.37

Hazard ₀₋₁

Consequence factors	Value			Rating criteria		Rating value	Weighting	Score	Comment
consequence factors	value	0	1	2	3	Rating value	weighting	Score	Comment
Volume of potential peat flow (function of distance from nearest watercourse and peat depth in the area)	Small	NA	Small	Medium	Large	1	3	3	
Downslope hydrology features	Minor undefined watercourse	NA	Bowl / contained	Minor undefined watercourse	Valley	2	1	2	
Proximity from defined valley (m)	> 500	NA	> 500	200 - 500	< 200	1	1	1	
Downhill slope angle	Horizontal	NA	Horizontal	Intermediate	Steep	1	1	1	
Downstream aquatic environment	Sensitive	NA	Non-sensitive	Sensitive	Drinking water supply	2	1	2	
Public roads in potential peat flow path	NA	NA	Minor road	Local road	Regional road	0	1	0	
Overhead lines in potential peat flow path	NA	NA	Phone lines	Electricity (LV)	Electricity (MV, HV)	0	1	0	
Buildings in potential peat flow path	NA	NA	Farm out-houses	-	Dwelling	0	1	0	
Capability to respond (access and resources)	Fair	NA	Good	Fair	Poor	2	1	2	
	<u> </u>			·		Co	nsequences total	11	

Consequences Negligible 0.3 - 0.5 0.5 - 0.7 Medium 0.7 - 1.0 High

Max. possible 33

Consequences ₀₋₁

Risk rating

Risi	k	Action required							
0.00 - 0.20	Negligible	Normal site investigation							
0.20 - 0.40	Low	Targeted site investigation, design of specific mitigation measures. Part time supervision during construction.							
0.40 - 0.60	Medium	Avoid construction in the area if possible. If unavoidable, detailed site investigation and design of specific mitigation measures. Full time supervision during construction.							
0.60 - 1.00	High	Avoid construction in this area.							

Risk rating = Hazard * Consequences

Risk rating =

0.37 0.33

Table M- 4: Peat risk assessment at turbine 4.

Inspected on: Nov-22
Inspected by: CE
Completed by: CE
Date: Apr-23

	Hazard factors			Valu	ue			Rating criteria		Rating value	Weighting	Score	Comment						
		Hazaru Tactors	U	US	D D	0	1	2	3	Rating value	weighting	Score	Comment						
Factor	of Safety		51.29	20.72	41.68	-	≥ 1.3	1.3 - 1.0	≤ 1.0	1	10	10	Peat depth: ~0.67 m. Slope angle: 0.8º.						
	Clide biotes	Distance to previous slides (km)		NA		NA		NA		NA		NA	5 - 10	< 5	On site	0	2	0	,05
	Slide history	Evidence of peat movement (e.g. tension cracks, step features, compression features).		N/	Ą	NA	-	-	Yes	0	2	0	0						
	Subsoil conditions (visible in trial pits)	Subsoil type		ravel , glacia	/ Firm Il till	NA	Gravel / Firm glacial till	Smooth rock	Soft sensitive clay	1	1	1	Nearest TP (TP08) records: Firm grey mottled orange slightly sandy slightly gravelly CLAY with moderate cobble and low boulder content. Sand and gravel are fine to coarse, gravel is subangular to subrounded. Cobbles and boulders are subrounded of limestone.						
		Peat fibres across transition to subsoil		N/	Ą	NA	Yes	Partially	No	0	1	0							
		Peat wetness				NA	Dry / Stands well	Slowly squeezing	Extremely wet / Undiggable	0	2	0	20						
		General curvature downslope		N/	Ą	NA		0											
	Topography	Distance to the convexity break (only if previous factor is Convex)		N/	A	NA	> 100 m	Planar Convex 0 1 0 m 50 - 100 m < 50 m											
		Slope aspect (for high latitudes in northern hemisphere)		N/	Ą	NA	SW, S, SE	W, E	NW, N, NE	0	1	0	<i>y</i>						
ctors		Distance from watercourse (m)		> 30	00	NA	> 300	200 - 300	< 200	1	1	1							
Secondary factors		Surface moisture index (NDMI)		96 -1	135	NA	0 - 96	96 -135	135 - 174	2	1	2							
Secon		Surface water (water table level indicator)		Locali	ised	NA	Localised	Ponded in drains	Springs	1	1	1							
	Hydrology	Evidence of piping (subsurface flow)		N/	4	NA	-	-	Yes	0	1	0							
		Significant surface desiccation (previous summer was dry?)		N/	Ą	NA	-	-	Yes	0	1.5	0							
		Existing drainage ditches		N/	4	NA	Down slope	Varied / Oblique	Across slope	0	1	0							
		Annual rainfall	<	1000 r	mm/yr	NA	< 1000 mm/yr	1000 - 1400 mm/yr	> 1400 mm/yr	1	1	1							
	Manatation	Bush		Grass	land	NA	Dry heather	Grassland	Wetlands	2	1	2	Agricultural tillage land						
	Vegetation	Forestry (if applicable)		N/	A	NA	Good growth	Fair	Stunted growth	0	1.5	0							
	Doot workings	Peat cuts presence		-		NA	-	Cutaway / Turbary	Machine cut	1	1	1							
	Peat workings	Peat cuts vs contour lines		N/	4	NA	Perpendicular	Oblique	Parallel	0	1	0							
	Existing loads	Roads		Soli	id	NA	Solid	. \-	Floating	1	1	1							
	Time of year for con	struction	Lā	te Sur Autu	mmer, mn	NA	Spring	Winter, Early Summer	Late Summer, Autumn	3	1	3	Wost case estimate						

Hazard

0.0 - 0.3 Negligible

0.3 - 0.5 Low

0.5 - 0.7 Medium

0.7 - 1.0 High

Hazard total 23

Max. possible 102

Hazard ₀₋₁ 0.23

Consequence factors	Value			Rating criteria		Rating value	Weighting	Score	Comment
Consequence factors	value	0	1	2	3	Katilig value	weighting	Score	Comment
Volume of potential peat flow (function of distance from nearest watercourse and peat depth in the area)	NA	NA	Small	Medium	Large	0	3	0	No peat.
Downslope hydrology features	Minor undefined watercourse	NA	Bowl / contained	Minor undefined watercourse	Valley	2	1	2	
Proximity from defined valley (m)	> 500	NA	> 500	200 - 500	< 200	1	1	1	
Downhill slope angle	Horizontal	NA	Horizontal	Intermediate	Steep	1	1	1	
Downstream aquatic environment	Sensitive	NA	Non-sensitive	Sensitive	Drinking water supply	2	1	2	
Public roads in potential peat flow path	NA	NA	Minor road	Local road	Regional road	0	1	0	
Overhead lines in potential peat flow path	NA	NA	Phone lines	Electricity (LV)	Electricity (MV, HV)	0	1	0	
Buildings in potential peat flow path	NA	NA	Farm out-houses	-	Dwelling	0	1	0	
Capability to respond (access and resources)	Fair	NA	Good	Fair	Poor	2	1	2	

Consequences

0.0 - 0.3 Negligible

0.3 - 0.5 Low

0.5 - 0.7 Medium

0.7 - 1.0 High

Consequences total 8

Max. possible 33

Consequences 0-1 0.24

Risk rating

Risl	k	Action required
0.00 - 0.20	Negligible	Normal site investigation
0.20 - 0.40	Low	Targeted site investigation, design of specific mitigation measures. Part time supervision during construction.
0.40 - 0.60	Medium	Avoid construction in the area if possible. If unavoidable, detailed site investigation and design of specific mitigation measures. Full time supervision during construction.
0.60 - 1.00	High	Avoid construction in this area.

Risk rating = Hazard * Consequences

Risk rating = 0.23 0.24

= 0.05

Table M- 5: Peat risk assessment at turbine 5.

Peat Stability Risk Assessment (PSRA)

Carrig Wind Farm

Location: Turbine 5

Conditions: Undrained (U), undrained surcharge (US), drained (D), drained surcharge (US)

Inspected on: Mar-23
Inspected by: IPP

Completed by: CE
Date: Apr-23

		Hazard factors	Va	lue			Rating criteria		Rating value	Weighting	Score	Comment
		Tidzara Tactors	U US	D DS	0	1	2	3	nating value	weighting	30010	Comment
actor o	of Safety		48.7 29.9	40.4	-	≥ 1.3	1.3 - 1.0	≤ 1.0	1	10	10	Peat depth: ~ 1.5m. Slipe angle: 0.37º.
	Clido biston	Distance to previous slides (km)	N	IA	NA	5 - 10	< 5	On site	0	2	0	200
	Slide history	Evidence of peat movement (e.g. tension cracks, step features, compression features).	N	IA	NA	-	-	Yes	0	2	0	73
	Subsoil conditions (visible in trial pits)			ensitive ay	NA	Gravel / Firm glacial till	Smooth rock	Soft sensitive clay	3	1	3	Nearest TP is TP104: Light grey sandy CLAY. Sand is fine to medium, subangular to subrounded. Presence of cobbles (15-30cm). Presence of white loose fine to medium sand. (TP06, also nearby records: Soft damp grey slightly sandy slightly gravelly CLAY with moderate cobble and boulder content. Sand is fine to coarse, gravel is fine to coarse, angular to subangular.) Cobbles and boulders are subangular of limestone. One boulder is 70cm.
		Peat fibres across transition to subsoil	Part	ially	NA	Yes	Partially	No	2	1	2	
		Peat wetness	Slowly s	queezing	NA	Dry / Stands well	Slowly squeezing	Extremely wet / Undiggable	2	2	4	
	Topography	General curvature downslope	N	IA	NA	-	Planar	Convex	0	1	0	J.
		Distance to the convexity break (only if previous factor is Convex)	N	IA	NA	> 100 m	50 - 100 m	< 50 m	0	1	0	
Secondary factors		Slope aspect (for high latitudes in northern hemisphere)	N	IA	NA	SW, S, SE	W, E	NW, N, NE	0	1	0	
ondary		Distance from watercourse (m)	200	- 300	NA	> 300	200 - 300	< 200	2	1	2	
Seco		Surface moisture index (NDMI)	0 -	96	NA	0 - 96	96 -135	135 - 174	1	1	1	
		Surface water (water table level indicator)	Ponded	in drains	NA	Localised	Ponded in drains	Springs	2	1	2	
	Hydrology	Evidence of piping (subsurface flow)	N	IA	NA	-	-	Yes	0	1	0	
		Significant surface desiccation (previous summer was dry?)	N	IA	NA	-	-	Yes	0	1.5	0	
		Existing drainage ditches	Down	slope	NA	Down slope	Varied / Oblique	Across slope	1	1	1	
		Annual rainfall	< 1000	mm/yr	NA	< 1000 mm/yr	1000 - 1400 mm/yr	> 1400 mm/yr	1	1	1	
	Manatatian	Bush	Wet	lands	NA	Dry heather	Grassland	Wetlands	3	1	3	
	Vegetation	Forestry (if applicable)	N	IA	NA	Good growth	Fair	Stunted growth	0	1.5	0	
	Doot work	Peat cuts presence	Cuta Tur		NA	-	Cutaway / Turbary	Machine cut	2	1	2	
	Peat workings	Peat cuts vs contour lines	Par	allel	NA	Perpendicular	Oblique	Parallel	3	1	3	
	Existing loads	Roads	N	IA	NA	Solid	-	Floating	0	1	0	
ı	Time of for	ne of year for construction		ımmer,	NA	Spring	Winter, Early	Late Summer, Autumn	3	1	3	Wost case estimate

Hazard

0.0 - 0.3 Negligible

0.3 - 0.5 Low

0.5 - 0.7 Medium

0.7 - 1.0 High

Hazard _{total} 37

Max. possible 102

Hazard ₀₋₁ 0.36

Consequence factors	Value			Rating criteria		Rating value	Weighting	Score	Comment
Consequence factors	Value	0	1	2	3	Rating value	weighting	score	Comment
Volume of potential peat flow (function of distance from nearest watercourse and peat depth in the area)	Small	NA	Small	Medium	Large	1	3	3	
Downslope hydrology features	Minor undefined watercourse	NA	Bowl / contained	Minor undefined watercourse	Valley	2	1	2	
Proximity from defined valley (m)	> 500	NA	> 500	200 - 500	< 200	1	1	1	
Downhill slope angle	NA	NA	Horizontal	Intermediate	Steep	0	1	0	
Downstream aquatic environment	Sensitive	NA	Non-sensitive	Sensitive	Drinking water supply	2	1	2	
Public roads in potential peat flow path	NA	NA	Minor road	Local road	Regional road	0	1	0	
Overhead lines in potential peat flow path	NA	NA	Phone lines	Electricity (LV)	Electricity (MV, HV)	0	1	0	
Buildings in potential peat flow path	Farm out-houses	NA	Farm out-houses	-	Dwelling	1	1	1	
Capability to respond (access and resources)	Fair	NA	Good	Fair	Poor	2	1	2	

Consequences

0.0 - 0.3 Negligible

0.3 - 0.5 Low

0.5 - 0.7 Medium

0.7 - 1.0 High

Max. possible 33

Consequences 0.1 0.33

Consequences total 11

Risk rating

 Risk
 Action required

 0.00 - 0.20
 Negligible
 Normal site investigation

 0.20 - 0.40
 Low
 Targeted site investigation, design of specific mitigation measures. Part time supervision during construction.

 0.40 - 0.60
 Medium
 Avoid construction in the area if possible. If unavoidable, detailed site investigation and design of specific mitigation measures. Full time supervision during construction.

 0.60 - 1.00
 High
 Avoid construction in this area.

Risk rating = Hazard * Consequences

Risk rating = 0.36 0.33

= 0.12

Table M- 6: Peat risk assessment at turbine 6.

Peat Stability Risk Assessment (PSRA)

Carrig Wind Farm

Turbine 6 Location: Undrained (U), undrained surcharge (US), drained (D), drained surcharge (DS) Conditions: nspected on: Nov-22 Inspected by: CE Completed by: CE Date: Apr-23

		Hannel frakens	Value			Rating criteria		Batha a calor	184-1-6-1	C	Comment
		Hazard factors	U US D DS	0	1	2	3	Rating value	Weighting	Score	Comment
Factor	of Safety		44.3 31.77 37.51 48.60	,	≥ 1.3	1.3 - 1.0	≤ 1.0	1	10	10	Peat depth: ~2.5 m. Slope angle: 0.25%.
	Slido history	Distance to previous slides (km)	NA	NA	5 - 10	< 5	On site	0	2	0	20-
	Slide history	Evidence of peat movement (e.g. tension cracks, step features, compression features).	NA	NA	-	-	Yes	0	2	0	7,5
		Subsoil type	Soft sensitive clay	NA	Gravel / Firm glacial till	Smooth rock	Soft sensitive clay	3	1	3	Nearest TP (TP05) records: Very soft damp light grey slightly sandy SILT with occasional rootlets. Sand is fine.
	Subsoil conditions (visible in trial pits)	Peat fibres across transition to subsoil	No	NA	Yes	Partially	No	3	1	3	Peat highly decomposed.
		Peat wetness	Extremely wet / Undiggable	NA	Dry / Stands well	Slowly squeezing	Extremely wet / Undiggable	3	2	6	Peat very wet.
		General curvature downslope	NA	NA	-	Planar	Convex	0	1	0	Flat area.
	Topography	Distance to the convexity break (only if previous factor is Convex)	NA	NA	> 100 m	50 - 100 m	< 50 m	0	1	0	
		Slope aspect (for high latitudes in northern hemisphere)	NA	NA	SW, S, SE	W, E	NW, N, NE	0	1	0	
		Distance from watercourse (m)	< 200	NA	> 300	200 - 300	< 200	3	1	3	
actors		Surface moisture index (NDMI)	135 - 174	NA	0 - 96	96 -135	135 - 174	3	1	3	
Secondary factors		Surface water (water table level indicator)	Ponded in drains	NA	Localised	Ponded in drains	Springs	2	1	2	
Secor	Hydrology	Evidence of piping (subsurface flow)	Yes	NA	·	·	Yes	3	1	3	Rapid inflow of water in TP05
		Significant surface desiccation (previous summer was dry?)	NA	NA			Yes	0	1.5	0	
		Existing drainage ditches	Varied / Oblique	NA	Down slope	Varied / Oblique	Across slope	2	1	2	Very low slope angle, but large drain very near to turbine site.
		Annual rainfall	< 1000 mm/yr	NA	< 1000 mm/yr	1000 - 1400 mm/yr	> 1400 mm/yr	1	1	1	
	Vegetation	Bush	NA	NA	Dry heather	Grassland	Wetlands	0	1	0	No bush - forestry area.
	vegetation	Forestry (if applicable)	Good growth	NA	Good growth	Fair	Stunted growth	1	1.5	1.5	
	Peat workings	Peat cuts presence	NA	NA		Cutaway / Turbary	Machine cut	0	1	0	No peat cuts.
	reac workings	Peat cuts vs contour lines	NA	NA	Perpendicular	Oblique	Parallel	0	1	0	
	Existing loads	Roads	NA	NA	Solid		Floating	0	1	0	
	Time of year for construction		Late Summer, Autumn	NA	Spring	Winter, Early Summer	Late Summer, Autumn	3	1	3	Wost case estimate

Hazard 0.0 - 0.3 Negligible 0.3 - 0.5 0.5 - 0.7 0.7 - 1.0

Max. possible 102 Hazard ₀₋₁ 0.40

Hazard total 40.5

Rating criteria Consequence factors Value Rating value Weighting Score Comment Volume of potential peat flow NA Medium 2 6 Small 3 Large unction of distance from nearest watercourse and peat depth in the area) linor undefin Minor undefined 2 2 Bowl / contained Valley 1 Downslope hydrology features NA watercourse watercourse 1 1 Proximity from defined valley (m) > 500 > 500 200 - 500 < 200 1 1 1 Downhill slope angle Horizontal Horizontal Intermediate Drinking water Sensitive 2 2 1 Downstream aquatic environment NA Non-sensitive Sensitive NA 0 0 Public roads in potential peat flow path NA Minor road Local road Regional road 1 Electricity Electricity Overhead lines in potential peat flow path NA Phone lines 0 0 (LV) (MV, HV) uildings in potential peat flow path arm out-house Farm out-houses 1 1 Fair Capability to respond (access and resources) NA Fair 2 2 Good Poor 1

> Consequences 0.0 - 0.3 Negligible 0.3 - 0.5 Low 0.5 - 0.7 0.7 - 1.0

Max. possible 33 Consequences ₀₋₁ 0.45

Consequences total

Risk rating Action required 0.00 - 0.20 Negligible Normal site investigation Risk rating = Hazard * Consequences Targeted site investigation, design of specific mitigation measures. Part time supervision during construction. 0.20 - 0.40 Risk rating = 0.40 0.45 Low Avoid construction in the area if possible. If unavoidable, detailed site investigation and design of specific mitigation measures. Full time supervision during construction. 0.40 - 0.60 Medium 0.60 - 1.00 High Avoid construction in this area.

15

Table M- 7: Peat risk assessment at turbine 7.

(GDG	Peat Stability Risk Assessment (PSRA)			Location: Conditions:	Turbine 7 Undrained (U), undra	ined surcharge (IIS) d	Irained (D) drain	and surcharge (ns)	
GA	VIN & DOHERTY EOSOLUTIONS	reat stability hisk Assessment (r sha)			Inspected on:	Mar-23	illed surcharge (03), d	irailieu (D), urail	ieu sui charge (i	D3)	· Ca
					Inspected by:	IPP					
1	110	Carrig Wind Farm			Completed by: Date:	CE Apr-23					CELLED
											S .
		Hazard factors	Value U US D DS	0	1	Rating criteria	3	Rating value	Weighting	Score	Comment
Eactor	of Safety				≥ 1.3	1.3 - 1.0		1	10	10	Peat depth: ~1.8 m. Slope angle: 0.48
ractor	T	1	37.6 18.00 31.37 48.60	Ļ	21.5	1.5 - 1.0	≤ 1.0	1		10	reat deputi. 1.8 iii. Stope aligie. Out
	Slide history	Distance to previous slides (km)	NA	NA	5 - 10	< 5	On site	0	2	0	703
		Evidence of peat movement (e.g. tension cracks, features, compression features).	NA NA	NA	-	-	Yes	0	2	0	73
		Subsoil type	Gravel / Firm glacial till	NA	Gravel / Firm glacial till	Smooth rock	Soft sensitive clay	1	1	1	Nearest TP (TP103) records:Grey very gravelly very sandy CLAY. Sand is fine to coarse, angular to subrounded. Gravel is fine to coarse, angular to subrounded.
	Subsoil conditions (visible in trial pits)	Peat fibres across transition to subsoil	No	NA	Yes	Partially	No	3	1	3	Peat highly decomposed.
		Peat wetness	Slowly squeezing	NA	Dry / Stands well	Slowly squeezing	Extremely wet / Undiggable	3	2	6	0,5
		General curvature downslope	NA	NA	-	Planar	Convex	0	1	0	Flat area.
	Topography	Distance to the convexity break (only if previous factor is Convex)	NA	NA	> 100 m	50 - 100 m	< 50 m	0	1	0	
		Slope aspect (for high latitudes in northern hemisphere)	NA	NA	SW, S, SE	W, E	NW, N, NE	0	1	0	
		Distance from watercourse (m)	< 200	NA	> 300	200 - 300	< 200	3	1	3	30
ctors		Surface moisture index (NDMI)	135 - 174	NA	0 - 96	96 -135	135 - 174	3	1	3	
dary fa		Surface water	Ponded in drains	1	Localised	Ponded in drains	Springs	2	1	2	NY
Secondary factors	Hydrology	(water table level indicator) Evidence of piping (subsurface flow)	NA	NA NA	-	-	Yes	0	1	0	
٠,	.,	Significant surface desiccation	NA NA	NA NA			Yes	0	1.5	0	
		(previous summer was dry?) Existing drainage ditches	Varied / Oblique	-	Down slope	Varied / Oblique	Across slope	2	1.5	2	Very low slope angle, but large drain fairly near to turbine site
		Annual rainfall			·					1	(<50m).
			< 1000 mm/yr	NA	< 1000 mm/yr	1000 - 1400 mm/yr	> 1400 mm/yr	1	1		No book forester con-
	Vegetation	Bush Forestry	NA	NA	Dry heather	Grassland	Wetlands	0	1	0	No bush - forestry area.
		(if applicable)	Good growth	NA	Good growth	Fair	Stunted growth	1	1.5	1.5	
	Peat workings	Peat cuts presence	NA	NA	-	Cutaway / Turbary	Machine cut	0	1	0	No peat cuts.
		Peat cuts vs contour lines	NA	NA	Perpendicular	Oblique	Parallel	0	1	0	
	Existing loads	Roads	NA	NA	Solid	- Minter Feel	Floating	0	1	0	
	Time of year for cor	nstruction	Late Summer, Autumn	NA	Spring	Winter, Early Summer	Late Summer, Autumn	3	1	3	Wost case estimate
					На	zard			Hazard _{total}	35.5	
					0.0 - 0.3 0.3 - 0.5	Negligible Low			Max. possible	102	
					0.5 - 0.7	Medium			Hazard ₀₋₁	0.35]
					0.7 - 1.0	High					
		Consequence factors	Value	0	1	Rating criteria	3	Rating value	Weighting	Score	Comment
	e of potential peat fle	ow prest watercourse and peat depth in the area)	Medium	NA	Small	Medium	Large	2	3	6	
	slope hydrology featu										
	•		Minor undefined	NA	Bowl / contained	Minor undefined	Valley	2	1	2	
Proxim	nity from defined vall	ey (m)	watercourse > 500	NA NA	Bowl / contained > 500	Minor undefined watercourse	_	2	1	2	
	-	ey (m)	watercourse	-		watercourse	Valley				
Downh	nill slope angle		> 500	NA	> 500	watercourse 200 - 500 Intermediate	Valley < 200 Steep Drinking water	1	1	1	
Downh	nill slope angle stream aquatic enviro	onment	> 500 Horizontal Sensitive	NA NA	> 500 Horizontal Non-sensitive	watercourse 200 - 500 Intermediate Sensitive	Valley < 200 Steep Drinking water supply	1 1 2	1 1 1	1 1 2	
Downh Downs Public	nill slope angle stream aquatic enviro roads in potential pe	onment at flow path	solution watercourse > 500 Horizontal Sensitive	NA NA NA	> 500 Horizontal Non-sensitive Minor road	watercourse 200 - 500 Intermediate Sensitive Local road Electricity	Valley < 200 Steep Drinking water supply Regional road Electricity	1 1 2 0	1 1 1	1 1 2 0	
Downs Downs Public Overhe	nill slope angle stream aquatic enviro roads in potential pe ead lines in potential	onment at flow path peat flow path	watercourse > 500 Horizontal Sensitive NA NA	NA NA NA NA	> 500 Horizontal Non-sensitive Minor road Phone lines	watercourse 200 - 500 Intermediate Sensitive Local road Electricity (LV)	Valley < 200 Steep Drinking water supply Regional road Electricity (MV, HV)	1 1 2 0	1 1 1 1	1 1 2 0 0 0	
Downs Public Overho Buildin	nill slope angle stream aquatic enviro roads in potential pe ead lines in potential ags in potential peat f	onment at flow path peat flow path	watercourse > 500 Horizontal Sensitive NA NA Farm out-houses	NA NA NA NA	> 500 Horizontal Non-sensitive Minor road Phone lines Farm out-houses	watercourse 200 - 500 Intermediate Sensitive Local road Electricity (LV)	Valley < 200 Steep Drinking water supply Regional road Electricity (MV, HV) Dwelling	1 1 2 0 0 1 1	1 1 1 1 1	1 1 2 0 0 0 1	
Downs Public Overho Buildin	nill slope angle stream aquatic enviro roads in potential pe ead lines in potential	onment at flow path peat flow path	watercourse > 500 Horizontal Sensitive NA NA	NA NA NA NA	> 500 Horizontal Non-sensitive Minor road Phone lines	watercourse 200 - 500 Intermediate Sensitive Local road Electricity (LV)	Valley < 200 Steep Drinking water supply Regional road Electricity (MV, HV)	1 2 0 0 1 1 2	1 1 1 1 1 1 1 1 1	1 1 2 0 0 1 1 2	
Downs Public Overho Buildin	nill slope angle stream aquatic enviro roads in potential pe ead lines in potential ags in potential peat f	onment at flow path peat flow path	watercourse > 500 Horizontal Sensitive NA NA Farm out-houses	NA NA NA NA	> 500 Horizontal Non-sensitive Minor road Phone lines Farm out-houses Good	watercourse 200 - 500 Intermediate Sensitive Local road Electricity (LV) - Fair	Valley < 200 Steep Drinking water supply Regional road Electricity (MV, HV) Dwelling	1 2 0 0 1 1 2	1 1 1 1 1 1 1 1 nsequences total	1 1 2 0 0 0 1 1 2 15	
Downs Public Overho Buildin	nill slope angle stream aquatic enviro roads in potential pe ead lines in potential ags in potential peat f	onment at flow path peat flow path	watercourse > 500 Horizontal Sensitive NA NA Farm out-houses	NA NA NA NA	> 500 Horizontal Non-sensitive Minor road Phone lines Farm out-houses Good	watercourse 200 - 500 Intermediate Sensitive Local road Electricity (LV) - Fair	Valley < 200 Steep Drinking water supply Regional road Electricity (MV, HV) Dwelling	1 2 0 0 1 1 2	1 1 1 1 1 1 1 1 1	1 1 2 0 0 0 1 1 2 15	
Downs Public Overho Buildin	nill slope angle stream aquatic enviro roads in potential pe ead lines in potential ags in potential peat f	onment at flow path peat flow path	watercourse > 500 Horizontal Sensitive NA NA Farm out-houses	NA NA NA NA	> 500 Horizontal Non-sensitive Minor road Phone lines Farm out-houses Good Consection 0.0 - 0.3 0.3 - 0.5 0.5 - 0.7	watercourse 200 - 500 Intermediate Sensitive Local road Electricity (LV) - Fair quences Negligible Low Medium	Valley < 200 Steep Drinking water supply Regional road Electricity (MV, HV) Dwelling	1 2 0 0 1 1 2	1 1 1 1 1 1 1 1 Max. possible	1 1 2 0 0 0 1 1 2 15	
Downs Public Overho Buildin	nill slope angle stream aquatic enviro roads in potential pe ead lines in potential ags in potential peat f	onment at flow path peat flow path	watercourse > 500 Horizontal Sensitive NA NA Farm out-houses	NA NA NA NA	> 500 Horizontal Non-sensitive Minor road Phone lines Farm out-houses Good Consection 0.0 - 0.3 0.3 - 0.5	watercourse 200 - 500 Intermediate Sensitive Local road Electricity (LV) - Fair quences Negligible Low	Valley < 200 Steep Drinking water supply Regional road Electricity (MV, HV) Dwelling	1 1 2 0 0 1 1 2 Co	1 1 1 1 1 1 1 1 Max. possible	1 1 2 0 0 1 1 2 15 33	
Downs Public Overho Buildin	nill slope angle stream aquatic enviro roads in potential pe ead lines in potential ags in potential peat f	onment at flow path peat flow path	watercourse > 500 Horizontal Sensitive NA NA Farm out-houses	NA NA NA NA	> 500 Horizontal Non-sensitive Minor road Phone lines Farm out-houses Good Consection 0.0 - 0.3 0.3 - 0.5 0.5 - 0.7	watercourse 200 - 500 Intermediate Sensitive Local road Electricity (LV) - Fair quences Negligible Low Medium	Valley < 200 Steep Drinking water supply Regional road Electricity (MV, HV) Dwelling Poor	1 1 2 0 0 1 1 2 Co	1 1 1 1 1 1 1 1 Max. possible	1 1 2 0 0 1 1 2 15 33	
Downs Public Overho Buildin	stream aquatic environts and aquatic environts and aquatic environts and an environts and appears and appears and appears and acceptable acceptable and acceptable and acceptable and acceptable and acceptable and acceptable and acceptable acceptable acceptable and acceptable	ponment at flow path peat flow path flow path ss and resources)	watercourse > 500 Horizontal Sensitive NA NA Farm out-houses	NA NA NA NA	> 500 Horizontal Non-sensitive Minor road Phone lines Farm out-houses Good Consection 0.0 - 0.3 0.3 - 0.5 0.5 - 0.7 0.7 - 1.0	watercourse 200 - 500 Intermediate Sensitive Local road Electricity (LV) - Fair Quences Negligible Low Medium High	Valley < 200 Steep Drinking water supply Regional road Electricity (MV, HV) Dwelling Poor	1 1 2 0 0 1 1 2 Co	1 1 1 1 1 1 1 1 Max. possible	1 1 2 0 0 1 1 2 15 33	
Downs Public Overho Buildin	stream aquatic enviror roads in potential pe ead lines in potential ags in potential peat f slitty to respond (acce	ponment at flow path peat flow path flow path ss and resources)	watercourse > 500 Horizontal Sensitive NA NA Farm out-houses Fair	NA NA NA NA	> 500 Horizontal Non-sensitive Minor road Phone lines Farm out-houses Good Consection 0.0 - 0.3 0.3 - 0.5 0.5 - 0.7	watercourse 200 - 500 Intermediate Sensitive Local road Electricity (LV) - Fair Quences Negligible Low Medium High	Valley < 200 Steep Drinking water supply Regional road Electricity (MV, HV) Dwelling Poor	1 1 2 0 0 0 1 1 2 Consequ	1 1 1 1 1 1 1 Max. possible	1 1 2 0 0 0 1 1 2 15 33 0.45	Consequences
Downs Public Overho Buildin	stream aquatic environts and aquatic environts and aquatic environts and an environts and appears and appears and appears and acceptable acceptable and acceptable and acceptable and acceptable and acceptable and acceptable and acceptable acceptable acceptable and acceptable	ponment at flow path peat flow path flow path ss and resources)	watercourse > 500 Horizontal Sensitive NA NA Farm out-houses Fair	NA NA NA NA	> 500 Horizontal Non-sensitive Minor road Phone lines Farm out-houses Good Consection 0.0 - 0.3 0.3 - 0.5 0.5 - 0.7 0.7 - 1.0	watercourse 200 - 500 Intermediate Sensitive Local road Electricity (LV) - Fair Quences Negligible Low Medium High	Valley < 200 Steep Drinking water supply Regional road Electricity (MV, HV) Dwelling Poor	1 1 2 0 0 0 1 1 2 Consequ	1 1 1 1 1 1 1 1 Max. possible	1 1 2 0 0 0 1 1 2 15 33 0.45	Consequences
Downs Public Overho Buildin	stream aquatic enviror roads in potential pe ead lines in potential ags in potential peat f slitty to respond (acce	at flow path peat flow path flow path ss and resources)	watercourse > 500 Horizontal Sensitive NA NA Farm out-houses Fair	NA NA NA NA NA	> 500 Horizontal Non-sensitive Minor road Phone lines Farm out-houses Good Conset 0.0 - 0.3 0.3 - 0.5 0.5 - 0.7 0.7 - 1.0 Action required	watercourse 200 - 500 Intermediate Sensitive Local road Electricity (LV) - Fair Quences Negligible Low Medium High	Valley < 200 Steep Drinking water supply Regional road Electricity (MV, HV) Dwelling Poor	1	1 1 1 1 1 1 1 Max. possible	1 1 2 0 0 0 1 1 2 15 33 0.45	Consequences 0.45 = 0.16
Downs Public Overho Buildin	rill slope angle stream aquatic enviror roads in potential pe ead lines in potential ags in potential peat f dility to respond (acce	onment at flow path peat flow path flow path ss and resources) Sk Negligible Normal site investig Low Targeted site invest	watercourse >> 500 Horizontal Sensitive NA NA Farm out-houses Fair ation gation, design of speen the area if possible	NA N	> 500 Horizontal Non-sensitive Minor road Phone lines Farm out-houses Good Consect 0.0 - 0.3 0.3 - 0.5 0.5 - 0.7 0.7 - 1.0 Action required tigation measures. Paravoidable, detailed site	watercourse 200 - 500 Intermediate Sensitive Local road Electricity (LV) - Fair Quences Negligible Low Medium High Risk rating	Valley < 200 Steep Drinking water supply Regional road Electricity (MV, HV) Dwelling Poor	1	1 1 1 1 1 1 1 Max. possible sences 6-1	1 1 2 0 0 0 1 1 2 15 33 0.45	
Downs Public Overho Buildin	roads in potential peed lines in potential peed lines in potential pead lines in potential lility to respond (acce	onment at flow path peat flow path flow path ss and resources) Sk Negligible Normal site investig Low Targeted site invest	watercourse > 500 Horizontal Sensitive NA NA Farm out-houses Fair ation gation, design of speen the area if possible services. Full time supervision	NA N	> 500 Horizontal Non-sensitive Minor road Phone lines Farm out-houses Good Consect 0.0 - 0.3 0.3 - 0.5 0.5 - 0.7 0.7 - 1.0 Action required tigation measures. Paravoidable, detailed site	watercourse 200 - 500 Intermediate Sensitive Local road Electricity (LV) - Fair quences Negligible Low Medium High Risk rating	Valley < 200 Steep Drinking water supply Regional road Electricity (MV, HV) Dwelling Poor	1	1 1 1 1 1 1 1 Max. possible sences 6-1	1 1 2 0 0 0 1 1 2 15 33 0.45	

Table M- 8: Peat risk assessment at Construction Compound 1.

Peat Stability Risk Assessment (PSRA)

Carrig Wind Farm

Location: Temporary compound site Undrained (U), undrained surcharge (US), drained (D), drained surcharge (DS) Conditions: nspected on: Nov-22 CE Inspected by: Completed by: CE Date: Jan-23

			Valu	ıe			Rating criteria					0
	Hazard factors	U	US	D DS	0	1	2	3	Rating value	Weighting	Score	Comment
or of Safety		29.5	13.5	24	-	≥ 1.3	1.3 - 1.0	≤ 1.0	1	10	10	Peat depth: 0.85, Slope angle: 1.15
Clide bioton.	Distance to previous slides (km)		NA		NA	5 - 10	< 5	On site	0	2	0	703
Slide history	Evidence of peat movement (e.g. tension cracks, step features, compression features).	р	NA		NA	-	-	Yes	0	2	0	
	Subsoil type	Sr	nooth	rock	NA	Gravel / Firm glacial till	Smooth rock	Soft sensitive clay	2	1	2	Nearest TP (TPO4) Records: Bedrock
Subsoil conditions (visible in trial pits)	Peat fibres across transition to subsoil		Yes	5	NA	Yes	Partially	No	1	1	1	
	Peat wetness	Dry	/ Star	ıds wel	NA	Dry / Stands well	Slowly squeezing	Extremely wet / Undiggable	1	2	2	
	General curvature downslope		NA		NA	-	Planar	Convex	0	1	0	Flat
Topography	Distance to the convexity break (only if previous factor is Convex)		NA		NA	> 100 m	50 - 100 m	< 50 m	0	1	0	
	Slope aspect (for high latitudes in northern hemisphere)		NA		NA	SW, S, SE	W, E	NW, N, NE	0	1	0	
	Distance from watercourse (m)		< 20	00	NA	> 300	200 - 300	< 200	3	1	3	,
	Surface moisture index (NDMI)		96 -1	35	NA	0 - 96	96 -135	135 - 174	2	1	2	
Hydrology	Surface water (water table level indicator)		Locali	sed	NA	Localised	Ponded in drains	Springs	1	1	1	
Hydrology	Evidence of piping (subsurface flow)		NA		NA	-	-	Yes	0	1	0	
	Significant surface desiccation (previous summer was dry?)		NA		NA	-	-	Yes	0	1.5	0	
	Existing drainage ditches	D	own s	lope	NA	Down slope	Varied / Oblique	Across slope	1	1	1	Very low slope angle, but drains perpendicular to contour lines.
	Annual rainfall	< 1	.000 n	nm/yr	NA	< 1000 mm/yr	1000 - 1400 mm/yr	> 1400 mm/yr	1	1	1	
Vegetation	Bush	D	ry hea	ather	NA	Dry heather	Grassland	Wetlands	1	1	1	
- 5500000	Forestry (if applicable)		NA		NA	Good growth	Fair	Stunted growth	0	1.5	0	
Peat workings	Peat cuts presence		Cutaw Turba		NA	-	Cutaway / Turbary	Machine cut	2	1	2	Peat cuts set back from site.
, cat workings	Peat cuts vs contour lines		Paral	lel	NA	Perpendicular	Oblique	Parallel	3	1	3	
Existing loads	Roads		-		NA	Solid	- 🎤	Floating	2	1	2	Unsure if founded or floated.
Time of year for c	onstruction		te Sur Autui	,	NA	Spring	Winter, Early Summer	Late Summer, Autumn	3	1	3	Wost case estimate
	-									Hazard	2.4	

Hazard 0.0 - 0.3 Negligible 0.3 - 0.5 0.7 - 1.0

Hazard total 34 Max. possible 102 Hazard ₀₋₁ 0.33

Consominance feature	Value			Rating criteria		Dating value	Maiabtina	Coore	Comment
Consequence factors	value	0	1	2	3	Rating value	Weighting	Score	Comment
Volume of potential peat flow (function of distance from nearest watercourse and peat depth in the area)	Small	NA	Small	Medium	Large	1	3	3	
Downslope hydrology features	Minor undefined watercourse	NA	Bowl / contained	Minor undefined watercourse	Valley	2	1	2	
Proximity from defined valley (m)	> 500	NA	> 500	200 - 500	< 200	1	1	1	
Downhill slope angle	NA	NA	Horizontal	Intermediate	Steep	0	1	0	
Downstream aquatic environment	Sensitive	NA	Non-sensitive	Sensitive	Drinking water supply	2	1	2	
Public roads in potential peat flow path	NA	NA	Minor road	Local road	Regional road	0	1	0	
Overhead lines in potential peat flow path	NA	NA	Phone lines	Electricity (LV)	Electricity (MV, HV)	0	1	0	
Buildings in potential peat flow path	NA	NA	Farm out-houses	-	Dwelling	0	1	0	
Capability to respond (access and resources)	Fair	NA	Good	Fair	Poor	2	1	2	
		_	-		•	Со	nsequences _{total}	10	

Consequences 0.0 - 0.3 Negligible 0.5 - 0.7 Medium

Max. possible 33 Consequences ₀₋₁ 0.30

Risk rating

Risk **Action required** Negligible 0.00 - 0.20 Normal site investigation Targeted site investigation, design of specific mitigation measures. Part time supervision during construction. 0.20 - 0.40 Low Avoid construction in the area if possible. If unavoidable, detailed site investigation and design of specific mitigation measures. Full time supervision during construction. Medium 0.60 - 1.00 High Avoid construction in this area.

Hazard * Consequences Risk rating = 0.33 0.30 0.10 Risk rating =

Table M- 9: Peat risk assessment at Construction Compound 2.

Peat Stability Risk Assessment (PSRA)

Carrig Wind Farm

Location: Temporary compound site 2

Conditions: Undrained (U), undrained surcharge (US), drained (D), drained surcharge (DS)

Inspected on: Nov-22

Inspected by: CE

Completed by: CE

Date: Jan-23

Pactor of Safety Pactor of S					Val	lue				Rating criteria				_	ا بی
Side history Distance to previous sides (km) NA			Hazard factors	U	US	D	DS	0	1	2	3	Rating value	Weighting	Score	Comment
Side history Evidence of peat movement leg. tension ranks, step NA	Factor	of Safety		7.97	4.78	7	8.41	-	≥ 1.3	1.3 - 1.0	≤ 1.0	1	10	10	Peat depth: 1.5, Sore angle: 2.4
Vegetation Veg		Slida history	Distance to previous slides (km)		N	Α		NA	5 - 10	< 5	On site	0	2	0	70.
Subsoil Conditions		Slide History			N	Α		NA	-	-	Yes	0	2	0	73
Pear training Pear trainin			Subsoil type	S	moot	h rocl	<	NA		Smooth rock	Soft sensitive clay	2	1	2	Nearest TP (TP03) Records: Bedrock
Pear wertness			Peat fibres across transition to subsoil		Υe	es		NA	Yes	Partially	No	1	1	1	G
Topography Distance to the convexity break Convexity Previous factor is Convexity			Peat wetness	Dry	/ / Sta	ınds w	/ell	NA	Dry / Stands well	Slowly squeezing		1	2	2	
Topography			General curvature downslope		N	Α		NA	-	Planar	Convex	0	1	0	Flat
Very low slope angle, but drains Very low slope angle, but drains Very low slope angle, but drains Vergetation Vergeta		Topography			N	Α		NA	> 100 m	50 - 100 m	< 50 m	0	1	0	
Surface moisture index (NDMI) 96-135 NA 0-96 96-135 135-174 2 1 2					N	Α		NA	SW, S, SE	W, E	NW, N, NE	0	1	0	
Significant surface desiccation (previous summer was dry?) Existing drainage ditches Down slope NA Down slope Varied / Oblique Across slope 1 1 Very low slope angle, but drains perpendicular to contour lines. Annual rainfall <1000 mm/yr NA NA C1000 mm/yr NA C1000 mm/yr 1000 - 1400 mm/yr 1000 - 1400 mm/yr 11 1 1 Very low slope angle, but drains perpendicular to contour lines. Peat workings Bush Dry heather NA Dry heather NA Dry heather NA Dry heather Grassland Wetlands 1 1 1 1 Peat cuts presence Cutaway / Turbary NA Cutaway / Turbary Machine cut Peat cuts vs contour lines Peat cuts vs contour lines Peat cuts vs contour lines Parallel NA Perpendicular Oblique Parallel 3 1 3			Distance from watercourse (m)		< 2	200		NA	> 300	200 - 300	< 200	3	1	3	
Significant surface desiccation (previous summer was dry?) Existing drainage ditches Down slope NA Down slope Varied / Oblique Across slope 1 1 Very low slope angle, but drains perpendicular to contour lines. Annual rainfall <1000 mm/yr NA NA C1000 mm/yr NA C1000 mm/yr 1000 - 1400 mm/yr 1000 - 1400 mm/yr 11 1 1 Very low slope angle, but drains perpendicular to contour lines. Peat workings Peat cuts presence NA NA Dry heather NA Dry heather NA Dry heather Grassland Wetlands Wetlands 1 1 1 1 Peat cuts presence Cutaway / Turbary NA Cutaway / Turbary Machine cut Peat cuts vs contour lines Peat cuts vs contour lines Parallel NA Perpendicular Oblique Parallel 3 1 3	actors		Surface moisture index (NDMI)		96 -	135		NA	0 - 96	96 -135	135 - 174	2	1	2	
Significant surface desiccation (previous summer was dry?) Existing drainage ditches Down slope NA Down slope Varied / Oblique Across slope 1 1 Very low slope angle, but drains perpendicular to contour lines. Annual rainfall <1000 mm/yr NA NA C1000 mm/yr NA C1000 mm/yr 1000 - 1400 mm/yr 1000 - 1400 mm/yr 11 1 1 Very low slope angle, but drains perpendicular to contour lines. Peat workings Peat cuts presence NA NA Dry heather NA Dry heather NA Dry heather Grassland Wetlands Wetlands 1 1 1 1 Peat cuts presence Cutaway / Turbary NA Cutaway / Turbary Machine cut Peat cuts vs contour lines Peat cuts vs contour lines Parallel NA Perpendicular Oblique Parallel 3 1 3	ıdary fa				Loca	lised		NA	Localised	Ponded in drains	Springs	1	1	1	
Existing drainage ditches Down slope NA Down slope Varied / Oblique Across slope 1 1 1 Very low slope angle, but drains perpendicular to contour lines.	Secon	Hydrology	Evidence of piping (subsurface flow)		N	Α		NA	-	-	Yes	0	1	0	
Existing drainage ditches Down slope NA Down slope Varied / Oblique Across slope 1 1 1 1 perpendicular to contour lines. Annual rainfall Vegetation Bush Dry heather NA Dry heather NA Dry heather NA Dry heather Grassland Wetlands 1 1 1 Forestry (if applicable) NA NA Good growth Fair Stunted growth 0 1.5 0 Peat cuts presence Cutaway / Turbary NA - Cutaway / Turbary Machine cut 2 1 2 Peat cuts set back from site. Peat cuts vs contour lines Parallel NA Perpendicular Oblique Parallel 3 1 3					N	Α		NA	-	-	Yes	0	1.5	0	
Vegetation Bush Dry heather NA Dry heather Grassland Wetlands 1 1 1 Forestry (if applicable) NA NA Good growth Fair Stunted growth 0 1.5 0 Peat cuts presence Cutaway / Turbary NA - Cutaway / Turbary Machine cut 2 1 2 Peat cuts set back from site. Peat cuts vs contour lines Parallel NA Perpendicular Oblique Parallel 3 1 3			Existing drainage ditches		Down	slope		NA	Down slope	Varied / Oblique	Across slope	1	1	1	
Vegetation Forestry (if applicable) NA NA Good growth Fair Stunted growth 0 1.5 0 Peat workings Peat cuts presence Cutaway / Turbary NA - Cutaway / Turbary Machine cut 2 1 2 Peat cuts set back from site. Peat cuts vs contour lines Parallel NA Perpendicular Oblique Parallel 3 1 3			Annual rainfall	<	1000	mm/y	/r	NA	< 1000 mm/yr	1000 - 1400 mm/yr	> 1400 mm/yr	1	1	1	
Forestry (if applicable) Peat cuts presence Peat cuts vs contour lines Parallel NA NA Good growth Fair Stunted growth O 1.5 O Peat cuts growth O 1.5 O Peat cuts set back from site. Peat cuts vs contour lines Parallel NA Perpendicular Oblique Parallel 3 1 3		Vegetation	Bush	Ī	Ory he	eather		NA	Dry heather	Grassland	Wetlands	1	1	1	
Peat workings Peat cuts vs contour lines Peat cuts vs contour lines Peat cuts vs contour lines Parallel NA Perpendicular Oblique Parallel 3 1 3		· cactation						NA	Good growth	Fair	Stunted growth	0	1.5	0	
Peat cuts vs contour lines Parallel NA Perpendicular Oblique Parallel 3 1 3		Peat workings	Peat cuts presence					NA	-	Cutaway / Turbary	Machine cut	2	1	2	Peat cuts set back from site.
Existing loads Roads - NA Solid - Floating 2 1 2 Unsure if founded or floated.		i cat workings	Peat cuts vs contour lines		Para	allel		NA	Perpendicular	Oblique	Parallel	3	1	3	
		Existing loads	Roads					NA	Solid	-	Floating	2	1	2	Unsure if founded or floated.
Time of year for construction Late Summer, Autumn NA Spring Winter, Early Summer Autumn VA Spring Summer Autumn NA Spring Summer Autumn 1 3 Wost case estimate		Time of year for con	struction	Li			r,	NA	Spring		· ·	3	1	3	Wost case estimate

Hazard

0.0 - 0.3 Negligible

0.3 - 0.5 Low

0.5 - 0.7 Medium

0.7 - 1.0 High

Hazard total 34

Max. possible 96

Hazard 0.1 0.35

Consequence factors	Value	•		Rating criteria		Rating value	Weighting	Score	Comment
consequence factors	value	0	1	2	3	Rating value	weighting	score	Comment
Volume of potential peat flow (function of distance from nearest watercourse and peat depth in the area)	Small	NA	Small	Medium	Large	1	3	3	
Downslope hydrology features	Minor undefined watercourse	NA	Bowl / contained	Minor undefined watercourse	Valley	2	1	2	
Proximity from defined valley (m)	> 500	NA	> 500	200 - 500	< 200	1	1	1	
Downhill slope angle	NA	NA	Horizontal	Intermediate	Steep	0	1	0	
Downstream aquatic environment	Sensitive	NA	Non-sensitive	Sensitive	Drinking water supply	2	1	2	
Public roads in potential peat flow path	NA	NA	Minor road	Local road	Regional road	0	1	0	
Overhead lines in potential peat flow path	NA	NA	Phone lines	Electricity (LV)	Electricity (MV, HV)	0	1	0	
Buildings in potential peat flow path	NA	NA	Farm out-houses	-	Dwelling	0	1	0	
Capability to respond (access and resources)	Fair	NA	Good	Fair	Poor	2	1	2	

Consequences

0.0 - 0.3 Negligible

0.3 - 0.5 Low

0.5 - 0.7 Medium

0.7 - 1.0 High

Max. possible 33

Consequences 0-1 0.30

Consequences total

Risk rating

Risi	k	Action required
0.00 - 0.20	Negligible	Normal site investigation
0.20 - 0.40	Low	Targeted site investigation, design of specific mitigation measures. Part time supervision during construction.
0.40 - 0.60	Medium	Avoid construction in the area if possible. If unavoidable, detailed site investigation and design of specific mitigation measures. Full time supervision during construction.
0.60 - 1.00	High	Avoid construction in this area.

Risk rating = Hazard * Consequences

10

Risk rating = 0.35 0.30 = **0.11**

Table M- 10: Peat risk assessment at the Substation.

Peat Stability Risk Assessment (PSRA)

Carrig Wind Farm

	Hazard factors		Value				Rating criteria		Rating value	Weighting	Score	Comment
	TidZdr d Tdctor3			DS	0	1	2	3	rating value	-veigning	30016	Comment
of Safety		51606	41284	17.86	-	≥ 1.3	1.3 - 1.0	≤ 1.0	1	10	10	Peat depth: ~0 m Slope angle: 2.78º.
Slide history	Distance to previous slides (km)		NA		NA	5 - 10	< 5	On site	0	2	0	05
Slide history	Evidence of peat movement (e.g. tension cracks, step features, compression features).		NA		NA	-	-	Yes	0	2	0	100
	Subsoil type		vel / F acial t		NA	Gravel / Firm glacial till	Smooth rock	Soft sensitive clay	1	1	1	Nearest TP (T1TP, 30m away from compound) records: Bed Rock.
Subsoil conditions (visible in trial pits)	Peat fibres across transition to subsoil		NA		NA	Yes	Partially	No	0	1	0	No information given on log
	Peat wetness				NA	Dry / Stands well	Slowly squeezing	Extremely wet / Undiggable	0	2	0	No information given on log
	General curvature downslope		-		NA	-	Planar	Convex	1	1	1	
Topography	Distance to the convexity break (only if previous factor is Convex)		NA		NA	> 100 m	50 - 100 m	< 50 m	0	1	0	
	Slope aspect (for high latitudes in northern hemisphere)		NA		NA	SW, S, SE	W, E	NW, N, NE	0	1	0	
	Distance from watercourse (m)	;	> 300		NA	> 300	200 - 300	< 200	1	1	1	
	Surface moisture index (NDMI)	13	5 - 17	74	NA	0 - 96	96 -135	135 - 174	3	1	3	J
	Surface water (water table level indicator)		NA		NA	Localised	Ponded in drains	Springs	0	1	0	
Hydrology	Evidence of piping (subsurface flow)		NA		NA	-	-	Yes	0	1	0	
	Significant surface desiccation (previous summer was dry?)		NA		NA	-	-	Yes	0	1.5	0	
	Existing drainage ditches		NA		NA	Down slope	Varied / Oblique	Across slope	0	1	0	
	Annual rainfall	< 100	00 mr	m/yr	NA	< 1000 mm/yr	1000 - 1400 mm/yr	> 1400 mm/yr	1	1	1	
Vegetation	Bush		NA		NA	Dry heather	Grassland	Wetlands	0	1	0	
vegetation	Forestry (if applicable)	Goo	d gro	wth	NA	Good growth	Fair	Stunted growth	1	1.5	1.5	
Peat workings	Peat cuts presence		-		NA	-	Cutaway / Turbary	Machine cut	1	1	1	
reat workings	Peat cuts vs contour lines		NA		NA	Perpendicular	Oblique	Parallel	0	1	0	
Existing loads	Roads		Solid		NA	Solid	-	Floating	1	1	1	
Time of year for c	onstruction		Sumi utum		NA	Spring	Winter, Early Summer	Late Summer, Autumn	3	1	3	Wost case estimate

Hazard 0.0 - 0.3 Negligible 0.3 - 0.5 0.7 - 1.0

Max. possible 96 Hazard ₀₋₁ 0.24

Consequence factors	Value			Rating criteria		Rating value	Weighting	Score	Comment
Consequence factors	value	0	1	2	3	Rating value	weighting	Score	Comment
Volume of potential peat flow (function of distance from nearest watercourse and peat depth in the area)	NA	NA	Small	Medium	Large	0	3	0	No peat.
Downslope hydrology features	Minor undefined watercourse	NA	Bowl / contained	Minor undefined watercourse	Valley	2	1	2	
Proximity from defined valley (m)	> 500	NA	> 500	200 - 500	< 200	1	1	1	
Downhill slope angle	Horizontal	NA	Horizontal	Intermediate	Steep	1	1	1	
Downstream aquatic environment	Sensitive	NA	Non-sensitive	Sensitive	Drinking water supply	2	1	2	
Public roads in potential peat flow path	NA	NA	Minor road	Local road	Regional road	0	1	0	
Overhead lines in potential peat flow path	NA	NA	Phone lines	Electricity (LV)	Electricity (MV, HV)	0	1	0	
Buildings in potential peat flow path	NA	NA	Farm out-houses	1	Dwelling	0	1	0	
Capability to respond (access and resources)	Fair	NA	Good	Fair	Poor	2	1	2	
	·					Co	nsequences _{total}	8	
			Consoc	Honcoc					

Consequences 0.0 - 0.3 Negligible 0.3 - 0.5

Max. possible 33 Consequences 0-1

Risk rating

Risk	ı	Action required
0.00 - 0.20	Negligible	Normal site investigation
0.20 - 0.40	Low	Targeted site investigation, design of specific mitigation measures. Part time supervision during construction.
0.40 - 0.60	Medium	Avoid construction in the area if possible. If unavoidable, detailed site investigation and design of specific mitigation measures. Full time supervision during construction.
0.60 - 1.00	High	Avoid construction in this area.

Risk rating = Hazard * Consequences

Risk rating = 0.24 0.24

Table M- 11: Peat risk assessment at the Met Mast.

Peat Stability Risk Assessment (PSRA)

Carrig Wind Farm

Location: Met Mast Undrained (U), undrained surcharge (US), drained (D), drained surcharge (DS) Conditions: nspected on: Inspected by: Completed by: CE Jan-23

		T		\/a	lue				Dating suitonia		Rating		-	
	Ha	zard factors	U			D.C.		1 4	Rating criteria	2		Weighting	Score	Comment
			U	US	D	DS	0	1	2	3	value		7	7
Factor of S	afety		562.00	51.07	450.5	88.57	-	≥ 1.3	1.3 - 1.0	≤ 1.0	1	10	10	Peat cepth: ~0 m. Slope angle: 0.51°
	Slide history	Distance to previous slides (km)		N			NA	5 - 10	< 5	On site	0	2	0	
	Silde History	Evidence of peat movement (e.g.		N	Α		NA	-	-	Yes	0	2	0	0
	Subsoil conditions (visible in trial pits)	Subsoil type		Gravel / Fir		I	NA	Gravel / Firm glacial till	Smooth rock	Soft sensitive clay	1	1	1	Nearest TP (TPO7) records, Soft grey slightly sandy slightly gravelly slightly silty CLAY with high cobble and boulder content. Sand and gravel are fine to coarse, gravel is angular to subrounded. Cobbles and boulders are subrounded of limestone.
		Peat fibres across transition to		N	Α		NA	Yes	Partially	No	0	1	0	
		Peat wetness					NA	Dry / Stands well	Slowly squeezing	Extremely wet / Undiggable	0	2	0	
		General curvature downslope		N	Α		NA	-	Planar	Convex	0	1	0	
ors	Topography	Distance to the convexity break (only if previous factor is Convex)		N	Α		NA	> 100 m	50 - 100 m	< 50 m	0	1	0	
Secondary factors		Slope aspect (for high latitudes in northern hemisphere)		N	А		NA	SW, S, SE	W, E	NW, N, NE	0	1	0	
Seco		Distance from watercourse (m)		> 3	100		NA	> 300	200 - 300	< 200	1	1	1	
		Surface moisture index (NDMI)		135	- 174		NA	0 - 96	96 -135	135 - 174	3	1	3	
		Surface water		Loca	lised		NA	Localised	Ponded in drains	Springs	1	1	1	
	Hydrology	Evidence of piping (subsurface flow)		N	Α		NA	-	-	Yes	0	1	0	
		Significant surface desiccation (previous summer was dry?)		N	Α		NA	-		Yes	0	1.5	0	
		Existing drainage ditches		N	Α		NA	Down slope	Varied / Oblique	Across slope	0	1	0	
		Annual rainfall			mm/yr		NA	< 1000 mm/yr	1000 - 1400 mm/yr	> 1400 mm/yr	1	1	1	
	Vegetation	Bush		N	Α		NA	Dry heather	Grassland	Wetlands	0	1	0	
	vegetation	Forestry		Good (growth		NA	Good growth	Fair	Stunted growth	1	1.5	1.5	
	Peat workings	Peat cuts presence					NA	-	Cutaway / Turbary	Machine cut	1	1	1	
	reat workings	Peat cuts vs contour lines		N	Α		NA	Perpendicular	Oblique	Parallel	0	1	0	
	Existing loads	Roads		So	lid		NA	Solid	-	Floating	1	1	1	
	Time of year for	construction		Late Summ	er, Autumn		NA	Spring	Winter, Early Summer	Late Summer, Autumn	3	1	3	Wost case estimate

Hazard 0.0 - 0.3 Negligible

Hazard total 23.5 Max. possible 96

Hazard ₀₋₁ 0.24

Consequence factors	Value			Rating criteria		Rating	Weighting	Score	Comment
Consequence factors	value	0	1	2	3	value	weighting	Score	Comment
Volume of potential peat flow	NA	NA	Small	Medium	Large	0	3	0	No peat.
Downslope hydrology features	Minor undefined watercourse	NA	Bowl / contained	Minor undefined watercourse	Valley	2	1	2	
Proximity from defined valley (m)	> 500	NA	> 500	200 - 500	< 200	1	1	1	
Downhill slope angle	Horizontal	NA	Horizontal	Intermediate	Steep	1	1	1	
Downstream aquatic environment	Sensitive	NA	Non-sensitive	Sensitive	Drinking water supply	2	1	2	
Public roads in potential peat flow path	NA	NA	Minor road	Local road	Regional road	0	1	0	
Overhead lines in potential peat flow path	NA	NA	Phone lines	Electricity (LV)	Electricity (MV, HV)	0	1	0	
Buildings in potential peat flow path	NA	NA	Farm out-houses	-	Dwelling	0	1	0	
Capability to respond (access and resources)	Fair	NA	Good	Fair	Poor	2	1	2	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			Con	saguansas		Co	nsequences _{total}	8	

 Consequences

 0.0 - 0.3
 Negligible

 0.3 - 0.5
 Low

 0.5 - 0.7
 Medium

Max. possible 33

Consequences ₀₋₁ 0.24

Risk rating

	Risk		Action required
0.00 - 0	0.20	Negligible	Normal site investigation
0.20 - 0	0.40	Low	Targeted site investigation, design of specific mitigation measures. Part time supervision during construction.
0.40 - 0	0.60	Medium	Avoid construction in the area if possible. If unavoidable, detailed site investigation and design of specific mitigation measures. Full time
0.60 - 1	1.00	High	Avoid construction in this area.

Risk rating =

Risk rating = Hazard * Consequences 0.24 0.24

Table M- 12: Peat risk assessment at PRA 1.

Peat Stability Risk Assessment (PSRA)

Carrig Wind Farm

Location: PRA 1
Conditions: Undrained (U), undrained surcharge (US), drained (D), drained (DS)
Inspected on: Nov-22
Inspected by: CE
Completed by: CE
Date: Aug-23

	~							Date:	Aug-23					
				Va	lue				Rating criteria	Rating				
	Haz	ard factors	U	US	D	DS	0	1	2	3	value	Weighting	Score	Comment
actor of Sa	afety		8.0	5.1	9.9	9.0	-	≥ 1.3	1.3 - 1.0	≤ 1.0	1	10	10	Peat depth: ~18m. Slope angle 2º.
	Slide history	Distance to previous slides (km)		N		•	NA	5 - 10	< 5	On site	0	2	0	ිටු
	,	Evidence of peat movement (e.g.		N	IA		NA	-	-	Yes	0	2	0	Nearest TP is TP104: Light grey sandy
	Subsoil conditions (visible in trial pits)	Subsoil type		Gravel / Fir		I	NA	Gravel / Firm glacial till	Smooth rock	Soft sensitive clay	1	1	1	CLAY. Sand is fine to medium, subang to subrounded. Presence of cobbles (15-30cm). Presence of white loose fit to medium sand. (TP06, also nearby records: Soft damp grey slightly sand slightly gravelly CLAY with moderate cobble and boulder content. Sand is fit to coarse, gravel is fine to coarse, ang to subangular.)
		Peat fibres across transition to		N	IA		NA	Yes	Partially	No	0	1	0	
		Peat wetness						Dry / Stands well	Slowly squeezing	Extremely wet / Undiggable	0	2	0	
General curvature downslope				N	IA		NA	-	Planar	Convex	0	1	0	
	Topography		NA				> 100 m	50 - 100 m	< 50 m	0	1	0		
Secondary factors		Slope aspect (for high latitudes in northern hemisphere)		NA			NA	SW, S, SE	W, E	NW, N, NE	0	1	0	
Secol		Distance from watercourse (m)		< 2	200		NA	> 300	200 - 300	< 200	3	1	3	
		Surface moisture index (NDMI)		135	- 174		NA	0 - 96	96 -135	135 - 174	3	1	3	
		Surface water	Localised			NA	Localised	Ponded in drains	Springs	1	1	1		
	Hydrology	Evidence of piping (subsurface flow)	NA				NA	-	-	Yes	0	1	0	
		Significant surface desiccation (previous summer was dry?)		N	IA			-	25	Yes	0	1.5	0	
		Existing drainage ditches			IA		NA	Down slope	Varied / Oblique	Across slope	0	1	0	
		Annual rainfall			mm/yr		NA	< 1000 mm/yr	1000 - 1400 mm/yr	> 1400 mm/yr	1	1	1	
	Vegetation	Bush		N			NA	Dry heather	Grassland	Wetlands	0	1	0	
		Forestry Peat cuts presence	Good growth Cutaway / Turbary				NA NA	Good growth	Fair	Stunted growth Machine cut	2	1.5	1.5 2	
	Peat workings	Peat cuts vs contour lines			allel		NA NA	Perpendicular	Cutaway / Turbary Oblique	Parallel	3	1	3	
	Existing loads	Roads		Sc			NA	Solid	-	Floating	1	1	1	
	Time of year for o	construction		Late Summ	er, Autumn	1	NA	Spring	Winter, Early Summer	Late Summer, Autumn	3	1	3	Wost case estimate
										Autumi		Hazard _{total}	29.5	
									Hazard]				
								0.0 - 0.3 0.3 - 0.5	Negligible Low			Max. possible	96	
								0.5 - 0.7	Medium High			Hazard ₀₋₁	0.31	
									Rating criteria		Rating			
		quence factors			lue		0	1	2	3	value	Weighting	Score	Comment
ume of	potential peat flo	W		N	IA		NA	Small	Medium	Large	1	3	3	
wnslope	hydrology featur	es	Mir	nor undefin	ed waterco	urse	NA	Bowl / contained	Minor undefined watercourse	Valley	2	1	2	
ximity f	rom defined valle	y (m)		> 5	500		NA	> 500	200 - 500	< 200	1	1	1	
wnhill sl	ope angle			Horiz	ontal		NA	Horizontal	Intermediate	Steep	1	1	1	
vnstrea	m aquatic enviror	ment		Sens	sitive		NA	Non-sensitive	Sensitive	Drinking water supply	2	1	2	
lic road	Is in potential pea	t flow path		N	IA		NA	Minor road	Local road	Regional road	0	1	0	
	ines in potential p				IA		NA	Phone lines	Electricity (LV)	Electricity	0	1	0	
							-		, , ,	(MV, HV)				
	potential peat flo				IA		NA	Farm out-houses	-	Dwelling	0	1	0	
oability t	to respond (access	s and resources)		Fi	air		NA	Good Con 0.0 - 0.3	Fair sequences Negligible	Poor	Co	nsequences total Max. possible		
		4						0.3 - 0.5 0.5 - 0.7 0.7 - 1.0	Low Medium High		Conse	quences ₀₋₁	0.33	l
	· (7)							Risk rating						

Action required

Avoid construction in the area if possible. If unavoidable, detailed site investigation and design of specific mitigation measures. Full time Avoid construction in this area.

Targeted site investigation, design of specific mitigation measures. Part time supervision during construction.

Negligible Normal site investigation

Low

Risk

0.00 - 0.20

0.20 - 0.40

0.40 - 0.60 0.60 - 1.00 Risk rating = Hazard * Consequences

0.31 0.33

Risk rating =

Table M- 13: Peat risk assessment at PRA 2.

Peat Stability Risk Assessment (PSRA)

Carrig Wind Farm

Location: PRA 2

Conditions: Undrained (U), undrained surcharge (US), drained (D), drained (DS)

Inspected on: Nov-22
Inspected by: CE
Completed by: CE
Date: Aug-23

		Hazard factors			alue				Rating criteria		Rating	Weighting	Score	Comment
		nazara ractors	U	US	D	DS	0	1	2	3	value	Weighting	30010	Comment
Factor of S	Safety		1.6	1.3	1.4	2.3	-	≥ 1.3	1.3 - 1.0	≤ 1.0	2	10	20	Peat depth: 3.5 m. Slope angle: 6º.
	Glista biatas	Distance to previous slides (km)		1	NΑ		NA	5 - 10	< 5	On site	0	2	0	7.3
	Slide history	Evidence of peat movement (e.g. tension		1	NA		NA	-	-	Yes	0	2	0	-0
	Subsoil conditions (visible in trial pits)	Subsoil type			NA		NA	Gravel / Firm glacial till	Smooth rock	Soft sensitive clay	0	1	0	No neaby trial pit
		Peat fibres across transition to subsoil		ľ	NA		NA	Yes	Partially	No	0	1	0	No neaby trial pit
		Peat wetness					NA	Dry / Stands well	Slowly squeezing	Extremely wet / Undiggable	0	2	0	No neaby trial pit
		General curvature downslope		1	NA		NA	-	Planar	Convex	0	1	0	
	Topography	Distance to the convexity break (only if previous factor is Convex)		1	NA		NA	> 100 m	50 - 100 m	< 50 m	0)ı	0	
Secondary factors		Slope aspect (for high latitudes in northern hemisphere)		1	NA		NA	SW, S, SE	W, E	NW, N, NE	0	1	0	
Seconda		Distance from watercourse (m)		<	200		NA	> 300	200 - 300	< 200	3	1	3	
		Surface moisture index (NDMI)		135	- 174		NA	0 - 96	96 -135	135 - 174	3	1	3	
		Surface water		Loca	alised		NA	Localised	Ponded in drains	Springs	1	1	1	
	Hydrology	Evidence of piping (subsurface flow)		1	NA		NA	-	-	Yes	0	1	0	
		Significant surface desiccation (previous summer was dry?)		1	NA		NA	-	5	Yes	0	1.5	0	
		Existing drainage ditches		١	NA		NA	Down slope	Varied / Oblique	Across slope	0	1	0	
		Annual rainfall		< 1000) mm/yr		NA	< 1000 mm/yr	1000 - 1400 mm/yr	> 1400 mm/yr	1	1	1	
	Vegetation	Bush		Wet	lands		NA	Dry heather	Grassland	Wetlands	3	1	3	
	Vegetation	Forestry			growth		NA	Good growth	Fair	Stunted growth	1	1.5	1.5	
	Doot workings	Peat cuts presence		Cutaway	/ Turbary		NA	-	Cutaway / Turbary	Machine cut	2	1	2	
	Peat workings Peat cuts vs contour lines				rallel		NA	Perpendicular	Oblique	Parallel	3	1	3	
	Existing loads	Roads		So	olid		NA	Solid	-	Floating	1	1	1	
	Time of year for	construction		Late Sumn	ner, Autumr	1	NA	Spring	Winter, Early Summer	Late Summer, Autumn	3	1	3	Wost case estimate

Hazard

0.0 - 0.3 Negligible

0.3 - 0.5 Low

0.5 - 0.7 Medium

Max. possible 93 **Hazard** 0-1 **0.45**

Hazard total 41.5

Consequence factors	Value			Rating criteria		Rating	Weighting	Score	Comment
consequence factors	Value	0	1	2	3	value	weighting	Score	Comment
Volume of potential peat flow	Medium	NA	Small	Medium	Large	2	3	6	
Downslope hydrology features	Minor undefined watercourse	NA	Bowl / contained	Minor undefined watercourse	Valley	2	1	2	
Proximity from defined valley (m)	> 500	NA	> 500	200 - 500	< 200	1	1	1	
Downhill slope angle	Horizontal	NA	Horizontal	Intermediate	Steep	1	1	1	
Downstream aquatic environment	Sensitive	NA	Non-sensitive	Sensitive	Drinking water supply	2	1	2	
Public roads in potential peat flow path	NA	NA	Minor road	Local road	Regional road	0	1	0	
Overhead lines in potential peat flow path	NA	NA	Phone lines	Electricity (LV)	Electricity (MV, HV)	0	1	0	
Buildings in potential peat flow path	NA	NA	Farm out-houses	-	Dwelling	0	1	0	
Capability to respond (access and resources)	Fair	NA	Good	Fair	Poor	2	1	2	
						Co	nsequences _{total}	14	

Consequences
0.0 - 0.3 Negligible
0.3 - 0.5 Low
0.5 - 0.7 Medium
0.7 - 1.0 High

Max. possible 33

Consequences ₀₋₁ 0.42

Risk rating

Risk		Action required
0.00 - 0.20	Negligible	Normal site investigation
0.20 - 0.40	Low	Targeted site investigation, design of specific mitigation measures. Part time supervision during construction.
0.40 - 0.60	Medium	Avoid construction in the area if possible. If unavoidable, detailed site investigation and design of specific mitigation measures. Full time supervision
0.60 - 1.00	High	Avoid construction in this area.

Risk rating = Hazard * Consequences

Risk rating = 0.45 0.42

0.10

Risk rating = 0.31 0.33

Table M- 14: Peat risk assessment at PRA 3.

Peat Stability Risk Assessment (PSRA)

Location: PRA 3
Conditions: Undrained (U), undrained surcharge (US), drained (D), drained (DS)
Inspected on: Nov-22
Inspected by: CE
Completed by: CE
Date: Aug-23

МІ	<ô>	Carrig Wind Farm						Completed by:	CE CE			1		
	~							Date:	Aug-23				<u> </u>) O_
	На	nzard factors	U	Va US	lue D	DS	0	1	Rating criteria	3	Rating value	Weighting	Score	Comment
Factor of S	Safety		17.4	9.1	14.3	15.9	-	≥ 1.3	1.3 - 1.0	≤ 1.0	1	10	10	Peat depth: 1.5m. Slope angle: 1.1º.
	Slide history	Distance to previous slides (km)			IA		NA	5 - 10	< 5	On site	0	2	0	70
	Subsoil conditions (visible in trial pits)	Evidence of peat movement (e.g. Subsoil type			th rock		NA NA	- Gravel / Firm glacial till	- Smooth rock	Yes Soft sensitive clay	2	1	2	Nearest TP (TP04) Records: Bedrock
		Peat fibres across transition to	IA		NA	Yes	Partially	No	0	1	0			
		Peat wetness			NA	Dry / Stands well	Slowly squeezing	Extremely wet / Undiggable	0	2	0			
		General curvature downslope	NA			NA	-	Planar	Convex	0	1	0		
ors	Topography	Distance to the convexity break (only if previous factor is Convex)		١	IA		NA	> 100 m	50 - 100 m	< 50 m	0	1	0	
Secondary factors		Slope aspect (for high latitudes in northern hemisphere)		١	IA		NA	SW, S, SE	W, E	NW, N, NE	0	1	0	
Seco		Distance from watercourse (m)		200	- 300		NA	> 300	200 - 300	< 200	2	1	2	
		Surface moisture index (NDMI)		135 - 174 Localised				0 - 96	96 -135	135 - 174	3	1	3	
	Hydrology	Surface water			IIIsea IA		NA NA	Localised	Ponded in drains	Springs	1	1	1	
		Evidence of piping (subsurface flow) Significant surface desiccation			IA IA		NA NA	-	6	Yes	0	1.5	0	
		(previous summer was dry?)												
		Existing drainage ditches Annual rainfall			IA mm/yr		NA NA	Oown slope	Varied / Oblique 1000 - 1400 mm/yr	Across slope > 1400 mm/yr	0	1	0	
	Vegetation	Bush			IA		NA	Dry heather	Grassland	Wetlands	0	1	0	
		Forestry Peat cuts presence			growth / Turbary		NA NA	Good growth	Fair Cutaway / Turbary	Stunted growth Machine cut	2	1.5	1.5	
	Peat workings	Peat cuts vs contour lines		Par	allel		NA	Perpendicular	Oblique	Parallel	3	1	3	
	Existing loads	Roads			olid		NA	Solid	-	Floating Late Summer,	1	1	1	
	Time of year for	construction		Late Summ	ier, Autumr		NA	Spring	Winter, Early Summer	Autumn	3	1 Hazard _{total}	29.5	Wost case estimate
							(O)		Hazard Negligible Low	3		Max. possible	96	
								0.5 - 0.7	Medium High			Hazard ₀₋₁	0.31]
	Conse	equence factors		Va	lue	,	0	1	Rating criteria	3	Rating value	Weighting	Score	Comment
Volume o	f potential peat flo	ow		Sr	nall		NA	Small	Medium	Large	1	3	3	
Downslop	e hydrology featu	res	Mi	nor undefin	ed waterco	urse	NA	Bowl / contained	Minor undefined watercourse	Valley	2	1	2	
	from defined valle	ey (m)			500		NA	> 500	200 - 500	< 200	1	1	1	
	slope angle	*			ontal		NA	Horizontal	Intermediate	Steep Drinking water	1	1	1	
Downstre	am aquatic enviro	nment		Sen	sitive		NA	Non-sensitive	Sensitive	Drinking water supply	2	1	2	
Public roa	ds in potential pea	at flow path		١	IA		NA	Minor road	Local road	Regional road	0	1	0	
	lines in potential				IA		NA	Phone lines	Electricity (LV)	Electricity (MV, HV)	0	1	0	
	in potential peat f				IA air		NA NA	Farm out-houses Good	- Fair	Dwelling Poor	2	1	2	
Саравінту	to respond facces	ss and resources			311 -		INA	0.0 - 0.3 0.3 - 0.5 0.5 - 0.7	sequences Negligible Low Medium High	Poul	Co	onsequences total Max. possible equences 0-1	11	
	47							Risk rating						
	Die!-					A =+1	on results.				1			
0	Risk Action required 0.00 - 0.20 Negligible Normal site investigation										1	Risk rating =	Hazard *	Consequences

Targeted site investigation, design of specific mitigation measures. Part time supervision during construction.

Avoid construction in the area if possible. If unavoidable, detailed site investigation and design of specific mitigation measures. Full time Avoid construction in this area.

Low

Table M- 15: Peat risk assessment at PRA 4.

Peat Stability Risk Assessment (PSRA)

Carrig Wind Farm

Location: PRA 4

Conditions: Undrained (U), undrained surcharge (US), drained (D), drained (DS)

Inspected on: Nov-22

Inspected by: CE

Completed by: CE

Date: Aug-23

				1/-	l				Dating suitaria		Datina		-	<u> </u>
		Hazard factors	U	US	lue D	DS	0	1	Rating criteria 2	3	Rating value	Weighting	Score	Comment
Factor of S	Safety		17.4	7.4	14.1	13.0	-	≥ 1.3	1.3 - 1.0	≤ 1.0	1	10	10	Peat depth: 9,75 m. Slope angle: 2.2º.
	Clida biatan	Distance to previous slides (km)		N	İΑ		NA	5 - 10	< 5	On site	0	2	0	7.3
	Slide history	Evidence of peat movement (e.g. tension		١	IA		NA	-	-	Yes	0	2	0	0
	Subsoil conditions (visible in trial pits)	Subsoil type		Gravel / Fir		I	NA	Gravel / Firm glacial till	Smooth rock	Soft sensitive clay	1	1	1	Nearest TP (TP03) records: Bed rock.
ĺ		Peat fibres across transition to subsoil		N	IA		NA	Yes	Partially	No	0	1	0	
		Peat wetness					NA	Dry / Stands well	Slowly squeezing	Extremely wet / Undiggable	0	2	0	\cup
		General curvature downslope		N	IA		NA	-	Planar	Convex	0	1	0	
ırs	Topography	Distance to the convexity break (only if previous factor is Convex)		N	IA		NA	> 100 m	50 - 100 m	< 50 m	0	ı	0	
Secondary factors		Slope aspect (for high latitudes in northern hemisphere)		N	IA		NA	SW, S, SE	W, E	NW, N, NE	0	1	0	
Seco		Distance from watercourse (m)		> 3	300		NA	> 300	200 - 300	< 200	1	1	1	
		Surface moisture index (NDMI)		135	- 174		NA	0 - 96	96 -135	135 - 174	3	1	3	
		Surface water		Loca	lised		NA	Localised	Ponded in drains	Springs	1	1	1	
	Hydrology	Evidence of piping (subsurface flow)		١	IA		NA	-		Yes	0	1	0	
		Significant surface desiccation (previous summer was dry?)		NA			NA	-	5	Yes	0	1.5	0	
		Existing drainage ditches			IA		NA	Down slope	Varied / Oblique	Across slope	0	1	0	
		Annual rainfall			mm/yr		NA	< 1000 mm/yr	1000 - 1400 mm/yr	> 1400 mm/yr	1	1	1	
	Vegetation				IA		NA	Dry heather	Grassland	Wetlands	0	1	0	
	Vegetation Forestry				growth		NA	Good growth	Fair	Stunted growth	1	1.5	1.5	
	Peat workings Peat cuts presence Peat cuts vs contour lines				-		NA		Cutaway / Turbary	Machine cut	1	1	1	
		NA			NA	Perpendicular	Oblique	Parallel	0	1	0			
	Existing loads	Solid				NA	Solid	-	Floating	1	1	1		
	Time of year for		Late Summ	er, Autumr		NA	Spring	Winter, Early Summer	Late Summer, Autumn	3	1	3	Wost case estimate	

•	Hazard
0.0 - 0.3	Negligible
0.3 - 0.5	Low
0.5 - 0.7	Medium
0.7 - 1.0	High

Hazard total 23.5

Max. possible 96

Hazard ₀₋₁ 0.24

Consequence factors	Value			Rating criteria		Rating	Weighting	Score	Comment
Consequence factors	value	0	1	2	3	value	weighting	Score	Comment
Volume of potential peat flow	Medium	NA	Small	Medium	Large	2	3	6	
Downslope hydrology features	NA	NA	Bowl / contained	Minor undefined watercourse	Valley	0	1	0	
Proximity from defined valley (m)	> 500	NA	> 500	200 - 500	< 200	1	1	1	
Downhill slope angle	Horizontal	NA	Horizontal	Intermediate	Steep	1	1	1	
Downstream aquatic environment	Sensitive	NA	Non-sensitive	Sensitive	Drinking water supply	2	1	2	
Public roads in potential peat flow path	NA	NA	Minor road	Local road	Regional road	0	1	0	
Overhead lines in potential peat flow path	NA	NA	Phone lines	Electricity (LV)	Electricity (MV, HV)	0	1	0	
Buildings in potential peat flow path	NA	NA	Farm out-houses	-	Dwelling	0	1	0	
Capability to respond (access and resources)	Fair	NA	Good	Fair	Poor	2	1	2	
		_				Co	nsequences total	12	

| Consequences | 0.0 - 0.3 | Negligible | 0.3 - 0.5 | Low | 0.5 - 0.7 | Medium | 0.7 - 1.0 | High

Max. possible 33

Consequences 0.1 0.36

Risk rating

Risk
0.00 - 0.20 Negligible Normal site investigation
0.20 - 0.40 Low Targeted site investigation, design of specific mitigation measures. Part time supervision during construction.
0.40 - 0.50 Medium Avoid construction in the area if possible. If unavoidable, detailed site investigation and design of specific mitigation measures. Full time supervision
0.60 - 1.00 High Avoid construction in this area.

Risk rating = 0.24 0.36

= 0.09

Table M- 16: Peat risk assessment at SRA 1.

Peat Stability Risk Assessment (PSRA)

Carrig Wind Farm

nt (PSRA)

Inspected on: Not Inspected by: CE Completed by: CE

Location: SRA 1
Conditions: Undrained (U), undrained surcharge (US), drained (D), drained (DS)
Inspected on: Nov-22
Inspected by: CE
Completed by: CE
Date: Aug-23

			Va	lue					Rating)		
		Hazard factors	U	US	D	DS	0	1	Rating criteria 2	3	value	Weighting	Score	Comment
Factor of S	Safety		2.0	1.4	1.7	2.5	-	≥ 1.3	1.3 - 1.0	≤ 1.0	1	10	10	Peat depth: 2,4 m. Slope angle: 6º.
	Slide history	Distance to previous slides (km)		N	IA		NA	5 - 10	< 5	On site	0	2	0	7.3
	Silde History	Evidence of peat movement (e.g. tension		N	IA		NA	-	-	Yes	0	2	0	9
	Subsoil conditions (visible in trial pits)	Subsoil type		Gravel / Fir		I	NA	Gravel / Firm glacial till	Smooth rock	Soft sensitive clay	1	1	1	Nearest TP (TPO2): Firm grey slightly sandy slightly gravelly CLAY with moderate cobble and low boulder content. Sand and gravel are fine to coarse, gravel is angular to subangular. Cobbles and boulders are subangular to subrounded of limestone.
		Peat fibres across transition to subsoil		N	IA		NA	Yes	Partially	No	0	1	0	
		Peat wetness					NA	Dry / Stands well	Slowly squeezing	Extremely wet / Undiggable	0	2	0	
		General curvature downslope		N	IA		NA	-	Planar	Convex	0	1	0	
ırs	Topography	Distance to the convexity break (only if previous factor is Convex)		N	IA		NA	> 100 m	50 - 100 m	< 50 m	0	1	0	
Secondary factors		Slope aspect (for high latitudes in northern hemisphere)		N	IA		NA	SW, S, SE	W, E	NW, N, NE	0	1	0	
Seco		Distance from watercourse (m)	> 300				NA	> 300	200 - 300	< 200	1	1	1	
		Surface moisture index (NDMI)		135	- 174		NA	0 - 96	96 -135	135 - 174	3	1	3	
		Surface water		Loca	ilised		NA	Localised	Ponded in drains	Springs	1	1	1	
	Hydrology	Evidence of piping (subsurface flow)		Ν	IA		NA	-		Yes	0	1	0	
		Significant surface desiccation (previous summer was dry?)		N	IA		NA	-	5	Yes	0	1.5	0	
		Existing drainage ditches		N	IA		NA	Down slope	Varied / Oblique	Across slope	0	1	0	
		Annual rainfall		< 1000	mm/yr		NA	< 1000 mm/yr	1000 - 1400 mm/yr	> 1400 mm/yr	1	1	1	
	Vegetation	Bush			IA		NA	Dry heather	Grassland	Wetlands	0	1	0	
	· egetation	Forestry			growth		NA	Good growth	Fair	Stunted growth	1	1.5	1.5	
	Peat workings	Peat cuts presence			/ Turbary		NA	-	Cutaway / Turbary	Machine cut	2	1	2	
		Peat cuts vs contour lines			allel		NA	Perpendicular	Oblique	Parallel	3	1	3	
	Existing loads	Roads		So	olid		NA	Solid	-	Floating	1	1	1	
	Time of year for	construction		Late Summ	ier, Autumn		NA	Spring	Winter, Early Summer	Late Summer, Autumn	3	1	3	Wost case estimate

Max. possible 96

Hazard total 27.5

Rating criteria Rating Consequence factors Weighting Comment Value Score 0 1 3 value Volume of potential peat flow Medium NA Small Medium Large Minor undefined ownslope hydrology features Minor undefined watercourse NA owl / containe 2 watercourse Proximity from defined valley (m) > 500 NA > 500 < 200 200 - 500 Downhill slope angle Horizontal NA Horizontal Intermediate Steep Drinking water 2 Sensitive NA 1 2 Downstream aquatic environment Non-sensitive Sensitive supply Public roads in potential peat flow path NA NA Local road Regional road Electricity Overhead lines in potential peat flow path NA NA Phone lines 0 Electricity (LV) 0 1 (MV, HV) Buildings in potential peat flow path NA NA arm out-houses Dwelling 0 0 Capability to respond (access and resources) Fair NA Good Fair Poor 2

Consequences

0.0 - 0.3 Negligible

0.3 - 0.5 Low

0.5 - 0.7 Medium

0.7 - 1.0 High

Max. possible 33

Consequences 0-1 0.42

Consequences total

		Risk rating
Risk		Action required
0.00 - 0.20	Negligible	Normal site investigation
0.20 - 0.40	Low	Targeted site investigation, design of specific mitigation measures. Part time supervision during construction.
0.40 - 0.60	Medium	Avoid construction in the area if possible. If unavoidable, detailed site investigation and design of specific mitigation measures. Full time supervision
0.60 - 1.00	High	Avoid construction in this area.

Risk rating = Hazard * Consequences

0.29 0.42

Table M- 17: Peat risk assessment at SRA 2.

Peat Stability Risk Assessment (PSRA)

Carrig Wind Farm

SRA 2 Location: Undrained (U), undrained surcharge (US), drained (D), drained scrcharge (DS) Conditions: Inspected on: Nov-22 Inspected by: CE Completed by: CE Aug-23 Date:

Turn Calcing Turn									Date:	Aug-25				 ,	1											
Mark Color					Va	luo				Dating critoria		Dating														
Part		На	zard factors	U			DS	0	1		3		Weighting	Score	Comment											
March Column Co	actor of S	Safety		14.3	7.2	11.7	12.5	-	≥ 1.3	1.3 - 1.0	≤ 1.0	1	10	10	Peat depth: ~01m. Slope angle: 2º.											
March Marc		Slido history	Distance to previous slides (km)		N	IA		NA	5 - 10	< 5	On site	0	2	0	7,2											
Section Control Cont		Slide history	Evidence of peat movement (e.g.		N	IA		NA	-	-	Yes	0	2	0												
Part		conditions	Subsoil type		Gravel / Fir	m glacial til	I	NA		Smooth rock	Soft sensitive clay	1	1	1	Nearest TP (TP04) Records: Bedrock											
Page			Peat fibres across transition to		NA		NA N.		NA	Yes	Partially	No	0	1	0	1										
Page Contract of the Convening Prints No. No. No. Pilican Convening Convening Prints Conve			Peat wetness					NA	Dry / Stands well	Slowly squeezing		0	2	0												
No. Section			General curvature downslope		N	IA		NA	-	Planar		0	1	0												
Surface modular index NOAN 235-174	ors	Topography			N	IA		NA	> 100 m	50 - 100 m	< 50 m	0	1	0												
Surface modular index NOAN 235-174	ndary facto							NA	SW, S, SE	W, E	NW, N, NE	0	1	0												
Physical Color Phys	Seco		Distance from watercourse (m)		< 2	200		NA	> 300	200 - 300	< 200	3	1	3												
Pythology Explanation of piping (jubsur/pace from NA NA NA NA NA NA NA N			Surface moisture index (NDMI)		135	- 174		NA	0 - 96	96 -135	135 - 174	3	1	3												
Systems of pring todestrate flow NA			Surface water		Loca	llised		NA	Localised	Ponded in drains	Springs	1	1	1												
		Hydrology	Evidence of piping (subsurface flow)		N	IA		NA	-	- (Yes	0	1	0												
Annual animali									-		Yes	0	1.5	0												
Vegetation No. No. No. No. No. No. Coolegowth No. No. Coolegowth No. No. Coolegowth No. No. Coolegowth No. No. No. Coolegowth No. No. No. No. Coolegowth No. No									Down slope			0	1	0												
Value																										
Peat workings		Vegetation							-																	
Pear Lots vs contour lines NA																										
Time of year for construction Late Summer, Autumn NA Spring Winter, Early Summer Late Summer, Autumn Autum		Peat workings						NA	Perpendicular			0	1	0												
Infect of year for Construction		Existing loads	Roads		Sc	olid		NA	Solid	-		1	1	1												
Hazard		Time of year for	construction		Late Summ	er, Autumr	1	NA	Spring	Winter, Early Summer		3	1	3	Wost case estimate											
O_0_0_3 Negligible O_0 O_0 Negligible O_0										Hazard]		Hazard _{total}	25.5												
Mazard o				14.				1/1/													Max. possible	96				
Consequence factors Value O 1 2 3 wide wide water course water of potential peat flow year of potential peat flow path NA Small NA Small Medium Large 1 3 3 3 No peat. Minor undefined water course NA Bowl / contained water course water																								Hazard	0.27	٦
Consequence factors Value O 1 2 3 3 No peat. Small NA Small Medium Large 1 3 3 No peat. Small NA Small NA Small Medium Large 1 1 3 3 No peat. Small NA Small NA Small NA Small Medium Large 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																										
Name of potential peat flow											•															
Minor undefined watercourse NA Small Medium Large 1 3 3 No peat.		Conse	quence factors		Va	lue		0	1		1 3		Weighting	Score	Comment											
Minor underined watercourse NA Bowl / contained Watercourse Valley Z 1 Z Z Z Z Z Z Z Z	ıme of	potential peat flo	ow .		Sn	nall							3	3	No peat.											
inity from defined valley (m)	vnslop	e hydrology featu	res	Mir	nor undefin	ed waterco	urse	NA	Bowl / contained		Valley	2	1	2												
Inhilislope angle Horizontal NA Horizontal Intermediate Steep 1 1 1 1 1 1									· ·	watercourse	, i				-											
Instream aquatic environment Sensitive NA Non-sensitive Sensitive Sensitiv			-7 \'''/																							
ic roads in potential peat flow path NA NA Minor road Local road Regional road 0 1 0 0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1			nment								Drinking water															
The add lines in potential peat flow path NA NA Phone lines Electricity (LV) (MV, HV) (MV, HV) Do 1 Do																										
Risk rating																										
Ability to respond (access and resources) Fair NA Good Fair Poor 2 1 2 Consequences 0.0 - 0.3 Negligible Max. possible 33 Consequences 0.7 - 1.0 High Risk rating Risk rating Risk rating Risk rating = Hazard * Consequences 0.20 - 0.40 Low Targeted site investigation, design of specific mitigation measures. Part time supervision during construction. Risk rating construction. Risk rating = 0.27 Risk rat	rhead	lines in potential p	peat flow path		Ν	IA		NA	Phone lines	Electricity (LV)		0	1	0												
Consequences O.0 - 0.3 Negligible O.5 - 0.7 Medium O.7 - 1.0 High Risk rating Risk Action required O.00 - 0.20 Negligible Normal site investigation O.20 - 0.40 Low Targeted site investigation, design of specific mitigation measures. Part time supervision during construction. Consequences on Max. possible on																										
Consequences 0.0 - 0.3 Negligible 0.3 - 0.5 Low 0.5 - 0.7 Medium 0.7 - 1.0 High Risk rating Risk Action required 0.00 - 0.20 Negligible Normal site investigation 0.00 - 0.40 Low Targeted site investigation, design of specific mitigation measures. Part time supervision during construction. Risk rating Risk rating = Hazard * Consequences 0.27 0.33 = 0.0	Javiiity	to respond (acces	and resources)	<u> </u>	F	ail		NA	G000	Fall	Poor															
Risk O.5 - 0.7 Medium O.5 - 0.7 Medium O.7 - 1.0 High Risk rating Risk Negligible Normal site investigation O.20 - 0.40 Low Targeted site investigation, design of specific mitigation measures. Part time supervision during construction. O.5 - 0.7 Medium O.7 - 1.0 High Risk rating O.7 - 1.0 High Risk rating O.7 - 1.0 High					0.0 - 0.3 Negligible 0.3 - 0.5 Low 0.5 - 0.7 Medium																					
Risk Action required 0.00 - 0.20 Negligible Normal site investigation 1.020 - 0.40 Low Targeted site investigation, design of specific mitigation measures. Part time supervision during construction. 1.020 - 0.40 Risk rating = Risk rating		6	1									Conse	quences ₀₋₁	0.33]											
0.00 - 0.20 Negligible Normal site investigation Risk rating = Hazard * Consequences 0.20 - 0.40 Low Targeted site investigation, design of specific mitigation measures. Part time supervision during construction. Risk rating = Hazard * Consequences 0.27 0.33 = 0.09		1							Risk rating																	
0.00 - 0.20 Negligible Normal site investigation Risk rating = Hazard * Consequences 0.20 - 0.40 Low Targeted site investigation, design of specific mitigation measures. Part time supervision during construction. Risk rating = Hazard * Consequences 0.27 0.33 = 0.09																										
0.20 - 0.40 Low Targeted site investigation, design of specific mitigation measures. Part time supervision during construction. Risk rating = 0.27 0.33 = 0.0	0													Risk rating = Hazard * Consequences												
					f specific mi	tigation mo	asures Dari	time supp	rvision during cons	truction																
The angular provides a control of the area of possible in an area of a possible in an area of a possible in a control of the area of the a	_										s. Full time	1	sk raurig -	0.27	- 0.03											

Avoid construction in the area if possible. If unavoidable, detailed site investigation and design of specific mitigation measures. Full time Avoid construction in this area.

Table M- 18: Peat risk assessment at SRA 3.

Peat Stability Risk Assessment (PSRA)

Carrig Wind Farm

Location: SRA 3

Conditions: Undrained (U), undrained surcharge (US), drained (D), drained surcharge (DS)

Inspected on: Nov-22
Inspected by: CE
Completed by: CE
Date: Aug-23

			\/2	lue				Rating criteria		Rating			<u></u>
На	zard factors	U	US	D	DS	0	1	2	3	value	Weighting	Score	Comment
r of Safety		5.7	4.1	4.9	7.3	-	≥ 1.3	1.3 - 1.0	≤ 1.0	1	10	10	Peat depth: ~25m. Slope ang 2º.
de history	Distance to previous slides (km)	'				NA	5 - 10	< 5	On site	0	2	0	7.5
uc motory	Evidence of peat movement (e.g.		N	A		NA	-	-	Yes	0	2	0	
Subsoil conditions (visible in trial pits)	Subsoil type	Gravel / Firm glacial till			NA	Gravel / Firm glacial till	Smooth rock	Soft sensitive clay	1	1	1	Nearest TP (TP04) Records: Bedri	
	Peat fibres across transition to	NA			NA	Yes	Partially	No	0	1	0		
	Peat wetness				NA			Extremely wet /	0	2	0		
						,,	ere rry equeezg	Undiggable					
	General curvature downslope	NA			NA	-	Planar	Convex	0	1	0		
pography	Distance to the convexity break (only if previous factor is Convex)	NA			NA	> 100 m	50 - 100 m	< 50 m	0	1	0		
	Slope aspect (for high latitudes in northern hemisphere)	NA			NA	SW, S, SE	W, E	NW, N, NE	0	1	0		
	Distance from watercourse (m)	< 200			NA	> 300	200 - 300	< 200	3	1	3		
	Surface moisture index (NDMI)	135 - 174			NA	0 - 96	96 -135	135 - 174	3	1	3		
	Surface water	Localised			NA	Localised	Ponded in drains	Springs	1	1	1		
drology	Evidence of piping (subsurface flow)	NA		NA	-	- (Yes	0	1	0			
	Significant surface desiccation (previous summer was dry?)		N	Α		NA	-	5	Yes	0	1.5	0	
	Existing drainage ditches					NA	Down slope	Varied / Oblique	Across slope	0	1	0	
getation													
at workings	Peat cuts presence					NA	4	Cutaway / Turbary	Machine cut	1	1	1	
	Peat cuts vs contour lines					NA	Perpendicular	Oblique	Parallel	0	1	0	
me of year for	construction	La	ate Summ	er, Autumn	1	NA	Spring	Winter, Early Summer	Autumn	3	1	3	Wost case estimate
											Hazard _{total}	25.5	
							-		May possible	96			
				0.3 - 0.5				Wiax. possible	30				
				$X \setminus I$	•	0.5 - 0.7				Hazard ₀₋₁	0.27		
							0.7 - 1.0	High	J				
Consequence factors			Va	lua				Rating criteria		Rating	Weighting	Score	Comment
						0	1	2	3	value			
e of potential peat flow			<u> </u>										No peat.
ope hydrology features		Mino	r undefine	ed waterco	urse	NA	Bowl / contained	watercourse	Valley	2	1	2	
ity from defined valley (m)						NA	> 500		< 200	1	1	1	
ill slope angle													
tream aquatic environment			Sens	itive		NA	Non-sensitive	Sensitive	supply	2	1	2	
oads in potential peat flow path NA			NA	Minor road	Local road	Regional road	0	1	0				
ead lines in potential peat flow path NA				NA	Phone lines	Electricity (LV)	Electricity (MV, HV)	0	1	0			
	gs in potential peat flow path NA			NA	Farm out-houses	-	Dwelling	0	1	0			
otential peat fl	ow path											1	
	is and resources)		Fa	air		NA	Good	Fair	Poor	2	1	2	
			Fa	air		NA			Poor		nsequences _{total}		
			Fá	air		NA	Con	Fair sequences Negligible Low	Poor			14	
ib nsi	pography drology getation at workings sting loads ne of year for Conse ential peat flo drology featu n defined valle e angle	Evidence of peat movement (e.g. Subsoil type Peat fibres across transition to Peat wetness General curvature downslope Distance to the convexity break (only if previous factor is Convex) Slope aspect (for high latitudes in northern hemisphere) Distance from watercourse (m) Surface moisture index (NDMI) Surface water Evidence of piping (subsurface flow) Significant surface desiccation (previous summer was dry?) Existing drainage ditches Annual rainfall Bush Forestry Peat cuts presence Peat cuts vs contour lines sting loads Roads ne of year for construction Consequence factors ential peat flow drology features in defined valley (m) eangle	Distance to previous slides (km) Evidence of peat movement (e.g. Subsoil speed of peat movement (e.g.) Peat fibres across transition to Peat wetness General curvature downslope Distance to the convexity break (only if previous factor is Convex) Slope aspect (for high latitudes in northern hemisphere) Distance from watercourse (m) Surface moisture index (NDMI) Surface water Evidence of piping (subsurface flow) Significant surface desiccation (previous summer was dry?) Existing drainage ditches Annual rainfall getation Bush Forestry Peat cuts presence Peat cuts vs contour lines sting loads Roads ne of year for construction Consequence factors ential peat flow drology features on defined valley (m) a angle	Distance to previous slides (km) Evidence of peat movement (e.g. Subsoil diditions ible in trial pits) Peat fibres across transition to Peat wetness General curvature downslope Distance to the convexity break (only if previous factor is Convex) Slope aspect (for high latitudes in northern hemisphere) Distance from watercourse (m) Surface moisture index (NDMI) Surface water Evidence of piping (subsurface flow) Significant surface desiccation (previous summer was dry?) Existing drainage ditches Annual rainfall Annual rainfall Setting loads Roads So so of year for construction Consequence factors Valential peat flow Met drology features In defined valley (m) Pat differed valley (m)	Distance to previous slides (km)	Distance to previous slides (km) NA	de history Distance to previous sildes (km) NA	Distance to previous sildes (km) Evidence of peat movement (e.g. NA NA NA South Firm glacial till Subsoil type Subsoil type Gravel / Firm glacial till NA Gravel / Firm glacial till NA Gravel / Firm glacial till NA Peat fibres across transition to NA NA Yes Peat wetness NA Dry / Stands well General curvature downslope NA NA NA NA Peat (only if previous factor is Conves) Slope aspect (for high latitudes in northern hemisphere) NA NA SW, 5, 5E Distance from watercourse (m) < 200 NA > 300 Surface moisture index (NDMI) 135 - 174 NA 0 - 96 Surface moisture index (NDMI) 135 - 174 NA 0 - 96 Surface water Localised NA Localised NA Localised NA Localised NA NA Personal (previous summer was dry?) Existing drainage ditches NA NA NA Orly heather forestry Good growth NA South NA Orly heather forestry Good growth NA South NA NA Prependicular at workings Peat cuts by resence NA NA Perpendicular South NA NA Perpendicular South NA NA Perpendicular South NA NA Perpendicular NA NA Ports NA South NA NA Perpendicular NA South NA NA Perpendicular NA South NA NA Perpendicular NA NA South NA NA Perpendicular NA South NA So	Distance to previous slides (km) Evidence of peat movement (e.g. Subsoil type Subsoil type Subsoil type Subsoil type Gravel / Firm glacial till NA NA NA NA NA NA Peat (firm sacross transition to NA NA NA Peat werness NA NA NA NA NA NA Planar Sion aspect (bring listicules in northern hemisphere) NA NA NA NA NA NA NA NA NA N	Distance to previous sides (km)	Distance to previous sides (km) NA NA NA S-10 Subsoli type Gravel / Firm glacial trill NA NA Subsoli type Gravel / Firm glacial trill NA Subsoli type Gravel / Firm glacial trill NA NA Subsoli type Gravel / Firm glacial trill NA NA Subsoli type Gravel / Firm glacial trill NA NA NA Subsoli type Gravel / Firm glacial trill NA NA NA Subsoli type Gravel / Firm glacial trill NA NA NA Subsoli type Gravel / Firm glacial trill Subsoli type Gravel / Firm glacial trill NA NA NA NA NA NA NA Subsoli type Gravel / Firm glacial trill NA NA NA NA NA NA NA Partially Subsoli type Gravel / Firm glacial trill Convex O Clarenely wet/ Undiggable O Clarenely wet/ Undiggable O Clarenely wet/ Undiggable O Convex O Subsoli type Subsoli type Subsoli type Gravel / Firm glacial trill NA NA NA NA NA Subsoli type Subsoli type Clarenely wet/ Undiggable O Convex O Subsoli type Subso	Detance to previous sides (bm)	Distance to previous alies from NA

Risk rating

Action required

Medium Avoid construction in the area if possible. If unavoidable, detailed site investigation and design of specific mitigation measures. Full time High Avoid construction in this area.

Low Targeted site investigation, design of specific mitigation measures. Part time supervision during construction.

Peat Stability Risk Assessment (PSRA) for Carrig Renewables Wind Farm
GDG Carrig Renewables Wind Farm 22063-R-001-02-PSRA

Negligible Normal site investigation

0.00 - 0.20

0.20 - 0.40

0.40 - 0.60 0.60 - 1.00 Risk rating = Hazard * Consequences
Risk rating = 0.27 0.42

Offices

Dublin (Head Office)

Gavin & Doherty Geosolutions Unit A2, Nutgrove Office Park Rathfarnham Dublin 14, D14 X627 Phone: +353 1 207 1000

Belfast

Gavin & Doherty Geosolutions (UK) Limited Scottish Provident Building 7 Donegall Square West Belfast, BT1 6JH

Edinburgh

Gavin & Doherty Geosolutions (UK) Limited 21 Young Street Edinburgh Scotland, EH2 4HU

Rhode Island

Gavin & Doherty Geosolutions Inc. 225 Dyer St, 2nd Floor Providence, RI 02903 USA

Bath

Gavin & Doherty Geosolutions (UK) Limited The Guild High Street, Bath Somerset BA1 5EB

Cork

Gavin & Doherty Geosolutions Unit 4E, Northpoint House, North Point Business Park Cork, T23 AT2P

London

Gavin & Doherty Geosolutions (UK) Limited 85 Great Portland Street, First Floor London W1W 7LT

Utrecht

Gavin & Doherty Geosolutions WTC Utrecht, Stadsplateau 7 3521 AZ Utrecht The Netherlands

Website: www.gdgeo.com
Email: info@gdgeo.com

