

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52 Tel: 01 601 5175 / 5176 Email: info@gii.ie Weby, www.gii.ie

Ground Investigations Ireland A034 Tinakilly Co. Wicklow CS Consulting Ground Investigation Report

November 2022

Directors: Fergal McNamara (MD), Conor Finnerty, Aisling McDonnell & Barry Sexton Ground Investigations Ireland Limited | Registered in Ireland Company Regsitration No.: 405726

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52 Tel: 01 601 5175 / 5176 Email: nfo@gii.ie Web: www.gii.ie

DOCUMENT CONTROL SHEET

Project Title	A034 Tinakilly Co. Wicklow
Engineer	CS Consulting
Project No	11957-06-22
Document Title	Ground Investigation Report

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
А	Final	S Graydon	J Cashen	C Finnerty	Dublin	11 November 2022

Ground Investigations Ireland Ltd. present the results of the fieldworks and laboratory testing in accordance with the specification and related documents provided by or on behalf of the client. The possibility of variation in the ground and/or groundwater conditions between or below exploratory locations or due to the investigation techniques employed must be taken into account when this report and the appendices inform designs or decisions where such variation may be considered relevant. Ground and/or groundwater conditions may vary due to seasonal, man-made or other activities not apparent during the fieldworks and no responsibility can be taken for such variation. The data presented and the recommendations included in this report and associated appendices are intended for the use of the client and the client's geotechnical representative only and any duty of care to others is excluded unless approved in writing.

CONTENTS

		Newcastle, Co. Dublin. D22 YD52 Tel: 01 601 5175 / 5176 Email: nfo@gii.ie Web: www.gii.ie
GROU	JND INVESTIGATIONS IRELAND	Email:nfo@gii.ie Web:ww.gii.ie
	Geotechnical & Environmental	T Oo
CON	ITENTS	E CO
1.0	Preamble	کی 1
2.0	Overview	1
2.1.	Background	1
2.2.	Purpose and Scope	1
3.0	Subsurface Exploration	1
3.1.	General	1
3.2.	Trial Pits	2
3.3.	Soakaway Testing	2
3.4.	Dynamic Probing	2
3.5.	Cable Percussion Boreholes	2
3.6.	Surveying	3
3.7.	Groundwater Monitoring Installations	3
3.8.	Insitu Plate Bearing Test	3
3.9.	Laboratory Testing	3
4.0	Ground Conditions	4
4.1.	General	4
4.2.	Insitu Strength Testing	5
4.3.	Groundwater	5
4.4.	Laboratory Testing	5
4.4.1.	Geotechnical Laboratory Testing	5
4.4.2.	Chemical Laboratory Testing	6
4.4.3.	Environmental Laboratory Testing	6

Catherinestown House, Hazelhatch Road,

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52 Tel: 01 601 5175 / 5176 Email: nfo@gii.ie Web: www.gii.ie

GROUND INVESTIGATIONS IRELAND

Geotechnical & Environmental

CONTENTS (Continued)

5.0	Recommendations & Conclusions	.7
5.1.	General	.7
5.2.	Foundations	.7
5.3.	External Pavements	.8
5.4.	Material Reuse	.9
5.5.	Excavations	10
5.6.	Soakaway Design	11

LIST OF TABLES

Table 1 - Allowable Bearing Capacities	7
Table 2 - Material Reuse	9

APPENDICES

Appendix 1	Figures
Appendix 2	Trial Pit Records
Appendix 3	Soakaway Testing Records
Appendix 4	Dynamic Probe Records
Appendix 5	Cable Percussion Borehole Records
Appendix 6	Plate Testing Records
Appendix 7	Laboratory Testing
Appendix 8	Groundwater Monitoring

1.0 Preamble

On the instructions of CS Consulting Engineers, a site investigation was carried out by Ground Investigations Ireland Ltd. (GII) between July and August 2022, at the site of the proposed residential 14108/2013 development in Tinakilly, Rathnew, County Wicklow.

2.0 Overview

2.1. Background

It is proposed to construct a new residential development with associated services, access roads and car parking at the proposed site. At the time of the site investigation the site was greenfield agricultural land. The proposed construction is envisaged to consist of conventional foundations and pavement make up with some local excavations for services and plant.

2.2. Purpose and Scope

The purpose of the site investigation was to investigate subsurface conditions utilising a variety of investigative methods in accordance with the project specification. The scope of the work undertaken for this project included the following:

- Visit project site to observe existing conditions
- Carry out 25 No. Trial Pits to a maximum depth of 4.00m BGL •
- Carry out 6 No. Soakaways to determine a soil infiltration value to BRE Digest 365
- Carry out 25 No. Dynamic Probes to determine soil strength/density characteristics
- Carry out 6 No. Cable Percussion boreholes to a maximum depth of 10.00m BGL
- Carry out 16 No. Plate bearing tests to determine the modulus of subgrade reaction and equivalent CBR values
- Installation of 6 No. Groundwater monitoring wells
- Geotechnical & Environmental Laboratory testing
- Geotechnical Report with recommendations

3.0 Subsurface Exploration

3.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling and in-situ testing was undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation and drilling.

The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground CEIVED. Investigation and testing (ISEN 1997 - 2:2007) and B.S. 5930:2015+A1:2020.

3.2. Trial Pits

The trial pits were excavated using a JCB 3CX excavator at the locations shown in the exploratory hole location plan in Appendix 1. The locations were checked using a CAT scan to minimise the potential for encountering services during the excavation. The trial pits were sampled, logged, and photographed by a Geotechnical Engineer/Engineering Geologist prior to backfilling with arisings. Notes were made of any services, inclusions, pit stability, groundwater encountered, and the characteristics of the strata encountered and are presented on the trial pit logs which are provided in Appendix 2 of this Report.

3.3. Soakaway Testing

The soakaway testing was carried out in selected trial pits at the locations shown in the exploratory hole location plan in Appendix 1. These pits were carefully excavated and filled with water to assess the infiltration characteristics of the proposed site. The pits were allowed to drain and the drop in water level was recorded over time as required by BRE Digest 365. The pits were logged prior to completing the soakaway test and were backfilled with arising's upon completion. The soakaway test results are provided in Appendix 3 of this Report.

3.4. Dynamic Probing

The dynamic probe tests (DPH) were carried out at the locations shown in the location plan in Appendix 1 in accordance with B.S. 1377: Part 9 1990. The test consists of mechanically driving a cone with a 50kg weight in 100mm intervals and monitoring the number of blows required. An equivalent Standard Penetration Test (SPT) 'N' value may be calculated by dividing the total number of blows over a 300mm drive length by 1.5. The dynamic probe logs are provided in Appendix 4 of this Report.

3.5. Cable Percussion Boreholes

The Cable Percussion Boreholes were drilled using a Dando 2000 drilling rig with regular in-situ testing and sampling undertaken to facilitate the production of geotechnical logs and laboratory testing.

The standard method of boring in soil for site investigation is known as the Cable Percussion method. It consists of using a Shell in non cohesive soils and a clay cutter in cohesive soils, both operated on a wire cable. Very hard soils, boulders and other hard obstructions are broken up by chiselling and the fragments removed with the Shell. Where ground conditions made it necessary, the borehole was lined with 200mm diameter steel casing. While the use of the Cable Percussion method of boring gives the maximum data on soil conditions, some mixing of laminated soil is inevitable. For this reason, thin lenses of granular material may not be noticed. Disturbed samples were taken from the boring tools at suitable depths, so that there is a representative sample at the top of each change in stratum and thereafter at regular intervals down the

borehole until the next stratum was encountered. The disturbed samples were then sealed and sent to the laboratory where they were visually examined to confirm the description of the relevant strata.

Standard Penetration Tests were carried out in the boreholes. The results of these tests, together with the depths at which the tests were taken are shown on the accompanying borehole records. The test consists of a thick wall sampler tube, 50mm external diameter, being driven into the soil by a monkey weighing 63.5kg and with a free drop of 760mm. For gravels and glacial till the driving shoe was replaced by a solid 60° cone. The Standard Penetration Test number referred to as the 'N' value is the number of blows required to drive the tube 300mm, after an initial penetration of 150mm. The number gives a guide to the consistency of the soil and can also be used to estimate the relative strength/density at the depth of the test and also to estimate the bearing capacity and compressibility of the soil. The cable percussion borehole logs are provided in Appendix 5 of this Report.

3.6. Surveying

The exploratory hole locations have been recorded using a KQGeo M8 GNSS System which records the coordinates and elevation of the locations to ITM as required by the project specification. The coordinates and elevations are provided on the exploratory hole logs in the appendices of this Report.

3.7. Groundwater Monitoring Installations

Groundwater Monitoring Installations were installed upon the completion of the boreholes to enable sampling and the determination of the equilibrium groundwater level. The typical groundwater monitoring installation consists of a 50mm uPVC/HDPE slotted pipe with a pea gravel response zone and bentonite seal installed to the Engineers specification. The standpipe is finished with a durable steel cover fixed in place with a concrete surround. The installation details are provided on the exploratory hole logs in the appendices of this Report.

3.8. Insitu Plate Bearing Test

The plate bearing tests were carried out using a 457mm diameter plate at the locations shown on the site plan in Appendix 1. The plate was loaded in increments using a hydraulic jack and an excavator to provide a reaction and the displacement was monitored in accordance with BS1377 Part 9 using independently mounted digital strain gauges. The constrained modulus and equivalent CBR are calculated in accordance with HD29/75 and are provided on the test reports in Appendix 6 of this Report.

3.9. Laboratory Testing

Samples were selected from the exploratory holes for a range of geotechnical and environmental testing to assist in the classification of soils and to provide information for the proposed design.

Environmental & Chemical testing as required by the specification, including the Rilta Suite, pH and sulphate testing was carried out by Element Materials Technology Laboratory in the United Kingdom (UK). The Rilta suite testing includes both Solid Waste and Leachate Waste Acceptance Criteria.

Geotechnical testing consisting of moisture content, Atterberg limits, Particle Size Distribution (PSD), Moisture Condition Value (MCV), Compaction/California Bearing Ratio (CBR) 5 point and Compaction/MCV 5 point tests were carried out by Professional Soils Laboratory (PSL) in the UK. The results of the laboratory · 78108/2023 testing are included in Appendix 7 of this Report.

4.0 Ground Conditions

4.1. General

The ground conditions encountered during the investigation are summarised below with reference to insitu and laboratory test results. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report.

The sequence of strata encountered were variable across the site but generally comprised;

- Topsoil
- **Granular Deposits**
- **Cohesive Deposits**

TOPSOIL: Topsoil was encountered in all the exploratory holes and was present to a maximum depth of 0.40m BGL.

GRANULAR DEPOSITS: An upper granular deposit was encountered beneath the Topsoil in TP02, TP03, TP04, TP05, TP06, TP07, TP08, TP11, TP12, TP13, TP14, TP15, TP18, TP19, TP20, TP22 and TP25 and was typically described as brown clayey very gravelly fine to coarse SAND. This deposit was also found to marginally grade into a sandy CLAY in places. A second (lower) granular deposit was typically present below the upper granular deposits or the cohesive deposits and was generally described as grey clayey very sandy subangular to subrounded fine to coarse GRAVEL. The secondary sand/gravel and fines constituents varied across the site and with depth, while occasional (<5%), some (5%-20%) or many (20%-50%) cobble and boulder content was also present, where noted on the exploratory hole logs.

Based on the correlated N100 values the deposits are typically loose to medium dense. It should be noted that many of the trial pits where granular deposits were encountered, experienced instability. This was described either as side wall spalling or as side wall collapse in the remarks section at the base of the trial pit logs.

COHESIVE DEPOSITS: Cohesive deposits were encountered at various depths and thicknesses across the site. Cohesive deposits were encountered beneath the topsoil in TP01, TP09, TP10, TP16, TP17, TP24 and in between the granular deposits at TP01, TP03, TP04, TP06, TP11, TP19, TP20, TP22 and TP24. In trial pits TP05, TP07, TP08, TP10, TP13, TP15, TP18, TP21 and the cohesive deposits were encountered below the granular deposits. It should be noted that no cohesive material was encountered in TP02, TP14 and TP25. The cohesive deposits are described typically as *brown slightly gravelly sandy CLAY with occasional cobbles and boulders*. The secondary sand and gravel constituents varied across the site and with depth, with granular lenses occasionally present in the glacial till matrix. The strength of the cohesive deposits typically were soft or soft to firm below 1.00m BGL in many of the exploratory holes. These deposits had occasional (<5%), some (5%-20%) or many (20%-50%) cobble and boulder content, where noted on the exploratory hole logs.

4.2. Insitu Strength Testing

The correlated DPH blow counts indicate that the overburden deposits vary across the site and were soft to firm / loose to depth of 0.90m to 4.30m BGL and become firm or firm to stiff/medium dense with depth.

4.3. Groundwater

Groundwater strikes are noted on the exploratory hole logs where they occurred and where possible drilling was suspended for twenty minutes to allow the subsequent rise in groundwater to be recorded. We would point out that these exploratory holes did not remain open for sufficiently long periods of time to establish the hydrogeological regime and groundwater levels would be expected to vary with the tide, time of year, rainfall, nearby construction, and other factors. For this reason, standpipes were installed at all borehole locations to allow the equilibrium groundwater level to be determined. The groundwater monitoring is included in Appendix 8 of this Report.

4.4. Laboratory Testing

4.4.1. Geotechnical Laboratory Testing

The geotechnical testing carried out on soil samples recovered generally confirm the descriptions on the logs with the primary constituent of the cohesive deposits found to be a CLAY of low to intermediate plasticity. The Particle Size Distribution tests confirm that generally the cohesive deposits are well-graded with percentages of sands ranging between 14% to 50% and gravels ranging between 0% and 39% with a fines contents of between 23% to 86%. The moisture content for the cohesive samples ranged from 7.2% to 23%.

The Particle Size Distribution tests on the granular deposits confirm there are both sand and gravel deposits present on site. The gravel deposits are generally uniformly graded with percentages of fines ranging between 3% to 5% and gravels ranging between 62% and 71% generally with sand contents of 17% to 30%. The sand deposits are also uniformly graded with percentages of fines ranging between 3% to 11% and gravels ranging between 0% and 25% generally with sand contents of 55% to 86%. The moisture content for the granular samples ranged from 5.6% to 10%.

The MCV results range from less than 1 to 15.4 in the cohesive samples and 8.1 to 17.5 in the granular deposits. The consolidated undrained testing to determine the effective shear strength parameters of the cohesive deposits, gave an effective angle of friction of 25.2 degrees to 31.3 degrees, and effective cohesive of 5.34 kPa to 8.57 kPa. The consolidated undrained testing on the granular deposit sample, gave an effective angle of friction of 35 degrees, and effective cohesive of 4 kPa.

The compaction testing (DD/MC relationship) using the 2.5kg rammer reported Optimum Moisture Contents (OMC) of 8% to 11% for the granular deposits and 9% to 20% for the cohesive samples tested, compared to a Natural Moisture Content (NMC) of 5.6% to 10% in the granular deposits and 7.2% to 23% in the cohesive deposits. The granular deposits are generally within 2.5% of the OMC and the cohesive samples are typically range between 3% to 6% wet or dry of the OMC. Both cohesive and granular samples show a sensitivity to moisture content with the MCV and CBR parameters varying significantly with small increases in moisture content.

4.4.2. Chemical Laboratory Testing

The pH and sulphate testing carried out indicate that pH results are near neutral and that the water soluble sulphate results is low when compared to the guideline values from BRE Special Digest 1:2005. The samples tested classify the soil as a Design Sulphate Level DS-1.

4.4.3. Environmental Laboratory Testing

A number of samples were analysed for a suite of parameters which allows for the assessment of the sampled material in terms of total pollutant content for classification of materials as *hazardous* or *non-hazardous*. The suite also allows for the assessment of the sampled material in terms of suitability for placement at licenced landfills (inert, stable non-reactive, hazardous etc.). The parameter list for the suite includes analysis of the solid samples for arsenic, barium, cadmium, chromium, copper, cyanide, lead, nickel, mercury, zinc, speciated aliphatic and aromatic petroleum hydrocarbons, pH, sulphate, sulphide, moisture content, soil organic matter and an asbestos screen.

The suite also includes those parameters specified in the EU Council Decision establishing criteria for the acceptance of waste at Landfills (Council Decision 2003/33/EC), which for the solid samples are total organic carbon (TOC), speciated aliphatic and aromatic petroleum hydrocarbons, BTEX, phenol, polychlorinated biphenyls (PCB) and PAH.

As part of the suite a leachate is generated from the solid sample which is analysed for antimony, arsenic, barium, cadmium, chromium, copper, lead, mercury, molybdenum, nickel, selenium, zinc, chloride, fluoride, soluble sulphate, sulphide, phenols, dissolved organic carbon (DOC) and total dissolved solids (TDS).

While the laboratory report provides a comparison with the waste acceptance criteria limits it does not provide a waste classification of the material sampled nor does it comment on any potentially hazardous properties of the materials tested. The possibility for contamination, not revealed by the testing undertaken should be borne in mind particularly where Made Ground deposits are present or the previous site use or location indicate a risk of environmental variation. The waste classification report is included under the cover of a separate report by Ground Investigations Ireland.

The results from the completed laboratory testing are included in Appendix 7 of this report.

5.0 Recommendations & Conclusions

5.1. General

The recommendations given and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between exploratory hole locations, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for conditions which have not been revealed by the exploratory holes. Limited information has been provided at the ground investigation stage and any designs based on the recommendations or conclusions should be completed in accordance with the current design codes, taking into account the variation and the specific details contained within the exploratory hole logs.

5.2. Foundations

The allowable bearing capacities recommended for conventional strip or pad foundations are outlined in Table 1 below. The depths recommended have been kept as shallow as possible due to the loose or soft deposits encountered and collapsing sides noted on the trial pit logs, which may make conventional strip foundations difficult to construct. Piled or vibro stone column foundations are recommended where noted on the table or may be more appropriate for the entire site if the volume of excavation and the constructability of the foundations make that foundation type more economically advantageous.

	Depth	to 80 kN/m ²	:		Depth te	o 125 kN/m	2
Exp. Hole	ABC	Depth		Exp. Hole	ABC	Depth	
No.	kN/m ²	m BGL	Comment	No.	kN/m ²	m BGL	Comment
BH01	80	1.00		BH01	125	4.00	Vibro / Piling
BH02	80	2.00		BH02	125	3.00	Vibro / Piling
BH03	80	2.00		BH03	125	3.10	Vibro / Piling
BH04	80	1.00		BH04	125	6.00	Vibro / Piling
BH05	80	2.00		BH05	125	3.70	Vibro / Piling
BH06	80	3.00	Vibro / Piling	BH06	125	4.00	Vibro / Piling
DP01	80	2.60	Vibro / Piling	DP01	125	3.20	Vibro / Piling
DP02	-	-		DP02	125	1.00	
DP03	-	-		DP03	125	2.30	Vibro / Piling
DP04	-	-		DP04	125	4.30	Vibro / Piling
DP05	80	3.30	Vibro / Piling	DP05	125	3.60	Vibro / Piling
DP06	80	1.30		DP06	125	3.60	Vibro / Piling
DP07	-	-		DP07	125	2.50	Vibro / Piling
DP08	-	-		DP08	125	3.20	Vibro / Piling
DP09	80	3.70	Vibro / Piling	DP09	125	4.10	Vibro / Piling
DP10	-	-		DP10	125	3.30	Vibro / Piling
DP11	80	2.40	Vibro / Piling	DP11	125	2.90	Vibro / Piling
DP12	80	2.30	Vibro / Piling	DP12	125	2.80	Vibro / Piling
DP13	80	3.30	Vibro / Piling	DP13	125	4.20	Vibro / Piling
DP14	80	0.80		DP14	125	1.30	

Table 1 - Allowable Bearing Capacities

	Depth	to 80 kN/m ²	1		Depth te	o 125 <mark>4k</mark> N/m	2
Exp. Hole	ABC	Depth		Exp. Hole	ABC	Depth	4.
No.	kN/m ²	m BGL	Comment	No.	kN/m ²	m BGL	Comment
DP15	80	4.50	Vibro / Piling	DP15	125	4.80	Vibro / Piling
DP16	80	3.20	Vibro / Piling	DP16	125	4.50	Vibro 1 Piling
DP17	80	3.10	Vibro / Piling	DP17	125	3.30	Vibro / Piling
DP18	80	3.20	Vibro / Piling	DP18	125	3.40	Vibro / Piling o
DP19	80	3.30	Vibro / Piling	DP19	125	3.50	Vibro / Piling
DP20	80	2.60	Vibro / Piling	DP20	125	3.20	Vibro / Piling
DP21	80	1.00		DP21	125	1.70	
DP22	80	3.00	Vibro / Piling	DP22	125	4.70	Vibro / Piling
DP23	80	2.50	Vibro / Piling	DP23	125	2.90	Vibro / Piling
DP24	80	2.80	Vibro / Piling	DP24	125	3.20	Vibro / Piling
DP25	80	1.10		DP25	125	1.70	

The possibility for variation in the depth of the soft deposits in the vicinity of these foundations should be considered and foundation inspections should be carried out. Any soft spots encountered at the proposed foundation depths should be excavated and replaced with lean mix concrete.

In any part of the site, should both a cohesive deposit and granular deposit be encountered at foundation level, it is recommended that all foundations of the unit in question be lowered to the same stratum to avoid differential settlement.

The pH and sulphate testing completed on samples recovered from the exploratory holes indicates the pH results are near neutral and the sulphate results are low, when compared to the guideline values from BRE Special Digest 1:2005. No special precautions are required for concrete foundations to prevent sulphate attack. The samples tested were below the limits of DS1 in the BRE Special Digest 1:2005.

5.3. External Pavements

The proposed pavements are recommended to be designed in accordance with the CBR test results included in the Appendices of this Report. The low CBR test results indicate that a capping layer or a sufficient depth of crushed stone fill may be required. Plate bearing tests are recommended at the time of construction to verify the design assumptions for the proposed pavement make up and to verify adequate compaction has been achieved.

The use of a geogrid and separation membrane may improve the performance of the proposed pavement and enable a more economical pavement design to be achieved, a specialist supplier is recommended to advise of the required strength, depth and type of geotextile for the proposed design.

5.4. Material Reuse

Table 2 below summarises the results of the material reuse testing. The results of the cohesive material are variable, with eighteen of the eighteen cohesive samples tested indicating they would not be suitable in their current state and would require treatment during the earthworks to reduce the moisture content to an acceptable level for use as Class 2 fill. The MCV testing is typically required to be greater than 8 for acceptable fill with 7-8 considered marginal. Four of the samples tested were below these guideline values. Additionally, a further four samples which underwent compaction testing were found to be 3% wet of optimum moisture content (OMC) and thus require treatment to reduce the moisture content to be rendered useable as a Class 2 Fill.

Generally, the granular samples tested would be acceptable for use as Class 1B Fill (Uniformly Graded Granular Fill). However, where the fines content is found to exceed 15% during site processing, the material must be considered a Class 2 Fill (Cohesive). Some of this material (TP18 at 3.00m BGL) requires treatment to reduce or increase the optimum moisture content to within 2% of the OMC or to achieve an MCV of greater than 7 or 8.

The addition of lime and/or cement can assist in reducing the moisture content and render it suitable for use as capping material, providing strict controls are put in place to monitor the works and to ensure compliance with the project earthworks specification. A specialist geotechnical consultant is recommended to review and to develop the earthworks specification for the proposed works, particularly where the uniformly grading granular material or lime/cement stabilisation is proposed. To assess fully the percentage of lime and/or cement required to carry out the soil stabilisation, further testing needs to be carried out.

The moisture content should be carefully monitored and control to be within +/- 2% of the OMC or to achieve an MCV of greater than 7 or 8. The compaction should be specified to achieve 95% relative compaction where construction is proposed, and settlement monitoring undertaken over an appropriate time period to confirm the formation level is suitable for pavement construction. A programme of regular compliance testing, including regular density testing should be undertaken during earthworks to confirm the final compaction achieved. Material outside of the acceptable moisture content can be used as landscaping fill or in areas where settlement can be tolerated without further treatment.

Exp. Hole No.	Sample Depth (m BGL)	Sample Depths (m OD)	MC (%)	MCV	OMC (%)	Stratum	Silt/Clay Content (%)	Material Reuse
TP01	0.50	17.60	7.2	12.8*	9	slightly gravelly sandy CLAY	23	Class 2 Fill
TP01	1.50	16.60	11	10.5	-	CLAY	-	Class 2 Fill
TP01	2.00	16.10	21	9.5	-	slightly gravelly slightly sandy CLAY	77	Class 2 Fill
TP02	1.50	12.39	5.6	12	-	slightly clayey very sandy GRAVEL	5	Class 1B Fill

Table 2 - Material Reuse

	Sample							
Exp. Hole No.	Depth (m BGL)	Sample Depths (m OD)	MC (%)	MCV	OMC (%)	Stratum	Silt/Clay Content (%)	Material Reuse
TP04	0.50	17.45	11	13.8	-	CLAY	-	Class 2 Fill
TP04	1.50	16.45	17	-	14	slightly gravelly slightly sandy CLAY	64	Presumed Class 2
TP05	0.50	18.96	8	7.8	-	CLAY	-	Class 2 Kill
TP05	2.00	17.46	6.5	17.2	8	slightly clayey very sandy GRAVEL	3	Class 1B Fill
TP07	2.50	20.08	6.1	11.2	-	slightly clayey sandy GRAVEL	4	Class 1B Fill
TP08	2.00	21.84	23	6.3	20	slightly sandy CLAY	86	Requires Treatment
TP10	0.50	16.61	11	12.7	-	slightly gravelly sandy CLAY	30	Class 2 Fill
TP12	1.00	13.09	12	8.8*	12	slightly gravelly sandy CLAY	45	Class 2 Fill
TP12	2.50	11.59	18	4.7	-	CLAY	-	Requires Treatment
TP13	1.00	18.92	12	12	-	slightly gravelly sandy CLAY	39	Class 2 Fill
TP14	2.00	19.56	5.8	14.1	-	slightly clayey sandy GRAVEL	5	Class 1B Fill
TP15	0.50	21.35	12	15.4	-	CLAY	-	Class 2 Fill
TP15	1.50	20.35	16	-	13	slightly gravelly slightly sandy CLAY	47	Presumed Class 2 Fill
TP16	1.00	23.73	6.1	13.4	-	clayey SAND	12	Class 1B Fill
TP16	2.50	22.23	29	3.3	-	CLAY	-	Requires Treatment
TP17	0.50	11.47	13	9*	13	slightly gravelly sandy CLAY	33	Class 2 Fill
TP17	2.00	9.97	9.7	16.2	-	clayey very gravelly SAND	11	Class 1B Fill
TP18	3.00	14.16	17	0.8	-	slightly gravelly sandy CLAY	18	Requires Treatment
TP20	1.50	17.78	13	8	-	slightly gravelly sandy CLAY	32	Class 2 Fill
TP20	3.00	16.28	8.3	8.1*	8	SAND	-	Class 1B Fill
TP22	2.00	18.25	10	17.5	-	slightly clayey very gravelly SAND	3	Class 1B Fill
TP23	1.50	22.03	18	6.8	-	slightly gravelly slightly sandy CLAY	66	Requires Treatment
TP24	0.50	25.63	10	11.7	-	CLAY	-	Class 2 Fill
TP24	1.50	24.63	18	-	15	sandy CLAY	65	Presumed Class 2 Fill
TP25	1.00	26.09	7.2	17.1*	11	SAND	-	Class 1B Fill
							*5	-point MCV Result

5-point MCV Result

5.5. Excavations

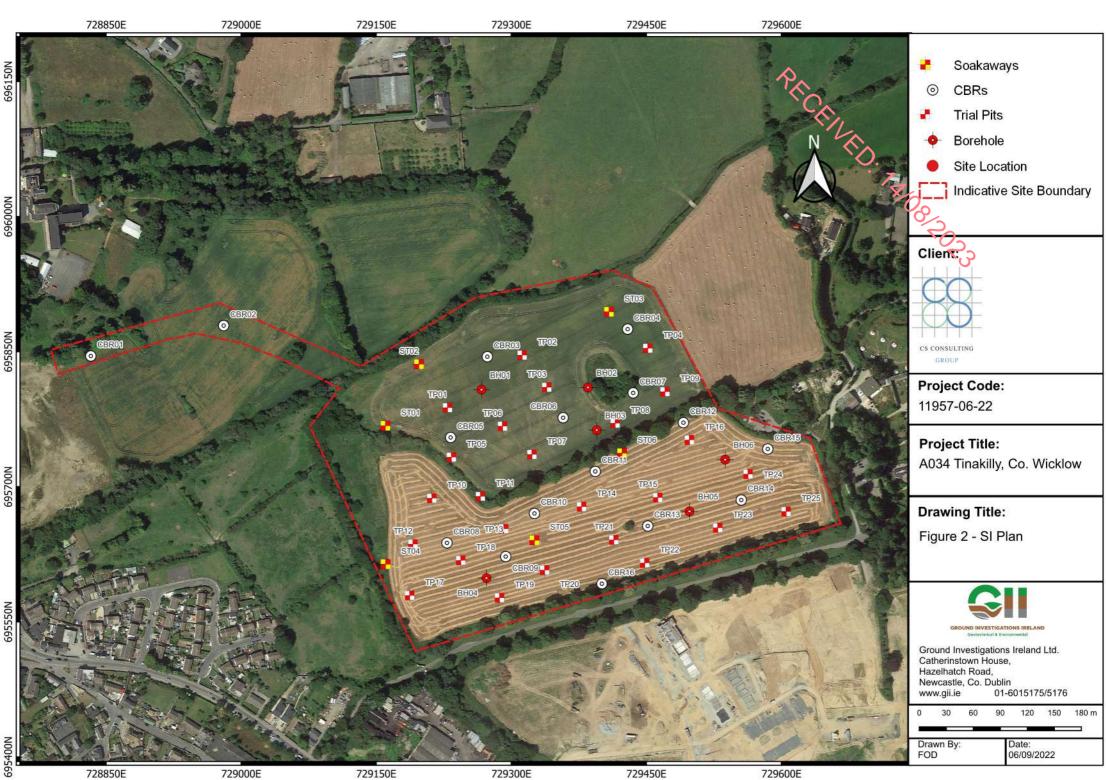
Short term temporary excavations in the cohesive deposits will remain stable for a limited time only and will require to be appropriately battered or the sides supported if the excavation is below 1.25m BGL or is

required to permit man entry. Excavations in the soft Cohesive Deposits will require to be appropriately battered or the sides supported due to the low strength of these deposits. Any excavations which penetrate the granular deposits will require to be appropriately battered or the sides supported and may require dewatering. The groundwater and stability noted on the trial pit logs should be consulted when determining the most appropriate construction methods for excavations.

Any waste material to be removed off site should be disposed of to a suitably licenced landfill. The environmental testing completed during the ground investigation is reported under the cover of a separate GII Waste Classification Report.

5.6. Soakaway Design

Infiltration rates of f = 3.346×10^{-6} m/s, 3.979×10^{-6} m/s, 3.616×10^{-6} m/s, 6.314×10^{-6} m/s were calculated for the soakaway location ST01, ST02, ST03, and ST06, respectively. At the locations of ST04 and ST05 the water level dropped too slowly to allow calculation of 'f' the soil infiltration rate. These locations are therefore not recommended as suitable for soakaway design and construction.


The recommendations provided in this report should be verified in the design of the proposed buildings, using the full details of the loading conditions and taking into consideration the allowable tolerable settlements/movements that the building can accommodate. The founding strata should be inspected and verified by a suitably qualified engineer prior to construction of the building foundations.

APPENDIX 1 - Figures

SI	Grou	nd In	vestiga www.ę		eland	Ltd	Site A034 Tinakilly Co. Wicklov	N	Trial Pit Number TP01		
Machine:JO Method:Tr		Dimensi 4.00m x L x W x	0.80m x 3.50	m	Ground	Level (mOD) 18.10	Client Ardale	A			
			n (dGPS) 9237.5 E 6957	87.2 N	Dates	7/08/2022	Engineer CS Consulting		Sheet 1/1		
Depth (m)	Sample / Tests	Water Depth (m)	Field	Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend		
						 (0.30)	TOPSOIL	20.	3		
					17.80	0.30	Soft orangish brown slight granular lenses. Gravel is coarse	ly gravelly sandy CLAY with subangular to subrounded fine	• to		
.50 .50	B ES					(0.60)					
					17.20	0.90	Loose brown slightly claye SAND with occasional sub pockets. Gravel is subrour	ey very gravelly fine to coarse orounded cobbles and clay nded fine to coarse			
.50	В					- (0.90) 					
					16.30	- - - - - - - -	Soft to firm brown mottled gravelly CLAY. Gravel is so coarse	black slightly sandy slightly ubangular to subrounded fine	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
2.00	В					(0.60)			· · · · · · · · · · · · · · · · · · ·		
					15.70	2.40	Medium dense grey very s fine to coarse predominan brownish grey silt	andy subangular to subround tly fine GRAVEL with pockets	ad second		
.00	В					(1.10)	Possible brownish grey s base of pit	slightly sandy clayey SILT at			
					14.60	3.50	Complete et 2.50m				
							Complete at 3.50m				
Plan .						• •	Remarks	d			
•							No groundwater encountere Trial pit stable Trial pit backfilled upon com				
	· ·	•				· · ·					
							icale (approx)	Logged By F	igure No.		
							1:25		1957-06-22.TF		

lachine : JCB lethod : Trial Depth (m)		LxWx	0.80m x 3.50m		Ground		Client	1
Depth (m) s	Sample / Toets	Location				13.89	Ardale	Job Number 11957-06-2
Depth (m) s	Sample / Tests	729	n (dGPS) 9320.4 E 695845.4		Dates 17/08/2022		Engineer CS Consulting	Sheet 1/1
	Sample / Tests	Water Depth (m)	Field Rec	cords	Level (mOD)	Depth (m) (Thickness)	Description	Legend
	BES				13.64 12.99 11.99	(0.25) 0.25 (0.65) 0.90 (1.00)	TOPSOIL Medium dense brown slightly clayey very gravelly fine to coarse Medium dense brownish grey slightly clayey very sandy subangular to subrounded fine to coarse predominantly fine GRAVEL Dense brownish grey very sandy subangular to subrounded fine to coarse predominantly fine GRAVEL	
					10.39	- 3.50 - 3.50 	Complete at 3.50m	· · · · · ·
Plan .						•	Remarks	<u> </u>
	· ·	·					No groundwater encountered Trial pit unstable; walls collapsing Trial pit backfilled upon completion	
•	· ·	•	· ·			· . s	cale (approx) Logged By Figur	e No.

	Grou	und In		jations v.gii.ie	Ireland	Ltd	Site A034 Tinakilly Co. Wicklow	Trial Pit Numbe TP03
Machine:JO Method:Tr		Dimens 4.00m x L x W x	x 0.80m x 3	3.50m	Ground	I Level (mOD) 17.73	Client Ardale	Job Numbe 11957-06-
			n (dGPS) 9347.7 E 6	95809.9 N	Dates 1	7/08/2022	Engineer CS Consulting	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Fie	eld Records	Level (mOD)	Depth (m) (Thickness	Description	Legend
						(0.30)	TOPSOIL	
					17.43	3 – 0.30 –	Loose brown slightly gravelly clayey fine to coarse SAND. Gravel is subrounded fine to medium	
						(0.60)		
.00 .00	B ES				16.83	3 - 0.90	Soft to firm brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse	
						 (1.10)		
					15.73	3 2.00	Medium dense brownish grey slightly clayey very sandy	
							subangular to subrounded fine to coarse GRAVEL	
50	В					- (0.90) -		
					14.83	3 2.90	Dense brownish grey slightly clayey very sandy subangular to subrounded fine to coarse GRAVEL	
						(0.60)	to subrounded fine to coarse GRAVEL Onto a grey very sandy subangular to subrounded fine to coarse predominantly fine GRAVEL	
					14.23	3 3.50	Complete at 3.50m	
							Complete at 5.50m	
Plan						<u> </u>	Remarks	
							No groundwater encountered Trial pit unstable; walls collapsing Trial pit backfilled upon completion	
					·			
						· · -	Scale (approx) Logged By Figu	e No.

S	Gr	ound In	vestigati www.gi	ons Ire i.ie	land	Ltd	Site A034 Tinakilly Co. Wicklow	Trial Pit Number TP04
lachine : JO lethod : Tr		Dimens 3.80m x L x W x	x 0.80m x 4.00m			Level (mOD) 17.95	Client Ardale	Job Number 11957-06-
			n (dGPS) 9459.9 E 695853	5.2 N	Dates 16	6/08/2022	Engineer CS Consulting	Sheet 1/1
Depth (m)	Sample / Te	sts Water Depth (m)	Field Re	cords	Level (mOD)	Depth (m) (Thickness)	Description	Legend
						(0.30)	TOPSOIL	
					17.65	0.30	Loose light brown clayey gravelly fine to medium SAND with occasional clay pockets. Gravel is subrounded fine to coarse	
50 50	B ES					(0.70)		
						- 		
					16.95	1.00 	Soft to firm brown slightly sandy slightly gravelly CLAY. Gravel is subrounded fine to medium	· · · · · · · · · · · · · · · · · · ·
50	В					(1.20)		
								······································
					15.75	2.20	Loose to medium dense light brown slightly gravelly clayey fine SAND with occasional clay pockets. Gravel is	
						 - - -	fine SAND with occasional clay pockets. Gravel is subrounded fine to medium	
						- - - (1.10)		
						-		, , , , , , , , , , , , , , , , , , ,
					14.65	- 3.30		
						-	Medium dense light brown slightly gravelly clayey fine SAND with occasional clay pockets. Gravel is subrounded fine to medium	
						(0.70)		· · · · · · · · · · · · · · · · · · ·
Plan					13.95		Remarks	8
	·						No groundwater encountered Trial pit stable	
·							Trial pit backfilled upon completion	
·								
·				·		•		
•						· ·		

	Grou	nd Inv	/estigatio www.gii.i		and I	Ltd	Site A034 Tinakilly Co. Wicklow	Trial P Numbo TP0
Machine : JO Method : Tr		Dimensi 3.80m x L x W x	0.80m x 4.00m	G		Level (mOD) 19.46	Client Ardale	Job Numbo 11957-06
		Location 729	ı (dGPS) 241.8 E 695732.3		Dates 16	/08/2022	Engineer CS Consulting	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Reco	ords (Level (mOD)	Depth (m) (Thickness)	Description	Legend
.50 .50	B ES				19.21	(0.25) (0.25) (0.25) (0.25) (0.25) (0.95) (0.95)	TOPSOIL Loose brown gravelly very clayey fine to medium Gravel is subrounded to rounded fine to coarse	
					18.26	- 1.20 - 1.20	Loose brownish grey slightly clayey very sandy su to subrounded fine to coarse GRAVEL with occas subrounded cobbles	ubangular ional
.00	В					(1.50) (1.50)		
					16.76	2.70 	Soft to firm redish brown slightly sandy slightly gra CLAY with occasional subrounded cobbles and g lenses. Gravel is subrounded fine to coarse	avelly ranular
					15.86	- 3.60 - (0.40)	Stiff redish brown slightly sandy slightly gravelly C occasional subrounded cobbles and granular lens Gravel is subrounded fine to coarse	$\begin{array}{c} 6 & \overline{-9} & \overline{-9} \\ -$
Plan .		•			15.46	<u> </u>	Remarks	
							No groundwater encountered Trial pit unstable; walls collapsing Trial pit backfilled upon completion	
•						S	cale (approx) Logged By	Figure No.

			vestigati www.gi	ii.ie			A034 Tinakilly Co. Wicklow		Number TP06
Machine:J Method :⊤		Dimensi 3.80m x L x W x	0.80m x 4.00m			Level (mOD) 21.32		\$ <u></u>	Job Numbe 11957-06-
			n (dGPS) 9298.6 E 695766	6.7 N	Dates 16	6/08/2022	Engineer CS Consulting	PROFILED.	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Re	ecords	Level (mOD)	Depth (m) (Thickness)		escription	Legend
						(0.30)	TOPSOIL	No.	<mark>ට</mark> ු
					21.02	-	Loose brown slightly grave Gravel is subrounded fine	elly very clayey medium SANE to coarse).
					20.62	(0.40)			
					20.62	0.70	Soft to firm redish brown s CLAY. Gravel is subrounde	lightly sandy slightly gravelly ed fine to coarse	
00 00	B ES					(0.70)			
					19.92	1.40	Medium dense brown grav	velly coarse SAND with	
							occasional clay and silt po	ckets	×
						(1.20)			8
00	В								8 ×
									8 ************************************
					18.72	2.60	Firm brown slightly gravell subrounded fine to coarse	y sandy clayey SILT. Gravel is	
00	в								
00						(1.10)			**************************************
						-			**************************************
					17.62	3.70	Very stiff brown slightly gra	avelly sandy clayey SILT. Grav se	/el
					17.32	- (0.30) - 4.00			× × × × × × × × × × × × × × × × × × ×
lan .						• •	Remarks	-	
							No groundwater encountere Trial pit stable Trial pit backfilled upon com	pletion	
					• •	s	cale (approx)	Logged By	Figure No.
							1:25	SG 1	1957-06-22.TI

S	Grou	ind In	vestigati www.gi		land I	_td	Site A034 Tinakilly Co. Wicklow	Trial Pi Numbe TP07
achine : J0 ethod : Ti		Dimensi 3.80m x L x W x	0.80m x 3.50m			Level (mOD) 22.58	Client Ardale	
			n (dGPS) 9331.3 E 695735	5.3 N	Dates 16	/08/2022	Engineer CS Consulting	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Re	cords	Level (mOD)	Depth (m) (Thickness)	Description	Legend
						 (0.30)	торѕош	
					22.28	0.30	Loose to medium dense orangish brown gravelly fine SAND. Gravel is subrounded fine to coarse	
50	В					(0.50)		
					21.78	- 0.80 - 0.80	Medium dense greyish brown very sandy subrounded fine to coarse predominantly fine GRAVEL with some subrounded cobbles	0.0.0
00	ES					- - - - (0.90)		
						(0.90)		
					20.88	 	Medium dense slightly clayey sandy subangular to subrounded fine to coarse predominately fine GRAVEL with	0.0
							subrounded fine to coarse predominately fine GRAVEL with some subrounded cobbles	
						- 		
50	в					 (1.50)		
	D							
						- - 		
					19.38	3.20	Very stiff brown slightly sandy slightly gravelly silty CLAY. Gravel is subrounded fine to medium	×.
50	В				19.08	- (0.30) - 3.50	Complete at 3.50m	X • • • • • • • • • • • • • • • • • • •
						-		
Plan .							Remarks	
							No groundwater encountered Trial pit unstable; walls collapsing Trial pit backfilled upon completion	
							icale (approx) Logged By Figu	ıre No.
						3		57-06-22.TF

	Grou	nd Inv	estigatio www.gii	ons Irela .ie	and I	_td	Site A034 Tinakilly Co. Wicklow	
lachine : JC lethod : Tri		Dimensio 3.80m x 0 L x W x D	0.80m x 4.00m	G		Level (mOD) 23.84	Client Ardale	Job Numbe 11957-06-
		Location 7294	(dGPS) 123.6 E 695769.)ates 16/	/08/2022	Engineer CS Consulting	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Red	cords (Level (mOD)	Depth (m) (Thickness)	Description	Legend
50 50	B ES				23.49 22.89	(0.35) (0.35) (0.60) (0.60) (0.95)	TOPSOIL Loose light brown slightly clayey gravelly medium SAND with occasional clay pockets. Gravel is subrounded fine to coarse	
00	В							
					20.64		Stiff to very stiff brown slightly sandy slightly gravelly silty CLAY. Gravel is subrounded fine to coarse	
lan .		· ·			19.84	<u> </u>	lemarks	×.•.*
							No groundwater encountered Trial pit stable Trial pit backfilled upon completion	
·								
	· ·		· ·	· ·	•			
							cale (approx) Logged By Fig	ure No.

Method : Trial Pit L x W x D 23.15 Ardale 11957-0 Location (dGPS) Dates 16/08/2022 Engineer Sheet 1/1 Denth Water Level Denth Denth CS Consulting 1/1			1	WWW.(tions Ir gii.ie	reland		A034 Tinakilly Co. Wicklow	Numbe
Decision 10022022 CS Consulting 11/1 Decision Sample / Tests Votest (m) Field Records Introduction Description Legence 00 B Image: Sample / Tests Votest (m) Image: Sample / Tests Votest (m) Image: Sample / Tests Votest (m) Image: Sample / Tests Image: Sample / Tests			3.80m x (0.80m x 4.00	m			•	Job Numbe 11957-06-
.00 B .00 .0					05 N	Dates 16	/08/2022	CS Consulting	Sheet 1/1
.00 B .00 .0	Depth (m)	Sample / Tests	Water Depth (m)	Field	Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
	.50	в		· ·		21.35	(0.35) (0.35) (0.35) (1.45) (1.45) (1.45) (2.00) (2.00) (0.20) (0.20) (0.20) (0.20) (1.45)	TOPSOIL Soft to firm brown slightly sandy slightly gravelly CLAY Gravel is subrounded fine to coarse Loose brown slightly gravelly clayey fine SAND with cl pockets. Gravel is subrounded fine to medium Interbedded with soft to firm brown slightly gravelly sandy Clay Firm brown silty sandy CLAY Remarks No groundwater encountered	
			·				•		
		· ·	·	· ·					
Scale (approx) Logged By Figure No.									

S	Grou	nd In\	estiga/ www.	itions Ir gii.ie	reland	Ltd	Site A034 Tinakilly Co. Wicklow	Trial Pi Numbe
lachine : J0 lethod : Ti		Dimension 4.20m x L x W x	0.70m x 4.00)m		Level (mOD) 17.11	Client Ardale	Job Numbe 11957-06
		Location 729	(dGPS) 220.1 E 695	686.7 N	Dates	5/08/2022	Engineer CS Consulting	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field	Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
						(0.30)	TOPSOIL	
					16.81	0.30	Soft brown slightly gravelly sandy CLAY. Gravel is subangular to subrounded fine to coarse	· · · · · · · · · · · · · · · · · · ·
50 50	B ES					(0.60)		······································
					16.21	0.90	Soft brown slightly sandy slightly gravelly CLAY. Gravel is subrounded fine to coarse	· · · · · · · · · · · · · · · · · · ·
						 	subrounded fine to coarse	
						- - -		· · · · · · · · · · · · · · · · · · ·
50	В							
						- - -		
						(2.30)		
						- - - -		
								······································
					13.91	- - - 3.20		
						 (0.40)	Stiff brown slightly silty slightly sandy slightly gravelly CLAY with many granular lenses. Gravel is subrounded fine to coarse	× · · · · · · · · · · · · · · · · · · ·
					13.51	3.60	Very stiff brown slightly silty slightly sandy slightly gravelly CLAY with many granular lenses. Gravel is subrounded fin	e
					13.11	(0.40) - - 4.00	to coarse	× · · · · · · · · · · · · · · · · · · ·
Plan .		•					Remarks	
							No groundwater encountered Trial pit stable Pit backfilled upon completion	
		·			·			
						<mark>.</mark>	cale (approx) Logged By Fig	ure No.
								57-06-22.TF

SI	Gro	und In	vestiga www.g		reland	Ltd	Site A034 Tinakilly Co. Wicklow	Trial Pit Number TP11
Machine : JC Method : Tri		Dimensi 3.80m x L x W x	0.80m x 3.50)m		Level (mOD) 20.41	Client Ardale	Job Numbe 11957-06-
			n (dGPS) 9274 E 69568	8.8 N	Dates 16	/08/2022	Engineer CS Consulting	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field	Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
1.50 1.50	B ES				20.11	(0.30) 0.30 (0.30) (0.80) (0.80)	TOPSOIL Loose to medium dense brown very gravelly fine to coars SAND. Gravel is subrounded fine to coarse	ie
					19.31 19.01	- 1.10 - (0.30) - 1.40	Loose to medium dense brown clayey very gravelly fine coarse SAND with many clay pockets. Gravel is subange to subrounded fine to coarse Soft to firm brown slightly sandy slightly gravelly CLAY w occasional granular lenses. Gravel is subrounded fine to	
2.00	В				17.31	(1.70)	coarse	
					16.91	(0.40) 	Medium dense grey very sandy subangular to subrounde fine to coarse GRAVEL Complete at 3.50m	
Plan .		•				•	temarks No groundwater encountered	
							Trial pit stable Trial pit backfilled upon completion	
						• •		
		·		·				
		•					cale (approx) Logged By F	igure No.

SI	Grou	Ind In		ations v.gii.ie	Ireland	Ltd	Site A034 Tinakilly Co. Wicklow	Trial Pit Number TP12
Machine:JC Method:Tr		Dimensi 4.20m x L x W x	(0.70m x 4	.00m	Ground	i Level (mOD) 14.09	Client Ardale	Job Number 11957-06-2
			n (dGPS) 9199.1 E 69	95635.7 N	Dates 1	5/08/2022	Engineer CS Consulting	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Fie	ld Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
						(0.30)	TOPSOIL	
					13.79	9 0.30	Loose brown clayey gravelly fine to coarse SAND. Gravel is subangular to subrounded fine to coarse	
						(0.50)		
					13.29	9 - 0.80 	Soft to firm brown slightly gravelly sandy CLAY with many granular lenses. Gravel is subrounded fine to coarse	
.00 .00	B ES					 (0.80)		
								······································
					12.49	9 1.60	Soft to firm brown slightly sandy slightly gravelly CLAY with occasional subrounded cobbles. Gravel is subrounded to rounded fine to coarse	
						(0.70)		
					11.79	2.30	Stiff brown slightly sandy slightly gravelly CLAY with	8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
.50	В					(0.60)	Stiff brown slightly sandy slightly gravelly CLAY with occasional subrounded cobbles. Gravel is subrounded to rounded fine to coarse	
					11.19	9 – 2.90 –	Very stiff brown slightly sandy slightly gravelly CLAY with occasional subrounded cobbles. Gravel is subrounded to rounded fine to coarse	
						(1.10)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
						 - - -		
Plan .					10.09		Remarks	<u>6 ° 7 0 ·</u>
							No groundwater encountered Trial pit good Pit backfilled upon completion	
							Scale (approx) Logged By Figure	e No.
							1:25 SG 11957-	~~ ~~ ~

S	Gro	ound In		ations ⁄.gii.ie	Ireland	Ltd	Site A034 Tinakilly Co. Wicklow	Trial Pit Number TP13
Machine : J0 Method : Tr		Dimens 4.20m x L x W x	x 0.70m x 4	00m	Ground	I Level (mOD) 19.92	Client Ardale	Job Number 11957-06-2
			n (dGPS) 9299.9 E 69	5652.7 N	Dates 1	5/08/2022	Engineer CS Consulting	Sheet 1/1
Depth (m)	Sample / Tes	sts Water Depth (m)	Fie	ld Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
						(0.30)	TOPSOIL	
					19.62	2 0.30	Loose brown clayey gravelly fine to medium SAND. Gravel is subrounded fine to coarse	
						(0.60)		
					19.02	2 0.90	Soft brown slightly gravelly sandy CLAY with granular lenses. Gravel is subrounded fine to coarse	
00 00	B ES					- 	ienses. Gravel is subrounded line to coarse	

						(1.40)		······································
	_					 - - -		
00	В				47.00			· · · · · · · · · · · · · · · · · · ·
					17.62	2 - 2.30 	Soft to firm brown slightly slity slightly gravelly sandy CLAY with occasional boulders and granular lenses. Gravel is subrounded fine to coarse	× <u>0</u> • × × • • • • •
						(0.90)		0 ***0 ***0 ****0
						- - -		× <u>÷÷</u> O: × <u>÷</u> O: × ÷•O
					16.72	2 3.20	Firm brown slightly sandy slightly gravelly CLAY. Gravel is subrounded fine to coarse	· · · · · · · · · · · · · · · · · · ·
						 (0.80)		· · · · · · · · · · · · · · · · · · ·
.00	В				15.92	2 4.00		
lan .							Remarks	
							No groundwater encountered Trial pit good Pit backfilled upon completion	
		. <u>.</u>					Scale (approx) Logged By Figu	ire No.
•								Ire NO.

	Grou	und In		ations I .gii.ie	reland	Ltd	Site A034 Tinakilly Co. Wicklow	Trial Pit Number TP14
Machine : JC Method : Tria		Dimens 4.20m x L x W x	x 0.70m x 3.8	30m		Level (mOD) 21.56	Client Ardale	Job Number 11957-06-2
			n (dGPS) 9386.4 E 695	5677.3 N	Dates 15	5/08/2022	Engineer CS Consulting	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field	d Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
0.50	B ES				21.26	(0.30) 0.30 (0.50)	TOPSOIL Loose to medium dense light brown slightly clayey gravelly fine to coarse SAND. Gravel is subangular to subrounded fine to coarse	
0.50	ES				20.76	0.80 (0.60)	Medium denase dark brown and grey clayey very gravelly coarse SAND with occasional subrounded cobbles and clay bands. Gravel is subrounded to rounded fine to coarse	
					20.16	- - - - - - - -	Dense dark brown and grey slightly clayey very sandy subrounded to rounded fine to coarse GRAVEL with occasional subrounded cobbles and clay bands	
2.00	В				19.16	(1.00) (1	Dense arey slightly clayey very sandy subrounded fine to	
						(1.60)	Dense grey slightly clayey very sandy subrounded fine to coarse GRAVEL with occasional subrounded cobbles, boulders and clay pockets	
					17.56			
Plan .			•		• •	•••	Remarks No groundwater encountered Trial pit unstable; walls collapsing Pit backfilled upon completion	
							Pit backfilled upon completion	
		·	·		· ·			
•		•		 				
	• •	•						

Method : Irial Pit L x W x D 21.85 Ardale 11957- Location (dGPS) Dates Engineer Sheet 11 729471 E 695687.4 N Level Denth CS Consulting 1	SI	4	nd Inv	estigatio www.gii.i	Site A034 Tinakilly Co. Wicklow	Trial Pit Numbe TP15		
Depth Sample / Test Bidden 7 A N ISO002022 CS Consuling Image: Constraint of the con			4.20m x (0.70m x 4.00m	Ground			Job Numbe 11957-06-
50 8.5					1	5/08/2022		Sheet 1/1
50 8 9 1 10280L 10280L <th>Depth (m)</th> <th>Sample / Tests</th> <th>Water Depth (m)</th> <th>Field Reco</th> <th>ords Level (mOD)</th> <th>Depth (m) (Thickness)</th> <th>Description</th> <th>Legend</th>	Depth (m)	Sample / Tests	Water Depth (m)	Field Reco	ords Level (mOD)	Depth (m) (Thickness)	Description	Legend
	.50				21.4 21.1 20.8	. (0.20) . (0.30) . (0.3	TOPSOIL Loose brown gravelly fine to coarse SAND. Gravel is subrounded fine to coarse Loose orangish brown clayey fine to medium SAND Loose brown slightly clayey fine to medium SAND Soft brown slightly sandy slightly gravelly CLAY. Gravel is subrounded to rounded fine to coarse with rare granular lenses Remarks No groundwater encountered	
could (upplox) Logged by Tigure No.	•					1		

S	Grou	nd Inv	estigat www.g	ions Ir jii.ie	A034 Tinakilly Co. Wicklow	Numbe		
Machine : JCB 3CX Method : Trial Pit		Dimensions 4.20m x 0.70m x 4.00m L x W x D				Level (mOD) 24.73	Client Ardale	Job Numbe 11957-06
		Location 7295	(dGPS) 506.2 E 6957	51.4 N	Dates 15/08/2022		Engineer CS Consulting	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field F	Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
						(0.30)	TOPSOIL	კ
					24.43		Soft to firm brown slightly sandy slightly gravelly CLAY. Gravel is subrounded fine to medium	
						(0.40)		· · · · · · · · · · · · · · · · · · ·
					24.03	8 – 0.70 –	Loose to medium dense light brown clayey fine SAND	
00 00	B ES					- - -		
00	20					 (1.10)		
						-		
					22.93	3 - 1.80	Soft to firm laminated brown slightly sandy silty CLAY	××
								× ×
						-		× ×
						-		× × ×
50	В					(1.40)		× ×
						- -		× × ×
								××
					04.55	-		××
					21.53	3.20 	Firm laminated brown slightly sandy silty CLAY	××
						-		× × ×
						(0.80)		××
						- -		× ×
lan					20.73		Remarks	×
·		•			·	•••	No groundwater encountered Trial pit stable Pit backfilled upon completion	
							Pit backfilled upon completion	
•	• •	·	• •	•	·	· · ·	Scale (approx) Logged By I	igure No.

S	Grou	nd Inv	estigat/ www.ç	tions Ir gii.ie	Site A034 Tinakilly Co. Wicklow	Trial Pit Numbe TP17		
Machine : JCB 3CX Method :Trial Pit		Dimensions 3.80m x 0.80m x 3.50m L x W x D			Ground Level (mOD) 11.97		Client Ardale	Job Numbe 11957-06-
		Location 729	ı (dGPS) 195.4 E 6955	78.6 N	Dates 16	/08/2022	Engineer CS Consulting	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field I	Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
						(0.30)	TOPSOIL	
					11.67	0.30	Soft light brown slightly gravelly sandy CLAY with granular lenses. Gravel is subrounded fine to medium	
50 50	B ES					- - -		······································
						 - - -		
						(1.40)		······································
						- 		······································
						- - -		
					10.27	1.70	Loose brown clayey very gravelly fine to coarse SAND with occasional rounded cobbles. Gravel is subangular to	<u>יייייייייייייייייייייייייייייייייייי</u>
							occasional rounded cobbles. Gravel is subangular to subrounded fine to coarse	0.00 0.00 0.00 0.00
00	В					 		0 <u>00</u>
						(1.30)		0 0 0 0
						 - 		<u>, 0</u>
						- - - -		
					8.97	3.00	Medium dense brown slightly clayey very sandy subangula to subrounded fine to coarse GRAVEL with occasional	0.000 0.000 11 2.000
						(0.50)	rounded cobbles	0
					8.47	- 3.50		0 0 0
						- -	Complete at 3.50m	
						 - 		
'lan .	· ·					•	Remarks	
							No groundwater encountered Trial pit unstable; walls collapsing Trial pit backfilled upon completion	
			· ·	·	• •		cale (approx) Logged By Fig	ure No.
							1:25 SG 119	57-06-22.TI

	Gro	und In		ations v.gii.ie	Ireland	Ltd	Site A034 Tinakilly Co. Wicklov	Trial Pit Number TP18	
Machine: JO Method : Tr		Dimens 4.20m x L x W x	x 0.70m x 4	.00m	Ground	d Level (mOD) 17.16	Client Ardale		Job Number 11957-06-2
			n (dGPS) 9252.3 E 69	95617.7 N	Dates 1	5/08/2022	Engineer CS Consulting	CENES .	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Fie	ld Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
					16.7	(0.40) 6 0.40	TOPSOIL	TO	રુ
0.50 0.50	B ES				10.7	(0.50)	Very loose brown very sar fine to coarse predominan	dy subangular to subrounded tly fine GRAVEL	
					16.2	6 — 0.90 —	Very loose dark brown slig coarse predominantly coar to subrounded fine to coar	htly clayey very gravelly fine rse SAND. Gravel is subangu se	to lar
						- - - - - - - - - - -			
					15.1	6 2.00 	Very soft brown slightly silt Gravel is subrounded fine	ty slightly gravelly sandy CLA to coarse	X = 1 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0
.00	В				13.9	6 3.20 - 3.20 - (0.50)	Firm to stiff brown slightly gravelly CLAY. Gravel is su	silty slightly sandy slightly ubrounded fine to coarse	
					13.4	(0.30)	Very stiff brown slightly silt CLAY. Gravel is subrounde	y slightly sandy slightly grave ed fine to coarse	Ily × · · · · · · · · · · · · · · · · · ·
Plan .		•	•	· ·	·	• •	Remarks No groundwater encountere	d	
		•					Trial pit stable Pit backfilled upon completio		
•		•		· ·	•	· · ·			
						· · ·	Scale (approx)	Logged By	Figure No.

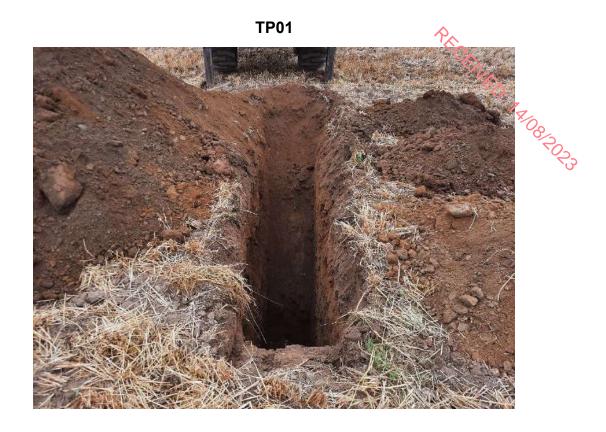
	Grou	nd Inv	estiga/ www.ږ	tions Ir gii.ie	eland	Ltd	Site A034 Tinakilly Co. Wicklow	Trial Pit Numbe
Machine : J0 Method : Tr		Dimensio 3.80m x L x W x I	0.80m x 4.00	m		Level (mOD) 16.99	Client Ardale	Job Numbe 11957-06-
		Location 7292	ı (dGPS) 295.3 E 6955	76.1 N	Dates 16	6/08/2022	Engineer CS Consulting	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field	Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
						(0.30)	TOPSOIL	€ €
					16.69	0.30	Loose brown slightly clayey gravelly fine to coarse SAN Gravel is subrounded fine to coarse	D.
00	B ES					- (1.10)		
					15.59	- - - - - 1.40	Soft to firm brown clightly gravely candy CLAV Gravel i	
						(0.40)	Soft to firm brown slightly gravelly sandy CLAY. Gravel i subrounded fine to coarse	· · · · · · · · · · · · · · · · · · ·
00	В				15.19	- 1.80 	Soft to firm brown slightly sandy slightly gravelly CLAY v granular lenses. Gravel is subrounded fine to coarse	/ith
						(1.40)		
					13.79	3.20 (0.30)	Medium dense brown gravelly very clayey fine to coarse SAND. Gravel is subrounded fine to coarse	
					13.49	3.50	Complete at 4.00m	<u>- 198 544 565</u>
Plan .	· ·				-	•••	Remarks	
·					-		No groundwater encountered Trial pit stable Trial pit backfilled upon completion	
			· ·					
•	· ·	•	· ·	•				
						S		Figure No. 1957-06-22.TF

	Grou	nd Inv	estigatio www.gii		land	Ltd	Site A034 Tinakilly Co. Wicklow		
lachine : JC lethod : Tr		Dimensio 3.80m x 0 L x W x 0	0.80m x 4.00m			Level (mOD) 19.28	Client Ardale		
		Location (dGPS) 729345.3 E 695606.9 N			Dates 16	/08/2022	Engineer CS Consulting	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Re	cords	Level (mOD)	Depth (m) (Thickness)	Description	Legend	
						- (0.30)	TOPSOIL	2	
					18.98	0.30	Loose brown clayey very gravelly fine to coarse SAND. Gravel is subrounded fine to coarse		
50 50	B ES					(0.60)			
					18.38	0.90	Soft to firm brown slightly gravelly sandy CLAY. Gravel is subrounded fine to coarse		
50	В					(1.00)			
					17.38	- - - -	Loose brownish grey clayey sandy subrounded fine to coarse GRAVEL		
					16.68	(0.70)	Medium dense to dense brownish grey clayey very sandy		
00	В					 (0.70)	subrounded fine to coarse GRAVEL		
					15.98	3.30	Dense light brown gravelly fine to medium SAND. Gravel subrounded to rounded fine to coarse	is	
						(0.70)			
lan .					<u>15.28</u>		Remarks	<u></u>	
							No groundwater encountered Pit stability poor; walls collapsing Trial pit backfilled upon completion		
	· ·								
						•			
•	· ·	•	· ·	·			cale (approx) Logged By Fi	gure No.	

S	Grou	nd Inv	estiga/ www.	ations Iı .gii.ie	reland	Ltd	Site A034 Tinakilly Co. Wicklov	N	Trial Pir Numbe TP21
achine : J ethod :T		Dimension 4.20m x L x W x	0.70m x 3.8	0m		Level (mOD) 20.72	Client Ardale		Job Numbe 11957-06-
		Location 729	ı (dGPS) 422.2 E 695	640.4 N	Dates	5/08/2022	Engineer CS Consulting		
Depth (m)	Sample / Tests	Water Depth (m)	Field	I Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
						- (0.30)	TOPSOIL	No N	2
					20.42	-	Firm to stiff brown slightly subrounded fine to coarse	gravelly sandy CLAY. Gravel is	
50 50	BES					-			· · · · · · · · · · · · · · · · · · ·
						(0.70)			······································
					19.72	2 1.00	Medium dense brown slig	htly clayey fine to medium SAN	
						 - -	with occasional clay pocke	ets	
						-			
						 (1.50)			
30	В								
						- - -			
					18.22	2 <u>2.50</u>	Dense brown slightly claye occasional clay pockets	ey fine to medium SAND with	
						(0.90) 			
					17.32	2 3.40			<u></u>
					11.52	 	Dense brown clayey medi	um SAND	
						(0.60)			
00	В				16.72				
lan .						• •	Remarks	ed	
							No groundwater encountere Trial pit stable Pit backfilled upon completio	on	
			· ·						
								Longod Press	
						8	scale (approx) 1:25		gure No. 957-06-22.TI

SI	Gro	und In	vestiga www.g	tions Ir _{gii.ie}	eland	Ltd	Site A034 Tinakilly Co. Wicklow	Trial Pit Number TP22
Machine:JC Method:Tr		Dimens 4.20m x L x W x	x 0.70m x 4.00	lm		Level (mOD) 20.25	Client Ardale	Job Number 11957-06-2
			n (dGPS) 9456.5 E 6956	614.8 N	Dates 15	5/08/2022	Engineer CS Consulting	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field	Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
						(0.30)	TOPSOIL	کۍ
					19.95	- 0.30 	Loose to medium dense brown clayey fine to medium	SAND
					19.45	- 0.80	Soft to firm brown slightly gravelly sandy CLAY. Gravel subrounded fine to coarse	is
.00 .00	B ES					(0.70)		
					18.75	- 1.50 	Loose to medium denses brown slightly clayey very gravelly coarse SAND with occasional clay pockets	
00	В					- (1.50)		
					17.25	- 	Firm to stiff light brown silty sandy CLAY	
					16.85	(0.40) - 3.40	Medium dense light brown slightly gravelly medium SA Gravel is subrounded fine to medium	ND.
						(0.60)		
Plan .					16.25	<u> </u>	Remarks	
							No groundwater encountered Trial pit stable Pit backfilled upon completion	
					-			
•	• •	•	· ·	•				
		•		•			cale (approx) Logged By	Figure No.
						5	Logged By	Figure NO.

S	Grou	nd In		gatio /w.gii		eland	Ltd	Site A034 Tinakilly Co. Wicklow		
achine:JC ethod:Tr		Dimens 4.20m L x W x	x 0.70m x	(4.00m			Level (mOD) 23.53	Client Ardale	Job Numb 11957-0	
		Location (dGPS) 729537.6 E 695653.8 N			8 N	Dates 15	5/08/2022	Engineer CS Consulting	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	F	ield Red	cords	Level (mOD)	Depth (m) (Thickness	s) Description		
						23.43	- (0.10)	TOPSOIL		
						20.10	-	Soft to firm brown slightly sandy CLAY	· · · · · · · · · · · · · · · · · · ·	
							(0.45)			
50	В					22.98	- 0.55		···	
0 0	B ES							Soft brown slightly sandy slightly gravelly CLAY with granular lenses. Gravel is subangular to subrounded fine to coarse	••••••••••••••••••••••••••••••••••••••	
							-		<u>.</u>	
							-		····	
							-		• • • • • • • • •	
							(1.35)		·····	
							-		······	
D	В						-		• <u>•</u> ••	
	D						E_ F		·····	
							-		<u></u> .	
						21.63	1.90	Soft to firm brownish grey slightly silty slightly sandy CLAY interbedded with many Sand bands	×	
							 	interbedded with many Sand bands	× ×	
									× <u> </u>	
							- (0.70) -		×	
							-		× ×	
						20.93	2.60	Stiff brownish grey slightly silty slightly sandy CLAY	* ×	
							- (0.30)	Stiff brownish grey slightly slity slightly sandy CLAY interbedded with many Sand bands	× ×	
			Seepage	e(1) at 2	80m.	20.63	2.90	Very stiff brownich arey slightly sitty slightly sandy CLAV	× <u> </u>	
								Very stiff brownish grey slightly silty slightly sandy CLAY interbedded with many Sand bands	× ×	
							-		×	
							-		×	
							- (1.10)		× × · · ·	
							-		× <u> </u>	
							- -		× · · · · ·	
							-		× ×	
						19.53	4.00		×	
an .		•	•	·	•	• •		Remarks		
								Groundwater encountered at 2.80m BGL; seepage Trial pit stable		
·		•	•	·			•••	Pit backfilled upon completion		
				•						
		•	•	·	•	• •		Scale (approx) Logged By Figure	e No.	


S	Gro	ound In	vestig: www	ations I .gii.ie	reland	Ltd	Site A034 Tinakilly Co. Wicklov	Trial Pit Number TP24	
Machine: JO Method: Tr		Dimens 4.20m x L x W x	x 0.70m x 4.	00m		Level (mOD) 26.13	Client Ardale		Job Number 11957-06-2
			n (dGPS) 9571.3 E 69	5713.4 N	Dates	5/08/2022	Engineer CS Consulting	ERIVED STREET	Sheet 1/1
Depth (m)	Sample / Tes	ts Water Depth (m)	Fiel	d Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
.50 .50	B ES				25.73	(0.40) 0.40 0.40 0.30)	TOPSOIL Soft orangish brown slight subrounded fine to coarse	ly gravelly sandy CLAY. Gravel	
					25.43	(0.40)	Loose brown slightly claye	y fine to medium SAND	
1.50	В				25.03		Soft to firm brown sandy C	CLAY	
					23.63	(0.30)		rownish grey clayey fine to clay pockets rey clayey fine to medium SAN	
ł.00	в				22.63	- - - (0.50)	Dense brownish grey clay many clay pockets	ey fine to medium SAND with	
Plan .					. 22.13		Remarks		
•							No groundwater encountere Trial pit stable Pit backfilled upon completio		
•	· ·	•	•	· ·	•	· · ·			
· •						.	cale (approx)	Logged By Fi	gure No.

Method : Trial Pit 4.20m x 0.70m x 4.00m L x W x D 27.09 Ardale Nut 1195 Location (dGPS) 729613.6 E 695671.9 N Dates 15/08/2022 Engineer CS Consulting She				www.gii.	ons Ireland ie			A034 Tinakilly Co. Wicklow		
PBR/h Sample / Tests Weight (M) Pield Records (MOV) Press (B) (B) (B) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C			4.20m x (0.70m x 4.00m	Grou		(mOD)	Client Ardale		Job Numbe 11957-06
Depth Sample / Tests Weight (b) Pield Records (AVO) Creations (b) Description Lag Lag 0.0 8 -						s 15/08/202	22	Engineer CS Consulting		
00 B 23.99 1.90 Medium dense greyde hrown slipply slipply yn elly file to course SAND. Grewel is subrounded file to modum 00 B 25.59 1.50 00 B 25.59 1.50 00 B 23.99 1.90 00 B 23.99 3.10 00 B 23.99 3.10 00 B 23.99 3.10 00 B 23.99 4.00 00 B 23.99 3.10 00 B 23.99 3.10 00 B 0.90 9.90 00.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90 <th>Depth (m)</th> <th>Sample / Tests</th> <th>Water Depth (m)</th> <th>Field Rec</th> <th>ords (mO</th> <th>el De D) (r (Thick</th> <th>pth n) (ness)</th> <th></th> <th>escription</th> <th>Legend</th>	Depth (m)	Sample / Tests	Water Depth (m)	Field Rec	ords (mO	el De D) (r (Thick	pth n) (ness)		escription	Legend
00 B Image: standard st						-	(0.30)	TOPSOIL	RO	y y
00 B 23.99 1.50 00 B 1.50 Medium danase brown clayery fine SAND with some clay pockets 00 B 1.50 0.400 00 B 1.50 0.500 1.50 1.50 0.500 1.50 1.50 0.500 1.50 1.50 0.500 1.50 1.500 0.500 1.50 1.500 0.500 1.50 1.500 0.500 1.50 1.500 0.500 1.50 1.500 0.500 1.500 1.500 0.500 <t< td=""><td></td><td></td><td></td><td></td><td>26</td><td>.79</td><td>0.30</td><td>Medium dense greyish bro fine to coarse SAND. Grav</td><td>own slightly silty slightly gravell rel is subrounded fine to mediu</td><td>/ m</td></t<>					26	.79	0.30	Medium dense greyish bro fine to coarse SAND. Grav	own slightly silty slightly gravell rel is subrounded fine to mediu	/ m
00 B 1.50 00 B 00 B 00 B 00 B 00 B 00 C 00 C	00	B				- - - - - - - -	(1.20)			
00 B B Image: Constraint of the second carbon	00	ES			25	.59	1.50	- M. P. 1		
00 B 1							(0.40)	pockets	ey fine SAND with some clay	
00 B 23.99 3.10 00 B 23.99 4.00 100 B 23.99 4.00 101 C C C 102 B C C C 103 B C C C 104 C C C C 105 C C C C 104 C C C C 105 C C C C 104 C C C C 105 C C <	00	В			25	.19	1.90	Dense brown clayey fine S	SAND with some clay pockets	
00 B 23.99 3.10 Dense brownish grey slightly clayey medium SAND 00 B 23.09 4.00 Ian 							(1.20)			
D0 B 23.09 4.0 Ian )0	В			23	.99	3.10	Dense brownish grey sligh	ntly clayey medium SAND	
Ian No groundwater encountered Trial pit stable Pit backfilled upon completion .<							(0.90)			
No groundwater encountered No groundwater encountered Trial pit stable Pit backfilled upon completion	00	В			23	.09	4.00			
	lan .				· ·		•		d	
							-	Trial pit stable Pit backfilled upon completic	on	
Scale (approx) Logged By Figure No.							•			
	•	• •	•	• •	· ·	•	s	cale (approx)	Logged By F	gure No.

TP01

TP01

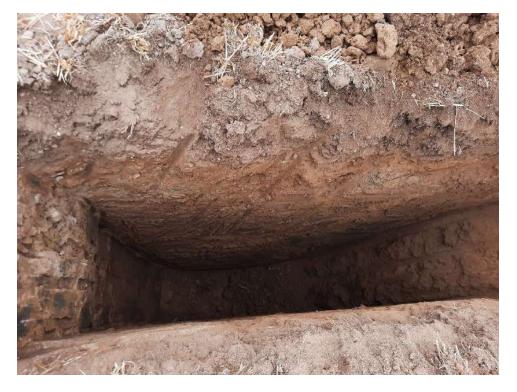
TP02

TP02

TP02

TP03

TP03



TP04

TP04

TP05

TP05

TP06

TP06

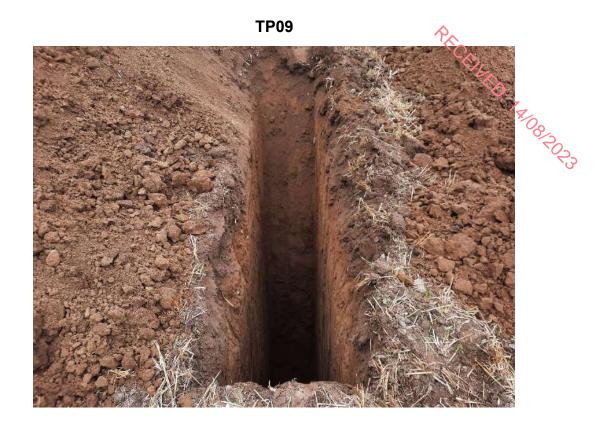
TP06

TP07

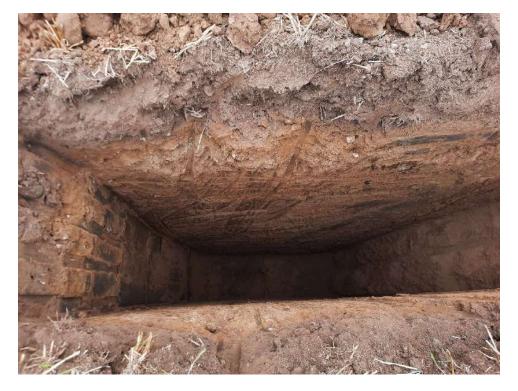
TP07

TP08

TP08



TP08



TP09

TP09

TP10

TP10

TP11

TP11

TP12

TP12

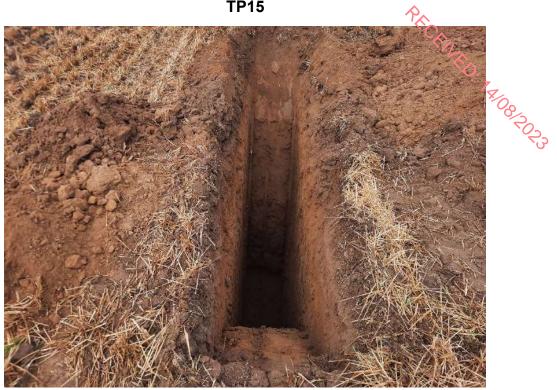


TP13

TP13

TP13

TP14


TP14

TP15

TP15

TP16

TP16

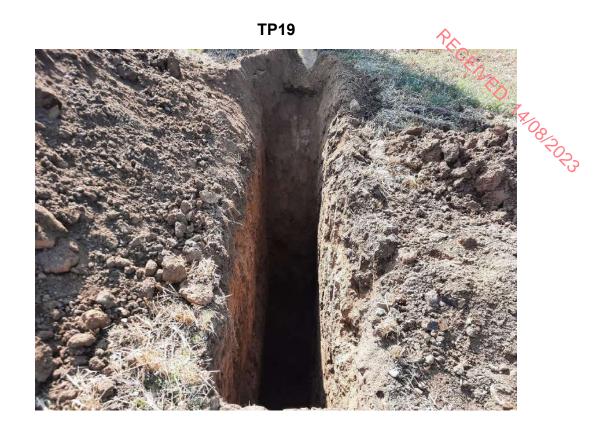


TP17


TP17

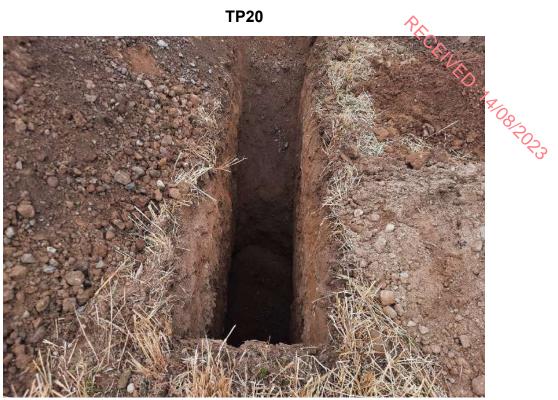
TP18

TP18



TP18

TP19

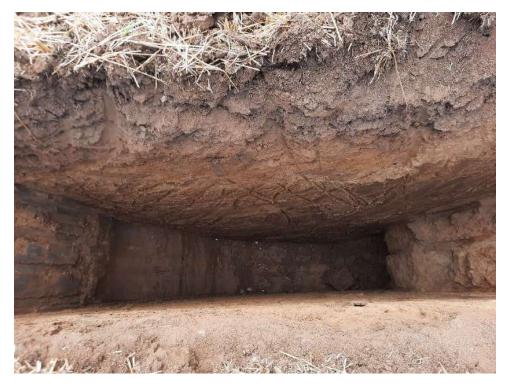


TP19

TP21

TP21

TP22


TP23

TP23

TP23

TP24


TP24

TP25

TP25

APPENDIX 3 – Soakaway Testing Records

		und Investigations Ireland I td			Site A034 Tinakilly Co. Wicklov	V	Trial Pi Numbe ST0 ⁴		
lachine : JO lethod : Tr		Dimensior 1.80m x 0 L x W x D	.50m x 1.90m	Ground	Level (mOD)	Client Ardale		Job Numbe 11957-06	
		Location ((dGPS)	Dates 19	9/08/2022	Engineer CS Consulting	CENTER DE	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend	
					(0.20) (0.40) (0.40) (0.40) (1.20) (1.20) (1.20) (1.20) (1.90) (1.90)	Cobbles Soft to firm brown slightly g occasional cobbles	to coarse SAND with occasiona		
lan _						Remarks			
an .	· ·	·	· · · ·	- · ·	•••	Remarks No groundwater encountere Trial pit stable Trial pit backfilled upon com	d pletion		
an .	· ·	·	· · · ·	- · ·	•••	No groundwater encountere	d pletion		
an _	· ·	· ·	· · · ·		•••	No groundwater encountere	d pletion		
lan _		· · ·	· · · ·			No groundwater encountere	pletion		

	Grou	www.gii.ie			A034 Tinakilly Co. Wicklow	Trial Pi Numbe ST02		
lachine : JC lethod : Tri		Dimension 1.80m x 0 L x W x D	.50m x 1.70m	Ground	l Level (mOD)	Ardale	Job Numbe 11957-06-	
		Location ((dGPS)	Dates	9/08/2022	Engineer CS Consulting	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)		Legend	
					(0.30)	TOPSOIL		
					- - - -	Firm brown slightly sandy slightly gravelly CLAY with gravel lenses and occasional cobbles	· · · · · · · · · · · · · · · · · · ·	
					(0.60)			
					 0.90	Firm brown slightly sandy slightly gravelly CLAY with occasional cobbles		
					(0.50)			
					1.40	Brownish grey clayey sandy subangular to subrounded fine GRAVEL	<u>6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</u>	
					- (0.30) - 1.70	Complete at 1.70m	· · · · ·	
					- - - -			
an .		·		•	•••	Remarks No groundwater encountered Trial pit stable		
•						Trial pit stable Trial pit backfilled upon completion		
		·						
•					· ·			
				•				
		·						

		estigations l www.gii.ie			Site A034 Tinakilly Co. Wicklow		
achine : JCB 3CX ethod : Trial Pit	Dimension 1.60m x 0 L x W x D	.50m x 1.65m	Ground	Level (mOD)	Ardale	Job Numb 11957-06	
	Location ((dGPS)	Dates 17	7/08/2022	Engineer CS Consulting	Sheet 1/1	
Depth (m) Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)		Legend	
Plan				(0.35) 0.35 (0.55) 0.90 (0.50) 1.40 (0.25) 1.65	TOPSOIL Brown gravelly very clayey fine to coarse SAND with occasional cobbles Brown clayey gravelly fine to coarse SAND with occasiona cobbles Soft to firm brown slightly sandy slightly gravelly CLAY with occasional cobbles Complete at 1.65m Remarks		
	·		·		No groundwater encountered Trial pit stable Trial pit backfilled upon completion		
	•		·	•••			
			·				
	•			•••			

LxWxD Ardale 11957-0 Location (dGPS) Dates Engineer Sheet 19/08/2022 CS Consulting 1/1	S		round Investigations Ireland Ltd www.gii.ie			Site A034 Tinakilly Co. Wicklow		Trial Pit Number ST04			
DegR/I Sample / Tests Visite (M) Field Records L050 (0.20) Description Legent (0.50) 10*00 -			1.70m >	0.50m x 1.70n	n	Ground	Level (mOD)	A		Job Numbe 11957-06	
Plan .			Location	n (dGPS)		Dates 19	9/08/2022		8	Sheet 1/1	
Plan .	Depth (m)	Sample / Tes	sts Water Depth (m)	Field R	lecords	Level (mOD)	Depth (m) (Thickness)	Description	77.00	Legend	
No groundwater encountered Trial pit stable Trial pit backfilled upon completion	Plan						0.20 (0.80) 1.00 (0.50) 1.50 (0.20) 1.70	Brown gravelly very clayey fine to me occasional clay lenses	dium SAND with	x x x x x x x x x x x x x x	
						-		No groundwater encountered Trial pit stable Trial pit backfilled upon completion			
		·									
			. <u>.</u>								
. . <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
							s	cale (approx) Logged B	3y Fig	ure No.	

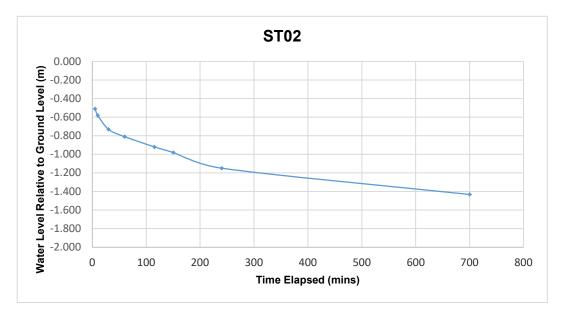
Machine : JCB SICK Method : Time Pit Dimensions 1, x W a D 50 n 1.00m Cround Level (mOD) Client Ardue Dg(h) Sample / Tests Voing (M) Field Records (MOS) Daggh (machine s) Description Image: Comparison of the pit	SI			estigations I www.gii.ie			Site A034 Tinakilly Co. Wicklow	Trial Pit Numbe ST05	
Depth Sample / Tests Vettor Field Records LeXb Depth Description Image: Provide state s			1.70m x 0.	.50m x 1.60m	Ground	Level (mOD)	•	Job Number 11957-06-2: Sheet 1/1	
Depth Sample / Tests Vettor Field Records LeXb Depth Description Image: Provide state s			Location (dGPS)	Dates	9/08/2022	Engineer CS Consulting		
Plan .	Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	
	'lan _	· ·		· · · ·		(0.40) (0.40) (0.40) (0.40) (0.80)	Soft to firm brown slightly gravelly sandy CLAY with occasional cobbles Soft to firm brown slightly gravelly sandy CLAY with occasional cobbles and sand lenses Complete at 1.60m		
	·								
	·					•••			
	•	· ·		· · ·		· · ·			
							cale (approx)	Figure No.	

	Ground Investigations Irelan www.gii.ie		www.gii.ie			Site A034 Tinakilly Co. Wicklow	Trial Pit Numbe ST06	
achine : Jo ethod : To		Dimension 1.80m x 0.4 L x W x D	s 50m x 1.55m	Ground	Level (mOD)	Client Ardale	Job Number 11957-06-22 Sheet 1/1	
		Location (JGPS)	Dates 18	8/08/2022	Engineer CS Consulting		
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	TOPSOIL	Legend	
					 (0.30)	TOPSOIL		
					0.30	Brown clayey gravelly fine to medium SAND with occasional cobbles		
					(1.00)			
					 - 			
					1.30 (0.25)	Firm brown slightly sandy slightly gravelly CLAY	· · · · · · · · · · · · · · · · · · ·	
					- 1.55 - -	Complete at 1.55m		
					- - - -			
					- - - - -			
					- - - -			
					- - - - -			
					- - - -			
					- - - - - -			
					- - - -			
		•			• •	Remarks No groundwater encountered		
an .						No groundwater encountered Trial pit stable Trial pit backfilled upon completion		
an .		·						
	· ·			•				
	· · ·	· ·		• •				
lan .	· · ·	· ·	 					

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.80m x 0.50m x 1.90m (L x W x D)

Date	Time		r level bgl)
18/08/2022	0	-0.630	
18/08/2022	5	-0.670	
18/08/2022	10	-0.700	
18/08/2022	30	-0.810	
18/08/2022	60	-0.960	
18/08/2022	100	-1.060	
18/08/2022	180	-1.140	
18/08/2022	240	-1.230	
18/08/2022	800	-1.583	*Data Extrapolated

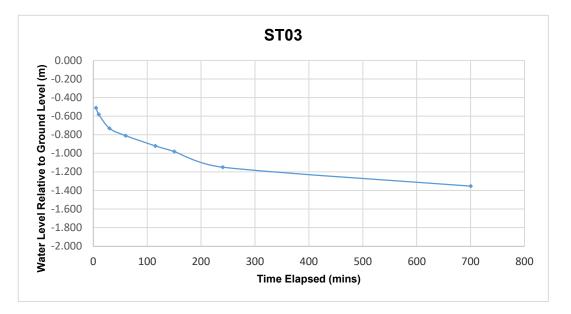
Start depth 0.63	Depth of Pit 1.900		Diff 1.270	75% full 0.9475	25%full 1.5825
Length of pit (m) 1.800) Width of pit (m) 0.500			75-25Ht (m) 0.635	Vp75-25 (m3) 0.57
Tp75-25 (from g	raph) (s)	44700		50% Eff Depth 0.635	ap50 (m2) 3.821
f =	3.346E-06	m/s			



Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.80m x 0.50m x 1.70m (L x W x D) Catherinestown House, Hazelhatch Road, Newcastle, Co Dublin. DT YD52 Tel: 01 601 5175 / 5176 Email: info@gii.ie Web: www.bi.ie

Date	Time		r level bgl)
18/08/2022	0	-0.460	
18/08/2022	5	-0.510	
18/08/2022	10	-0.580	
18/08/2022	30	-0.730	
18/08/2022	60	-0.810	
18/08/2022	115	-0.920	
18/08/2022	150	-0.980	
18/08/2022	240	-1.150	
18/08/2022	700	-1.433	*Data Extrapolated
]

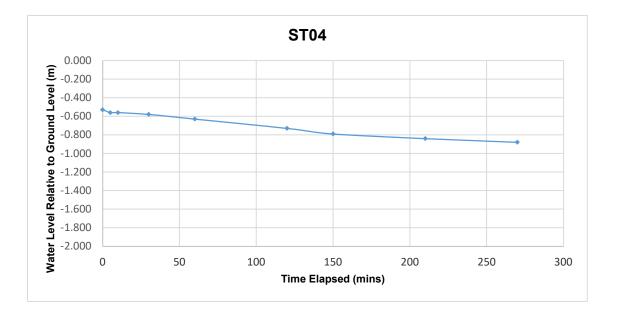
Start depth 0.63	Depth of Pit 1.700		Diff 1.070	75% full 0.8975	25%full 1.4325
Length of pit (m) 1.800) Width of pit (m) 0.500			75-25Ht (m) 0.535	Vp75-25 (m3) 0.48
Tp75-25 (from g	raph) (s)	36000		50% Eff Depth 0.535	ap50 (m2) 3.361
f =	3.979E-06	m/s			



Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.60m x 0.50m x 1.65m (L x W x D)

Date	Time		r level bgl)
18/08/2022	0	-0.460]
18/08/2022	5	-0.510	1
18/08/2022	10	-0.580	1
18/08/2022	30	-0.730	
18/08/2022	60	-0.810	
18/08/2022	115	-0.920	
18/08/2022	150	-0.980	
18/08/2022	240	-1.150	
18/08/2022	700	-1.353	*Data Extrapolated

Start depth 0.46	Depth of Pit 1.650		Diff 1.190	75% full 0.7575	25%full 1.3525
Length of pit (m) 1.600) Width of pit (m) 0.500			75-25Ht (m) 0.595	Vp75-25 (m3) 0.48
Tp75-25 (from g	raph) (s)	39900		50% Eff Depth 0.595	ap50 (m2) 3.299
f =	3.616E-06	m/s			



Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.70m x 0.50m x 1.70m (L x W x D)

Date	Time	Water level (m bgl)
18/08/2022	0	-0.530
18/08/2022	5	-0.560
18/08/2022	10	-0.560
18/08/2022	30	-0.580
18/08/2022	60	-0.630
18/08/2022	120	-0.730
18/08/2022	150	-0.790
18/08/2022	210	-0.840
18/08/2022	270	-0.880

*Soakaway failed - Pit backfilled

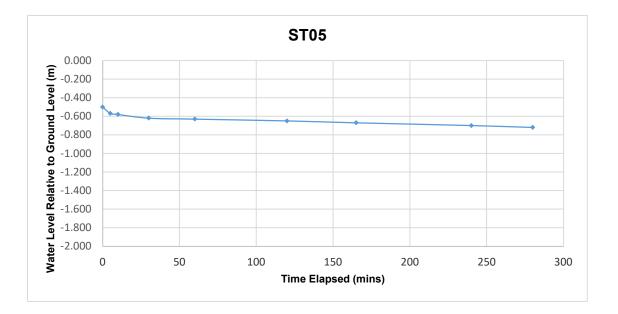
Start depth	Depth of Pit	Diff	75% full	25%full
0.50	1.700	1.200	0.8	1.4

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Entail, info@gii.ie Web. www.gii.ie

01 601 5175 / 5176

(CAL)


ST05

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.70m x 0.50m x 1.60m (L x W x D)

Date	Time	Water level (m bgl)
18/08/2022	0	-0.500
18/08/2022	5	-0.570
18/08/2022	10	-0.580
18/08/2022	30	-0.620
18/08/2022	60	-0.630
18/08/2022	120	-0.650
18/08/2022	165	-0.670
18/08/2022	240	-0.700
18/08/2022	280	-0.720

*Soakaway failed - Pit backfilled

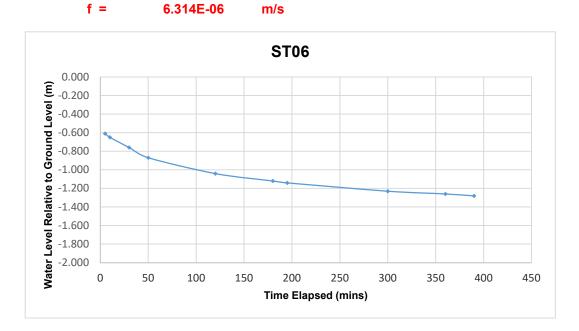
Start depth	Depth of Pit	Diff	75% full	25%full
0.50	1.700	1.200	0.8	1.4

SA06

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.50m x 0.70m 2.00m (L x W x D)

Date	Time	Water level (m bgl)
18/08/2022	0	-0.460
18/08/2022	5	-0.610
18/08/2022	10	-0.650
18/08/2022	30	-0.760
18/08/2022	50	-0.870
18/08/2022	120	-1.040
18/08/2022	180	-1.120
18/08/2022	195	-1.140
18/08/2022	300	-1.230
18/08/2022	360	-1.260
18/08/2022	390	-1.280

Start depth	Depth of Pit	Diff	75% full	25%full
0.46	1.550	1.090	0.7325	1.2775


Length of pit (m) Width of pit (m) 1.800 0.500

75-25Ht (m)	Vp75-25 (m3)
0.545	0.49

Tp75-25 (from graph) (s)

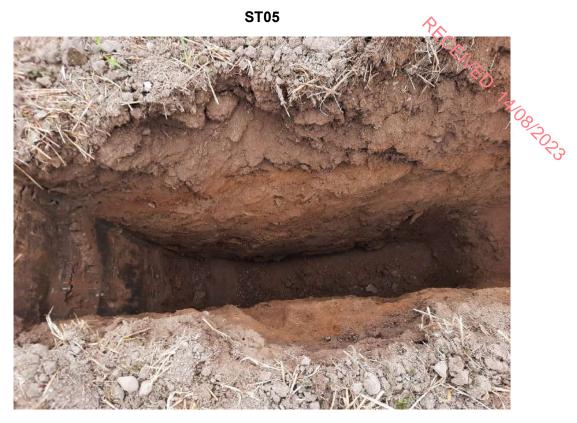
22800

50% Eff Depth ap50 (m2) 0.545 3.407

ST01

ST02

ST02



ST04

ST05

ST06

APPENDIX 4 – Dynamic Probe Records

S	Gro	und Investigations www.gii.ie	s Ireland	Ltd	Site A03	4 Tinakilly	/ Co. W	icklow						Prob Num	
Method Dynamic Pr fall height 5 weight 50.0	obe Heavy (DPH) 00mm, hammer	Cone Dimensions Diameter 43.7mm		.evel (mOD) 18.10	Client Arda				P					Job Num 11957-	
weight 50.0	κy	Location (dGPS) 729237.5 E 695787.2 N	Dates 14/0	7/2022	Engin CS (eer Consultin	g		PKC C	N.				Shee 1/	
Depth (m)	Blows for Depth Increment	t Field Records	Level (mOD)	Depth (m)	0	3		Blows			rement	2 2	4 2	27	30
0.00-0.10	4		18.10	0.00								2	<u>_</u>		+
0.10-0.20 0.20-0.30	5			- 								4	ر. حن:		+
0.30-0.40	9							L							
0.40-0.50 0.50-0.60	10 6		17.60	0.50											
0.60-0.70	4			-											t
0.70-0.80 0.80-0.90	3 4		-	-											+
0.90-1.00 1.00-1.10	3 3		17.10	1.00											+
1.10-1.20	6														
1.20-1.30 1.30-1.40	11 14			- -											
1.40-1.50 1.50-1.60	16 17		16.60	 											+
1.60-1.70	18			- -											+
.70-1.80 .80-1.90	20 12			-											
.90-2.00	3		16 10	- - - 2.00											
2.00-2.10 2.10-2.20	6		16.10	2.00											Τ
2.20-2.30 2.30-2.40	3		-												+
2.40-2.50	3					_									+
2.50-2.60 2.60-2.70	3		15.60 -	— 2.50 —											
2.70-2.80	4			- -		_									
2.80-2.90 2.90-3.00	5			-											
3.00-3.10	7		15.10	3.00											+
3.10-3.20 3.20-3.30	8			- -											+
3.30-3.40	13			 -											
3.40-3.50 3.50-3.60	18 20		14.60	3.50											
3.60-3.70	17			-											T
8.70-3.80 8.80-3.90	20 16			- -											+
8.90-4.00 9.00-4.10	17 20		14.10	4.00											+
.10-4.20	25		-	-											
			13.60	4.50											t
				- 											+
				-											
			13.10	- 											
Remarks 2 No. prob	bes attempted due	to shallow refussal	13.10 ₋	0.00		_					1	S (a	cale pprox)	Logg By	,ed
norusai di													1:25 igure	S(No.	3
												1	1957-0	06-22.1	DР

S	Gro	und Investigations www.gii.ie	s Ireland	Ltd	Site A034	Tinakilly (Co. Wicklow					Probe Numb	
Vethod Dynamic Pr all height 5 weight 50.0	robe Heavy (DPH) 00mm, hammer	Cone Dimensions Diameter 43.7mm		.evel (mOD) 13.89	Client Ardal	e		Pro				Job Numb 11957-0	
weight 50.0	κġ	Location (dGPS) 729320.4 E 695845.5 N	Dates 14/0	7/2022	Engine CS C	er onsulting		P.C.C.	LA			Sheet 1/*	
Depth (m)	Blows for Depth Incremen	t Field Records	Level (mOD)	Depth (m)	0	3 6		for Dep		X /	24	27 3	30
0.00-0.10	2		13.89	0.00								+	+
).10-0.20	2			-							<u></u>	<u> </u>	+
).20-0.30).30-0.40	3 5			- 									
.40-0.50 .50-0.60	6 11		13.39	0.50									
.60-0.70	16			-									t
).70-0.80).80-0.90	10 9			- -									+
).90-1.00 I.00-1.10	12 7		12.89	 1.00			1						_
.10-1.20	7			-									
.20-1.30 .30-1.40	9 10			- -									
.40-1.50 .50-1.60	11 12		12.39	 									t
.60-1.70	13												+
.70-1.80 .80-1.90	13 14			-									_
.90-2.00 .00-2.10	16 15		11.89 -	2.00									
.10-2.10	16		11.09	2.00									T
.20-2.30 .30-2.40	22 24												t
.40-2.50	24		-	- 									+
			11.39 -	— 2.50 —									+
			-	-									
				-									
			10.89	3.00									t
				- -									+
													_
			10.39	- — 3.50									
													T
				-									╀
			9.89	4.00									+
				- -									
			9.39	4.50									t
				- 								+	+
				-									+
			8.89	 5.00									_
Remarks Refusal a	t 2.50m BGL									ı	Scale (approx) Logg By	eo
											1:25	so	3
											Figure		
											11957-	06-22.E	۶F

S	Gro	und Investigations www.gii.ie	s Ireland	Ltd	Site A034 Tinakilly (Co. Wicklow				Prob Num	
Method Dynamic Pr fall height 50 weight 50.0	obe Heavy (DPH) 00mm, hammer	Cone Dimensions Diameter 43.7mm		.evel (mOD) 17.73	Client Ardale		P.C.			Job Num 11957-	
weight 60.0		Location (dGPS) 729347.7 E 695809.9 N	Dates 14/0	7/2022	Engineer CS Consulting		PRE EN	^ر ې		Shee 1/	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0 3 6		for Depth	Increment	27 24	27	30
0.00-0.10	3		17.73	0.00					2		ŧ
0.10-0.20	4			-					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		+
0.20-0.30 0.30-0.40	6 5			- -							
).40-0.50).50-0.60	5 6		17.23	0.50							
0.60-0.70	6										+
0.70-0.80 0.80-0.90	4 6										+
0.90-1.00 1.00-1.10	5 2		16.73	 							+
1.10-1.20	3			- -							
1.20-1.30 1.30-1.40	3 3										
1.40-1.50 1.50-1.60	23		16.23	 							+
.60-1.70	2			- 							_
.70-1.80 .80-1.90	3			-							_
.90-2.00	3		45.70	-							
2.00-2.10 2.10-2.20	2		15.73	2.00							
2.20-2.30 2.30-2.40	4			-		_					+
2.30-2.40	0 11										+
2.50-2.60 2.60-2.70	11		15.23	2.50							
2.70-2.80	13			- -							
2.80-2.90 2.90-3.00	13 18			-							
3.00-3.10	20		14.73	- 3.00							+
3.10-3.20 3.20-3.30	21			-							+
				-							
			14.23	- - 3.50							
											T
				- -							+
			13.73	4.00							_
				-							
				- 							
			13.23	4.50							+
				- 							+
				-							+
			12.73	5.00							
Remarks Refusal at	t 3.30m BGL		,1	-	· · · · ·		• I	1	Scale (approx	_{k)} Logg By	jed
									1:25 Figure	No.	G
									_	-06-22.1	DP

Method Dynamic Probe Heavy (DPH) fall height 50.0kg Cone Dimensions Diameter 43.7m Diameter 43.7m Depth (m) Depth Increment Location (dGPS) 729459.9 E 6953 Depth (m) Blows for Depth Increment Field R 0.00-0.10 2 1 0.10-0.20 3 2 0.20-0.30 4 2 0.40-0.50 6 10 0.60-0.70 9 2 0.70-0.80 9 2 0.80-0.90 7 2 0.90-1.00 4 1 1.10-1.10 4 1 1.10-1.20 3 1 1.20-1.30 3 1 1.40-1.50 4 1 1.40-1.50 4 1 1.80-1.90 3 1 1.90-2.00 3 2 2.00-2.10 3 2 2.00-2.10 3 2 2.00-2.10 3 2 2.00-2.10 3 2 <	im Dates i853.2 N 14/ Records Level 17.95 17.45 16.95	- - - - - - - - - - - - - - - - - - -	Ardale Engineer CS Consulting	Blows	for Dept 12 15	h Increi	Vient De		Job Numb 11957-0 Sheet 1/2 27 (06-2 t 2
Location (dGPS) 729459.9 E 695 Depth Depth Increment Field R 0.00-0.10 2 0.10-0.20 3 0.20-0.30 4 0.30-0.40 6 0.40-0.50 6 0.50-0.60 10 0.60-0.70 9 0.70-0.80 9 0.80-0.90 7 0.90-1.00 4 1.10-1.20 3 1.20-1.30 3 1.30-1.40 4 1.50-1.60 3 1.60-1.70 3 1.80-1.90 3 1.90-2.00 3 2.10-2.20 4 2.20-2.30 4 2.30-2.40 3 2.40-2.50 3 2.50-2.60 4 2.60-2.70 6 2.80-2.90 4 2.90-3.00 5	i853.2 N 14/ Records (mOD) 17.95 17.45 16.95	Depth (m) - 0.00 	CS Consulting	Blows	for Dept	h Increi	X	24	1/2	2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	17.95 17.45 16.95	0.00					X	24	27 ;	
0.10-0.20 3 0.20-0.30 4 0.30-0.40 6 0.40-0.50 6 0.50-0.60 10 0.60-0.70 9 0.70-0.80 9 0.80-0.90 7 0.90-1.00 4 1.10-1.20 3 1.20-1.30 3 1.30-1.40 4 1.40-1.50 4 1.50-1.60 3 1.60-1.70 3 1.80-1.90 3 2.10-2.20 4 2.20-2.30 4 2.30-2.40 3 2.40-2.50 3 2.50-2.60 4 2.60-2.70 6 2.70-2.80 5 2.80-2.90 4 2.90-3.00 5	17.45	- - - - - - - - - - - - - - - - - - -								30
$\begin{array}{c ccccc} 0.20 - 0.30 & 4 & 6 & \\ 0.30 - 0.40 & 6 & \\ 0.50 - 0.60 & 10 & \\ 0.60 - 0.70 & 9 & \\ 0.60 - 0.70 & 9 & \\ 0.80 - 0.90 & 7 & \\ 0.90 - 1.00 & 4 & \\ 1.00 - 1.10 & 4 & \\ 1.10 - 1.20 & 3 & \\ 1.20 - 1.30 & 3 & \\ 1.20 - 1.30 & 3 & \\ 1.30 - 1.40 & 4 & \\ 1.40 - 1.50 & 4 & \\ 1.50 - 1.60 & 3 & \\ 1.50 - 1.60 & 3 & \\ 1.60 - 1.70 & 3 & \\ 1.80 - 1.90 & 3 & \\ 1.80 - 1.90 & 3 & \\ 1.80 - 1.90 & 3 & \\ 2.10 - 2.20 & 4 & \\ 2.20 - 2.30 & 4 & \\ 2.30 - 2.40 & 3 & \\ 2.50 - 2.60 & 4 & \\ 2.60 - 2.70 & 6 & \\ 2.70 - 2.80 & 5 & \\ 2.80 - 2.90 & 4 & \\ 2.90 - 3.00 & 5 & \\ \end{array}$	16.95									+
0.30-0.406 $0.40-0.50$ 6 $0.50-0.60$ 10 $0.60-0.70$ 9 $0.70-0.80$ 9 $0.80-0.90$ 7 $0.90-1.00$ 4 $1.00-1.10$ 4 $1.10-1.20$ 3 $1.20-1.30$ 3 $1.30-1.40$ 4 $1.40-1.50$ 4 $1.50-1.60$ 3 $1.60-1.70$ 3 $1.80-1.90$ 3 $2.00-2.10$ 3 $2.00-2.10$ 3 $2.10-2.20$ 4 $2.20-2.30$ 4 $2.50-2.60$ 4 $2.60-2.70$ 6 $2.70-2.80$ 5 $2.80-2.90$ 4 $2.90-3.00$ 5	16.95									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.95									
0.70-0.80 9 0.80-0.90 7 0.90-1.00 4 1.00-1.10 4 1.10-1.20 3 1.20-1.30 3 1.30-1.40 4 1.40-1.50 4 1.50-1.60 3 1.60-1.70 3 1.60-1.70 3 1.90-2.00 3 2.00-2.10 3 2.10-2.20 4 2.20-2.30 4 2.30-2.40 3 2.40-2.50 3 2.50-2.60 4 2.60-2.70 6 2.80-2.90 4 2.90-3.00 5		- - - - - - - - - - - - - - - - - - -								T
0.80-0.90 7 0.90-1.00 4 1.00-1.10 4 1.10-1.20 3 1.20-1.30 3 1.30-1.40 4 1.40-1.50 4 1.50-1.60 3 1.60-1.70 3 1.80-1.90 3 1.90-2.00 3 2.00-2.10 3 2.10-2.20 4 2.30-2.40 3 2.40-2.50 3 2.50-2.60 4 2.60-2.70 6 2.80-2.90 4 2.90-3.00 5		- - - - - - - - - - - -								+
1.00-1.10 4 1.10-1.20 3 1.20-1.30 3 1.30-1.40 4 1.40-1.50 4 1.50-1.60 3 1.60-1.70 3 1.60-1.70 3 1.80-1.90 3 1.90-2.00 3 2.00-2.10 3 2.10-2.20 4 2.20-2.30 4 2.30-2.40 3 2.40-2.50 3 2.60-2.70 6 2.80-2.90 4 2.90-3.00 5		1.00								+
1.10-1.20 3 1.20-1.30 3 1.30-1.40 4 1.40-1.50 4 1.50-1.60 3 1.60-1.70 3 1.80-1.90 3 1.80-1.90 3 2.00-2.10 3 2.10-2.20 4 2.20-2.30 4 2.30-2.40 3 2.60-2.70 6 2.70-2.80 5 2.80-2.90 4 2.90-3.00 5		-								
1.30-1.40 4 1.40-1.50 4 1.50-1.60 3 1.60-1.70 3 1.70-1.80 3 1.80-1.90 3 1.90-2.00 3 2.00-2.10 3 2.10-2.20 4 2.20-2.30 4 2.30-2.40 3 2.40-2.50 3 2.50-2.60 4 2.60-2.70 6 2.80-2.90 4 2.90-3.00 5		1								
1.40-1.50 4 1.50-1.60 3 1.60-1.70 3 1.60-1.70 3 1.70-1.80 3 1.80-1.90 3 1.90-2.00 3 2.00-2.10 3 2.10-2.20 4 2.20-2.30 4 2.30-2.40 3 2.40-2.50 3 2.50-2.60 4 2.60-2.70 6 2.80-2.90 4 2.90-3.00 5		-								t
1.60-1.70 3 1.70-1.80 3 1.80-1.90 3 1.90-2.00 3 2.00-2.10 3 2.10-2.20 4 2.20-2.30 4 2.30-2.40 3 2.40-2.50 3 2.50-2.60 4 2.60-2.70 6 2.80-2.90 4 2.90-3.00 5		-								+
1.80-1.90 3 1.90-2.00 3 2.00-2.10 3 2.10-2.20 4 2.20-2.30 4 2.30-2.40 3 2.40-2.50 3 2.50-2.60 4 2.60-2.70 6 2.80-2.90 4 2.90-3.00 5	16.45	5 — 1.50 								_
1.90-2.00 3 2.00-2.10 3 2.10-2.20 4 2.20-2.30 4 2.30-2.40 3 2.40-2.50 3 2.50-2.60 4 2.60-2.70 6 2.70-2.80 5 2.80-2.90 4		-								
2.10-2.20 4 2.20-2.30 4 2.30-2.40 3 2.40-2.50 3 2.50-2.60 4 2.60-2.70 6 2.80-2.90 4 2.90-3.00 5		-								
2.20-2.30 4 2.30-2.40 3 2.40-2.50 3 2.50-2.60 4 2.60-2.70 6 2.70-2.80 5 2.80-2.90 4 2.90-3.00 5	15.95	2.00								T
2.40-2.50 3 2.50-2.60 4 2.60-2.70 6 2.70-2.80 5 2.80-2.90 4 2.90-3.00 5		-								-
2.50-2.60 4 2.60-2.70 6 2.70-2.80 5 2.80-2.90 4 2.90-3.00 5		-								╞
2.70-2.80 2.80-2.90 2.90-3.00 5	15.45	2.50								
2.80-2.90 4 2.90-3.00 5		-								
3.00-3.10 3		-								
	14.95	5 - 3.00 -								+
3.10-3.20 3 3.20-3.30 4		-								
3.30-3.40 6		-								
3.40-3.50 7 3.50-3.60 10	14.45	5 <mark>-</mark>								
3.60-3.70 12										
3.70-3.80 8 3.80-3.90 5		- 								╞
3.90-4.00 4 4.00-4.10 4	13.95	4.00								_
4.10-4.20 3		-								
4.20-4.30 3 4.30-4.40 13		- 								
4.40-4.50 15 4.50-4.60 17	13.45	 4.50								+
4.60-4.70 17		- - -								-
4.70-4.80 18 4.80-4.90 20		-								+
4.90-5.00 21	12.95	5.00								
Remarks Refusal at 5.10m BGL		-		· I	· I			Scale (approx)	Logge By	ed
								1:25 Figure	SG No.	3

	Gro	und Investigations www.gii.ie	s Ireland	Ltd	Site A034 T	ïnakilly Co	. Wicklow					Probe Numb	
ethod ynamic Pi II height 5	robe Heavy (DPH) 600mm, hammer kg	Cone Dimensions Diameter 43.7mm		.evel (mOD) 17.95	Client Ardale		1					Job Numb 11957-0	
orgin oo.u	ng	Location (dGPS) 729459.9 E 695853.2 N	Dates 14/0	7/2022	Enginee CS Cor			E CEILA	\$			Sheet 2/2	
Depth (m)	Blows for Depth Incremen	t Field Records	Level (mOD)	Depth (m)	0 3	6	Blows f 9 12	or Depth Ir 2 15	ncrenten 18	t 2) 24	4 2	27 3	30
00-5.10	21		12.95	5.00						20	<u>ک</u>		t
				- 							<u>ري</u>		ł
			12.45	5.50									
				 - -									
			11.95 -	 6.00									
				-									
				 - 									-
			11.45	— 6.50 									
			-	- 									
			10.95 -	7.00									
				-									
			10.45	- 7.50									-
			-	 - -									
			9.95	8.00									
				- 									
			9.45	8.50									
			8.95	 9.00									
													-
			8.45	 									
				• 									
			7.95	 10.00									
emarks	1	1								S (a	cale pprox)	Logg By	5
											1:25 igure l	SC No.	3
)6-22.C)

S	Gro	und Investigations www.gii.ie	s Ireland	Ltd	Site A0	34 Tina	akilly Co	. Wicklow						Probe Numi	
Method Dynamic Pr fall height 5 weight 50.0	obe Heavy (DPH) 00mm, hammer	Cone Dimensions Diameter 43.7mm		L evel (mOD) 19.46		nt Jale			P.C.					Job Numl 11957-0	
in eigen oor e		Location (dGPS) 729241.8 E 695732.3 N	Dates)7/2022	-	neer Consu	ulting		PKC	EN.	^			Shee 1/	
Depth (m)	Blows for Depth Increment	t Field Records	Level (mOD)	Depth (m)	0	3	6		for De		- X.	/	24 2	27	30
0.00-0.10	2		19.46	0.00		Ť	-		Ē	-		1		-	ŧ
0.10-0.20	6			-				-				, , , , , , , , , , , , , , , , , , ,	₽ <mark>₽</mark> ₽		+
0.20-0.30 0.30-0.40	8 7			- -											
0.40-0.50 0.50-0.60	5 4		18.96	0.50											
0.60-0.70	6			-											
0.70-0.80 0.80-0.90	5 8			-											+
0.90-1.00 1.00-1.10	9 7		18.46	 1.00											_
1.10-1.20	10			- 											
1.20-1.30 1.30-1.40	12 11														
1.40-1.50 1.50-1.60	10 12		17.96	 											+
1.60-1.70	14														+
1.70-1.80 1.80-1.90	16 15														_
1.90-2.00	13		47.40	- - - 2.00											
2.00-2.10 2.10-2.20	18 17		17.46	2.00											
2.20-2.30 2.30-2.40	14 18			-											+
2.40-2.50	20			-											-
2.50-2.60 2.60-2.70	8		16.96	2.50											_
2.70-2.80	8			-											
2.80-2.90 2.90-3.00	2			-		Ц		-							
3.00-3.10	2		16.46	3.00											+
3.10-3.20 3.20-3.30	2					4									+
3.30-3.40	4														
3.40-3.50 3.50-3.60	4 5		15.96	3.50											
3.60-3.70	8														1
3.70-3.80 3.80-3.90	13 16			- -					+						+
3.90-4.00 4.00-4.10	20 20		15.46	4.00											_
4.10-4.20	22			- 											
				-											
			14.96	4.50						1					+
				-		_			-						+
			14.46	- 											
Remarks Refusal at	t 4.20m BGL	1	ן טד.די _ו	0.00					1	1	1	(Scale approx)	Logg By	ed
													1:25	S	G
												F	Figure	No.	
													11957-0	06-22.[) DP(

S	Gro	und Investigations www.gii.ie	s Ireland	Ltd	Site A034 Tinakilly	Co. Wicklow	1				Probe Numb	
Method Dynamic Pr fall height 5 weight 50.0	obe Heavy (DPH) 00mm, hammer	Cone Dimensions Diameter 43.7mm		.evel (mOD) 21.32	Client Ardale		P.C.C.				Job Numb 11957-0	
worgin co.o	Ng	Location (dGPS) 729298.6 E 695766.7 N	Dates 14/0	7/2022	Engineer CS Consulting]		LES .			Sheet 1/ ⁻	
Depth (m)	Blows for Depth Increment	t Field Records	Level (mOD)	Depth (m)	0 3 6		for Dept 12 15		X /	24 2	27 :	30
0.00-0.10	4		21.32	0.00								ŧ
0.10-0.20	5											Ļ
0.20-0.30 0.30-0.40	5 6			- -								
0.40-0.50 0.50-0.60	6 6		20.82	- 0.50								Γ
0.60-0.70	7			-								┢
0.70-0.80 0.80-0.90	4 4			-								╞
0.90-1.00 1.00-1.10	3 4		20.32	 1.00								
1.10-1.20	3		20.52	-								
1.20-1.30 1.30-1.40	3 8			-								t
1.40-1.50	6			- 								+
1.50-1.60 1.60-1.70	7 6		19.82	— 1.50 —								L
.70-1.80	6			- 								
.80-1.90 .90-2.00	8			-								
.00-2.10	9		19.32	2.00								╞
2.10-2.20 2.20-2.30	9			-								╞
2.30-2.40	7		-	-								
2.40-2.50 2.50-2.60	11 16		18.82	- - 2.50				1				
2.60-2.70	17											t
2.70-2.80 2.80-2.90	17 14			- -								+
2.90-3.00 3.00-3.10	5 4		18.32	3.00								L
3.10-3.20	4			- -								
3.20-3.30 3.30-3.40	4 5			-								T
3.40-3.50 3.50-3.60	4 7		17.82	- 3.50								┢
3.60-3.70	12		17.02	-								_
3.70-3.80 3.80-3.90	21 23											
3.90-4.00	25			- - ,						\mathbf{h}		
			17.32	4.00 								t
				-								+
												_
			16.82	4.50								
				-								
												+
Remarks	t 4.00m BGL		16.32	5.00						Scale	Logg By	ed
Neiusai a										1:25	sc	
									I	Figure	No.	
										11957-	06-22.C)(

	Gro	und Investigations www.gii.ie	Ireland	Ltd	Site A034 Tinakilly	/ Co. Wicklow				Probe Numb	
lethod)ynamic Pr all height 5 veight 50.0	obe Heavy (DPH) 00mm, hammer	Cone Dimensions Diameter 43.7mm		.evel (mOD) 22.58	Client Ardale		P.C.			Job Numb 11957-0	
		Location (dGPS) 729331.3 E 695735.3 N	Dates 14/0	7/2022	Engineer CS Consulting	g	PRCEIVE	~		Sheet 1/1	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0 3 0		for Depth In	crement	24	27 3	30
.00-0.10	2		22.58	0.00							ŧ
.10-0.20	3			-					· ()		L
.20-0.30 .30-0.40	6 6										
.40-0.50 .50-0.60	4 5		22.08	 							t
.60-0.70	5			- 							+
.70-0.80 .80-0.90	6 8			-							+
.90-1.00	14 17		01.50	-							
.00-1.10 .10-1.20	16		21.58	1.00							
.20-1.30 .30-1.40	18 20			 - 							t
.40-1.50	17										+
.50-1.60 .60-1.70	18		21.08	— 1.50 —							
70-1.80	19			-							
80-1.90	16 16										Ī
90-2.00 00-2.10	7		20.58	2.00							ł
10-2.20 20-2.30	6			-							ļ
.20-2.30 .30-2.40	3 4										
.40-2.50 .50-2.60	8 8		20.08	2.50							
60-2.70	9									+	ł
.70-2.80 .80-2.90	8 10			- 							l
.90-3.00 .00-3.10	12 15		19.58	3.00							
.10-3.20	18							1			
.20-3.30 .30-3.40	20 25										ľ
			19.08	 3.50							ŀ
			19.00								╞
				- - -							
				- -							
			18.58	4.00							t
				- 							
											ļ
			18.08	4.50							
				-							ſ
				- -						+	╞
Remarks			17.58	5.00					Scalo	Logg	F
Refusal a	t 3.40m BGL								(approx	Logge By	1
									1:25 Figure	SG	;
									_	-06-22.D	

S	Gro	und Investigations www.gii.ie	s Ireland	Ltd	Site A034 Tinakilly Co	o. Wicklow				Prob Numi	
Method Dynamic Pr fall height 5 weight 50.0	obe Heavy (DPH) 00mm, hammer	Cone Dimensions Diameter 43.7mm		L evel (mOD) 23.84	Client Ardale	Ŕĸ				Job Num 11957-0	
worgin co.o		Location (dGPS) 729423.6 E 695769.9 N	Dates 14/0)7/2022	Engineer CS Consulting	ĭ,	C.F.IL.F.	\$		Shee 1/	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0 3 6	Blows for 9 12	Depth Inc 15	crement	24	27	30
0.00-0.10	3		23.84	0.00				ŦŤ	2		ŧ
0.10-0.20	4			-					<u> </u>		_
).20-0.30).30-0.40	4 5			-							
).40-0.50).50-0.60	6 6		23.34	0.50							
0.60-0.70	5										t
).70-0.80).80-0.90	8 10			- 							+
).90-1.00 I.00-1.10	10 4		22.84	 1.00							+
.10-1.20	4			-							
.20-1.30 .30-1.40	4 5			-							T
.40-1.50 .50-1.60	4 4		22.34	- - - 1.50							+
.60-1.70	3		22.04								+
.70-1.80 .80-1.90	3			-							
.90-2.00	4			- 							
.00-2.10	4		21.84	2.00							t
2.20-2.30	4		-								+
2.30-2.40 2.40-2.50	3			-							+
2.50-2.60	2		21.34	2.50							
2.60-2.70 2.70-2.80	2			- 							
2.80-2.90	12			-							t
2.90-3.00 3.00-3.10	3 3		20.84	3.00							+
3.10-3.20 3.20-3.30	5					_					
3.30-3.40	14		-	-							
.40-3.50 .50-3.60	18 23		20.34	3.50							
.60-3.70	25			 							+
				- -							+
			19.84	4.00							+
				- -							
				-							T
			19.34	4.50							+
				-		_					+
											+
			18.84	 5.00							
Remarks Refusal a	t 3.70m BGL	1	18.84	5.00				1	Scale (approx	ل Logg By	± ec
									1:25	S	3
									Figure		
									11957	-06-22.[C

S	Gro	und Investigations www.gii.ie	s Ireland	Ltd	Site A034 Tinak	killy Co. \	Vicklow						Prob Num DP	
Method Dynamic Pr fall height 5 weight 50.0	obe Heavy (DPH) 00mm, hammer	Cone Dimensions Diameter 43.7mm		Level (mOD) 23.15	Client Ardale		-	PKCK					Job Num 11957-(
weight 50.0	ng	Location (dGPS) 729478.9 E 695805 N	Dates)7/2022	Engineer CS Consult	tina		<u> </u>	No				Shee 1/	
Depth (m)	Blows for Depth Increment		Level (mOD)	Depth (m)	0 3	6	Blows			rement 8		24	27	30
0.00-0.10	0		23.15	0.00		1				0 (8 2			+
0.10-0.20	1			-								₽3		_
0.20-0.30 0.30-0.40	3 3			- 										
0.40-0.50 0.50-0.60	4 5		22.65	 0.50		1								T
0.60-0.70	4			-]								+
0.70-0.80 0.80-0.90	4 4													+
0.90-1.00 1.00-1.10	3 4		22.15	 1.00										
1.10-1.20	3		22.10											
1.20-1.30 1.30-1.40	4													
1.40-1.50	3 4		21.65	- - - 1 50										+
1.50-1.60 1.60-1.70	4		21.05	— 1.50 										+
1.70-1.80 1.80-1.90	3 4													
1.90-2.00	4		-	- 										
2.00-2.10 2.10-2.20	5		21.15	2.00 										t
2.20-2.30	3		-	- 										+
2.30-2.40 2.40-2.50	3			-										+
2.50-2.60	4		20.65	2.50										
2.60-2.70 2.70-2.80	4			- 										
2.80-2.90 2.90-3.00	3													T
3.00-3.10	2		20.15	3.00										+
3.10-3.20 3.20-3.30	2			-										_
3.30-3.40	2			-										
3.40-3.50 3.50-3.60	22		19.65	3.50										
3.60-3.70	2													
3.70-3.80 3.80-3.90	4 4			- 										+
3.90-4.00 4.00-4.10	6 6		19.15	4.00										+
4.10-4.20	8		-	-										
4.20-4.30 4.30-4.40	10 13			-				h^{-}						
4.40-4.50 4.50-4.60	14 17		18.65	4.50										+
4.60-4.70	20			-										+
4.70-4.80 4.80-4.90	22 22			-										+
			18.15	- 5.00										
Remarks Refusal at	t 4.90m BGL	1									(Scale approx	Logg By	ed
											-	1:25 Figure	S(No.	Э
												11957-	06-22.[DPC

S	Gro	und Investigations www.gii.ie	s Ireland	Ltd	Site A034 Tinakilly	Co. Wicklow				Probe Numb	
Method Dynamic Pr fall height 5 weight 50.0	obe Heavy (DPH) 00mm, hammer	Cone Dimensions Diameter 43.7mm		.evel (mOD) 17.11	Client Ardale					Job Numb 11957-0	
weight 00.0	κġ	Location (dGPS) 729220.1 E 695686.7 N	Dates 14/0	7/2022	Engineer CS Consulting		PRCEILE	\$		Sheet 1/1	
Depth (m)	Blows for Depth Incremen	Field Records	Level (mOD)	Depth (m)			for Depth Inc	X /			
0.00-0.10	1		17.11	0.00	0 3 6	9 1	2 15	18 21	24 2	27 3	30
).10-0.20	4			- 					` Q ₂		
.20-0.30 .30-0.40	5 11										
.40-0.50 .50-0.60	14 16		16.61	 							t
).60-0.70	11		10.01								+
).70-0.80).80-0.90	8			 							
0.90-1.00	4										
.00-1.10 .10-1.20	4		16.11	1.00 							
.20-1.30	33			- -							+
.30-1.40 .40-1.50	3										_
.50-1.60	2		15.61	— 1.50 —							
.60-1.70 .70-1.80	3										
.80-1.90	3			_ _							t
.90-2.00 .00-2.10	3 2		15.11	2.00							╀
2.10-2.20	2									<u> </u>	_
2.20-2.30 2.30-2.40	3 2										
2.40-2.50 2.50-2.60	3 2		14.61	2.50							
2.60-2.70	3			- -							┢
2.70-2.80 2.80-2.90	3 3			—							+
2.90-3.00 3.00-3.10	4 3		14.11	3.00							
8.10-3.20	4										
8.20-3.30 8.30-3.40	6 9			 - 		_					T
3.40-3.50 3.50-3.60	11 13		13.61	 3.50							+
3.60-3.70	18		10.01								_
8.70-3.80 8.80-3.90	20 24			 							
8.90-4.00	25										
			13.11	4.00							T
				- 							+
				 							+
			12.61	4.50							
				-							t
Remarks	t 4.00m BGL		12.11	5.00					Scale (approx)	Logge By	⊥ ec
Neiusai a									(approx) 1:25	so	
									Figure		
									11957-	06-22.D	١

S	Gro	und Investigations www.gii.ie	s Ireland	Ltd	Site A034 Tinakilly C	Co. Wicklow						Probe Numi	
Method Dynamic Pr fall height 5 weight 50.0	robe Heavy (DPH) 00mm, hammer	Cone Dimensions Diameter 43.7mm		_evel (mOD) 20.41	Client Ardale		P.C.C.					Job Numl 11957-0	
inoight co.o	ng	Location (dGPS) 729274 E 695688.8 N	Dates	7/2022	Engineer CS Consulting			Nr.				Shee 1/	
Denth	Blows for					Blows	for De	nth Inc) invent				
Depth (m)	Blows for Depth Incremen	t Field Records	Level (mOD)	Depth (m)	0 3 6					/	24 2	27	30
0.00-0.10	2		20.41	0.00						300	2		
0.10-0.20 0.20-0.30	3			- -						~	53		┢
0.30-0.40 0.40-0.50	8			-									
0.50-0.60	7		19.91	0.50									
0.60-0.70	5			-		1							
).70-0.80).80-0.90	8		-	-									+
0.90-1.00 1.00-1.10	4 5		19.41	1.00									╞
1.10-1.20	4			-									
1.20-1.30 1.30-1.40	3 3			-									
1.40-1.50 1.50-1.60	3 4		18.91 -	 									+
1.60-1.70	3		10.01	-									╞
.70-1.80 .80-1.90	33												
.90-2.00	3												
2.00-2.10 2.10-2.20	4		18.41	2.00 									t
2.20-2.30	3			-									╞
2.30-2.40 2.40-2.50	3												Ļ
2.50-2.60	4		17.91	2.50									
2.60-2.70 2.70-2.80	4			-									
2.80-2.90	9			- -									┢
2.90-3.00 3.00-3.10	10 12		17.41	- 3.00									+
3.10-3.20	15			-									
3.20-3.30 3.30-3.40	16 16			-									
3.40-3.50 3.50-3.60	6 5		16.91										t
3.60-3.70	4			-									+
3.70-3.80 3.80-3.90	35			-									_
3.90-4.00	13			-									
.00-4.10 .10-4.20	17 18		16.41	4.00 									t
4.20-4.30	20			- 									+
1.30-4.40 1.40-4.50	21 22									 			_
			15.91	4.50 -									
				-									
				-									+
			15.41	5.00									
Remarks Refusal a	t 4.50m BGL									9 (4	Scale approx)	Logg By	ed
											1:25	FO	D
											igure		
											11957-	06-22.0)

Drammer Diameter 43.7mm 14.00 Adate Mit Location (4079) Dates Engineer C3 Comuling S 0.00 0 Destineer C3 Comuling S 9 10 2 10 2 10 2 2 10 2 10 2 2 10 2 2 2 10 2 2 10 2 2 2 10 2	G	Gro	und Investigations www.gii.ie			Site A034 Tinakilly						Probe Numb	
Participant Conserver	Method Dynamic Pr fall height 5	obe Heavy (DPH) 00mm, hammer	Cone Dimensions Diameter 43.7mm					PA				Job Numb 11957-0	
Image: Deprind certain Head records Image: Deprind certain Image: Deprind certain	weight 50.0	кд			7/2022	-						Sheet 1/1	
D00-010 2 11.00 0.000 10	Depth (m)	Blows for Depth Incremen	Field Records	Level (mOD)	Depth (m)					X /_			
3339-30 6 10 15.69 0.50 10 10.60 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>9</th> <th>12 15</th> <th>18</th> <th>100</th> <th>24 2</th> <th>27 ;</th> <th>30</th>							9	12 15	18	100	24 2	27 ;	30
300-04 6 300-050 10 300-070 8 700-80 4 300-100 5 300-100 5 300-100 5 300-100 5 300-100 5 300-100 5 300-100 5 300-100 5 300-100 5 300-100 5 300-100 5 301-100 4 100-100 4 100-100 4 100-100 4 100-100 4 100-100 4 100-100 4 100-100 4 100-100 4 100-100 4 100-100 4 100-100 4 100-100 4 100-100 4 100-100 4 100-100 4 100-100 4 100-100 4 100-100 4 100-100 <td>.10-0.20</td> <td>4</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>· (</td> <td>23-</td> <td></td> <td></td>	.10-0.20	4			_					· (23-		
1000-070 8 1700-080 4 1700-080 4 1700-080 4 1700-080 4 1700-080 4 1700-080 4 1700-080 4 1700-080 4 1700-120 4 120-130 3 1800-170 3 1800-170 3 1800-170 3 1800-170 3 1800-170 3 1800-170 3 1900-200 3 1900-200 3 1900-200 3 1900-200 3 1900-200 3 1900-200 3 1900-200 3 1900-200 3 1900-200 3 1900-200 1000-100 1900-200 3 1900-200 3 1900-200 3 1900-200 3 1900-200 1000-100 1900-200 1000-100 1900-200					- 								
1200-080 4 000-100 5 000-100 5 110-10 4 120-100 </td <td></td> <td></td> <td></td> <td>13.59</td> <td>- 0.50</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>T</td>				13.59	- 0.50								T
000-00 4 000-100 5 100-120 4 30-140 3 30-140 4 30-140 4 40-150 4 30-140 4 40-150 4 30-140 3 30-140 3 30-140 3 30-140 3 30-170 3 30-170 3 30-200 3 30-200 3 30-200 3 30-200 3 30-200 3 30-200 3 30-200 3 30-200 3 30-200 4 10-200 2.00 10-200 2.00 10-200 2.00 10-200 3.00 10-200 3.00 10-300 3.00 10-300 3.00 10-300 3.00 10-300 3.00 10-300 4.00 10-300 <td>0.60-0.70</td> <td>8</td> <td></td> <td>+</td>	0.60-0.70	8											+
100-10 5 1300 100 <td< td=""><td>).70-0.80).80-0.90</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>╞</td></td<>).70-0.80).80-0.90												╞
11.0-1.20 4 120-1.30 3 130-1.40 4 130-1.50 4 130-1.60 4 130-1.60 4 130-1.70 3 130-1.70 3 130-1.70 3 130-1.70 3 130-1.70 3 130-2.70 3 130-2.70 3 130-2.70 3 120-2.70 3 130-2.70 3 130-2.70 3 130-2.70 3 130-2.70 7 120-2.70 7 120-2.70 7 120-2.70 7 130-2.70 7 130-2.70 7 130-3.70 10 130-3.70 10 130-3.70 10 130-3.70 10 130-3.70 10 130-3.70 10 130-3.70 10 100.90 4.00 10.90 4.00 10.90 10.90		5		13 09	_ 1 00								
3.01-10 4 150-160 4 150-160 4 150-160 4 150-160 4 150-160 4 150-160 4 150-160 4 150-160 3 150-160 3 150-160 3 150-160 3 150-20 2 200-20 3 230-20 3 240-250 4 6 1159 250-20 6 1159 250 1000 300 1159 250 1159 250 1000 300 1100 300 1100 300 1100 300 1100 300 1100 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000 100					-								
150-160 4 12.59 1.50	.20-1.30 .30-1.40	3 4											T
100-170 3 70-180 3 100-200 3 100-200 3 100-200 3 100-200 2 100-200 3 100-200 3 100-200 3 100-200 4 100-200 2 100-200 4 100-200 4 100-200 4 100-200 4 100-200 9 100-200 9 100-200 9 100-200 2 100-200 3.00 100-9 3.00 100-9 3.00 100-9 3.00 100-9 3.00 100-9 3.00 100-9 3.00 100-9 4.00 9.99 4.00 9.99 4.00 9.99 4.00 9.99 5.00 100-9 4.00 100-9 4.00 9.99 5.00 <t< td=""><td>.40-1.50</td><td></td><td></td><td>12 50</td><td>- 1.50</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>┢</td></t<>	.40-1.50			12 50	- 1.50								┢
80-100 2 100-210 3 100-210 3 100-210 3 100-210 3 100-210 2 100-210 3 100-210 2 100-210 3 100-210 2 100-210 2 100-210 2 100-210 2 100-210 2 100-210 2 11.59 2.50 11.59 2.50 11.59 2.50 11.59 2.50 11.59 2.50 11.59 2.50 11.59 2.50 11.59 2.50 11.59 3.00 11.59 3.00 11.59 3.00 11.59 3.00 11.59 3.00 11.59 3.00 11.59 3.00 11.59 3.50 10.59 3.50 10.59 4.50 10.99 4.50				12.00	-								+
190-200 3 100-210 2 110-220 2 120-230 3 130-240 5 130-240 5 140-250 4 150-260 6 11.59 2.50 11.59 2.50 11.59 2.50 11.59 2.50 11.59 2.50 100-300 18 100-310 18 100-320 20 120-330 21 130-340 23 10.59 3.50 10.59 3.50 10.59 3.50 10.59 3.50 10.59 3.50 10.59 3.50 10.59 4.00 9.59 4.50 9.50 10.50 9.50 10.50 9.50 10.50 9.60 10.50 9.60 10.50 9.60 10.50 9.60 10.50 9.60 10.50	.70-1.80	3			_								
1:10-2:0 2 1:20-3:0 3 1:30-2:0 4 1:00-2:0 4 1:00-2:0 4 1:00-2:0 4 1:00-2:0 1	.90-2.00	3			-								
120-230 3 130-240 6 150-260 6 150-260 6 150-270 7 70-280 9 100-310 18 110-9 3.00 110-9 3.00 110-9 3.00 110-9 3.00 110-9 3.00 100-9 - 100-9 - 100-9 - 9,9,9 - 100-9 - 9,9,9 - 100-9 - 9,9,9 - 9,9,9 - 9,9,9 - 9,9,9 - 9,9,9 - 9,9,9 - 9,9,9 - 9,9,9 - 100-9 - 100-9 - 9,9,9 - 100-9 - 9,9,9 - 100-9 - 9,9,9 - 100-9 -				12.09	— 2.00 -								T
440-250 4 6 11.59 2.50 11.59 2.50 11.59 </td <td>2.20-2.30</td> <td>3</td> <td></td> <td></td> <td>- </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>╞</td>	2.20-2.30	3			- 								╞
15.9-2.60 6 11.59 2.50 1 270-2.80 9 9 13 10.59 3.00 1 380-3.00 18 11.09 3.00 10.59 3.00 10.59 10.59 3.00 10.59 10.59 3.50 10.59 10.59 3.50 10.59 10.59 3.50 10.59 10.59 4.00 10.59 10.59 4.50 10.59 <td>2.40-2.50</td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td><u> </u></td> <td>-</td>	2.40-2.50	4							_			<u> </u>	-
70-2.80 9 13 300-3.00 18 11.09 -3.00 120-3.20 20 120-3.20 20 120-3.20 21 10.59 -3.50 10.59 -3.50 10.59 -3.50 10.59 -3.50 10.59 -3.50 10.59 -3.50 10.59 -4.00 10.59 -4.50 10.59 -4.50 10.59 -5.00 10.59 -5.00 10.59 -5.00 10.59 -5.00 10.59 -5.00 10.59 -5.00 10.59 -5.00 10.59 -5.00 10.50 -5.00 10.50 -5.00 10.50 -5.00 10.50 -5.00 10.50 -5.00 10.50 -5.00 10.50 -5.00 10.50 -5.00 10.50 -5.00 10.50 -5.00 <	2.50-2.60			11.59	— 2.50 —		-						
100-3.00 18 100-3.00 18 11.09 3.00 10.59 3.50 10.59 3.50 10.59 3.50 10.59 3.50 10.59 3.50 10.59 3.50 10.59 3.50 10.59 4.00 10.99 4.00 9.59 4.50 10.99 5.00	2.70-2.80	9											
3.00-3.10 18 11.09 3.00 3.010-3.20 20 2.20-3.30 21 3.30-3.40 23 10.59 - - - 10.59 - - - 10.59 - - - 10.59 - - - - - 10.59 - - - 10.59 - - <td></td>													
3.20-3.30 21 3.30-3.40 23 10.59 - - 3.50 10.59 - - - 10.99 - - - 10.99 - - - - - 10.99 - - - 10.99 - - - 10.99 - - - 10.99 - - - - - - - - - 9.99 - - - 9.99 - - - 9.99 - - - 9.09 - - - - - - - - - - - - - - - - -	3.00-3.10	18		11.09	— 3.00 _					_			t
10.59 3.50 10.69 3.50 10.69 1													+
Remarks Refusal at 3.40m BGL Refusal at 3.40m BGL Scale Sca	8.30-3.40	23											
8emarks Refusal at 3.40m BGL 8.50 9.59 5.00 9.50 <td></td> <td></td> <td></td> <td>10.59</td> <td>_ 3.50</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				10.59	_ 3.50								
Remarks Refusal at 3.40m BGL Refusal at 3.40m BGL													
Remarks Refusal at 3.40m BGL Refusal at 3.40m BGL													t
Remarks Refusal at 3.40m BGL				10.09	4.00								+
Remarks Refusal at 3.40m BGL					_ _								-
Remarks Refusal at 3.40m BGL Scale (approx)					- 								
Remarks Refusal at 3.40m BGL				9.59	4.50								
Remarks Refusal at 3.40m BGL													┢
Remarks Refusal at 3.40m BGL Scale (approx)												<u> </u>	╞
				9.09	5.00							<u> </u>	
		t 3.40m BGL									Scale (approx)	Logge By	ec
1:25											1:25	FO	D
Figure No 11957-06-													

Ş	Gro	und Investigations www.gii.ie				īnakilly C	o. Wicklow						Probe Numl	
Method Dynamic Pre fall height 50 weight 50.01	obe Heavy (DPH) 00mm, hammer kg	Cone Dimensions Diameter 43.7mm		.evel (mOD) 19.92	Client Ardale			Reco					Job Numl 11957-0	
Ū		Location (dGPS) 729299.9 E 695652.7 N	Dates 14/0	7/2022	Enginee CS Cor	r nsulting		Ŕ	EN A	2			Shee 1/	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)				for De	pth Inc	rement				
0.00-0.10	2		19.92	0.00	0 3	8 6	9	12	15	18 7	20-	24	27	30
).10-0.20	4			- 							50	<u>}</u>		
).20-0.30).30-0.40	5 5			-										T
).40-0.50	7													+
).50-0.60).60-0.70	16 20		19.42	0.50										+
).70-0.80	16													
).80-0.90).90-1.00	13 10													
1.00-1.10	12		18.92	— 1.00 —										
1.10-1.20 1.20-1.30	9			- 										+
.30-1.40	10 8													_
.40-1.50 .50-1.60	0 10		18.42	- 1.50										
.60-1.70	8			-										T
.70-1.80 .80-1.90	8			-										+
.90-2.00 .00-2.10	14 8		17.92	2.00										+
.10-2.20	5			-										
2.20-2.30 2.30-2.40	8 14			—										
2.40-2.50 2.50-2.60	9 6		17.42	2.50										t
2.60-2.70	6													+
2.70-2.80 2.80-2.90	3 3			-										_
2.90-3.00 3.00-3.10	2		16.92	3.00										
3.10-3.20	2		10.02	-										
3.20-3.30 3.30-3.40	3 4					_ †								+
3.40-3.50	4			-										+
3.50-3.60 3.60-3.70	4		16.42	— 3.50 —										_
3.70-3.80	4													
3.80-3.90 3.90-4.00	4													
1.00-4.10 1.10-4.20	5		15.92	4.00										+
1.20-4.30	11			—										+
1.30-4.40 1.40-4.50	16 18			-										
1.50-4.60	20		15.42	4.50										
.60-4.70 .70-4.80	20 22													Ť
				- 										+
Remarks			14.92	5.00				<u> </u>				Scale	Logg	⊥ Jec
Refusal at	t m BGL										C			
											ŀ	1:25 Figure	FO No.	D
												11957-		חה

	Gro	und Investigations www.gii.ie	s Ireland	Ltd	Site A034 Tinakilly	Co. Wicklow				Probe Numb	
Vlethod Dynamic Pr all height 5 veight 50.0	obe Heavy (DPH) 00mm, hammer	Cone Dimensions Diameter 43.7mm		.evel (mOD) 21.56	Client Ardale					Job Numb 11957-0	
		Location (dGPS) 729386.4 E 695677.3 N	Dates 13/0	7/2022	Engineer CS Consulting]	SRC FILE	>		Sheet 1/1	
Depth (m)	Blows for Depth Incremen	Field Records	Level (mOD)	Depth (m)	0 3 6		for Depth In 2 15	crement	24	27 3	30
0.00-0.10	3		21.56	0.00			2 15				+
0.10-0.20	4			-					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>	Ļ
.20-0.30 .30-0.40	4 6			- 							
.40-0.50 .50-0.60	8 7		21.06	0.50							
.60-0.70	10									-	t
).70-0.80).80-0.90	11 7									<u> </u>	╞
).90-1.00 I.00-1.10	8 8		20.56	 1.00						<u> </u>	Ļ
.10-1.20	6			- -							
.20-1.30 .30-1.40	9 10			-							
.40-1.50 .50-1.60	15 15		20.06	 							t
.60-1.70	16			-						<u> </u>	╞
.70-1.80 .80-1.90	20 22			-					_	<u> </u>	
.90-2.00	26 25		10.50	-							
.00-2.10	25		19.56	2.00 							Ī
				-							t
				-							
			19.06	2.50							
				- 							
				 - 							t
			18.56	3.00							╞
				-							+
			-	-							
			18.06	3.50							
											t
				- -							╞
			17.56	4.00						ļ	Ļ
				- 							
				-							
			17.06	- 4.50							┢
				-						<u> </u>	+
				-							
			16.56	 5.00							
Remarks Refusal a	t m BGL	1	10.00					+ +	Scale (approx	Logge By	±
									1:25 Figure	FOI No.	D
										06-22.D	י د

S	Gro	und Investigations www.gii.ie			Site A034 Tinakilly (Co. Wicklow				Probe Numbe
Method Dynamic Pr fall height 5 weight 50.0	robe Heavy (DPH) 600mm, hammer Ika	Cone Dimensions Diameter 43.7mm		evel (mOD) 1.85	Client Ardale	P.C.	C. C. L.			Job Numbe 11957-06-
		Location (dGPS) 729471 E 695687.4 N	Dates 14/07	7/2022	Engineer CS Consulting	(ALL.			Sheet 1/2
Depth (m)	Blows for Depth Incremen	t Field Records	Level (mOD)	Depth (m)	0 3 6	Blows for 9 12		rement 8 21	24	27 30
0.00-0.10	2		21.85	- 0.00					2	+
0.10-0.20	3			-					<u></u>	
0.20-0.30 0.30-0.40	3 4			-						
0.40-0.50 0.50-0.60	4 6		21.35	- 0.50						
0.60-0.70	7			-						
0.70-0.80 0.80-0.90	10 7			-						
0.90-1.00 1.00-1.10	6 4		20.85	- — 1.00						
1.10-1.20	4		20.00	-						
1.20-1.30 1.30-1.40	4 3			-						
1.40-1.50	2			-						
1.50-1.60 1.60-1.70	3		20.35	- 1.50 -						
1.70-1.80	2			-						
1.80-1.90 1.90-2.00	2			-						
2.00-2.10	3		19.85	- 2.00						
2.10-2.20 2.20-2.30	2		-	-						
2.30-2.40	3			-						
2.40-2.50 2.50-2.60	3 3		19.35	- 2.50						
2.60-2.70	2			-						
2.70-2.80 2.80-2.90	3 2			-						
2.90-3.00 3.00-3.10	23		18.85	- — 3.00						
3.10-3.20	3			-						
3.20-3.30 3.30-3.40	2 2			-						
3.40-3.50 3.50-3.60	2 4		18.35	- - 3.50						
3.60-3.70	3		10.35	- 5.50						
3.70-3.80 3.80-3.90	4 3			-						
3.90-4.00	3			-						
4.00-4.10 4.10-4.20	4		17.85	— 4.00 -						
4.20-4.30	3			-						+
4.30-4.40 4.40-4.50	2			-						\mid
4.50-4.60	4		17.35	_ 4.50						
4.60-4.70 4.70-4.80	5			-						
4.80-4.90	11			-						+
4.90-5.00	17		16.85	5.00						\square
Remarks Refusal a	t 5.40m BGL								Scale (approx)	Logged By
									1:25	FOD
									Figure	
									11957-	06-22.DP

	Gro	und Investigations www.gii.ie	s Ireland	Ltd	Site A034 T	ïnakilly Co	. Wicklow					Probe Numb	
lethod ynamic Pr all height 5 reight 50 0	robe Heavy (DPH) 00mm, hammer lkg	Cone Dimensions Diameter 43.7mm		.evel (mOD) 21.85	Client Ardale			P.C.				Job Numb 11957-0	
		Location (dGPS) 729471 E 695687.4 N	Dates 14/0	7/2022	Enginee CS Cor	r nsulting		PECEIL	Ś			Sheet 2/2	
Depth (m)	Blows for Depth Incremen	t Field Records	Level (mOD)	Depth (m)	0 3	6		for Depth I 12 15	ncremen 18	/_	4 2	27 3	30
.00-5.10	14		16.85	5.00						3			t
10-5.20	18									ž	р С	 	+
20-5.30 30-5.40	21 25												
			16.35	5.50									
			15.85	6.00									
												<u> </u>	-
			15.35	- - - 6.50									-
				- - -									-
			14.85 -	 7.00									
			-										-
			44.05	 7.50									
			14.35	- 7.50 									
				- - -									
			13.85 -	— 8.00 — —									
				- -									_
			13.35 -	— 8.50 — —									-
				- -									-
			12.85 -	9.00 									-
				- - -									
			12.35	9.50 									-
				- 									
emarks			11.85	10.00						S (a	Scale	Logge By	e
											1:25 Figure I	FOI	
												06-22.D	

SI	Gro	und Investigations www.gii.ie	s Ireland	Ltd	Site A034 Tir	nakilly Co.	Wicklow						Probe Numb	
Method Dynamic Pr fall height 5 weight 50.0	obe Heavy (DPH) 00mm, hammer	Cone Dimensions Diameter 43.7mm		.evel (mOD) 24.73	Client Ardale			Pro					Job Numb 11957-0	
weight 00.0	rg	Location (dGPS) 729506.2 E 695751.4 N	Dates 14/0	7/2022	Engineer CS Cons			PKCK	N.)			Sheet 1/2	
Depth (m)	Blows for Depth Incremen	Field Records	Level (mOD)	Depth (m)	0 3	6		for De 12		ement 8		24 2	27	30
0.00-0.10	2		24.73	0.00		,					مح	2		-
0.10-0.20 0.20-0.30	4 6			- -							-v	<u>7</u> 2		+
0.30-0.40	6			-										
0.40-0.50 0.50-0.60	6 8		24.23	0.50										
0.60-0.70	6													+
0.70-0.80 0.80-0.90	5 4			-										+
0.90-1.00 1.00-1.10	4 5		23.73	1.00		1,								+
1.10-1.20	4			- 										
1.20-1.30 1.30-1.40	4 4			-										
1.40-1.50 1.50-1.60	5 5		23.23	 										+
1.60-1.70	4			- 										+
1.70-1.80 1.80-1.90	4			-										
1.90-2.00	5			- -		4								
2.00-2.10 2.10-2.20	4		22.73	2.00 		L								
2.20-2.30	5			-										+
2.30-2.40 2.40-2.50	4			-										_
2.50-2.60 2.60-2.70	4		22.23	— 2.50 —										
2.70-2.80	3													
2.80-2.90 2.90-3.00	2			-										T
3.00-3.10	3		21.73	3.00										+
3.10-3.20 3.20-3.30	2			-										+
3.30-3.40	4													
3.40-3.50 3.50-3.60	5 4		21.23	- - 3.50										
3.60-3.70	7													t
3.70-3.80 3.80-3.90	8 10			- -										+
3.90-4.00 4.00-4.10	3 4		20.73	4.00										+
4.10-4.20	3			-										
4.20-4.30 4.30-4.40	3 4			-		1								T
4.40-4.50 4.50-4.60	5 12		20.23	- 4.50										+
4.60-4.70	13			-										+
4.70-4.80 4.80-4.90	15 18			-										
4.90-5.00	20		10 70	- 										
Remarks Refusal a	t 5.40m BGL	1	19.73	5.00							5(1	Scale approx)	Logg By	ed
												1:25 Figure	FO	D
												11957-()6-22.E	ЭР [,]

S	Gro	und Investigations www.gii.ie	s Ireland	Ltd	Site A034 T	īnakilly Co	. Wicklow					Probe Numb	
ethod /namic Pr Il height 5 eight 50 0	obe Heavy (DPH) 00mm, hammer kg	Cone Dimensions Diameter 43.7mm		.evel (mOD) 24.73	Client Ardale		4					Job Numb 11957-0	
		Location (dGPS) 729506.2 E 695751.4 N	Dates 14/0	7/2022	Enginee CS Col	r nsulting		R. R. N.R.	\$			Sheet 2/2	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0 3	6	Blows f 9 12	or Depth In 2 15	crement	2 2	4 2	27 3	30
00-5.10	10		19.73	5.00						~ ~~			t
10-5.20	20			-						Y	<u>ي</u>		
20-5.30 30-5.40	21 22												
			19.23	5.50									
			18.73	- - - 6.00									
			18.23 -	 									
				-									-
													-
			17.73	— 7.00 — —									
				- 									_
			17.23	— 7.50 —									-
				- - -									
			16.73	8.00 									
			16.23										
			15.73	9.00 									
			15.23	9.50									-
													_
emarks			14.73	10.00						s	cale	Logge By	e
											pprox) 1:25	By	
										F	igure	No.	

S	Gro	und Investigations www.gii.ie	s Ireland	Ltd	Site A034 Tinakill	ly Co. Wicklov	v			Probe Numb	
Method Dynamic Pr all height 5 veight 50.0	robe Heavy (DPH) 00mm, hammer	Cone Dimensions Diameter 43.7mm		.evel (mOD) 11.97	Client Ardale		P.C.			Job Numb 11957-0	
veight 50.0	κġ	Location (dGPS) 729195.4 E 695578.6 N	Dates 13/0	17/2022	Engineer CS Consultir	ng	PECEILE	\$		Sheet 1/1	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)			s for Depth Ir	×~			
0.00-0.10	3		11.97	<u> </u>	0 3	6 9	12 15	18 21	24	27 :	30
.10-0.20	4			-					L O ² 2		
.20-0.30 .30-0.40	5 4			-							T
.40-0.50	4		44.47	-							+
.50-0.60 .60-0.70	4		11.47	— 0.50 							+
.70-0.80 .80-0.90	6 14										
.90-1.00	10			- -							
.00-1.10 .10-1.20	7		10.97	1.00 							t
.20-1.30	7			-							+
.30-1.40 .40-1.50	16 11			-							+
.50-1.60	6		10.47	- - 1.50							
.60-1.70 .70-1.80	2			-							
.80-1.90	3 2			-							t
.90-2.00 .00-2.10	3 2		9.97	2.00							+
.10-2.20	3										
.20-2.30 .30-2.40	23			-							
.40-2.50 .50-2.60	3 3		9.47	 2.50							t
.60-2.70	2			-							+
2.70-2.80 2.80-2.90	3 2			-							+
2.90-3.00 3.00-3.10	1 6		8.97	3.00							
.10-3.20	9			-							
3.20-3.30 3.30-3.40	6 8			 - 							t
.40-3.50	8		8.47	- 3.50							+
3.50-3.60 3.60-3.70	10 16		0.47	3.50 							+
.70-3.80 .80-3.90	20 22			-							
8.90-3.90 8.90-4.00	25			-							
			7.97	4.00 							t
				- -							-
			7.47	4.50 -							
				-							T
				-							+
			6.97	5.00							
Remarks Refusal a	t 4.00m BGL								Scale (approx	Logge By	ec
									1:25	FO	D
									Figure	NO. 06-22.C	

S	Gro	und Investigations www.gii.ie	s Ireland L	_td	Site A034 Tina	akilly Co.	Wicklow						Probe Numb	
Method Dynamic Pr fall height 5 weight 50.0	obe Heavy (DPH) 00mm, hammer	Cone Dimensions Diameter 43.7mm	Ground Lev 17.		Client Ardale			P _K CK					Job Numb 11957-0	
inorgine co.c		Location (dGPS) 729252.3 E 695617.7 N	Dates 13/07/2	2022	Engineer CS Consu	ulting			NE)			Shee 1/ ⁻	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)				for Dep		- X -	·			
0.00-0.10	3		17.16	- 0.00	0 3	6	9 1	12 1	5 1	8 2	24	2	:7 :	30
0.10-0.20	10										`Q₁	Ş		
0.20-0.30 0.30-0.40	9 7		E											Γ
0.40-0.50 0.50-0.60	6 7		16.66	0.50										+
0.60-0.70	6			0.00										_
).70-0.80).80-0.90	5 3		-											
0.90-1.00	4													
1.00-1.10 1.10-1.20	4		16.16	- 1.00										
1.20-1.30	3													+
1.30-1.40 1.40-1.50	3													+
1.50-1.60	2		15.66	1.50										
1.60-1.70 1.70-1.80	3													
1.80-1.90 1.90-2.00	3													
2.00-2.10	2		15.16	- 2.00										+
2.10-2.20 2.20-2.30	2		-											+
2.30-2.40	2 2		-											
2.40-2.50 2.50-2.60	1 2		14.66	2.50										
2.60-2.70	1		-											t
2.70-2.80 2.80-2.90	02													+
2.90-3.00 3.00-3.10	2 4		14.16	- 3.00			_							+
3.10-3.20	3		-											
3.20-3.30 3.30-3.40	6 6					_								
3.40-3.50 3.50-3.60	12 14		13.66	3.50										t
3.60-3.70	11		-											+
3.70-3.80 3.80-3.90	17 20													_
3.90-4.00 4.00-4.10	21 24		13.16	- 4.00										
	2.			1.00										
														+
				4.50										╞
			12.66	4.50										-
													-	
Remarks Refusal at	t 4.10m BGL		12.16	_ 5.00			_				Sca (apr	ale prox)	Logg By	⊥ ed
											1::		FO	
											-		06-22.C	٦C

S	Gro	und Investigations www.gii.ie	s Ireland	Ltd	Site A034 Tinakilly (Co. Wicklow				Probe Numbe
Method Dynamic Pr fall height 5 weight 50.0	obe Heavy (DPH) 00mm, hammer	Cone Dimensions Diameter 43.7mm		.evel (mOD) 16.99	Client Ardale	4				Job Numbe 11957-06
	ng	Location (dGPS) 729295.3 E 695576.1 N	Dates 14/0	7/2022	Engineer CS Consulting		RCEILE	<u>^</u>		Sheet 1/1
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0 3 6	Blows f 9 12	or Depth Inc	rement	24	27 30
0.00-0.10	3		16.99	0.00				F P	2	\pm
0.10-0.20	4			-					<u> </u>	
0.20-0.30 0.30-0.40	5 9			- 						
0.40-0.50 0.50-0.60	11 11		16.49	0.50						
0.60-0.70	9			-						
0.70-0.80 0.80-0.90	11 12			-						+
0.90-1.00 1.00-1.10	12 7		15.99	 						
1.10-1.20	3			-						
1.20-1.30 1.30-1.40	4									
1.40-1.50	4			-						
1.50-1.60 1.60-1.70	7		15.49	— 1.50 						
1.70-1.80	3			-						
1.80-1.90 1.90-2.00	2			-						
2.00-2.10	3		14.99	2.00						
2.10-2.20 2.20-2.30	3			- 						
2.30-2.40	4									
2.40-2.50 2.50-2.60	2 3		14.49	2.50						
2.60-2.70 2.70-2.80	2			-						
2.80-2.90	3		-	-						
2.90-3.00 3.00-3.10	3 3		13.99	3.00						++
3.10-3.20	3			-						
3.20-3.30 3.30-3.40	4 5			- -						
3.40-3.50 3.50-3.60	12 18		13.49							
3.60-3.70	21			- -						
3.70-3.80 3.80-3.90	23 25			-						+
			12.99	- 4.00						
				- 						
				-						
				- 						
			12.49	4.50 						+
				- 						
				 - 						
Remarks Refusal at	t 3.90m BGL		11.99	5.00					Scale (approx	Logged By
									1:25 Figure	FOD
									-	-06-22.DF

	Gro	und Investigations www.gii.ie	s Ireland	Ltd	Site A034 Tinakilly (Co. Wicklow				Probe Numi	
Method Dynamic Pr all height 5 veight 50.0	obe Heavy (DPH) 00mm, hammer ko	Cone Dimensions Diameter 43.7mm		evel (mOD) 19.28	Client Ardale					Job Numl 11957-0	
		Location (dGPS) 729345.3 E 695606.9 N	Dates 13/0	7/2022	Engineer CS Consulting		PRCEIVE	\$		Shee 1/	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0 3 6		for Depth Inc 2 15	crement	24	27	30
0.00-0.10	2		19.28	0.00					2	1	ŧ
0.10-0.20	5			_					- 7 2		_
.20-0.30 .30-0.40	8 7			- 							
.40-0.50 .50-0.60	6 5		18.78	- 0.50							
.60-0.70	4			- 							+
.70-0.80 .80-0.90	9 8			- 							+
.90-1.00 .00-1.10	8 10		18.28	- 1.00							
.10-1.20	9		10.20	-							
.20-1.30 .30-1.40	2 4			_							t
.40-1.50	4			—							+
.50-1.60 .60-1.70	3		17.78	— 1.50 —							_
.70-1.80	4			- 							
80-1.90 90-2.00	3										T
00-2.10	4		17.28	- 2.00							+
10-2.20 20-2.30	3										_
.30-2.40	2			-							
.40-2.50 .50-2.60	2 5		16.78	- 2.50							
.60-2.70	10			-							t
.70-2.80 .80-2.90	14 15			—-							+
.90-3.00 .00-3.10	16 18		16.28	- 3.00							\downarrow
.10-3.20	8			- 				-			
.20-3.30 .30-3.40	14 20										Ť
.40-3.50 .50-3.60	21 23		15.78	- 							+
.50-5.00	25		13.78	- 5.50							+
				- 							
			15.28	4.00							+
											+
			14.78	4.50							
				_ _						1	t
				-						+	+
			14.28	5.00						_	
Remarks Refusal a	t m BGL								Scale (appro	e Logg bx) By	jec
									1:25		D
									Figur	e No. 7-06-22.[

S	Gro	und Investigations www.gii.ie	s Ireland	Ltd	Site A034 Tinak	illy Co. Wic	klow					Probe Numb	
Method Dynamic Pr fall height 5 weight 50.0	obe Heavy (DPH) 00mm, hammer	Cone Dimensions Diameter 43.7mm		.evel (mOD) 20.72	Client Ardale		PA	N.				Job Numb 11957-0	
		Location (dGPS) 729422.2 E 695640.4 N	Dates 13/0	7/2022	Engineer CS Consult	ting		EL.	\$			Sheet 1/ ⁻	
Depth (m)	Blows for Depth Incremen	Field Records	Level (mOD)	Depth (m)	0 3	B 6 9	lows for D	epth In 15	- X.	2) 24	2	27	30
0.00-0.10	2		20.72	0.00		\mp		+	+	2			=
).10-0.20).20-0.30	4									- A	3		╞
0.30-0.40	6												
.40-0.50 .50-0.60	7 7		20.22	0.50									
.60-0.70	7			-									T
.70-0.80 .80-0.90	6 5		-	- 									┢
).90-1.00 .00-1.10	6 8		19.72	1.00									╞
.10-1.20	9												
.20-1.30 .30-1.40	7 7			- -									
.40-1.50 .50-1.60	6 8		19.22	 									t
.60-1.70	8			-									╞
.70-1.80 .80-1.90	9 10		-	-			1						
.90-2.00 .00-2.10	11		18.72 -	 2.00									
.10-2.20	10		10.72	-									
.20-2.30 .30-2.40	12 13												t
.40-2.50	14			- -									+
2.50-2.60 2.60-2.70	16 16		18.22	— 2.50 —									+
.70-2.80	18			- 									
2.80-2.90 2.90-3.00	18			-									
.00-3.10 .10-3.20	20 21 22		17.72	3.00									t
.10-3.20	22		-	- 									_
													ļ
			17.22	3.50									
				-									
				-									t
			16.72	4.00									╞
				- -									
			16.22	4.50									t
				- 									+
				-									+
			15.72	5.00									
Remarks Refusal a	t 3.20m BGL		,	-						Sc (ap	ale prox)	Logg By	e
										1:	25	FO	D
											gure I		
										11	957-0)6-22.C)

S	Gro	und Investigations www.gii.ie	s Ireland L	td	Site A034 Tinakilly (Co. Wicklow				Probe Numi	
Method Dynamic Pr fall height 5 weight 50.0	robe Heavy (DPH) 500mm, hammer 0kg	Cone Dimensions Diameter 43.7mm	Ground Lev 20.		Client Ardale	Ŷ	ECENA			Job Numl 11957-0	
inelgin eere		Location (dGPS) 729456.5 E 695614.8 N	Dates 13/07/2	2022	Engineer CS Consulting		ENE	<i></i> ъ		Shee 1/	
Depth (m)	Blows for Depth Incremen	Field Records	Level (mOD)	Depth (m)	0 3 6	Blows fo 9 12	r Depth Ind 15	rement	24	27	30
0.00-0.10	4		20.25	0.00					2		ŧ
0.10-0.20	3								- 7 3-		_
).20-0.30).30-0.40	4 5										
).40-0.50).50-0.60	4 7		19.75	0.50		1					
).60-0.70	6										+
0.70-0.80 0.80-0.90	5 4										+
0.90-1.00 1.00-1.10	4 3		19.25	1.00							
1.10-1.20	3										
1.20-1.30 1.30-1.40	4 3										T
1.40-1.50 1.50-1.60	4 4		18.75	1.50							+
1.60-1.70	3			1.50							+
.70-1.80 .80-1.90	4 5										
.90-2.00	5		-								
2.00-2.10 2.10-2.20	4		18.25	2.00							t
2.20-2.30	23		-								+
2.30-2.40 2.40-2.50	2										_
2.50-2.60 2.60-2.70	4		17.75	2.50							
2.70-2.80	5		-								
2.80-2.90 2.90-3.00	3		-								T
3.00-3.10	6		17.25	3.00							+
3.10-3.20 3.20-3.30	5										+
3.30-3.40	8										
3.40-3.50 3.50-3.60	10 9		16.75	3.50							
3.60-3.70	9		-								T
3.70-3.80 3.80-3.90	74										+
3.90-4.00 4.00-4.10	4 4		16.25	4.00							+
1.10-4.20	6										
4.20-4.30 4.30-4.40	6 7					ן ן					
1.40-4.50 1.50-4.60	6 4		15.75	4.50							+
4.60-4.70	6										+
4.70-4.80 4.80-4.90	9 16										+
4.90-5.00	21		15.25	5.00							
Remarks Refusal a	t 5.10m BGL	1			· · · · T			· · · · ·	Scale (approx	Logg By	ed
									1:25 Figure	FO No.	D
									11957-	06-22.[DP

S	Gro	und Investigations www.gii.ie	Ireland	Ltd	Site A034 T	inakilly Co	. Wicklow				Pro Nur DF	nbei 222
ethod ynamic Pi II height 5 eight 50 (robe Heavy (DPH) 500mm, hammer 0kg	Cone Dimensions Diameter 43.7mm		.evel (mOD) 20.25	Client Ardale		4	R. F. L.			Job Nur 11957	nbe
g		Location (dGPS) 729456.5 E 695614.8 N	Dates 13/0	7/2022	Enginee CS Col	r nsulting		FILE	2		She	eet 2/2
Depth (m)	Blows for Depth Incremen	t Field Records	Level (mOD)	Depth (m)	0 3	6	Blows f 9 12	or Depth In 2 15	crement	24	27	3(
00-5.10	25		15.25	5.00								
				 								_
			14.75	5.50 								
			14.25	 6.00								
				- -								
			13.75	- 								
				-								
			13.25	7.00								
				- - - -								
			12.75	- 								
				-								
			12.25	— 8.00 — - -								
			11.75	 8.50								
				- 								_
			11.25	 9.00								
				- - - -								
			10.75	9.50								
emarks			10.25	10.00					-	Scal (appi	e Log ox) By	ge
										1:2 Figu	5 F re No.	0
											57-06-22	!.D

	Gro	und Investigations www.gii.ie	s Ireland	Ltd	Site A034 Tinakilly	Co. Wicklow				Probe Numb	
/lethod Dynamic Pr all height 5 veight 50.0	obe Heavy (DPH) 00mm, hammer ko	Cone Dimensions Diameter 43.7mm		.evel (mOD) 23.53	Client Ardale	ŕ.				Job Numb 11957-0	
		Location (dGPS) 729537.6 E 695653.8 N	Dates 13/0	7/2022	Engineer CS Consulting	I	R CHILE	~		Sheet 1/1	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0 3 6		or Depth Inc	crement	24	27 3	30
.00-0.10	2		23.53	0.00						+	ŧ
.10-0.20	3			-					<u></u>		ļ
.20-0.30 .30-0.40	4 4			 							
.40-0.50 .50-0.60	3 3		23.03	0.50							
.60-0.70	4			-							F
.70-0.80 .80-0.90	5 4										+
.90-1.00 .00-1.10	3		22.53	1.00							ļ
.10-1.20	2										
.20-1.30 .30-1.40	3 4			-							t
.40-1.50 .50-1.60	4		22.03	1 50						-	F
.60-1.70	4		22.03	— 1.50 —							-
.70-1.80 .80-1.90	3 2			 							
.90-1.90	3										
00-2.10 10-2.20	3		21.53	2.00							t
.20-2.30	3			- 							╞
.30-2.40 .40-2.50	3			 							
.50-2.60	5		21.03	_ 2.50							
.60-2.70	9 11			-							ſ
.70-2.80 .80-2.90	7		-								╞
.90-3.00 .00-3.10	16 20		20.53	3.00							╞
.10-3.20	25			 							
				—							
			20.03	3.50						-	f
										-	F
				-							-
			19.53	4.00							
			19.55	- 4.00							
											+
				-							+
			19.03	4.50							
										1	t
Remarks Refusal a	t 3.20m BGL		18.53	5.00					Scale (approx	Logge	∔ ∋e
									1:25	FOI	
									Figure	No. -06-22.D	

S	Gro	und Investigations www.gii.ie	Ireland	Ltd	Site A034 Tinakilly (Co. Wicklow				Probe Numb	
Vethod Dynamic Pr all height 5 weight 50.0	robe Heavy (DPH) 00mm, hammer	Cone Dimensions Diameter 43.7mm		evel (mOD) 26.13	Client Ardale	4				Job Numb 11957-0	
weight 50.0	ing	Location (dGPS) 729571.3 E 695713.4 N	Dates 13/0	7/2022	Engineer CS Consulting		CEILE	<u>`</u>		Sheet 1/1	
Depth (m)	Blows for Depth Incremen	t Field Records	Level (mOD)	Depth (m)			or Depth Inc	× ~			
).00-0.10	3		26.13	0.00	0 3 6	9 1	2 15 '	18 2	24	27 3	30
.10-0.20	4			-					` Q_2		
.20-0.30 .30-0.40	6 7					1					
.40-0.50 .50-0.60	4 4		25.63	- 0.50		-					t
.60-0.70	9		20.00	-							-
.70-0.80 .80-0.90	8 7			_						<u> </u>	
.90-1.00	7										
.00-1.10 .10-1.20	5		25.13	— 1.00 -							
.20-1.30	4			- 							F
.30-1.40 .40-1.50	3										-
.50-1.60	3		24.63	— 1.50 —							
.60-1.70 .70-1.80	4			- 		1					
.80-1.90	5										
.90-2.00 .00-2.10	6 5		24.13	- 2.00							ł
.10-2.20	3			— - -							-
20-2.30 30-2.40	3			- 							
2.40-2.50 2.50-2.60	4 4		23.63	- 2.50							
2.60-2.70	3										ſ
2.70-2.80 2.80-2.90	4 6			—							-
2.90-3.00 3.00-3.10	7 7		23.13	- 3.00							
8.10-3.20	8			- 							
3.20-3.30 3.30-3.40	11 11										
3.40-3.50 3.50-3.60	10 16		22.63	– – 3.50							F
8.60-3.70	18			_							
3.70-3.80 3.80-3.90	23 25										
			20.42	4.00							
			22.13	4.00 							
				- 						-	+
											+
			21.63	4.50							
				_						1	ſ
Remarks			21.13	5.00					Scale	Logge	⊥ aď
Refusal a	t 3.90m BGL								(approx		
									1:25 Figure	FOI No.	ر
									11957-	06-22.D	۶F

S	Gro	und Investigations www.gii.ie	s Ireland	Ltd	Site A034 Tinakilly	Co. Wicklow				Prob Num DP	
Method Dynamic Pr all height 5 veight 50.0	obe Heavy (DPH) 00mm, hammer ko	Cone Dimensions Diameter 43.7mm		evel (mOD) 27.09	Client Ardale		PA			Job Num 11957-	ıbe
longint co.c		Location (dGPS) 729613.6 E 695671.9 N	Dates 14/0	7/2022	Engineer CS Consulting	9	PECEIVE	~		Shee 1	et /1
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)			for Depth In	X -			
0.00-0.10	2		27.09	0.00	0 3 6	§ 9	12 15	18 2	24	27	30
.10-0.20	3			_							
.20-0.30 .30-0.40	5 6			- 							
.40-0.50 .50-0.60	7		26.59	- 0.50							+
.60-0.70	8			_							_
.70-0.80 .80-0.90	13 13			_							
.90-1.00	14			-							
.00-1.10 .10-1.20	12 9		26.09	— 1.00 -							T
20-1.30	6 7										+
.30-1.40 .40-1.50	8										_
.50-1.60 .60-1.70	5		25.59	— 1.50 —							
.70-1.80	10										
80-1.90 90-2.00	12 15			_ _							
00-2.10	16		25.09	- 2.00							+
10-2.20 20-2.30	16 17			— - -				_			_
.30-2.40	18		-	-							
.40-2.50 .50-2.60	18 20		24.59	- 2.50							
.60-2.70	22										+
.70-2.80	23										+
			24.09	3.00							\downarrow
				- 							
			23.59	- - 3.50							+
											+
			23.09	- 4.00							
			23.09	- 4.00							
											-
											+
			22.59	4.50							
											+
Remarks Refusal at	t m BGL		22.09	5.00					Sca (app	e Logg ox) By	geo
									1:2	5 FC	OD
									Figu	re No.	

APPENDIX 5 – Cable Percussion Borehole Records

Machine : Da	indo 2000	Casing	WW Diamete	/w.gii.ie r	Ground	Level	(mOD)	Client		Jo	
Method : Ca	ble Percussion	200	0mm cas	ed to 10.00m		17.64		Ardale			u mber 57-06-2
		Locatio		695807.5 N	Dates 22	2/08/20)22	Engineer CS Consulting		Sł	n eet 1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Do ((Thic	epth m) kness)	Description	Legend	Water	Instr
					17.44 17.24	<u> </u>	(0.20) 0.20 (0.20) 0.40	_TOPSOIL Reddish brown slightly sandy gravelly CLAY with] occasional plant rootlets			
0.50	В						(0.60)	Grey slightly clayey sandy medium to coarse GRAVEL with occasional cobbles			
1.00-1.38 1.00	SPT(C) 50/225 B			8,12/17,20,13	16.64		1.00	Medium dense grey slightly clayey sandy medium to coarse GRAVEL with occasional cobbles	0.0		
2.00-2.45	SPT(C) N=9			7,9/2,2,3,2			(1.20)				
2.00	B			1,0,2,2,0,2	15.44		2.20	Firm reddish brown slightly sandy gravelly CLAY with occasional cobbles			
3.00-3.45 3.00	SPT(C) N=8 B			1,2/1,2,2,3			(2.10)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
									0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
4.00-4.45 4.00	SPT(C) N=24 B			7,6/7,7,6,4	13.34		4.30	Medium dense reddish brown silty fine SAND	× × × ×		
5.00-5.45 5.00	SPT(C) N=35 B			7,7/9,9,8,9	12.64		(0.70) 5.00 (0.50)	Dense reddish brown silty fine SAND	× × × × × × × × × × × × × × × × × × ×		
					12.14		5.50	Dense grey slightly clayey sandy medium to coarse GRAVEL with occasional cobbles	× · · · · · ·		
5.00-6.45 5.00	SPT(C) N=48 B			7,10/14,14,9,11			(1.90)				
7.00-7.45 7.00	SPT(C) N=40 B			7,8/9,10,9,12							
					10.24		7.40	Very stiff reddish brown slightly sandy slightly gravelly CLAY			
3.00-8.45 3.00	SPT(C) 50/295 B			7,7/10,12,28			(1.40)				
9.00-9.42 9.00	SPT(C) 50/265 B			7,7/12,14,24	8.84		8.80	Very stiff dark grey slightly sandy gravelly CLAY			
10.00-10.38	SPT(C) 50/225			8,12/14,36	7.64		(1.20)				
Remarks	ter encountered			, ,	1.04	<u> </u>	10.00		Scale (approx)	Ц	ogged y
Borehole corr	plete at 10.00m BC	BL ea gravel :	surround	installed from 10.00r	m to 1.00m	n BGL.	50mm p	olain standpipe with a bentonite seal installed	(approx)		y Fod
		Sed COVE	•						Figure N		00

S			WW	gations Ire /w.gii.ie			Site A034 Tinakilly Co	. Wicklow			Nu	mber H01
Machine : Da Method : Ca	indo 2000 ible Percussion		Diamete Omm case	r ed to 10.00m		Level (mOD) 17.64	Client Ardale	Pro-				b Imber 57-06-2
		Location 729		695807.5 N	Dates 22	/08/2022	Engineer CS Consulting	P.F.C.F.	R S		Sh	eet 2/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)		Description	<u>`0</u> . 	Legend	Water	Instr
Remarks	В											henne
Remarks										Scale (approx)	Lo By	gged
									-	1:50		OD
										Figure N 11957-0		.BH0′

Machine : Da Method : Ca	ando 2000 able Percussion	Casing 200		r ed to 10.00m		Level (mOD) 18.45			Job Number 11957-06-2
		Location 729		695809.9 N	Dates 22 24	/08/2022- /08/2022	Ardale Engineer CS Consulting		Sheet 1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Nate Instr
0.50	В				18.15	(0.30)	TOPSOIL Loose reddish brown slightly clayey fine SAND		
0.50 1.00-1.45 1.00	B SPT(C) N=6 B			2,1/2,1,1,2		(1.70)			
2.00-2.45 2.00	SPT(C) N=9 B			1,1/2,2,2,3	16.45	2.00	Loose to medium dense reddish brown slightly clayey fine SAND		
3.00-3.45 3.00	SPT(C) N=13 B			2,2/3,3,3,4	15.45	3.00	Medium dense reddish brown slightly clayey fine SAND		
4.00-4.45 4.00	SPT(C) N=16 B			2,3/3,4,4,5		(1.70)			
5.00-5.45 5.00	SPT(C) N=43 B			4,5/9,10,12,12	13.75	4.70	Dense dark brown slightly gravelly clayey medium to coarse SAND with occasional cobbles		
6.00-6.45 6.00	SPT(C) N=48 B			7,10/12,12,12,12	12.45	6.00	Very stiff brown sandy SILT		
7.00-7.45 7.00	SPT(C) 50/295 B			4,7/10,14,26	11.45	7.00	Very stiff brown slightly silty sandy CLAY	×** × × × × ** × × × ** × × × ** × × × ** × × × × × × × × × × × × × ×	
3.00-8.44 3.00	SPT(C) 50/285 B			10,10/12,14,24	10.45	8.00	Very stiff brown slightly sandy slightly silty slightly gravelly CLAY	× · · · · · · · · · · · · · · · · · · ·	
9.00-9.40 9.00	SPT(C) 50/245 B			7,10/10,14,26		(2.00)		× • • • × • × • • • • • •	
10.00-10.33 Remarks	SPT(C) 50/180			8,12/12,38	8.45	10.00		x	
No groundwa	ter encountered	GL						Scale (approx)	Logged By

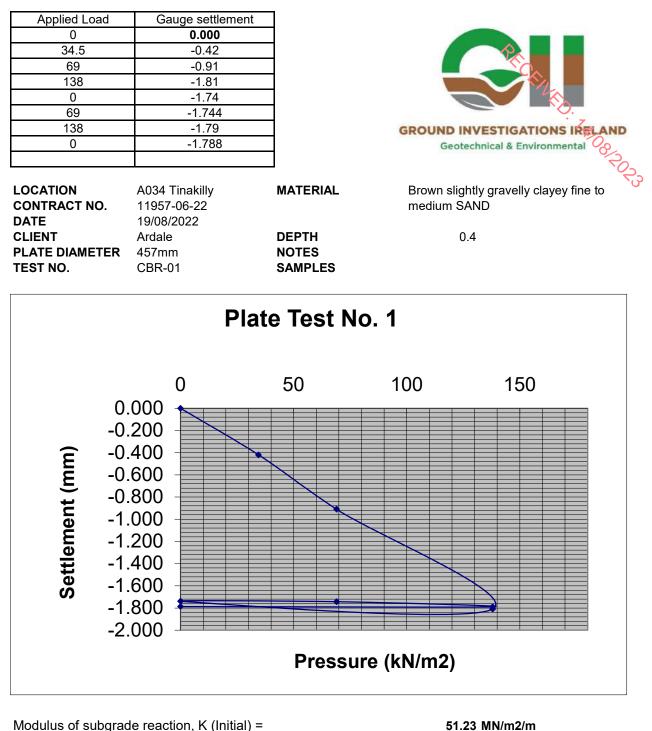
			WW	gations Ire /w.gii.ie			Site A034 Tinakilly Co	o. Wicklow			Nu	orehole umber 6H02
Machine : Da Method : Ca	indo 2000 ible Percussion		Diamete Omm case	r ed to 10.00m		Level (mOD) 18.45	Client Ardale	Ŷ _∧				o b umber 57-06-2
		Location 729		695809.9 N	Dates 22 24	2/08/2022- 4/08/2022	Engineer CS Consulting	RECEN	×		Sh	1 eet 2/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)		Description	<u>`0</u> . 	Legend	Water	Instr
Remarks	B											
Remarks										Scale (approx)	Lo By	ogged /
									+	1:50		OD
										Figure N 11957-0		.BH01

			WV	gations Ire w.gii.ie			Site A034 Tinakilly Co. Wicklow		Bore Num BH	ber
Machine:Da Method:Ca	ando 2000 able Percussion	Casing 200		r ed to 10.00m		Level (mOD) 22.88	Client Ardale		Job Numl 11957-0	
		Locatio		695762.6 N	Dates 19	0/08/2022	Engineer CS Consulting		Shee 1/	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water ul	nstr
					22.68	(0.20) 0.20	TOPSOIL Reddish brown clayey fine SAND			
).50	В					(0.80)				
.00-1.45 .00	SPT(C) N=7 B			1,1/2,2,2,1	21.88		Loose reddish brown clayey fine SAND			10 "0.0 180 00 10 10 10 10 10 10 10 10 10 10 10 10
						(1.00)				
2.00-2.45 2.00	SPT(C) N=8 B			2,2/2,2,2,2	20.88	2.00	Loose to medium dense reddish brown clayey fine SAND			10~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
					20.08	(0.30)	Soft to firm brown slightly clayey SILT	× × × × × × × × ×		
3.00-3.38 3.00	SPT(C) 50/225 B			7,9/13,19,18	19.78	3.10 (0.70)	Dense grey slightly sandy slightly clayey subangular to subrounded fine to coarse GRAVEL Sand is medium to coarse	× × ×		100,000,000,000,000,000,000,000,000,000
.00-4.45	SPT(C) N=28			3,4/5,7,7,9	19.08	3.80	Stiff to very stiff brown sandy silty CLAY. Sand is fine	× · · · · · · · · · · · · · · · · · · ·		10,40,00,00,00
1.00	В					(1.20)		× × ×		7 00 00 00 00 00 00 00 00 00 00 00 00 00
5.00-5.45 5.00	SPT(C) N=37 B			4,7/8,8,9,12	17.88	5.00	Very stiff brown sandy silty CLAY. Sand is fine	× × × × × × × × × × × × × × × × × × ×		un ou man ou
5.00	D					(0.80)		× × ×		1.0.2.00.00.00.00.00.00.00.00.00.00.00.00
6.00-6.45 6.00	SPT(C) N=31 B			5,7/7,8,8,8	17.08	5.80	Dense brown clayey fine to medium SAND.	×		ມາ " <u>ຄອງ</u> ດຊີສາ" ແລ້ວ ແລ້ວ ແລ້ວ ແລ້ວ ແລ້ວ ແລ້ວ ແລ້ວ ແລ້ວ
7.00-7.45 7.00	SPT(C) N=34 B			6,9/9,9,8,8		(3.00)				10000000000000000000000000000000000000
										10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
3.00-8.45 3.00	SPT(C) N=36 B			7,8/8,9,10,9						v - an an v - an v - an v South of the office
					14.08	8.80	Very stiff brown slightly sandy clayey SILT. Sand is	5 × × × × ×		<u>2010,00,80,80,80,80,80,80,80,80,80,80,80,80</u>
9.00	В					(1.20)	fine	×* × * * × × × * * × × × * × × × × * × × × × × ×		<u>5 00 000000000000000000000000000000000</u>
					12.88			* * * * * * * * * * *		00-10~40.00 00-00 2020020202020
Remarks	ater encountered 10.00m BGL	1		I	12.00			Scale (approx)	Logg By	jec
50mm slotted rom 1.00m E	d standpipe with a p 3GL to GL, with a ra	ea gravel : ised cover	surround	installed from 10.00	m to 1.00m	BGL. 50mm	plain standpipe with a bentonite seal installed	1:50	FOE	כ
								Figure N 11957-00		-10

SI	Grou	nd In		gations Ire /w.gii.ie	land	Ltd	Site A034 Tinakilly Co. Wicklow		Nur	rehol mber H04
Machine : Da Method : Ca	ando 2000 able Percussion	-	Diamete 0mm cas	r ed to 10.00m		Level (mOD) 17.28	Client Ardale			b mber 7-06-2
		Locatio		695598.3 N		6/08/2022- 7/08/2022	Engineer CS Consulting		She	eet 1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
						(0.40)	TOPSOIL			
0.50	В				16.88	0.40	Reddish brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is subangular to subrounded	0 <u>. 0 . 0</u> 0 . 0 . 0 . 0 0 . 0 . 0 . 0 . 0 0 . 0 .		
1.00-1.45 1.00	SPT(C) N=8 B			1,2/1,3,2,2	16.28	1.00	Soft to firm reddish brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is	0.0.0.0 0.0.0 0.0.0 0.0.0 0.0.0	//// Constant	
						(1.00)	subangular to subrounded	<u>, , , , , , , , , , , , , , , , , , , </u>		
2.00-2.45 2.00	SPT(C) N=14 B			2,2/3,4,3,4	15.28	2.00	Loose to medium dense grey sandy clayey subrounded to rounded fine to medium GRAVEL. Sand is fine to coarse	0 <u>.0</u> 0	0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	స్టోర్ రిజిక్ లోని స్టోర్ రై రాగు రాజుకు రాగు కాలకైంటింగి రైల్లి లోగి
3.00-3.45 3.00	SPT(C) N=8 B			2,2/2,2,2,2		(1.60)			2020 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	110 010 010 010 010 010 010 10 010 010 0
3.00	D				13.68	3.60 (0.40)	Soft to firm grey slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded		00,00,00,00,00,00,00,00,00,00,00,00,00,	566.0 20 allo of 20 allo of 20 0.00 0.00 allo of 20 0.00 0.00 allo of 20 0.00 0.00 0.00 of 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
4.00-4.45 4.00	SPT(C) N=11 B			2,3/3,3,2,3	13.28	4.00	Firm grey slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded			6000 500 500 500 500 2000 0.00 0.00 0.00 2000 0.00 0.00 0.
5.00-5.45 5.00	SPT(C) N=11 B			2,2/2,2,3,4	12.28		Firm grey slightly sandy slightly gravelly silty CLA Gravel is subangular to subrounded	······································	000 - 000 000 000 000 000 000 000 000 0	స్థర్గారం సినిమాంచిన సాం. రాజు రాజులు రాజులు రాజులు కార్రాణులు కొరికార్ రాజులు
000045					11.28	6.00		× • • • • • • • • • • • • • • • • • • •	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 50 00 20 50 00 20 50 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.00-6.45 3.00	SPT(C) N=15 B			2,3/3,4,4,4			Stiff grey slightly sandy slightly gravelly silty CLAY Gravel is subangular to subrounded	× · · · · · · · · · · · · · · · · · · ·		6000 00 00 00 00 00 00 0000 00 00 00 00 0000 00
7.00-7.45 7.00	SPT(C) N=15 B			2,3/4,4,4,3		(1.80)		× • • • • • • • • • • • • • • • • • • •		20 00 00 00 00 00 00 00 00 00 00 00 00 0
3.00-8.45 3.00	SPT(C) N=26 B			3,4/5,7,7,7	9.48 9.08	(0.40)	Medium dense to dense grey slightly sandy clayer angular to subrounded fine to coarse GRAVEL. Sand is fine to coarse	×		6,000,000,000,000,000,000,000 20,000,000,
						(0.80)	Stiff dark brown slightly sandy slightly gravelly CLAY with occasional cobbles. Gravel is subangular to subrounded	<u>6.00</u>	800,000,000,000,000 800,000,000,000,000,	2010 000 000 000 000 00 00 00 00 00 00 00 0
.00-9.45 .00	SPT(C) N=46 B			4,8/10,10,12,14	8.28	9.00 (0.50)	Very stiff dark brown slightly sandy slightly gravell CLAY with occasional cobbles. Gravel is subangular to subrounded	y <u>0 0 0 0</u>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0.00-10.45	SPT(C) N=40			7,9/10,10,10,10	7.78	(0.50)	Very stiff dark brown slightly sandy slightly gravell clayey SILT. Gravel is subangular to subrounded		10000000000000000000000000000000000000	6000 30 50 000 00 0 0 0 0 0 0 00 00 0 0 0 0 0
	iter encountered			1				Scale (approx)	Loç By	ggeo
Complete at 50mm slotted from 1.00m B		ea gravel ised cover	surround	installed from 10.00	m to 1.00m	ו BGL. 50mm	plain standpipe with a bentonite seal installed	1:50 Figure N 11957-00	o .	

S			WW	gations Ire /w.gii.ie			Site A034 Tinakilly Co	o. Wicklow			Nu	orehole umber 6 H04
Machine : Da Method : Ca	ndo 2000 ble Percussion		Diamete Omm case	r ed to 10.00m		Level (mOD) 17.28	Client Ardale	PA				o b umber 57-06-2
		Location 729		695598.3 N	Dates 16 17	5/08/2022- 7/08/2022	Engineer CS Consulting	P.E.C.E.I	, ¢>		Sh	n eet 2/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)		Description	<u>`0</u> . 	Legend	Water	Instr
Remarks	В											
Remarks										Scale (approx)	Lo By	ogged /
									-	1:50		OD
										Figure N 11957-0		.BH04

SI	Grou	nd In		gations Ire /w.gii.ie	land	Ltd	Site A034 Tinakilly Co. Wicklow		Nu	rehole imber H05
Machine : Da Method : Ca	ando 2000 able Percussion	-	Diamete Omm cas	r ed to 10.00m		Level (mOD) 22.22	Client Ardale Engineer CS Consulting			b I mber 57-06-2
		Locatio		695672.4 N	Dates	5/08/2022- 5/08/2022			Sheet 1/2	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.50	В				21.92	(0.30) 0.30 (0.70)	TOPSOIL Reddish brown slightly clayey slightly gravelly slightly silty SAND. Gravel is subangular to subrounded			
1.00-1.45 1.00	SPT(C) N=6 B			2,2/1,2,1,2	21.22	(0.60)	Loose reddish brown slightly clayey slightly gravelly slightly silty SAND. Gravel is subangular to subrounded		//// A o'm o'm o'm o'm o'm o o'm	
2.00-2.45 2.00	SPT(C) N=8 B			2,2/2,2,2,2	20.02	(0.40) 2.00 (0.30)	Loose reddish brown slightly gravelly slightly clayey fine SAND. Gravel is subangular to subrounded Loose to medium dense reddish brown slightly gravelly slightly clayey fine SAND. Gravel is subangular to subrounded		อัสอ์ ฮัชชักอ อัชอัสอ์ ฮัชชักอ	0.5.0 00 00 00 00 00 00 00 00 00 00 00 00 0
3.00-3.45 3.00	SPT(C) N=11 B			2,2/2,3,3,3		(1.40)	Firm brown slightly gravelly sandy CLAY. Gravel is subangular to subrounded		ດີອີດກິດ ອິດດີກ່ວດີອີດກິດ ອິດດີກ່ວດ	200-2 (2) 200 (200 (200 - 201
4.00-4.45 4.00	SPT(C) N=23 B			3,4/4,5,7,7	18.52	3.70 	Medium dense dark brown slightly clayey sandy subrounded to rounded GRAVEL. Sand is fine to coarse		ີອດລິດ ອັດບັກດ ດີອດສິດ ອິດບັກດ ດີອດສິດ	· 아이는 그 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이
5.00-5.45 5.00	SPT(C) N=30 B			7,7/7,7,8,8	17.22	5.00	Medium dense to dense brown slightly gravelly clayey fine to medium SAND		ບັດດີກວດ ດ້າວ ລ້ວຍ ເຮັດດີກວດ ດ້າວ ລ້ວຍ	2) 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20
6.00-6.45 6.00	SPT(C) N=30 B			4,5/8,7,7,8		(2.00)			<u>, , , , , , , , , , , , , , , , , , , </u>	6 90 26 190 26 26 26 26 26 26 26 26 26 26 26 26 26
7.00-7.45 7.00	SPT(C) N=31 B			7,7/7,7,8,9	15.22		Dense brown slightly gravelly clayey fine to medium SAND		ດ ດິສດ້າວ ອິດດັກດ ດິສດ້າດ ອິດດັກ ດ	
8.00-8.45 8.00	SPT(C) N=32 B			8,7/8,8,8,8					0 12 0 12 12 10 0 10 0 10 0 10 0 10 0 1	222 2012 2012 2012 2012 2012 2012 2012
9.00-9.45 9.00	SPT(C) N=34 B			8,8/8,8,9,9					ງ ຫຼື ລູ້ລູດ ຜູ້ບໍ່ດີ ກ່າວ ດ້ານ ລູ້ ລູ້ ຜູ້ດີ ຜູ້ ດີ ດ້າ	5'06'5' \$9'50' 50'50'5' 50'5' 50'5' 50'5' 5'00'5' 50'5' 50'5' 50'5' 50'5' 50'5' 5'5'5' 50'5' 50'5' 50'5' 50'5' 50'5' 50'5' 5'5'5' 50'5' 50'5' 50'5' 50'5' 50'5' 50'5'
10.00-10.45 Remarks	SPT(C) N=36			8,8/9,9,9,9	12.22	10.00	 	Scale	1 <u>1910 0000 0000</u>	
No groundwa Complete at	ater encountered 10.00m BGL I standpipe with a p 3GL to GL, with a ra	ea gravel ised cover	surround	installed from 10.00	m to 1.00n	ו BGL. 50mm	plain standpipe with a bentonite seal installed	Scale (approx) 1:50 Figure N 11957-06	F 0.	OD BH04


			WW	gations Ire /w.gii.ie			Site A034 Tinakilly Co	o. Wicklow			Nu	orehole umber H05
Machine : Da Method : Ca	indo 2000 ible Percussion		Diamete Omm case	r ed to 10.00m		Level (mOD) 22.22	Client Ardale	Ŷ _∧				b umber 57-06-2
		Location 729		695672.4 N	Dates 15 16	5/08/2022- 5/08/2022	2 CS Consulting			Sheet 2/2		
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)		Description	<u>`0</u> . 	Legend	Water	Instr
Remarks	В											henne
Remarks										Scale (approx)	Lo By	ogged /
									-	1:50		OD
										Figure N 11957-0		.BH04

0.50 B 1.00-1.45 SF 1.00 SF 2.00-2.45 SF 3.00 SF 3.00 SF 8.00 B 4.00-4.45 SF B	SPT(C) N=9 SPT(C) N=7 SPT(C) N=8 SPT(C) N=8	Location 729537	At E 695729.9 N term Field Records 1,2/2,2,2,3 2,2/2,2,1,2 2,1/2,2,2,2 2,1/2,2,2,2		/08/2022- /08/2022 Depth (Thickness) (0.20) 0.20 (0.80) 1.00 (2.00) (2.00) (2.00) (1.00)	Engineer CS Consulting Description TOPSOIL Reddish brown slightly gravelly sandy CLAY with occasional plant rootlets. Gravel is subangular to subrounded Soft to firm reddish brown slightly sandy SILT. Sand is fine	Legend		eet 1/2 Instr
0.50 B 1.00-1.45 SF 1.00 SF 2.00-2.45 SF 2.00 SF 3.00 SF 3.00 SF 5.00-5.45 SF	3 SPT(C) N=9 SPT(C) N=7 SPT(C) N=8 SPT(C) N=8	Casing Depth (m) Wat Dep (m)	1,2/2,2,2,3	25.12	(0.20) 0.20 (0.80) 1.00 (2.00) 3.00	TOPSOIL Reddish brown slightly gravelly sandy CLAY with occasional plant rootlets. Gravel is subangular to subrounded Soft to firm reddish brown slightly sandy SILT. Sand is fine		Water	
1.00-1.45 SF 1.00 SF 2.00-2.45 SF 2.00 B 3.00-3.45 SF 3.00 B 4.00-4.45 SF 4.00 SF 5.00-5.45 SF	SPT(C) N=9 SPT(C) N=7 SPT(C) N=8 SPT(C) N=8		1,2/2,2,2,3	24.32	(0.20) 0.20 (0.80) 1.00 (2.00) 3.00	Reddish brown slightly gravelly sandy CLAY with occasional plant rootlets. Gravel is subangular to subrounded Soft to firm reddish brown slightly sandy SILT. Sand is fine			
2.00-2.45 SF 2.00 B 3.00-3.45 SF 3.00 B 4.00-4.45 SF 4.00 B 5.00-5.45 SF	SPT(C) N=7 3 SPT(C) N=8 3 SPT(C) N=26		2,2/2,2,1,2		(2.00)	Sand is fine		ער היאט פינט פינט אין איז	٥٥٣ ٣٠ ٥٠ ٣٠ ٣٠ ٥٠ ٣٠ ٣٠ ٥٠ ٢ ٣٠ ٥٠ ٣٠ ٥٠ ٣٠ ٥٠ ٣٠ ٥٠ ٢ ٢ ٢ ٢ ٩٢ ٠٠ - ٢٠ ٢ ٢ ٠٠ - ٢ ٢ ٠٠ ٢ ٢ ٠٠ ٢ ٢ ٢ ٠٠ ٢ ٢ ٢ ٢
2.00 B 3.00-3.45 SF 3.00 B 4.00-4.45 SF 4.00 B 5.00-5.45 SF	SPT(C) N=8 3 SPT(C) N=26			22.32	3.00	Firm reddish brown slightly sandy SILT. Sand is fine	0 0 1 1 1 1 1 1 1 1 1 1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ისი თავი წალი თავის თავი წალი თავი მამი აკინი თავი მამი იკი იკი იკი იკი მამი აკინი აკი მავი მამი იკი იკი იკი აკი მაცხის თავი მაცხის თავი იკი იკი იკი აკი მაცხის აკი თავი მაცხის თავი იკი იკი იკი იკი იკი იკი აკი მაცხის აკი იკი იკი იკი იკი იკი იკი იკი იკი იკი
3.00 B 4.00-4.45 SF 4.00 B 5.00-5.45 SF	3 SPT(C) N=26		2,1/2,2,2,2	22.32		Firm reddish brown slightly sandy SILT. Sand is fine	e ************************************	10 000 000 000	
4.00 B	SPT(C) N=26 3				-		× × × × × × × × × × × × × × × × × × ×	100000000000	
			2,3/4,6,7,9	21.32	4.00 (0.70) 4.70	Stiff reddish brown slightly sandy SILT. Sand is fine Stiff reddish brown sandy slightly silty slightly	× × × × × × × × × × × × × × × × × × × ×		
	SPT(C) N=22 3		3,4/5,5,6,6		(1.50)	gravelly CLAY. Gravel is subangular to subrounded		1000 00000 00000 00000 000000000000000	500,06-2, 0, 50, 50, 50, 50, 50, 50, 50, 50, 50,
6.00-6.45 SF 6.00 B	SPT(C) N=50 3		7,9/11,13,12,14 Water strike(1) at 6.20m, rose to 4.00m in 20 mins.	19.12	6.20	Very stiff dark brown slightly gravelly silty CLAY. Gravel is subangular to subrounded		⊻1	
7.00-7.45 SF 7.00 B	SPT(C) N=50 3		8,10/10,16,19,5		(2.60)				ઌૢૢૢૢૢૢૢઌૢૢૢૢૢૢૢઌૢૢૢૢૢૢઌૢૢૢૢૢૢઌૢૢૢૢૢઌૢૢૢૢ
8.00-8.38 SF 8.00 B	SPT(C) 50/225 3		10,12/17,21,12	16.52	8.80	Medium dense dark brown slightly clayey fine to		0.0.0.00000000000000000000000000000000	2 % 40 20 20 20 20 20 20 20 20 20 20 20 20 20
0.00-9.45 SF 0.00 B	SPT(C) N=18 3		3,7/7,3,4,4		(1.20)	medium SAND.			6 % % % % % % % % % % % % % % % % % % %
0.00-10.45 SF Remarks	SPT(C) N=14		3,3/3,3,4,4	15.32	10.00		Scale (approx)		gged

			WW	gations Ire /w.gii.ie			Site A034 Tinakilly C	o. Wicklow			Nu	brehole umber H06
l achine : Da l ethod : Ca	indo 2000 Ible Percussion		Diamete Omm case	r ed to 10.00m		Level (mOD) 25.32	Client Ardale	PA				b umber 57-06-2
		Location 729		695729.9 N	Dates 17 18	7/08/2022- 3/08/2022	022 CS Consulting			Shee 2		
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)		Description	<u>`O.</u> 7 ₇ 00	Legend	Water	Instr
0.00 Remarks	В									, ₂ ,		
kemarks										Scale (approx)	Lo By	ogged /
									-	1:50		OD
										Figure N 11957-0		.BH0

APPENDIX 6 – Plate Testing Records

Modulus of subgrade reaction, K (Reload) =	11655.83 MN/m2/m
Equivalent CBR(initial)in accordance with HD25/94 volume7 section	2 = 8.85 %
Equivalent CBR(reload)in accordance with HD25/94 volume7 sectio	n2 = 107559.53 %

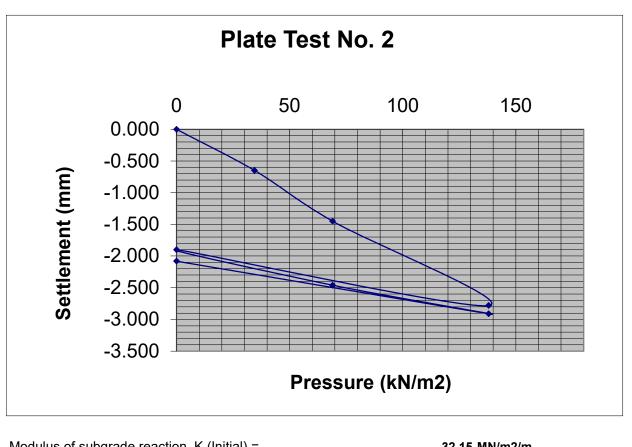
Applied Load	Gauge settlement		
0	0.000		
34.5	-0.65		
69	-1.45		
138	-2.78		
0	-1.9		
69	-2.46		
138	-2.91		GROUND INVESTIGATIONS IRFLAND
0	-2.08		Geotechnical & Environmental
			Real Provide American Sector
LOCATION CONTRACT NO. DATE	A034 Tinakilly 11957-06-22 19/08/2022	MATERIAL	Brown clayey gravelly fine to coarse SAND

DEPTH NOTES

SAMPLES

Ardale

457mm

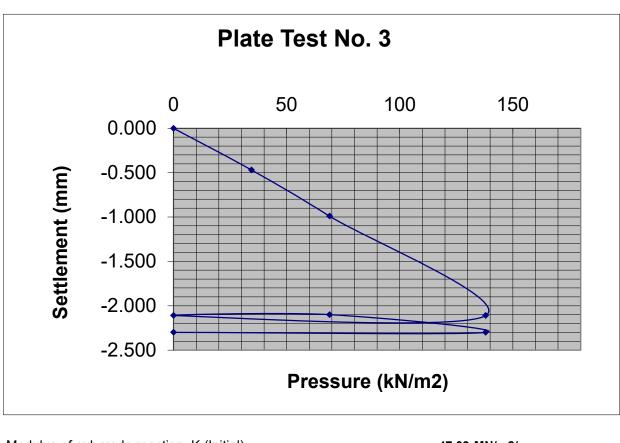

CBR-02

CLIENT

TEST NO.

PLATE DIAMETER

0.4


Modulus of subgrade reaction, K (Initial) =	32.15 MN/m2/m
Modulus of subgrade reaction, K (Reload) =	83.26 MN/m2/m
Equivalent CBR(initial)in accordance with HD25/94 volume7 section2	2 = 3.95 %
Equivalent CBR(reload)in accordance with HD25/94 volume7 section	2 = 20.53 %

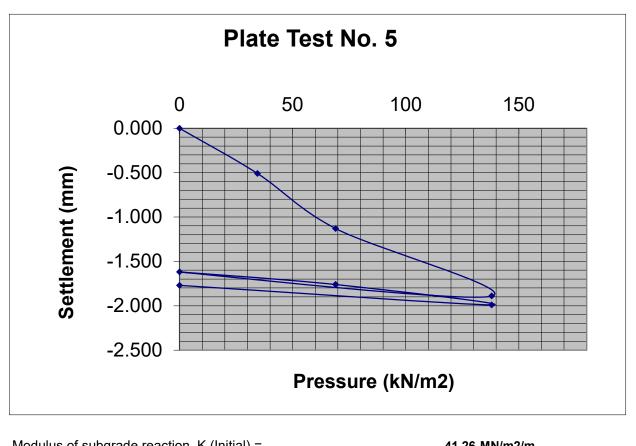
Applied Load	Gauge settlement		
0	0.000		
34.5	-0.47		
69	-0.99		
138	-2.11		
0	-2.11		
69	-2.1		
138	-2.3		GROUND INVESTIGATIONS INFLAND
0	-2.3		Geotechnical & Environmental
			Ro-
LOCATION	A034 Tinakilly	MATERIAL	Brown slightly gravelly sandy CLAY onto
CONTRACT NO.	11957-06-22		Sand
DATE	19/08/2022		
CLIENT	Ardale	DEPTH	0.4
PLATE DIAMETER	457mm	NOTES	

TEST NO.

57mm CBR-03

SAMPLES

Modulus of subgrade reaction, K (Initial) =	47.09	MN/m2/m
Modulus of subgrade reaction, K (Reload) =	-4662.33	MN/m2/m
Equivalent CBR(initial)in accordance with HD25/94 volume7 section2	2 =	7.65 %
Equivalent CBR(reload)in accordance with HD25/94 volume7 section	12 =	#NUM! %


Applied Load	Gauge settlemen	nt	
0 34.5	0.000 -1.07		
69	-2.59		
138	-5.04		
0	-4.17		
69	-4.69		
138	-5.49		GROUND INVESTIGATIONS IRELAND
0	-4.55		Geotechnical & Environmental
LOCATION CONTRACT NO. DATE	A034 Tinakilly 11957-06-22 19/08/2022	MATERIAL	Brown gravelly very clayey fine to medium SAND
CLIENT PLATE DIAMETER TEST NO.	Ardale	DEPTH NOTES SAMPLES	0.4
Settlement (mm)	0 0.000 0.000 2.000 3.000 5.000 5.000	50	
-(Pressur	re (kN/m2)

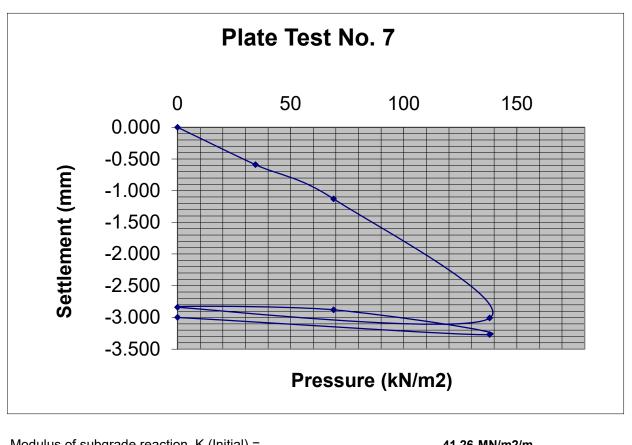
Modulus of subgrade reaction, K (Initial) =18.00 MN/m2/mModulus of subgrade reaction, K (Reload) =89.66 MN/m2/mEquivalent CBR(initial)in accordance with HD25/94 volume7 section2 =1.44 %Equivalent CBR(reload)in accordance with HD25/94 volume7 section2 =23.34 %

Applied Load	Gauge settlement
0	0.000
34.5	-0.51
69	-1.13
138	-1.89
0	-1.62
69	-1.76
138	-1.99
0	-1.77

LOCATION	A034 Tinakilly	MATERIAL	Brown clayey gra
CONTRACT NO.	11957-06-22		SAND
DATE	19/08/2022		
CLIENT	Ardale	DEPTH	0.4
PLATE DIAMETER	457mm	NOTES	
TEST NO.	CBR-05	SAMPLES	

Modulus of subgrade reaction, K (Initial) =	41.26 MN/m2/m
Modulus of subgrade reaction, K (Reload) =	333.02 MN/m2/m
Equivalent CBR(initial)in accordance with HD25/94 volume7 section2 =	= 6.08 %
Equivalent CBR(reload)in accordance with HD25/94 volume7 section2	= 226.87 %

Applied Load	d G	auge settlemen	t			
0 34.5		0.000 -1.28	—			
69		-1.20				
138		-4.49				
0		-3.83				
69		-4.22				
138		-4.93		GROUND I	NVESTIGATIONS INTEL	AND
0		-4.21			echnical & Environmental	20
LOCATION CONTRACT NO. DATE CLIENT PLATE DIAMETI TEST NO.	. 1195 19/08 Ardal	m	MATERIAL DEPTH NOTES SAMPLES	medium S		08/102,3
	0.000	0	ate Test N ⁵⁰	100	150	
	0.000					
Î.	-1.000					
, m	-2.000					
nent	-3.000					
Settlement (mm)	-4.000					
Set	-5.000					
	-6.000					


Pressure (kN/m2)

Modulus of subgrade reaction, K (Initial) =	19.35 MN/m2/m
Modulus of subgrade reaction, K (Reload) =	119.55 MN/m2/m
Equivalent CBR(initial)in accordance with HD25/94 volume7 section2	= 1.64 %
Equivalent CBR(reload)in accordance with HD25/94 volume7 section2	= 38.43 %

Applied Load	Gauge settlement
0	0.000
34.5	-0.59
69	-1.13
138	-3.01
0	-2.84
69	-2.88
138	-3.27
0	-3

LOCATION	A034 Tinakilly	MATERIAL	Brown gravelly very clayey fine to co
CONTRACT NO.	11957-06-22		SAND
DATE	19/08/2022		
CLIENT	Ardale	DEPTH	0.4
PLATE DIAMETER	457mm	NOTES	
TEST NO.	CBR-07	SAMPLES	

Modulus of subgrade reaction, K (Initial) =	41.26 MN/m2/m	
Modulus of subgrade reaction, K (Reload) =	1165.58 MN/m2/m	
Equivalent CBR(initial)in accordance with HD25/94 volume7	7 section2 = 6.08 %	
Equivalent CBR(reload)in accordance with HD25/94 volume	e7 section2 = 1989.06 %	

Applied Load 0	Gauge settlement 0.000			
34.5	-1.95			
69	-3.76	_		
<u>138</u> 0	-6.48 -6.31			
69	-6.31	_		
138	-6.82	_	GROUND I	NVESTIGATIONS INFLAND
0	-6.63			echnical & Environmental
	A034 Tinakilly			echnical & Environmental
CONTRACT NO.	11957-06-22			clayey SAND
DATE	18/08/2022		OLAT ON	
CLIENT	Ardale	DEPTH	C).4
PLATE DIAMETER	457mm	NOTES		
TEST NO.	CBR-08	SAMPLES		
-1 -2 -3 -3 -4 -5 -6 -7	0 .000 .000 .000 .000 .000 .000 .000	50	100	150
		Pressur	e (kN/m2)	

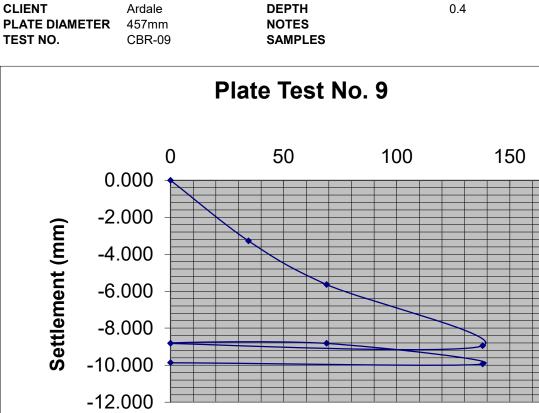
Modulus of subgrade reaction, K (Initial) =	12.40 M	N/m2/m
Modulus of subgrade reaction, K (Reload) =	#DIV/0! MI	N/m2/m
Equivalent CBR(initial)in accordance with HD25/94 volume7 section2	=	0.76 %
Equivalent CBR(reload)in accordance with HD25/94 volume7 section	2 =	#DIV/0! %

Applied Load	Gauge settlement
0	0.000
34.5	-3.28
69	-5.64
138	-8.95
0	-8.82
69	-8.82
138	-9.94
0	-9.87

A034 Tinakilly

11957-06-22

18/08/2022


LOCATION

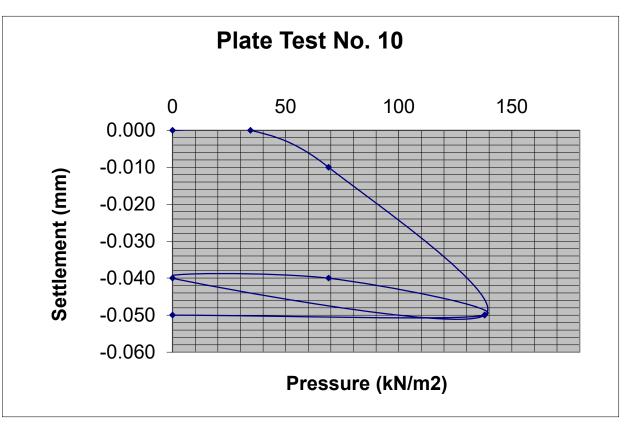
DATE

CONTRACT NO.

SAN

MATERIAL

Pressure (kN/m2)


Modulus of subgrade reaction, K (Initial) =	8.27 MN/m2/m	
Modulus of subgrade reaction, K (Reload) =	#DIV/0! MN/m2/m	
Equivalent CBR(initial)in accordance with HD25/94 volume7 section2	2 = 0.38 %	
Equivalent CBR(reload)in accordance with HD25/94 volume7 section2	n2 = #DIV/0! %	

Applied Load	Gauge settlement
0 0.000	
34.5	0
69	-0.01
138	-0.05
0	-0.04
69	-0.04
138	-0.05
0	-0.05

LOCATION A034 Tinakilly MATERIAL CONTRACT NO. 11957-06-22 DATE 19/08/2022 CLIENT Ardale DEPTH NOTES PLATE DIAMETER 457mm TEST NO. SAMPLES CBR-10

0.4

Modulus of subgrade reaction, K (Initial) =	4662.33	MN/m2/m
Modulus of subgrade reaction, K (Reload) =	#DIV/0!	MN/m2/m
Equivalent CBR(initial)in accordance with HD25/94 volume7 section2	=	21979.55 %
Equivalent CBR(reload)in accordance with HD25/94 volume7 section2	2 =	#DIV/0! %

Applied Load 0 34.5 69 138 0 69 138 0 138 0	Gauge settlement 0.000 -1.69 -2.79 -4.475 -3.935 -4.255 -4.255 -4.72 -3.5		GROUND IN Geote	EVESTIGATIONS IR echnical & Environmental	LAND	
LOCATION CONTRACT NO. DATE	A034 Tinakilly 11957-06-22 17/08/2022	MATERIAL	Brown clay SAND	ey gravelly fine to coa	rse	
CLIENT PLATE DIAMETER TEST NO.	Ardale 457mm CBR-11	DEPTH NOTES SAMPLES	0	.4		
	Plate Test No. 11					
-0. -1. -1. -2. -2. -3. -3. -3. -4. -4.		50 UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	100	150		

Modulus of subgrade reaction, K (Initial) =	16.71 MN/m2/m
Modulus of subgrade reaction, K (Reload) =	145.70 MN/m2/m
Equivalent CBR(initial)in accordance with HD25/94 volume7 section2 =	= 1.27 %
Equivalent CBR(reload)in accordance with HD25/94 volume7 section2	= 54.15 %

	Gauge settlement	Applied Load	
	0.000	0	
	-0.57	34.5	
	-2.02	69	
	-4.17	138	
	-2.76	0	
	-3.76	69	
	-4.91	138	
	-3.43	0	
			L
RIAL	A034 Tinakilly	OCATION	LC

11957-06-22

18/08/2022

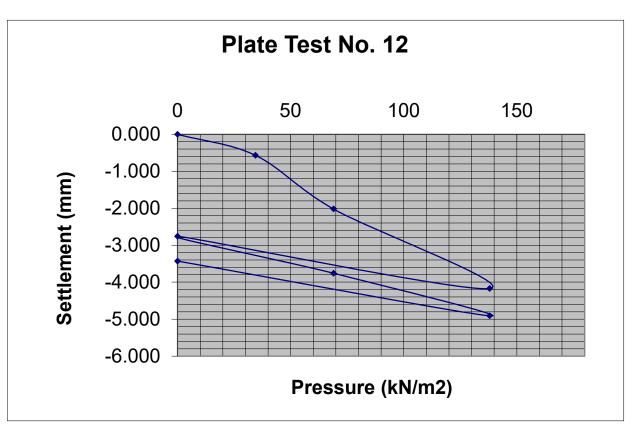
Ardale

457mm

CBR-12

CONTRACT NO.

PLATE DIAMETER


DATE

CLIENT

TEST NO.

0.3

DEPTH

NOTES

SAMPLES

Modulus of subgrade reaction, K (Initial) =	23.08 MN/m2/m
Modulus of subgrade reaction, K (Reload) =	46.62 MN/m2/m
Equivalent CBR(initial)in accordance with HD25/94 volume7 section2 =	2.22 %
Equivalent CBR(reload)in accordance with HD25/94 volume7 section2 =	7.52 %

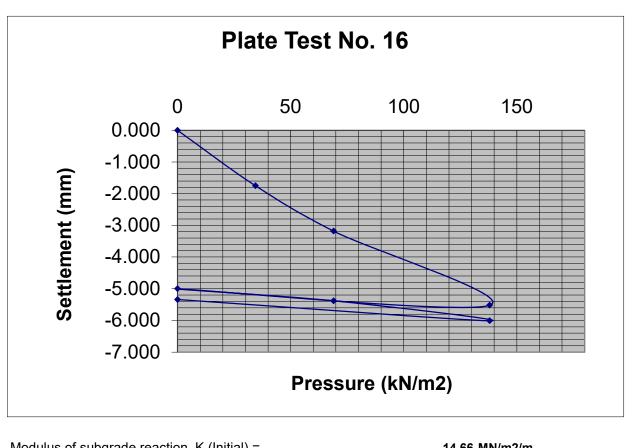
Applied Load 0 34.5 69 138	Gauge settlement 0.000 -1.1 -2.195 -3.985			
0	-2.915			
<u>69</u> 138	-3.46 -4.225		GROUND INVE	STIGATIONS INTLAND
0	-3.24			cal & Environmental
LOCATION CONTRACT NO. DATE	A034 Tinakilly 11957-06-22 17/08/2022	MATERIAL	Brown clayey g SAND	ravelly fine to coarse
CLIENT PLATE DIAMETER TEST NO.	Ardale 457mm CBR-13	DEPTH NOTES SAMPLES	0.4	
-0 -1 -1 -2 -2 -3 -3 -3 -4	.000 .500 .000 .500 .000 .500 .000 .500 .000 .500 .000			
		Pressur	e (kN/m2)	

Modulus of subgrade reaction, K (Initial) =	21.24 MN/m2/m
Modulus of subgrade reaction, K (Reload) =	85.55 MN/m2/m
Equivalent CBR(initial)in accordance with HD25/94 volume7 section2 =	1.92 %
Equivalent CBR(reload)in accordance with HD25/94 volume7 section2 =	= 21.52 %

Applied Load 0 34.5 69	Gauge settlement 0.000 -0.795 -1.98		
<u>138</u> 0	-3.65 -2.745	_	
69	-3.19	-	
138	-3.885		GROUND INVESTIGATIONS INFLAND
0	-3.09		Geotechnical & Environmental
			Geotechnical & Environmental
LOCATION CONTRACT NO. DATE	A034 Tinakilly 11957-06-22 17/08/2022	MATERIAL	Brown slightly sandy slightly gravelly CLAY
CLIENT	Ardale	DEPTH	0.4
PLATE DIAMETER	457mm	NOTES	
TEST NO.	CBR-14	SAMPLES	
-0. -1. -1. -1. -2. -2. -3. -3. -3. -4.	000 500 000 500 000 500 000 500 000 500 000 000		
-4.	500		
		Pressu	re (kN/m2)

Modulus of subgrade reaction, K (Initial) =	23.55 MN/m2/m
Modulus of subgrade reaction, K (Reload) =	104.77 MN/m2/m
Equivalent CBR(initial)in accordance with HD25/94 volume7 section2 =	= 2.30 %
Equivalent CBR(reload)in accordance with HD25/94 volume7 section2	= 30.58 %

Applied Load 0 34.5 69 138 0 69 138 0 138 0	Gauge settlement 0.000 -1.54 -2.73 -4.055 -3.39 -3.79 -4.165 -3.6		GROUND INV Geotect	ESTIGATIONS IRELAND		
LOCATION CONTRACT NO. DATE	A034 Tinakilly 11957-06-22 17/08/2022	MATERIAL	Brown clayey SAND	y gravelly fine to coarse		
CLIENT PLATE DIAMETER TEST NO.	Ardale 457mm CBR-15	DEPTH NOTES SAMPLES	0.4			
	Plate Test No. 15 0 50 100 150					
-0. -1. -1. -1. -2. -2. -3. -3. -3. -4.		Pressure	e (kN/m2)			


Modulus of subgrade reaction, K (Initial) = Modulus of subgrade reaction, K (Reload) =	17.08 MN/m2/m 116.56 MN/m2/m
Equivalent CBR(initial)in accordance with HD25/94 volume7 section2	= 1.32 %
Equivalent CBR(reload)in accordance with HD25/94 volume7 section2	2 = 36.78 %

Applied Load	Gauge settlement
0	0.000
34.5	-1.75
69	-3.18
138	-5.52
0	-5
69	-5.38
138	-6.01
0	-5.34

0.4

LOCATION	A034 Tinakilly	MATERIAL	Brown s
CONTRACT NO.	11957-06-22		
DATE	19/08/2022		
CLIENT	Ardale	DEPTH	
PLATE DIAMETER	457mm	NOTES	
TEST NO.	CBR-16	SAMPLES	

Modulus of subgrade reaction, K (Initial) =	14.66 MN/m2/m
Modulus of subgrade reaction, K (Reload) =	122.69 MN/m2/m
Equivalent CBR(initial)in accordance with HD25/94 volume	7 section2 = 1.01 %
Equivalent CBR(reload)in accordance with HD25/94 volum	e7 section2 = 40.20 %

APPENDIX 7 – Laboratory Testing

Issue :

Element Materials Technology Unit 3 Deeside Point Zone 3 **Deeside Industrial Park** Deeside

P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

INT. HELLED. TROOFTOCS CH5 2UA Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin MR Ireland TESTING 4225 Attention : **Barry Sexton** Date : 6th September, 2022 Your reference : 11957-06-22 Our reference : Test Report 22/13616 Batch 1 A034 Tinakilly Location : Date samples received : 23rd August, 2022 Status : Final Report

Twenty five samples were received for analysis on 23rd August, 2022 of which ten were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

1

Authorised By:

6 June

Bruce Leslie Project Manager

Please include all sections of this report if it is reproduced

Client Name:	Ground In	vestigatior	ns Ireland				Report :	Solid					
Reference:	11957-06	-22								~			
Location:	A034 Tina						Solids: V=	60g VOC ja	r, J=250g gl	assijar, T=p	lastic tub		
Contact:	Barry Sex	ton								$^{\circ}C_{\sim}$			
EMT Job No:	22/13616												
EMT Sample No.	5-8	13-16	17-20	25-28	49-52	61-64	65-68	73-76	81-84	97-100	٢Ô		
Sample ID	TP02	TP04	TP05	TP07	TP13	TP16	TP17	TP19	TP21	TP25	R	08	
Depth	0.50	0.50	0.50	1.00	1.00	1.00	0.50	1.00	0.50	1.00	Please se	e attached	
COC No / misc Containers	VT	VJT	abbrevi	ations and a	ronyms								
Sample Date			16/08/2022		15/08/2022	15/08/2022	16/08/2022	16/08/2022		15/08/2022			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022		-	No.
Antimony	3	2	2	2	2	2	2	2	1	1	<1	mg/kg	TM30/PM15
Arsenic [#]	14.5	10.3	7.5	9.0	8.8	10.3	10.2	11.0	8.1	11.8	<0.5	mg/kg	TM30/PM15
Barium [#]	74	34	22	16	21	34	30	34	26	29	<1	mg/kg	TM30/PM15
Cadmium [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM30/PM15
Chromium #	100.7 28	86.0	61.8 17	157.8 13	149.2 14	122.6 16	62.3 13	58.3	85.4 10	45.6 17	<0.5 <1	mg/kg	TM30/PM15 TM30/PM15
Copper [#] Lead [#]	13	16 14	7	10	14	9	13	18 11	10	17	<1	mg/kg mg/kg	TM30/PM15
Mercury [#]	<0.1	<0.1	<0.1	<0.1	<0.1	9 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM30/PM15
Molybdenum [#]	5.1	5.0	3.5	9.9	9.4	7.6	3.9	3.5	5.9	2.2	<0.1	mg/kg	TM30/PM15
Nickel [#]	33.6	30.3	29.4	17.9	20.0	23.1	28.0	37.2	22.7	27.0	<0.7	mg/kg	TM30/PM15
Selenium [#]	2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	mg/kg	TM30/PM15
Zinc [#]	74	69	63	44	46	39	59	72	50	57	<5	mg/kg	TM30/PM15
PAH MS													
Naphthalene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Acenaphthene [#]	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Fluorene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Phenanthrene [#]	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	mg/kg	TM4/PM8
Anthracene # Fluoranthene #	<0.04 <0.03	<0.04 <0.03	mg/kg mg/kg	TM4/PM8 TM4/PM8									
Pyrene [#]	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene [#]	<0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	<0.06	<0.06	< 0.06	< 0.06	mg/kg	TM4/PM8
Chrysene [#]	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene [#]	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Coronene	<0.04	<0.04	<0.04	<0.04	< 0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
PAH 6 Total [#]	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	mg/kg	TM4/PM8
PAH 17 Total Benzo(b)fluoranthene	<0.64 <0.05	<0.64	<0.64	<0.64 <0.05	<0.64	<0.64	<0.64	<0.64	<0.64 <0.05	<0.64	<0.64	mg/kg	TM4/PM8 TM4/PM8
Benzo(b)fluoranthene Benzo(k)fluoranthene	<0.05	<0.05 <0.02	<0.05 <0.02	<0.05	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	<0.05	<0.05 <0.02	<0.05 <0.02	mg/kg mg/kg	TM4/PM8 TM4/PM8
Benzo(j)fluoranthene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	98	101	98	97	102	106	103	100	101	89	<0	%	TM4/PM8
3											-		
Mineral Oil (C10-C40) (EH_CU_1D_AL)	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	mg/kg	TM5/PM8/PM16

Client Name:	Ground In	vestigatior	is Ireland				Report :	Solid					
Reference:	11957-06									0			
Location:	A034 Tina						Solids: V=	60g VOC ja	r, J=250g gl	assijar, T=p	lastic tub		
Contact: EMT Job No:	Barry Sex 22/13616	lon											
	5-8	13-16	47.00	25-28	49-52	61-64	65-68	70 70	81-84	97-100	K.		
EMT Sample No.	0-6	13-10	17-20	20-28	49-52	01-04	00-08	73-76	01-04	97-100	`O. 		
Sample ID	TP02	TP04	TP05	TP07	TP13	TP16	TP17	TP19	TP21	TP25	·O. · 7 R	, 0 ₀	
Depth	0.50	0.50	0.50	1.00	1.00	1.00	0.50	1.00	0.50	1.00	Please se	e attached r ations and a	
COC No / misc Containers	VT	VJT	ubbrow		Soliying								
											1		
Sample Date			16/08/2022		15/08/2022	15/08/2022	16/08/2022		15/08/2022		1		
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	ļ		
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.
Date of Receipt	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022			NO.
TPH CWG													
	-0.4	-0.1	-0.4	-0.4	-0.4	-0.4	-0.4	-0.4	-0.4	-0.1	-0.1	man Para	TMOO/DD1/C
>C5-C6 (HS_1D_AL)#	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	mg/kg mg/kg	TM36/PM12 TM36/PM12
>C6-C8 (HS_1D_AL) [#] >C8-C10 (HS_1D_AL)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C10-C12 (EH_CU_1D_AL)*	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL)*	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>C16-C21 (EH_CU_1D_AL) [#]	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH_CU_1D_AL)*	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>C35-C40 (EH_1D_AL)	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40 (EH+HS_1D_AL)	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	mg/kg	TM5/TM36/PM8/PM12/PM1
>C6-C10 (HS_1D_AL)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12 TM5/PM8/PM16
>C10-C25 (EH_1D_AL) >C25-C35 (EH_1D_AL)	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	mg/kg mg/kg	TM5/PM8/PM16
Aromatics	10	10	10	10	10	10	10	10	10	410	410	ing/kg	
>C5-EC7 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR) [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR) [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR)*	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR)#	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR)#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR) [#] >EC35-EC40 (EH_1D_AR)	<7 <7	<7 <7	<7 <7	<7 <7	<7	<7 <7	<7	<7 <7	<7 <7	<7	<7	mg/kg mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
Total aromatics C5-40 (EH+HS_1D_AR)	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	mg/kg	TM5/TM36/PM8/PM12/PM1
Total aliphatics and aromatics(C5-40) (EH+HS_CU_1D_Total)	<52	<52	<52	<52	<52	<52	<52	<52	<52	<52	<52	mg/kg	TM5/TM36/PM8/PM12/PM1
>EC6-EC10 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC25 (EH_1D_AR)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
>EC25-EC35 (EH_1D_AR)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
MTBE [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
Benzene#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
Toluene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
Ethylbenzene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
m/p-Xylene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
o-Xylene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
PCB 28 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 52 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 101#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 118 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 138 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 153#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 180 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
Total 7 PCBs [#]	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	ug/kg	TM17/PM8

Client Name:		vestigatior	ns Ireland				Report :	Solid					
Reference: Location:	11957-06 A034 Tina						Solids: V=	60a VOC ia	r. J=250a al	asojar. T=p	lastic tub		
Contact:	Barry Sex	-					Conda. V-	00g v00 ja	i, 0-2009 gi				
EMT Job No:	22/13616												
EMT Sample No.	5-8	13-16	17-20	25-28	49-52	61-64	65-68	73-76	81-84	97-100	Ô.		
Sample ID	TP02	TP04	TP05	TP07	TP13	TP16	TP17	TP19	TP21	TP25	NO. 77 78	0	
Depth		0.50	0.50	1.00	1.00	1.00	0.50	1.00	0.50	1.00	Please se	e attached n ations and a	
COC No / misc											abbievi		
Containers	VT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	17/08/2022	16/08/2022	16/08/2022	16/08/2022	15/08/2022	15/08/2022	16/08/2022	16/08/2022	15/08/2022	15/08/2022			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022			No.
Natural Moisture Content	5.1	10.0	8.7	3.5	9.0	5.4	12.2	8.5	12.6	9.1	<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	4.9	9.1	8.0	3.4	8.3	5.1	10.9	7.8	11.2	8.4	<0.1	%	PM4/PM0
Hexavalent Chromium [#]	<0.3	< 0.3	< 0.3	<0.3	<0.3	<0.3	<0.3	< 0.3	<0.3	< 0.3	< 0.3	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext) [#] Chromium III	- 100.7	0.0196 86.0	0.0148 61.8	- 157.8	- 149.2	- 122.6	- 62.3	0.0110 58.3	- 85.4	0.0114 45.6	<0.0015 <0.5	g/l mg/kg	TM38/PM20 NONE/NONE
		00.0	01.0	101.0		122.0	02.0	00.0		10.0	0.0		
Total Organic Carbon [#]	0.13	0.24	0.10	0.06	0.08	0.07	0.15	0.13	0.19	0.28	<0.02	%	TM21/PM24
рН#	7.61	6.78	6.99	7.13	5.37	6.27	6.54	6.81	6.35	6.40	<0.01	pH units	TM73/PM11
Mass of raw test portion	0.0894	0.095	0.0938	0.0943	0.0945	0.0907	0.0965	0.0938	0.0982	0.0918		kg	NONE/PM17
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09		kg	NONE/PM17

Ground Investigations Ireland 11957-06-22 A034 Tinakilly Barry Sexton

Report : CEN 10:1 1 Batch

Solids: V=60g VOC jar, J=250g glasgiar, T=plastic tub

 C_{λ}

	22/13616												
EMT Sample No.	5-8	13-16	17-20	25-28	49-52	61-64	65-68	73-76	81-84	97-100	R.		
Sample ID	TP02	TP04	TP05	TP07	TP13	TP16	TP17	TP19	TP21	TP25	·O. · 7	0	
Depth	0.50	0.50	0.50	1.00	1.00	1.00	0.50	1.00	0.50	1.00	Please se	e attached	
COC No / misc											abbrevi	ations and a	Ponyms
Containers	VТ	VJT											
Sample Date	17/08/2022	16/08/2022	16/08/2022	16/08/2022	15/08/2022	15/08/2022	16/08/2022	16/08/2022	15/08/2022	15/08/2022			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1		11.34	Method
Date of Receipt	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022	LOD/LOR	Units	No.
Dissolved Antimony#	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10)#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Arsenic [#]	<0.0025	<0.0025	<0.0025	<0.0025	0.0028	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10)#	<0.025	<0.025	<0.025	<0.025	0.028	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	mg/kg	TM30/PM17
Dissolved Barium [#]	<0.003	<0.003	<0.003	0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	mg/l	TM30/PM17
Dissolved Barium (A10) [#]	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM30/PM17
Dissolved Cadmium [#]	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10) [#]	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/kg	TM30/PM17
Dissolved Chromium [#]	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10) [#]	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	mg/kg	TM30/PM17
Dissolved Copper [#]	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	mg/l	TM30/PM17
Dissolved Copper (A10) [#]	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	TM30/PM17
Dissolved Lead #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/l	TM30/PM17
Dissolved Lead (A10)#	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum [#]	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10)#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Nickel [#]	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10)#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Selenium [#]	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10) [#]	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM30/PM17
Dissolved Zinc [#]	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10)#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF #	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF #	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	mg/kg	TM61/PM0
Phenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/l	TM26/PM0
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM26/PM0
Fluoride	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/l	TM173/PM0
Fluoride	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	mg/kg	TM173/PM0
Sulphata as SO4#	<0 F	1 1	0.0	0.6	27	10	36	15	1.5	<u>^</u>	<0 F	ma/l	
Sulphate as SO4 #	<0.5	1.1	0.8	0.6	2.7	1.9	3.6	1.5	1.5	0.8	<0.5	mg/l	TM38/PM0 TM38/PM0
Sulphate as SO4 [#]	<5 <0.3	11 <0.3	8 <0.3	6 <0.3	27 <0.3	19 <0.3	36 <0.3	15 <0.3	15 <0.3	8 <0.3	<5 <0.3	mg/kg	TM38/PM0 TM38/PM0
Chloride [#]	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/l mg/kg	TM38/PM0
Chionae	~5	~5	~5	~5	~5	~>	~5	~5	~5	~5	~5	iiig/kg	TIVI30/FIVIO
Dissolved Organic Carbon	3	<2	3	2	2	<2	<2	<2	<2	2	<2	mg/l	TM60/PM0
Dissolved Organic Carbon	30	<20	30	<20	20	<20	<20	<20	<20	<20	<20	mg/kg	TM60/PM0
рН	7.82	6.44	8.08	7.48	7.07	6.13	6.32	6.42	6.97	7.56	<0.01	pH units	TM73/PM0
Total Dissolved Solids#	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	mg/l	TM20/PM0
Total Dissolved Solids [#]	<350	<350	<350	<350	<350	<350	<350	<350	<350	<350	<350	mg/kg	TM20/PM0

Client Name: Reference: Location: Contact: EMT Job No:

Ground Investigations Ireland 11957-06-22 A034 Tinakilly Barry Sexton

Report : EN12457_2

Reference:	11957-06															
Location:	A034 Tina	akilly					Solids: V=	60g VOC ja	r, J=250g gl	ass jar, T=p	lastic tub					
	Barry Sex	ton										12				
EMT Job No:	22/13616											<u>```</u> (\mathbf{r}			
EMT Sample No.	5-8	13-16	17-20	25-28	49-52	61-64	65-68	73-76	81-84	97-100			VL.			
Sample ID	TP02	TP04	TP05	TP07	TP13	TP16	TP17	TP19	TP21	TP25				Ò		notes for all cronyms
Depth	0.50	0.50	0.50	1.00	1.00	1.00	0.50	1.00	0.50	1.00				Please se	attached n	otes for all
COC No / misc														abbrev	attached n	cronyms
Containers	VТ	VJT	VJT					50)							
Sample Date	17/08/2022	16/08/2022	16/08/2022	16/08/2022	15/08/2022	15/08/2022	16/08/2022	16/08/2022	15/08/2022	15/08/2022					<u>``</u>	در
Sample Type	Soil	Soil						1								
Batch Number	1	1	1	1	1	1	1	1	1	1	Inert	Stable Non- reactive	Hazardous	LOD LOR	Units	Method No.
	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022						
Solid Waste Analysis																
Total Organic Carbon [#]	0.13	0.24	0.10	0.06	0.08	0.07	0.15	0.13	0.19	0.28	3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	6	-	-	<0.025	mg/kg	TM36/PM12
Sum of 7 PCBs#	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	1	-	-	<0.035	mg/kg	TM17/PM8
Mineral Oil	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 6 #	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	-	-	-	<0.22	mg/kg	TM4/PM8
PAH Sum of 17	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate																
	-0.005	10.005	10.005	10.005	0.000	10.005	10.005	-0.005	-0.005	10.005	0.5	0	05	10.005		TM30/PM17
Arsenic [#]	< 0.025	<0.025	<0.025	<0.025	0.028	<0.025	<0.025	< 0.025	<0.025	< 0.025	0.5	2	25	<0.025	mg/kg	TM30/PM17 TM30/PM17
Barium #	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	20	100	300	< 0.03	mg/kg	
Cadmium #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.04	1	5	<0.005	mg/kg	TM30/PM17
Chromium #	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	< 0.015	<0.015	<0.015	<0.015	0.5	10	70	<0.015	mg/kg	TM30/PM17
Copper#	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	2	50	100	<0.07	mg/kg	TM30/PM17
Mercury#	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.01	0.2	2	<0.0001	mg/kg	TM61/PM0
Molybdenum #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.5	10	30	<0.02	mg/kg	TM30/PM17
Nickel [#]	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.4	10	40	<0.02	mg/kg	TM30/PM17
Lead #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.5	10	50	<0.05	mg/kg	TM30/PM17
Antimony [#]	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.06	0.7	5	<0.02	mg/kg	TM30/PM17
Selenium #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.1	0.5	7	<0.03	mg/kg	TM30/PM17
Zinc [#]	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	4	50	200	<0.03	mg/kg	TM30/PM17
Total Dissolved Solids#	<350	<350	<350	<350	<350	<350	<350	<350	<350	<350	4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	30	<20	30	<20	20	<20	<20	<20	<20	<20	500	800	1000	<20	mg/kg	TM60/PM0
Dry Matter Content Ratio	100.5	94.4	96.5	95.0	95.4	99.7	93.3	95.6	91.5	97.9	-	-	-	<0.1	%	NONE/PM4
Moisture Content 105C (% Dry Weight)	<0.1	5.9	3.6	5.3	4.8	0.3	7.2	4.6	9.3	2.2	-	-	-	<0.1	%	PM4/PM0
рН *	7.61	6.78	6.99	7.13	5.37	6.27	6.54	6.81	6.35	6.40	-	-	-	<0.01	pH units	TM73/PM11
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1	-	-	<0.1	mg/kg	TM26/PM0
Fluoride	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	10	150	500	<3	mg/kg	TM173/PM0
Sulphate as SO4 #	<5	11	8	6	27	19	36	15	15	8	1000	20000	50000	<5	mg/kg	TM38/PM0
Chloride #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	800	15000	25000	<3	mg/kg	TM38/PM0

EPH Interpretation Report

Client Name:	Ground Investigations Ireland
Reference:	11957-06-22
Location:	A034 Tinakilly
Contact:	Barry Sexton

Client Name Reference: Location: Contact:	: Ground Inv 11957-06-2 A034 Tinak Barry Sexto	cilly	Ireland	RECE	Matrix : Solid
EMT Job Batch No.	Sample ID	Depth	EMT Sample No.	EPH Interpretation	OLIO AND
22/13616 1	TP02	0.50	5-8	No interpretation possible	Č 3
22/13616 1	TP04	0.50	13-16	No interpretation possible	
22/13616 1	TP05	0.50	17-20	No interpretation possible	
22/13616 1	TP07	1.00	25-28	No interpretation possible	
22/13616 1	TP13	1.00	49-52	No interpretation possible	
22/13616 1	TP16	1.00	61-64	No interpretation possible	
22/13616 1	TP17	0.50	65-68	No interpretation possible	
22/13616 1	TP19	1.00	73-76	No interpretation possible	
22/13616 1	TP21	0.50	81-84	No interpretation possible	
22/13616 1	TP25	1.00	97-100	No interpretation possible	

Client Name:
Reference:
Location:
Contact:

Ground Investigations Ireland 11957-06-22 A034 Tinakilly Barry Sexton

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Asbestos subsamples are retained for not less than 6 months from the date of analysis unless specifically requested. ý. S

The LOQ of the Asbestos Quantification is 0.001% dry fibre of dry mass of sample.

20-Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative ampling.

Where trace asbestos is reported the amount of asbestos will be <0.1%.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analyst Name	Date Of Analysis	Analysis	Result
22/13616	1	TP02	0.50	8	Remigiusz Blichowski	26/08/2022	General Description (Bulk Analysis)	Brown sand
					Remigiusz Blichowski	26/08/2022	Asbestos Fibres	NAD
					Remigiusz Blichowski	26/08/2022	Asbestos ACM	NAD
					Remigiusz Blichowski	26/08/2022	Asbestos Type	NAD
22/13616	1	TP04	0.50	16	Matthew Turner	26/08/2022	General Description (Bulk Analysis)	Brown soil/Stone
					Matthew Turner	26/08/2022	Asbestos Fibres	NAD
					Matthew Turner	26/08/2022	Asbestos ACM	NAD
					Matthew Turner	26/08/2022	Asbestos Type	NAD
22/13616	1	TP05	0.50	20	Remigiusz Blichowski	26/08/2022	General Description (Bulk Analysis)	Brown sand
					Remigiusz Blichowski	26/08/2022	Asbestos Fibres	NAD
					Remigiusz Blichowski	26/08/2022	Asbestos ACM	NAD
					Remigiusz Blichowski	26/08/2022	Asbestos Type	NAD
22/13616	1	TP07	1.00	28	Matthew Turner	26/08/2022	General Description (Bulk Analysis)	Brown soil/Stone
					Matthew Turner	26/08/2022	Asbestos Fibres	NAD
					Matthew Turner	26/08/2022	Asbestos ACM	NAD
					Matthew Turner	26/08/2022	Asbestos Type	NAD
22/13616	1	TP13	1.00	52	Matthew Turner	26/08/2022	General Description (Bulk Analysis)	Brown soil/Stone
					Matthew Turner	26/08/2022	Asbestos Fibres	NAD
					Matthew Turner	26/08/2022	Asbestos ACM	NAD
					Matthew Turner	26/08/2022	Asbestos Type	NAD
22/13616	1	TP16	1.00	64	Remigiusz Blichowski	26/08/2022	General Description (Bulk Analysis)	Brown Sand
					Remigiusz Blichowski	26/08/2022	Asbestos Fibres	NAD
					Remigiusz Blichowski	26/08/2022	Asbestos ACM	NAD
					Remigiusz Blichowski	26/08/2022	Asbestos Type	NAD
22/13616	1	TP17	0.50	68	Matthew Turner	26/08/2022	General Description (Bulk Analysis)	Brown soil/Stone
					Matthew Turner	26/08/2022	Asbestos Fibres	NAD
					Matthew Turner	26/08/2022	Asbestos ACM	NAD
					Matthew Turner	26/08/2022	Asbestos Type	NAD
22/13616	1	TP19	1.00	76	Remigiusz Blichowski	26/08/2022	General Description (Bulk Analysis)	Brown sand
					Remigiusz Blichowski	26/08/2022	Asbestos Fibres	NAD
					Remigiusz Blichowski	26/08/2022	Asbestos ACM	NAD
					Remigiusz Blichowski	26/08/2022	Asbestos Type	NAD

Client N Referen Locatio Contac	lame: ice: in:	Materials		nvestigat 5-22 ıakilly	ions Ireland			Asbestos Analysis Result Brown soil/Stone NAD NAD NAD Brown soil/Stone
EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analyst Name	Date Of Analysis	Analysis	Result
22/13616	1	TP21	0.50	84	Matthew Turner	26/08/2022	General Description (Bulk Analysis)	Brown soil/Stone
					Matthew Turner	26/08/2022	Asbestos Fibres	NAD
					Matthew Turner	26/08/2022	Asbestos ACM	NAD
					Matthew Turner	26/08/2022	Asbestos Type	NAD
22/13616	1	TP25	1.00	100	Matthew Turner	26/08/2022	General Description (Bulk Analysis)	Brown soil/Stone
					Matthew Turner	26/08/2022	Asbestos Fibres	NAD
					Matthew Turner	26/08/2022	Asbestos ACM	NAD
					Matthew Turner	26/08/2022	Asbestos Type	NAD
L							I	1

Elem	ent	Materials	Techno	logy	A.	Notification of Deviating Samples
Client Name:Ground Investigations IrelandReference:11957-06-22Location:A034 TinakillyContact:Barry Sexton				Ireland	·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Notification of Deviating Samples Matrix : Solid
EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
22/13616		TP16		61-64	PCB	Sample holding time exceeded

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 22/13616

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C. Ash samples are dried at 37°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Flease do not hesitate to contact ZHOO DOLD the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa Indicates analyte found in associated method blank. Dilution required. MCERTS accredited. Not applicable No Asbestos Detected.
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
Ν	Client Sample
ТВ	Trip Blank Sample
ос	Outside Calibration Range

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Extractable Hydrocarbons - i.e. everything extracted by the solvent. Clean-up - e.g. by florisil, silica gel. GC - Single coil gas chromatography. Aliphatics & Aromatics. Aliphatics only.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

Method Code Appendix

Element I	Materials Technology		PA		I	Method Code	Appendix
EMT Job No:	22/13616		ČČ	SV.			
Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			Contraction of the second seco	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes

EMT Job No:	Aaterials Technology 22/13616			S,		Method Code	
Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			C AR	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes

EMT Job No:	22/13616		N.C.	SIL.			
Γest Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported o dry weight basis
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007	PM0	No preparation is required.	Yes		Contraction of the second	Yes
TM65	Asbestos Bulk Identification method based on HSG 248 Second edition (2021)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	2
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.			AR	Yes
ТМ73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	

LABORATORY REPORT

Contract Number: PSL22/5678

Report Date: 03 October 2022

Client's Reference: 11957-06-22

Client Name: Ground Investigations Ireland Ltd Catherinestown House Hazelhatch Road Newcastle Co Dublin D22 YD52

For the attention of: Frank O'Dea/Adam Browne

Contract Title: A034 Tinakilly

Date Received:	31/8/2022
Date Commenced:	31/8/2022
Date Completed:	3/10/2022

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

A Watkins (Director) R Berriman (Quality Manager)

Ste

S Royle (Laboratory Manager)

L Knight (Assistant Laboratory Manager)

5 – 7 Hexthorpe Road, Hexthorpe,

e-mail: rberriman@prosoils.co.uk awatkins@prosoils.co.uk

Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642 S Eyre (Senior Technician) T Watkins (Senior Technician)

Page 1 of

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

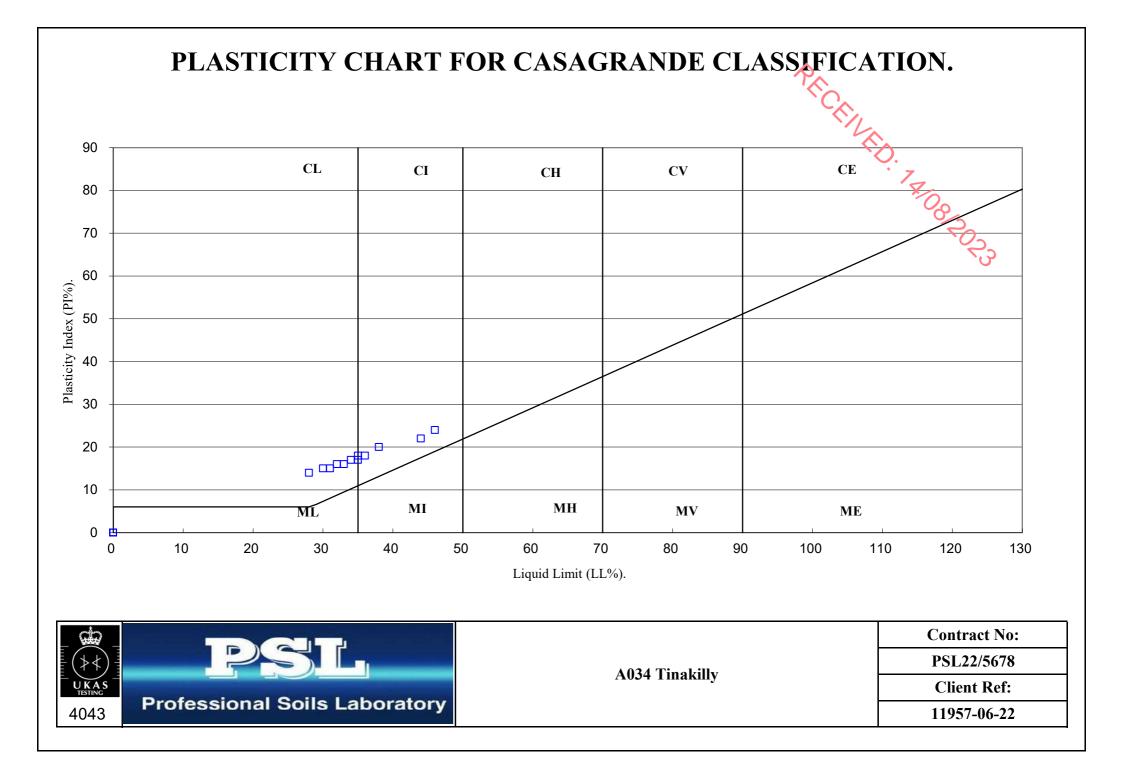
Hole Number	Sample Number	Sample Type	Top Depth	Base Depth	Description of Sample
			m	m	×.
TP01		В	0.50		Brown sandy slightly gravelly CLAY.
TP01		В	1.50		Brown sandy slightly gravelly CLAY.
TP01		В	2.00		Brown slightly sandy slightly gravelly CLAY.
TP02		В	1.50		Brown very sandy GRAVEL.
TP04		В	0.50		Brown slightly sandy slightly gravelly CLAY.
TP04		В	1.50		Brown slightly gravelly very sandy CLAY.
TP05		В	0.50		Brown sandy gravelly CLAY.
TP05		В	2.00		Brown very sandy GRAVEL with cobbles.
TP07		В	2.50		Brown sandy GRAVEL with some cobbles.
TP08		В	2.00		Brown slightly sandy CLAY.
TP10		В	0.50		Brown sandy slightly gravelly CLAY.
TP12		В	1.00		Brown sandy slightly gravelly CLAY.
TP12		В	2.50		Brown sandy slightly gravelly CLAY.
TP13		В	1.00		Brown sandy slightly gravelly CLAY.
TP14		В	2.00		Brown very sandy GRAVEL.
TP15		В	0.50		Brown sandy slightly gravelly CLAY.
TP15		В	1.50		Brown slightly sandy slightly gravelly CLAY.
TP16		В	1.00		Brown clayey SAND.
TP16		В	2.50		Brown slightly sandy CLAY.

			Contract No:
		A034 Tinakilly	PSL22/5678
		·	Client Ref:
4043	Professional Soils Laboratory		11957-06-22

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth	Description of Sample
TD17		D	m	m	
TP17		B	0.50		Brown sandy slightly gravelly CLAY.
TP17		В	2.00		Brown clayey very gravelly SAND.
TP18		В	3.00		Brown sandy slightly gravelly CLAY.
TP19		В	2.00		Brown slightly sandy slightly gravelly CLAY.
TP20		В	1.50		Brown sandy slightly gravelly CLAY.
TP20		В	3.00		Brown clayey very gravelly SAND.
TP22		В	2.00		Brown very gravelly SAND.
TP23		В	1.50		Brown slightly sandy slightly gravelly CLAY.
TP24		В	0.50		Brown sandy gravelly CLAY.
TP24		В	1.50		Brown sandy CLAY.
TP25		В	1.00		Brown clayey slightly gravelly SAND.
TP25		В	2.00		Brown slightly gravelly SAND.
1					

SUMMARY OF SOIL CLASSIFICATION TESTS


(BS1377 : PART 2 : 1990)

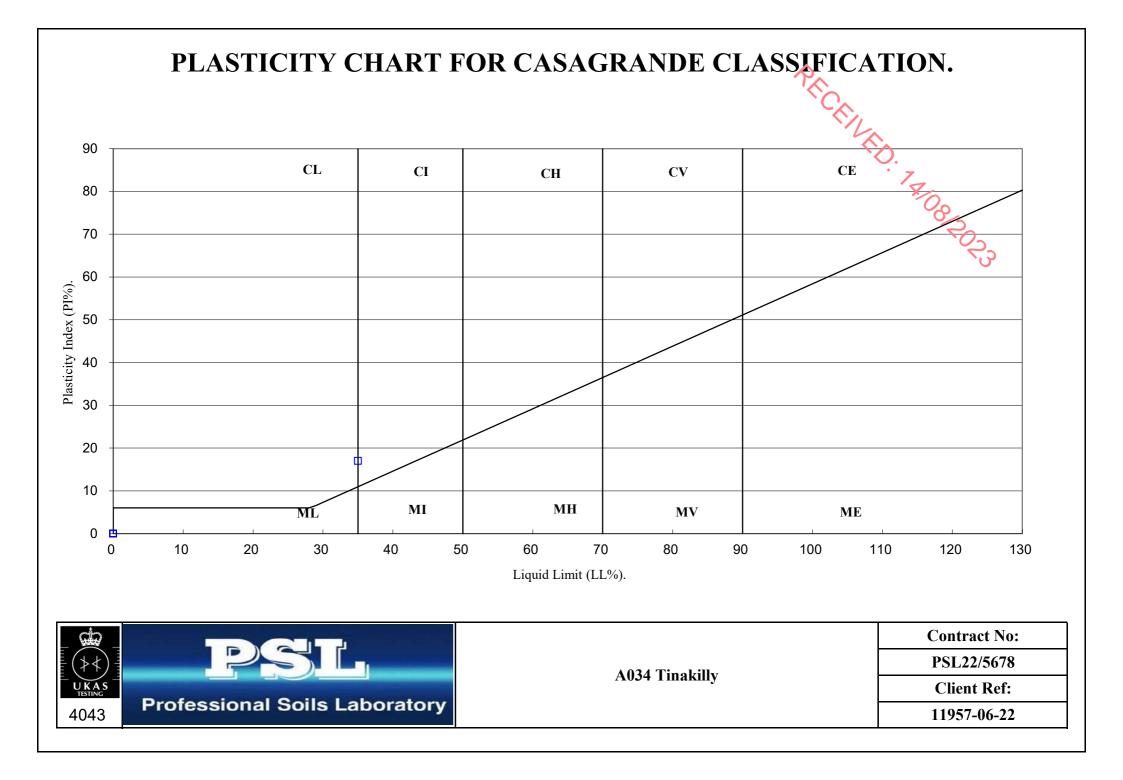
					Materia	T	D	T :	DI.	DI 42 . 24 .	D	
	c I	G 1	T	P	Moisture	Linear	Particle	Liquid	Plastic	Plasticity	Passing	
Hole	Sample	Sample	Тор	Base	Content	Shrinkage	Density	Limit	Limit	Index	.425mm	Remarks
Number	Number	Туре	Depth	Depth	%	%	Mg/m ³	%	%	%	%	* 7
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		84
TP01		В	0.50		7.2			31	16	15	49	Low Plasticity CL
TP01		В	2.00		21			46	22	24	93	Intermediate Plasticity CI
TP02		В	1.50		5.6				NP			
TP04		В	1.50		17			38	18	20	82	Intermediate Plasticity CI
TP05		В	2.00		6.5				NP			
TP07		В	2.50		6.1				NP			
TP08		В	2.00		23			44	22	22	100	Intermediate Plasticity CI
TP10		В	0.50		11			34	17	17	56	Low Plasticity CL
TP12		В	1.00		12			30	15	15	85	Low Plasticity CL
TP13		В	1.00		12			33	17	16	65	Low Plasticity CL
TP14		В	2.00		5.8				NP			
TP15		В	1.50		16			32	16	16	69	Low Plasticity CL
TP16		В	1.00		6.1				NP			
TP17		В	0.50		13			35	17	18	69	Intermediate Plasticity CI
TP17		В	2.00		9.7				NP			
TP18		В	3.00		17			28	14	14	70	Low Plasticity CL
TP20		В	1.50		13			36	18	18	60	Intermediate Plasticity CI
TP22		В	2.00		10				NP			
TP23		В	1.50		18			35	18	17	95	Intermediate Plasticity CI

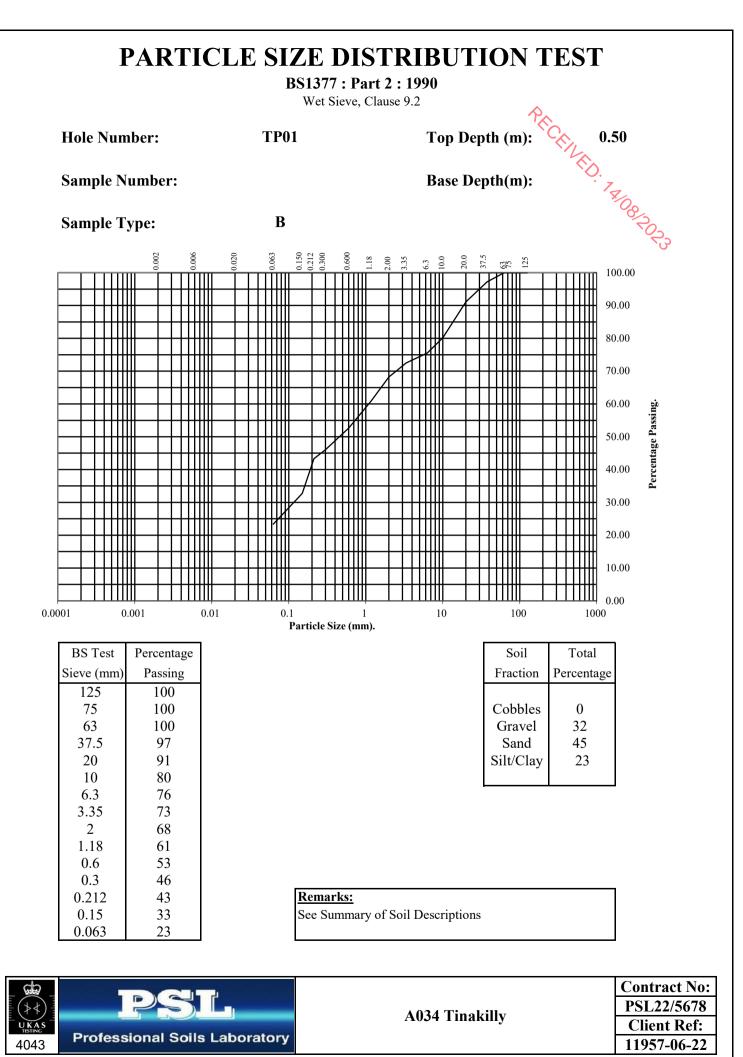
SYMBOLS : NP : Non Plastic

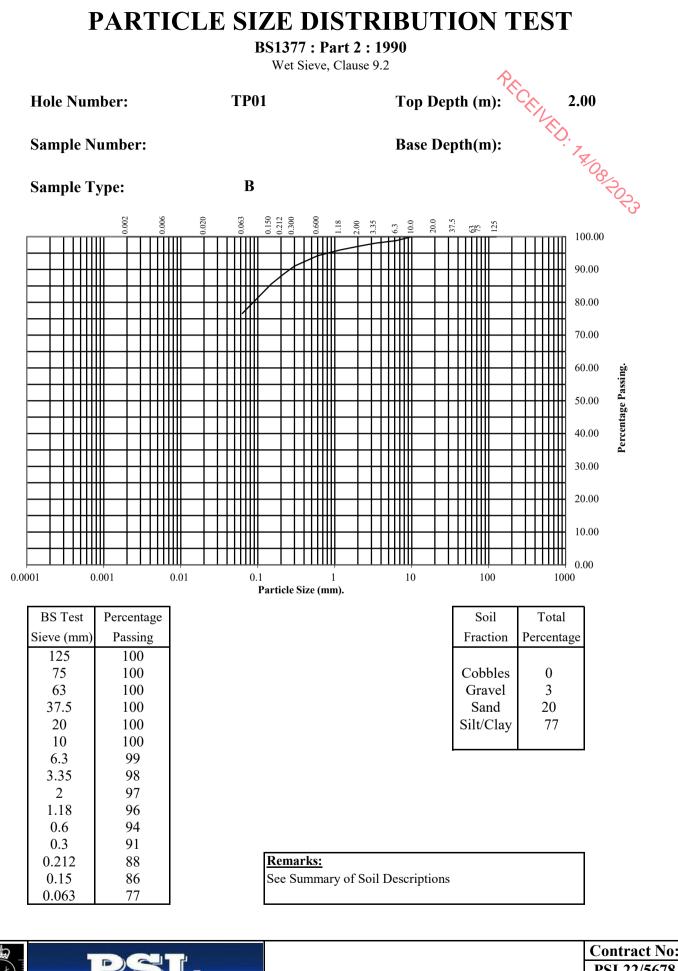
*: Liquid Limit and Plastic Limit Wet Sieved.

			Contract No:
$(\neq \downarrow)$		A034 Tinakilly	PSL22/5678
		v	Client Ref:
4043	Professional Soils Laboratory		11957-06-22

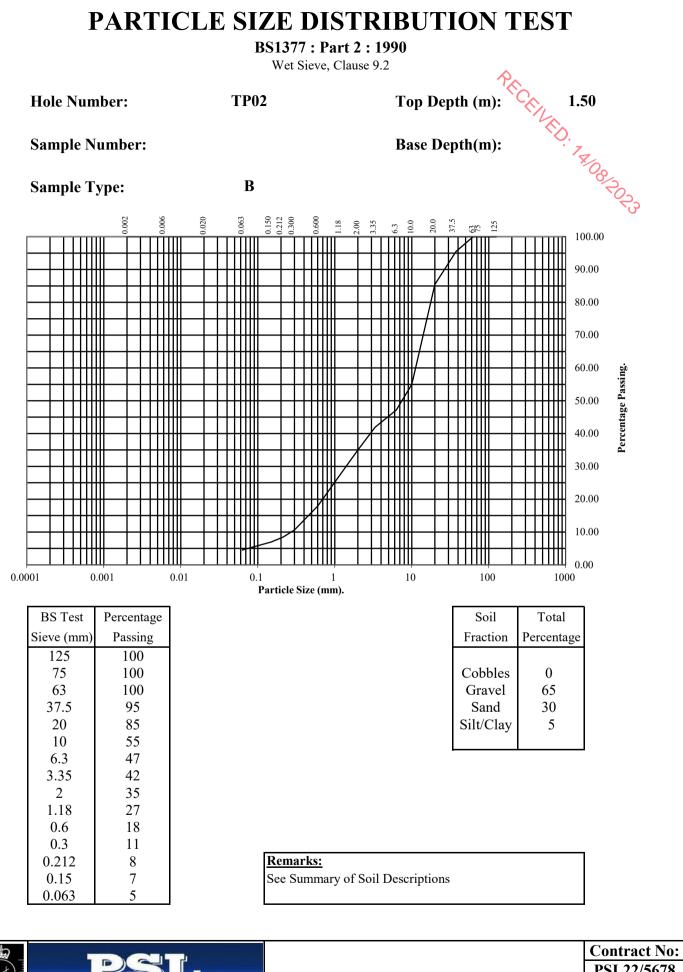
SUMMARY OF SOIL CLASSIFICATION TESTS (BS1377 : PART 2 : 1990)

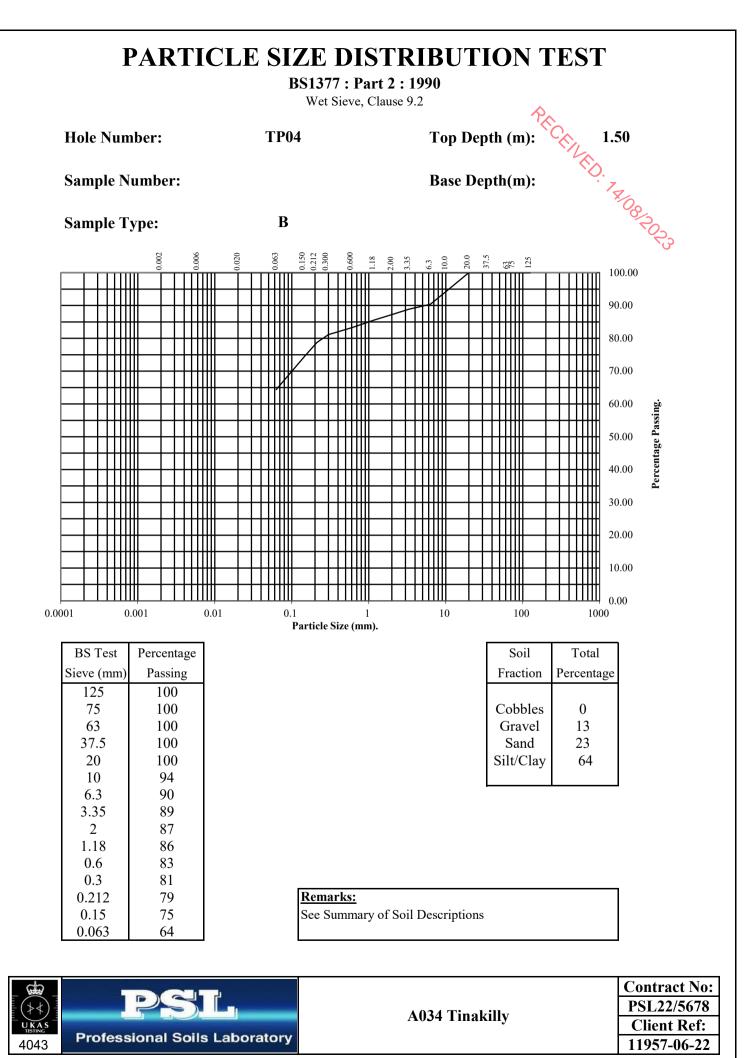

(BS1377 : PART 2 : 1990)

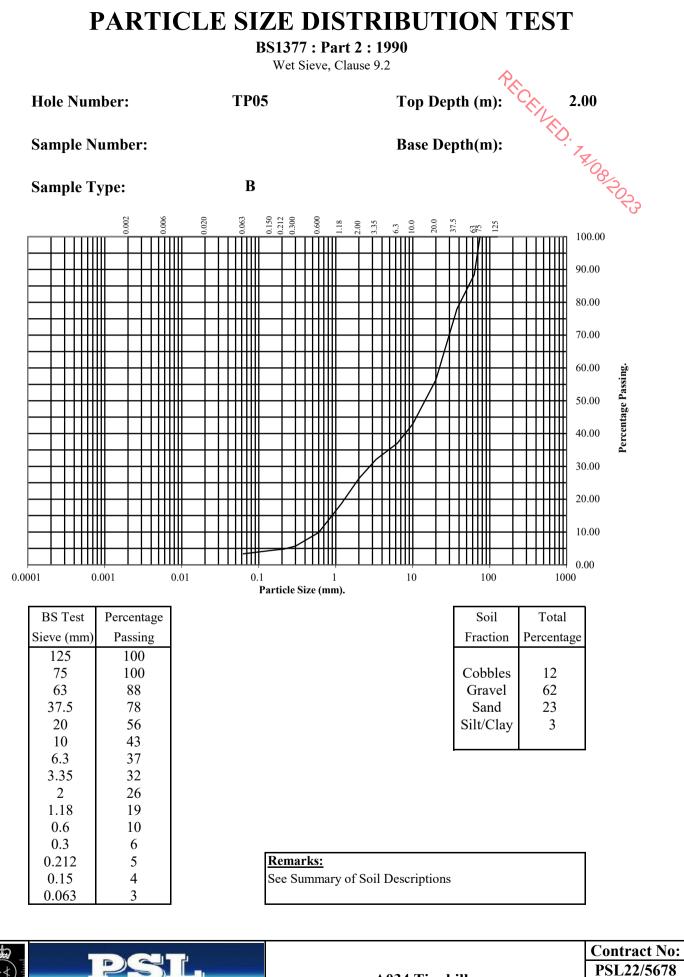

									•			
					Moisture	Linear	Particle	Liquid	Plastic	Plasticity	Passing	
Hole	Sample	Sample	Тор	Base	Content	Shrinkage	Density	Limit	Limit	Index	.425mm	A Remarks
Number	Number	Туре	Depth	Depth	%	%	Mg/m ³	%	%	%	%	· 7
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		A.
TP24		В	1.50		18			35	18	17	80	Intermediate Plasticity CI
												22
												<u></u>


SYMBOLS : NP : Non Plastic

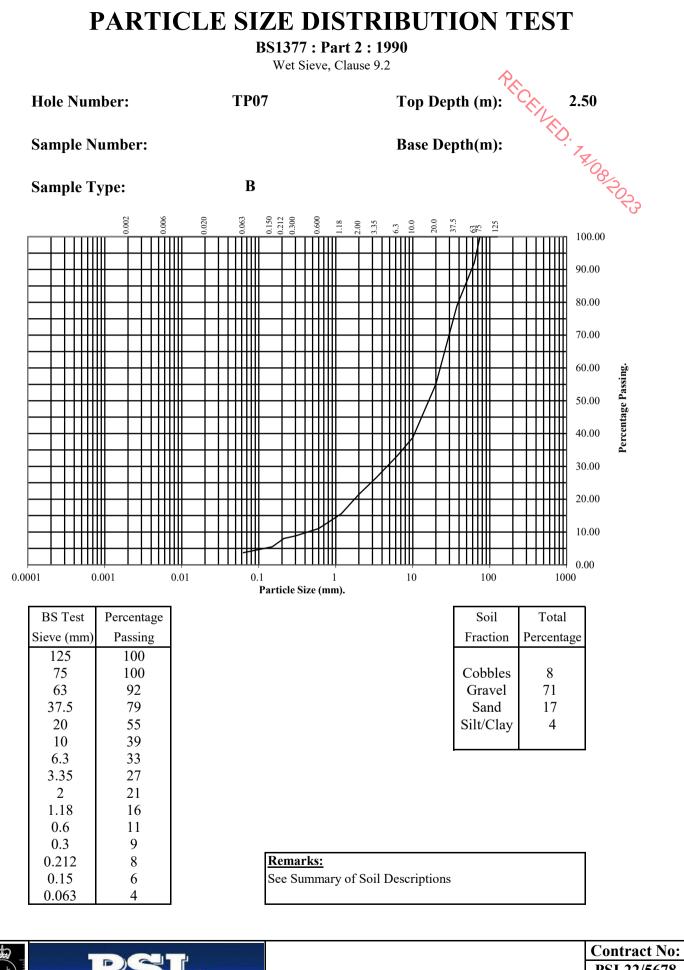
*: Liquid Limit and Plastic Limit Wet Sieved.

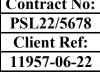

			Contract No:
$(\diamond \langle \rangle$		A034 Tinakilly	PSL22/5678
		e e e e e e e e e e e e e e e e e e e	Client Ref:
4043	Professional Soils Laboratory		11957-06-22

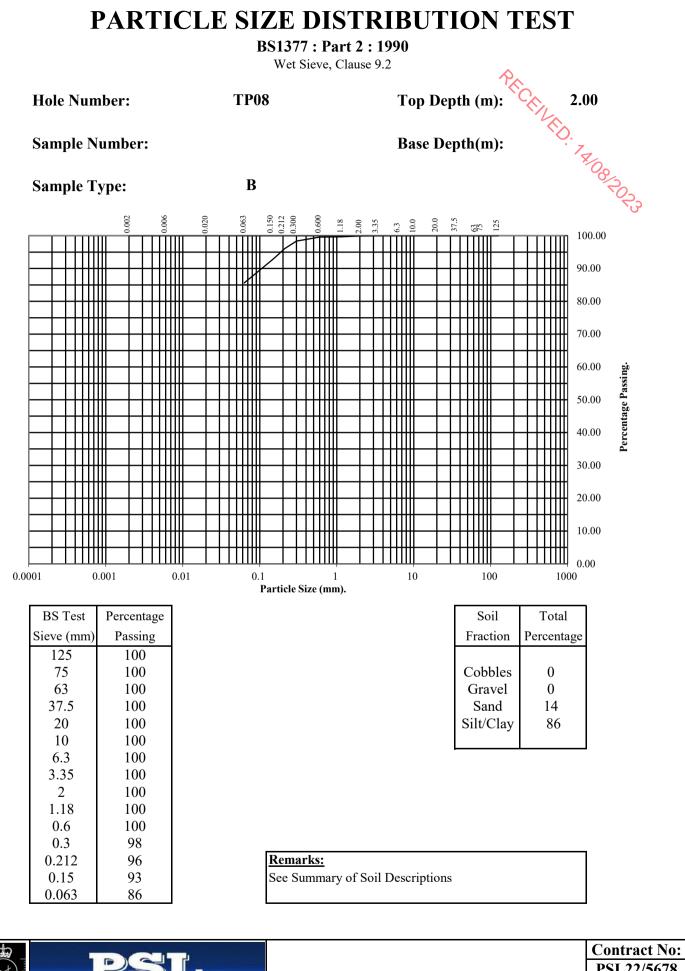




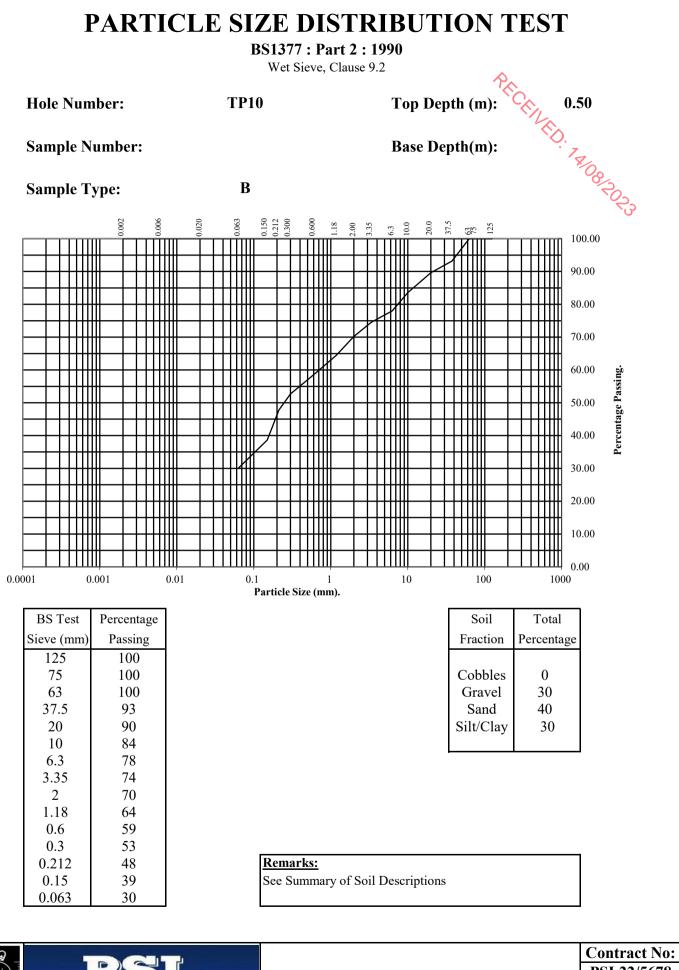
4043



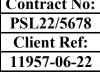

4043

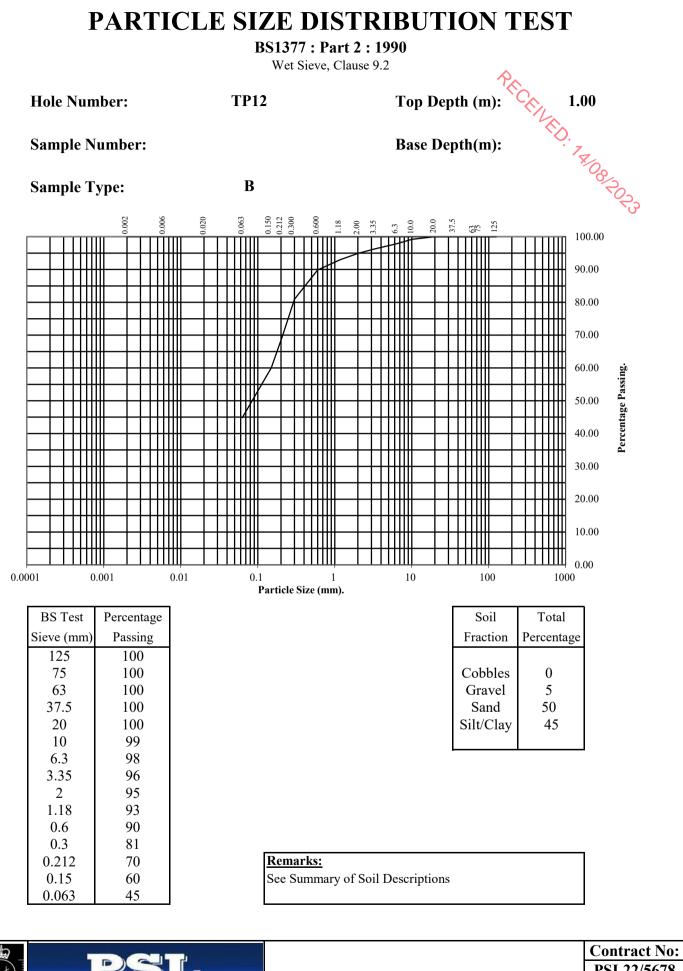

Client Ref:

11957-06-22

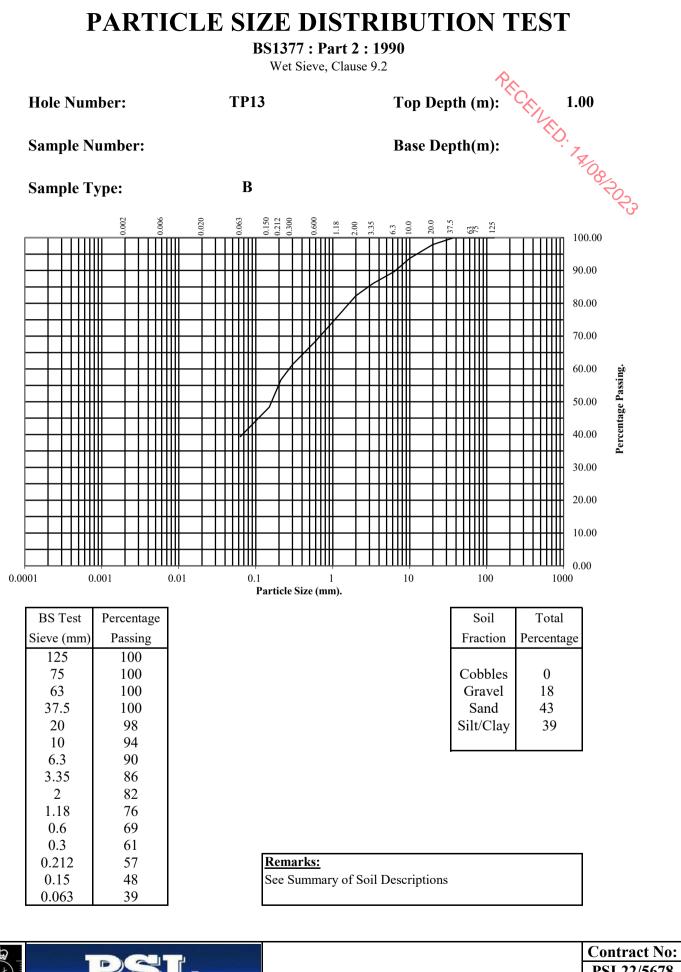


4043

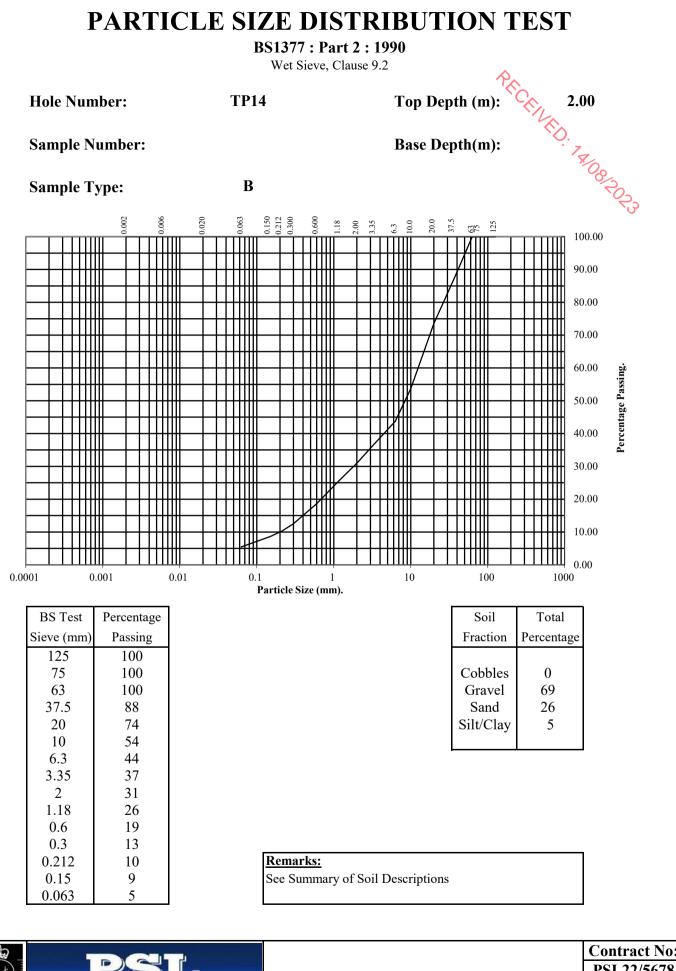


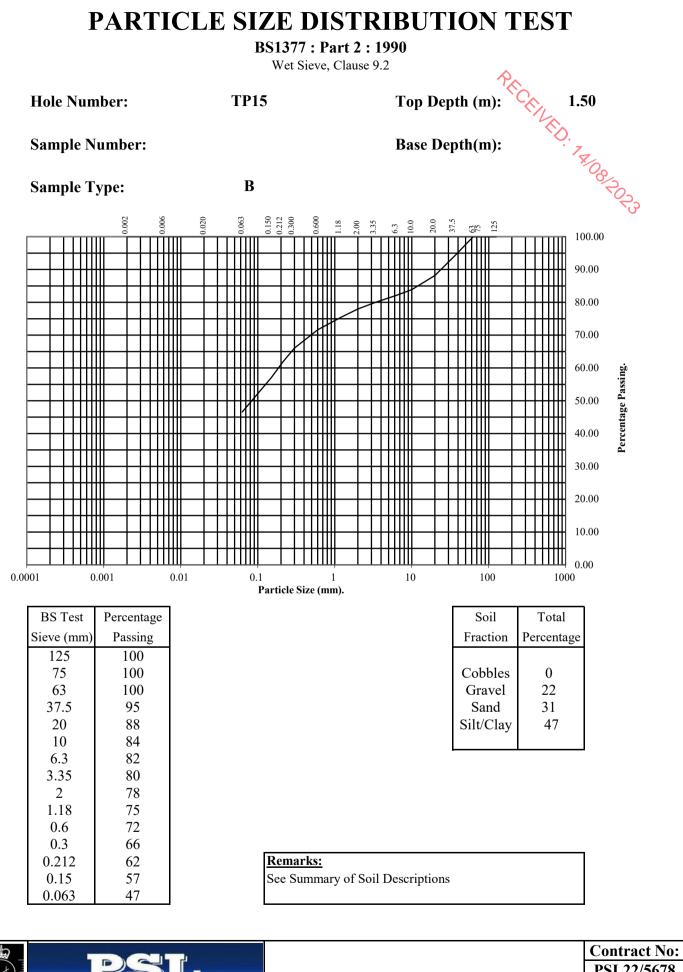


UKAS 4043 Professional Soils Laboratory

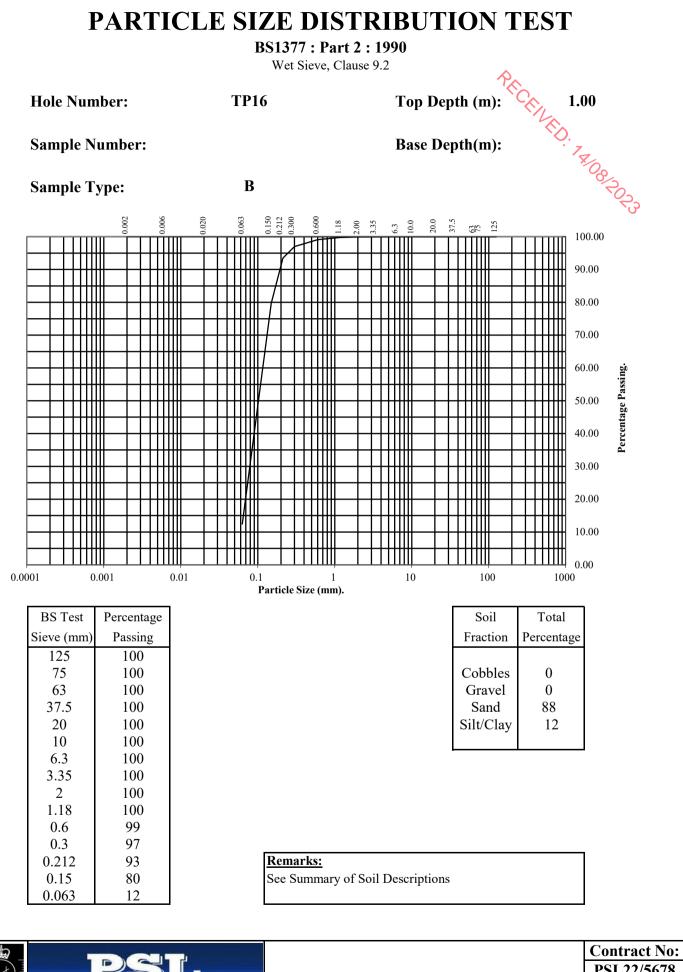


4043

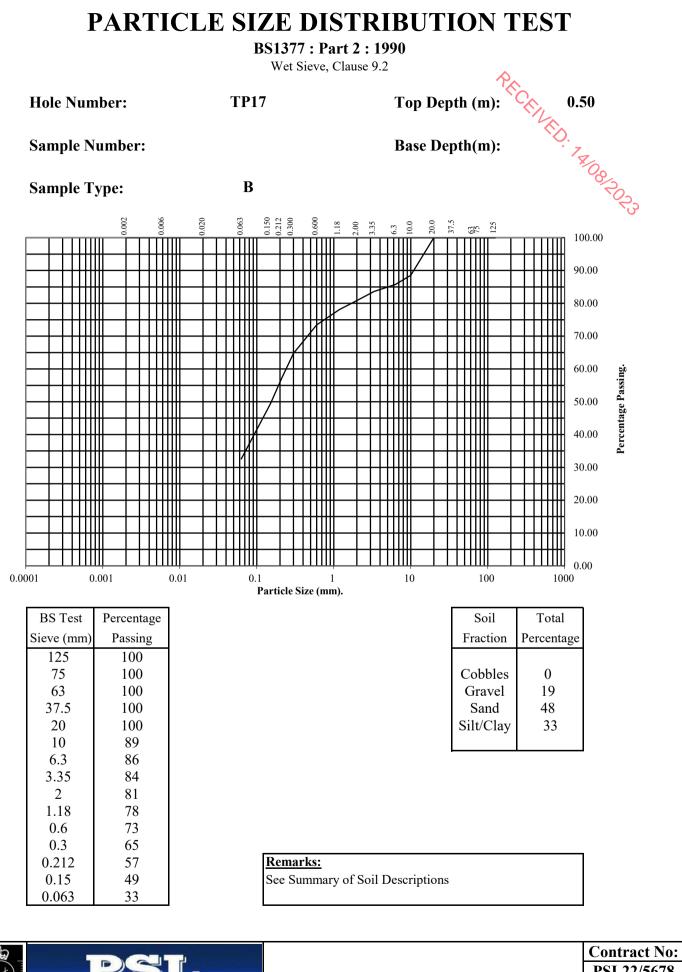




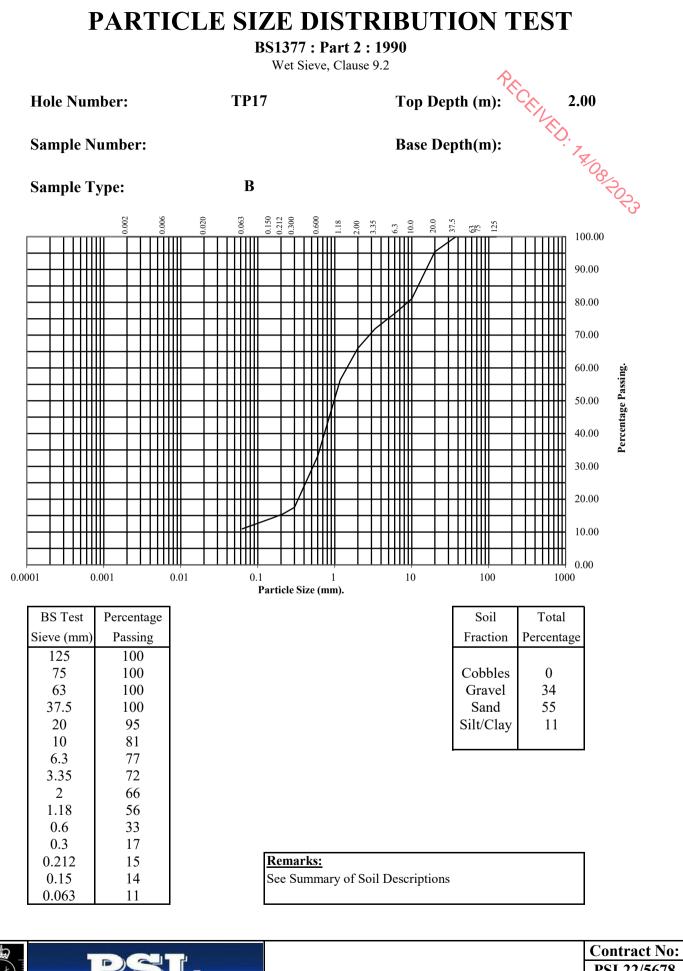
4043

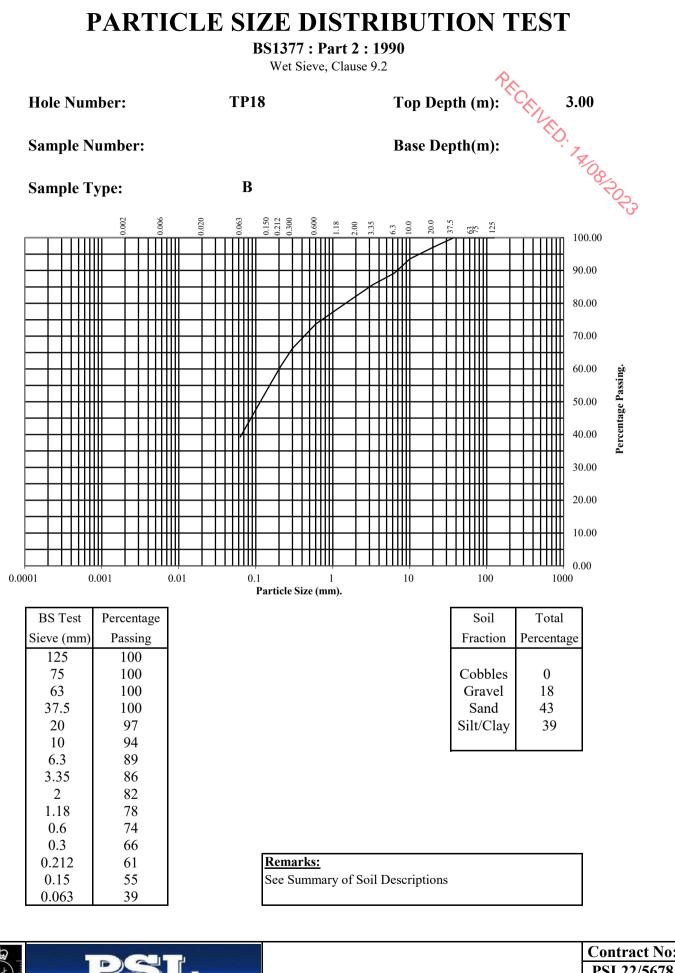


4043


Contract No: PSL22/5678 Client Ref: 11957-06-22

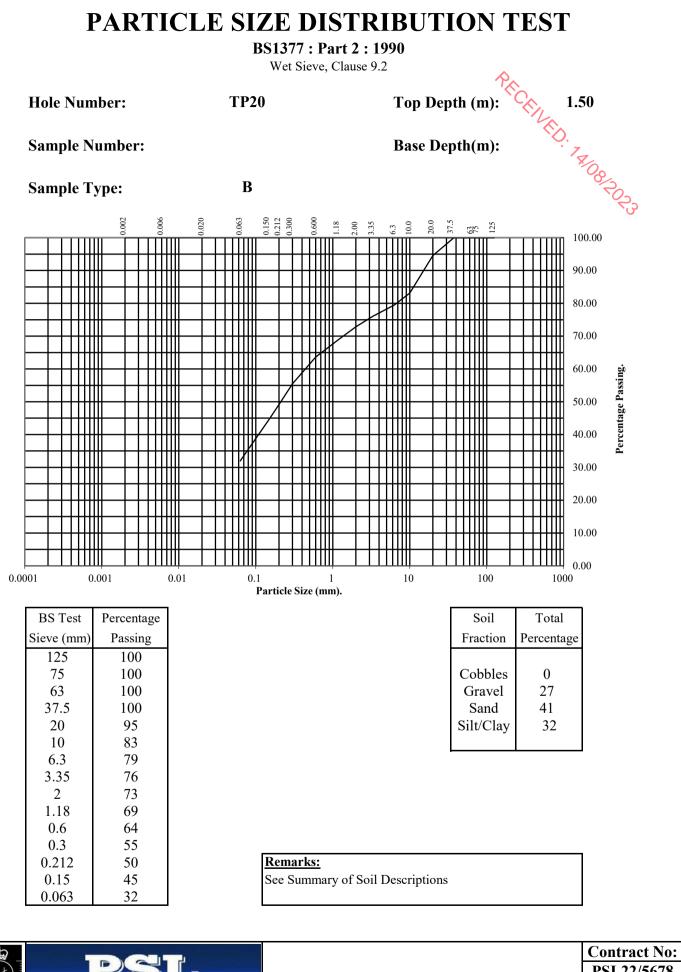
4043

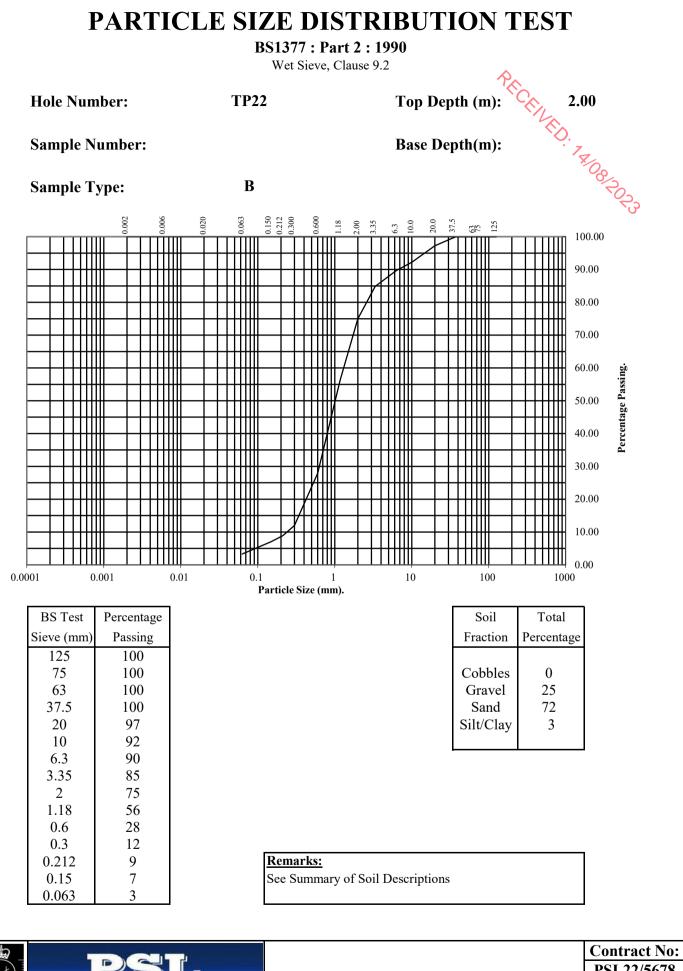

A034 Tinakilly



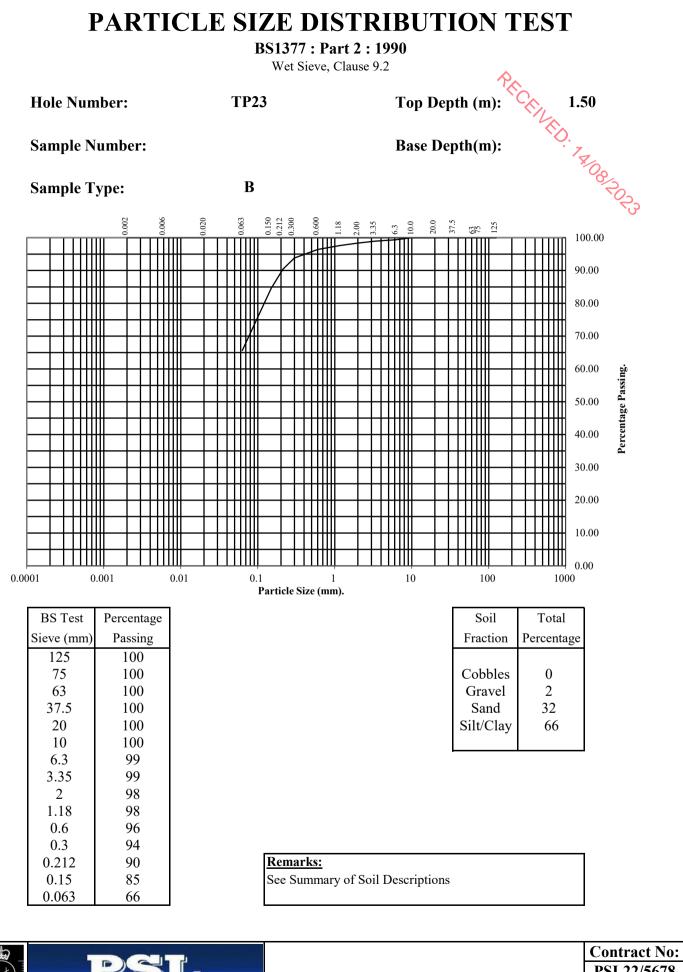
Professional Soils Laboratory

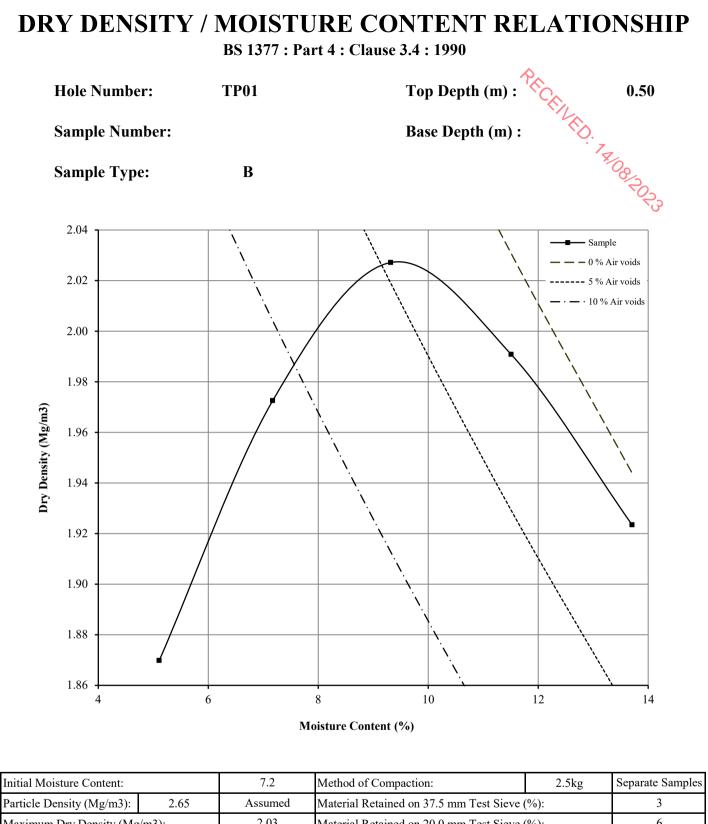
4043

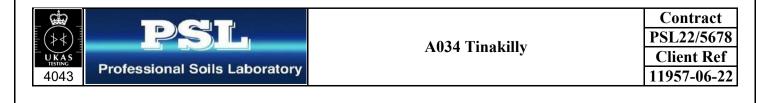



Professional Soils Laboratory

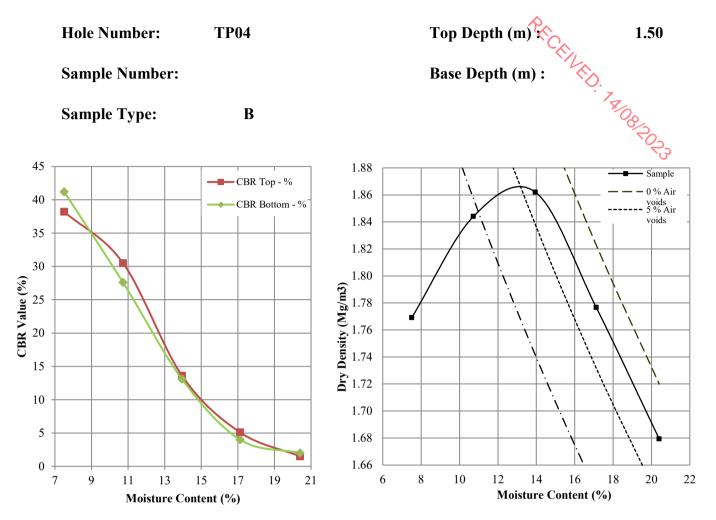
4043


Contract No:
PSL22/5678
Client Ref:
11957-06-22




Professional Soils Laboratory

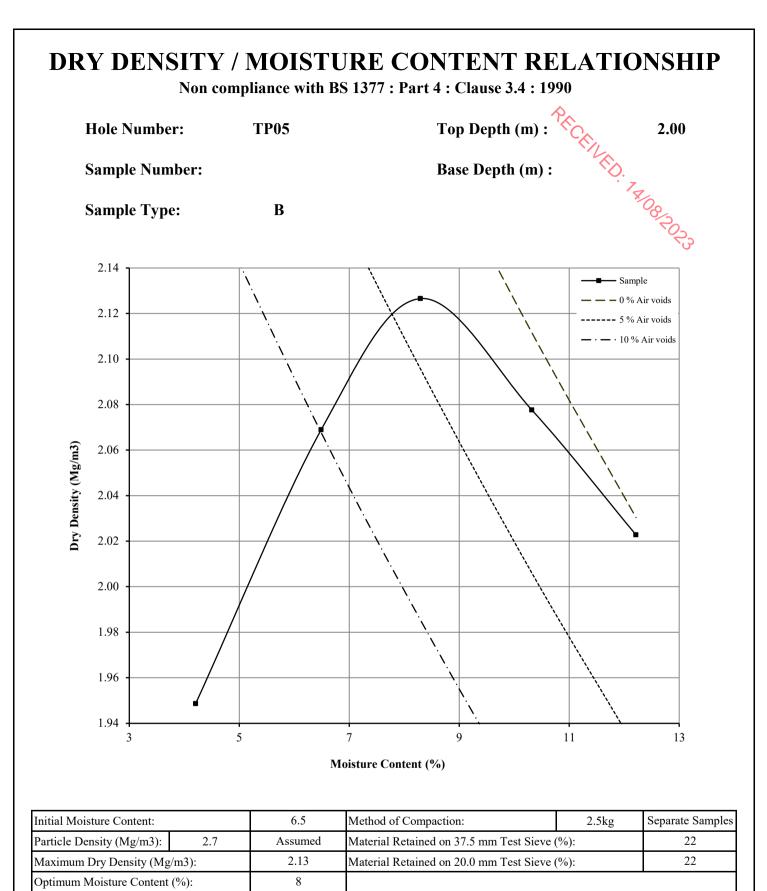
4043


A034 Tinakilly

			-	e		
Particle Density (Mg/m3):	article Density (Mg/m3): 2.65 Assumed Material Retained on 37.5 mm Test Sieve (%):				3	
Maximum Dry Density (Mg/m3):		2.03	Material Retained on 20.0 mm Test Sieve (%):		6	
Optimum Moisture Content (%):		9				
Remarks See summary of soil descriptions						

BS 1377 : Part 4 : Clause 3.4 : 1990

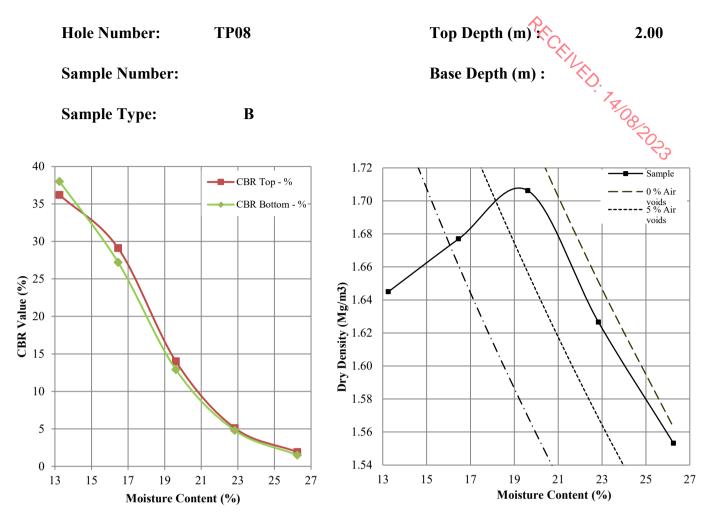
Initial Moisture Content:		17	Method of Compaction: 2.5kg		Separate Samples
Particle Density (Mg/m3): 2.65 A		Assumed	Material Retained on 37.5 mm Test Sieve (%):		0
Maximum Dry Density (Mg/m3):		1.86	Material Retained on 20.0 mm Test Sieve (%):		0
Optimum Moisture Content (%): 14					
Remarks See summary of soil descriptions					


CALIFORNIA BEARING RATIO TEST AT EACH COMPACTION POINT BS 1377 : Part 4 : Clause 7 : 1990

Moisture	Dry Density	CBR Value %		Surcharge	Soaking	Swelling
Content (%)	(Mg/m3)	Sample	Sample	(kg)	Time (hr)	(mm)
(70)		Тор	Bottom			
7.5	1.77	38.2	41.2	4	n/a	0.00
11	1.84	30.5	27.6	4	n/a	0.00
14	1.86	13.6	13.1	4	n/a	0.00
17	1.78	5.1	4.0	4	n/a	0.00
20	1.68	1.5	2	4	n/a	0.00

A034 Tinakilly

Contract PSL22/5678 Client Ref 11957-06-22

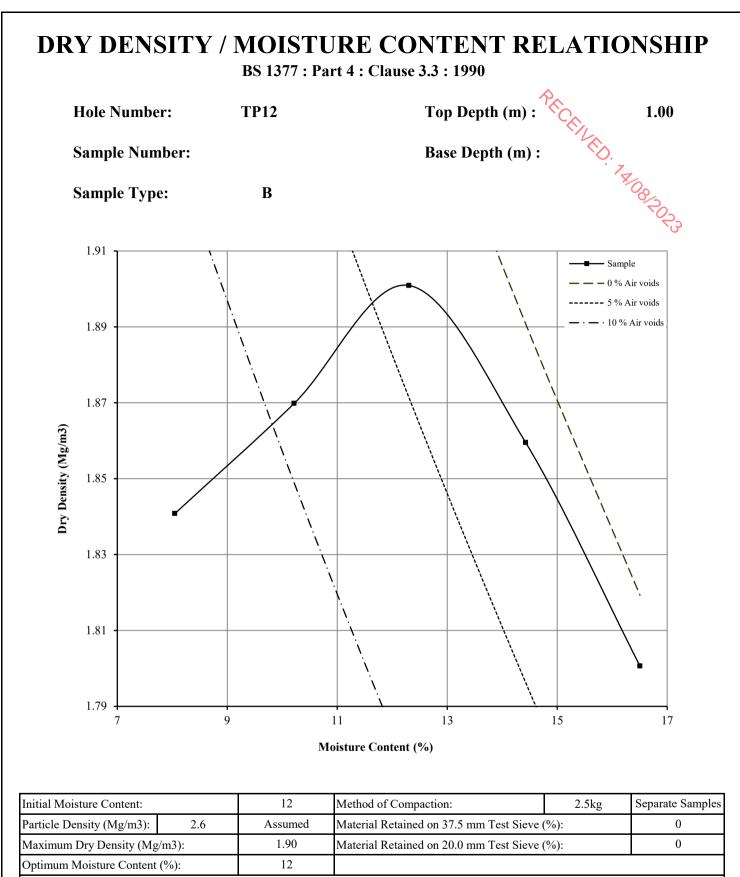

D 1	C	C '1	1
Remarks	See summary	7 OI SO11	descriptions

A034	Tinakilly

Contract
PSL22/5678
Client Ref
11957-06-22

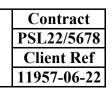
BS 1377 : Part 4 : Clause 3.4 : 1990

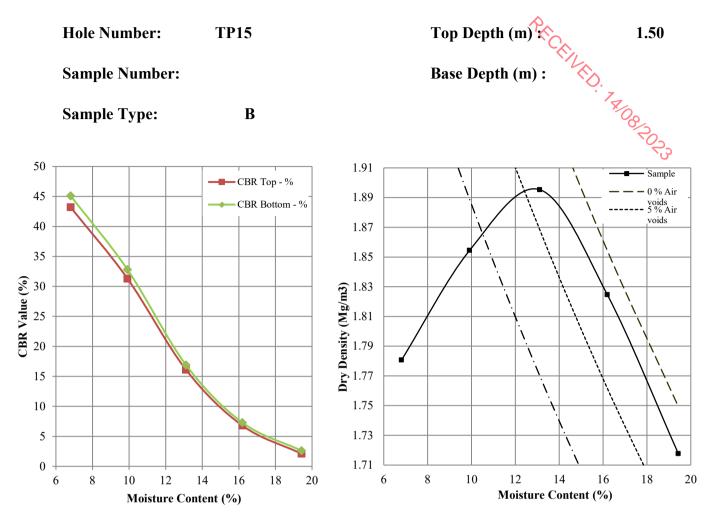
Initial Moisture Content:		23	Method of Compaction: 2.5kg		Separate Samples	
Particle Density (Mg/m3): 2.65 Assumed		Assumed	Material Retained on 37.5 mm Test Sieve (%):		0	
Maximum Dry Density (Mg/m3):		1.71	Material Retained on 20.0 mm Test Sieve (%):		0	
Optimum Moisture Content (%): 20						
Remarks See summary of soil descriptions						


CALIFORNIA BEARING RATIO TEST AT EACH COMPACTION POINT BS 1377 : Part 4 : Clause 7 : 1990

Moisture	Dry Density	CBR V	alue %	Surcharge	Soaking	Swelling
Content (%)	(Mg/m3)	Sample Top	Sample Bottom	(kg)	Time (hr)	(mm)
13	1.64	36.2	38	4	n/a	0.00
16	1.68	29.1	27.2	4	n/a	0.00
20	1.71	14	12.9	4	n/a	0.00
23	1.63	5.1	4.8	4	n/a	0.00
26	1.55	1.9	1.5	4	n/a	0.00

A034 Tinakilly

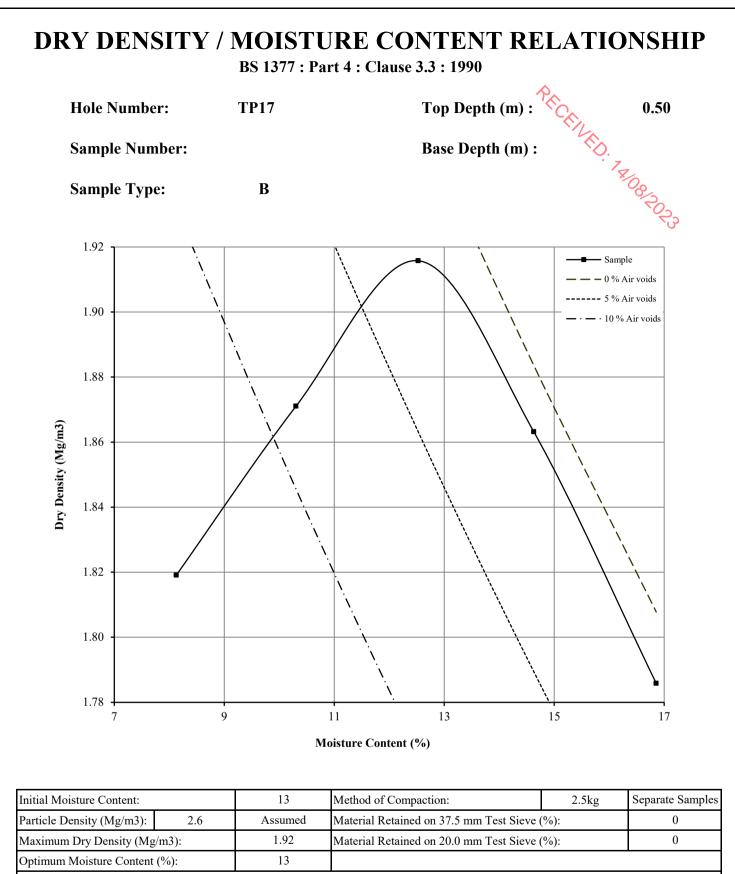

Contract PSL22/5678 Client Ref 11957-06-22


Remarks See summary of soil descriptions

A034	Tinaki	illy

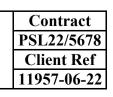
BS 1377 : Part 4 : Clause 3.4 : 1990

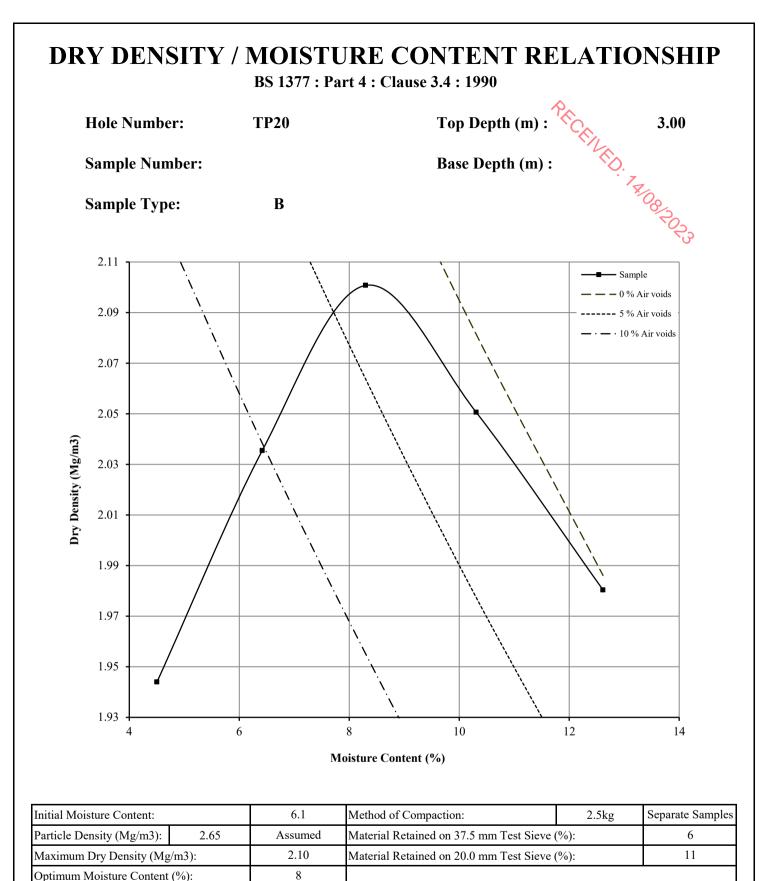
Initial Moisture Content:		16	Method of Compaction: 2.5kg		Separate Samples	
Particle Density (Mg/m3):	2.65	Assumed	Material Retained on 37.5 mm Test Siev	Material Retained on 37.5 mm Test Sieve (%):		
Maximum Dry Density (Mg/m3):		1.90	Material Retained on 20.0 mm Test Siev	Material Retained on 20.0 mm Test Sieve (%):		
Optimum Moisture Content (%): 13						
Remarks See summary of soil descriptions						


CALIFORNIA BEARING RATIO TEST AT EACH COMPACTION POINT BS 1377 : Part 4 : Clause 7 : 1990

Moisture	Dry Density	CBR Value %		Surcharge	Soaking	Swelling
Content (%)	(Mg/m3)	Sample Top	Sample Bottom	(kg)	Time (hr)	(mm)
6.8	1.78	43.2	45.1	4	n/a	0.00
10	1.85	31.3	32.8	4	n/a	0.00
13	1.90	16.1	16.9	4	n/a	0.00
16	1.82	6.8	7.3	4	n/a	0.00
19	1.72	2.1	2.6	4	n/a	0.00

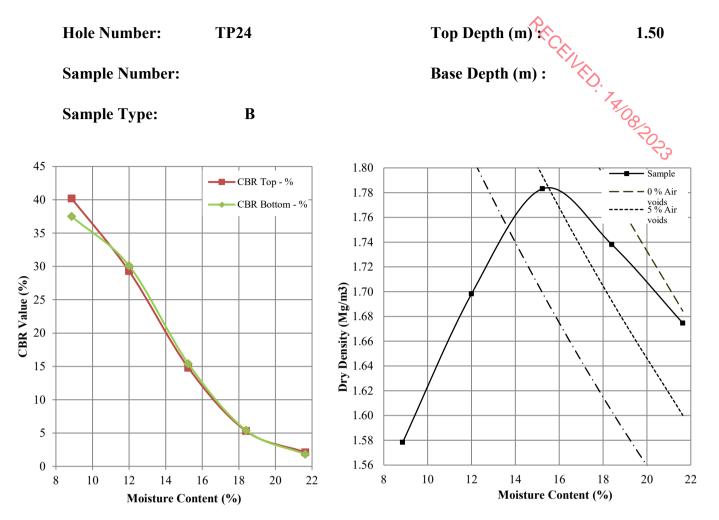
A034 Tinakilly


Contract PSL22/5678 Client Ref 11957-06-22



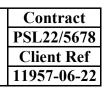
Remarks See summary of soil descriptions

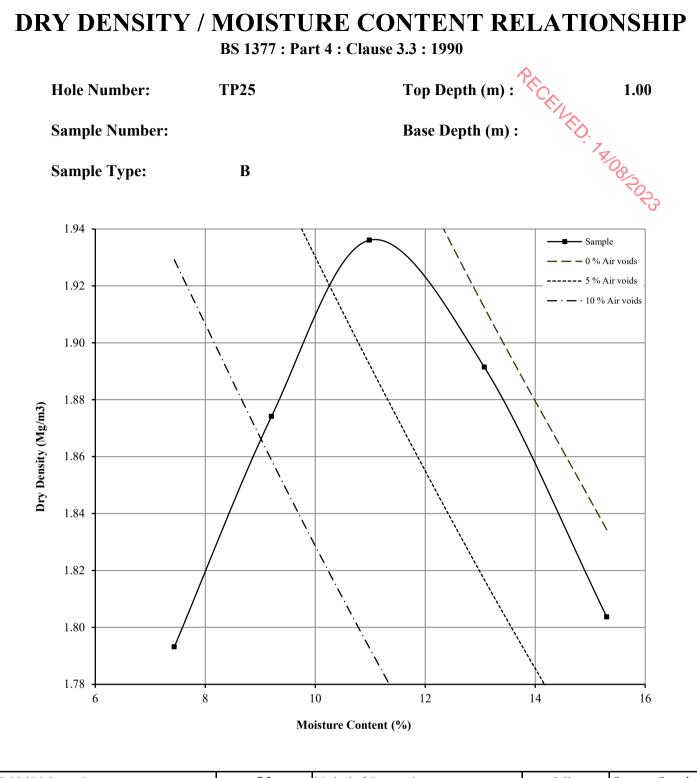
A034	Tinakilly



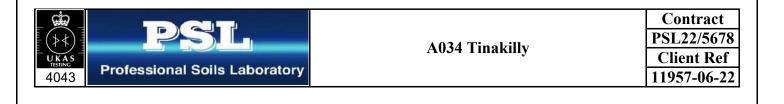
Optimum	Moisture Content (%):	
Remarks	See summary of soil descriptions	

BS 1377 : Part 4 : Clause 3.4 : 1990

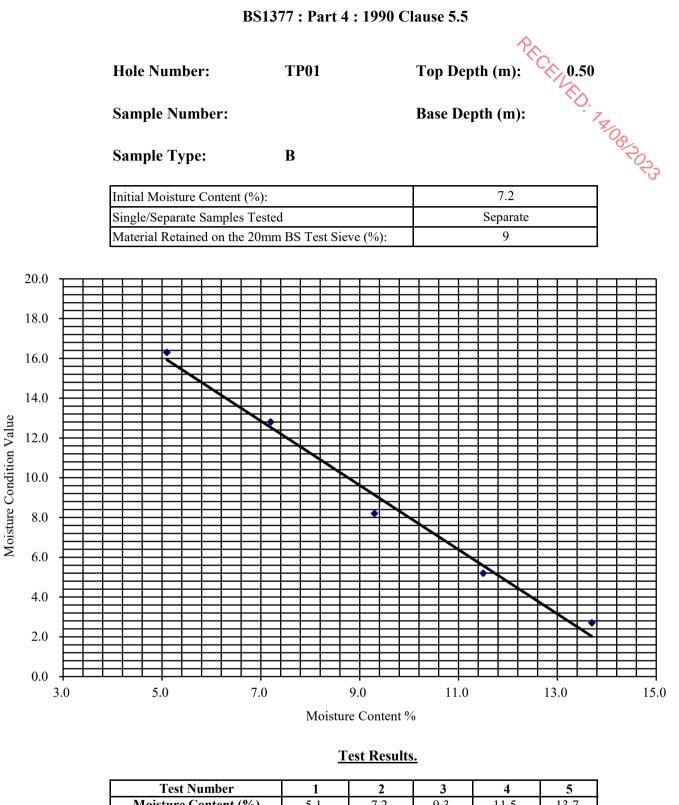

Initial Moisture Content:		18	Method of Compaction:	2.5kg	Separate Samples
Particle Density (Mg/m3):	2.65	Assumed	Material Retained on 37.5 mm Test Siev	0	
Maximum Dry Density (Mg/m3):		1.78	Material Retained on 20.0 mm Test Siev	0	
Optimum Moisture Content (%): 15					
Remarks See summary of soil descriptions					


CALIFORNIA BEARING RATIO TEST AT EACH COMPACTION POINT BS 1377 : Part 4 : Clause 7 : 1990

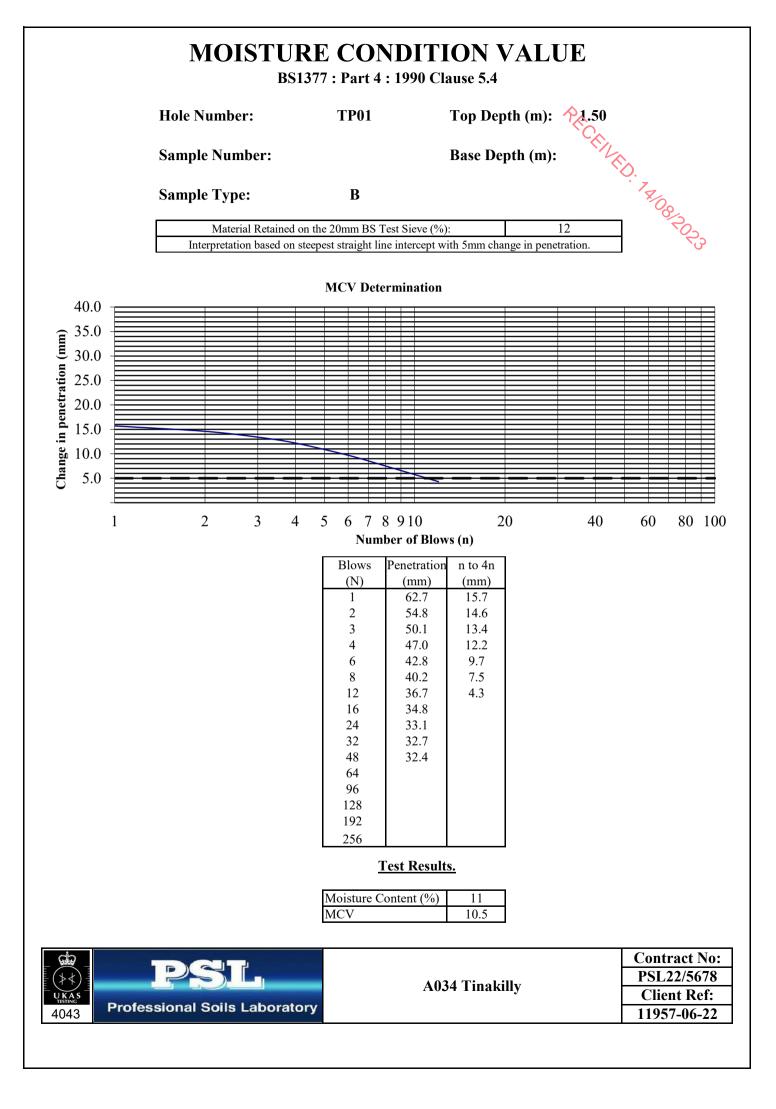
Moisture	Dry Density	CBR Value %		Surcharge	Soaking	Swelling
Content (%)	$(M\sigma/m3)$	Sample Top	Sample Bottom	U	Time (hr)	(mm)
8.9	1.58	40.2	37.5	4	n/a	0.00
0.9	1.38	40.2	57.5	4	II/a	0.00
12	1.70	29.3	30.1	4	n/a	0.00
15	1.78	14.8	15.4	4	n/a	0.00
18	1.74	5.3	5.4	4	n/a	0.00
22	1.67	2.1	1.8	4	n/a	0.00

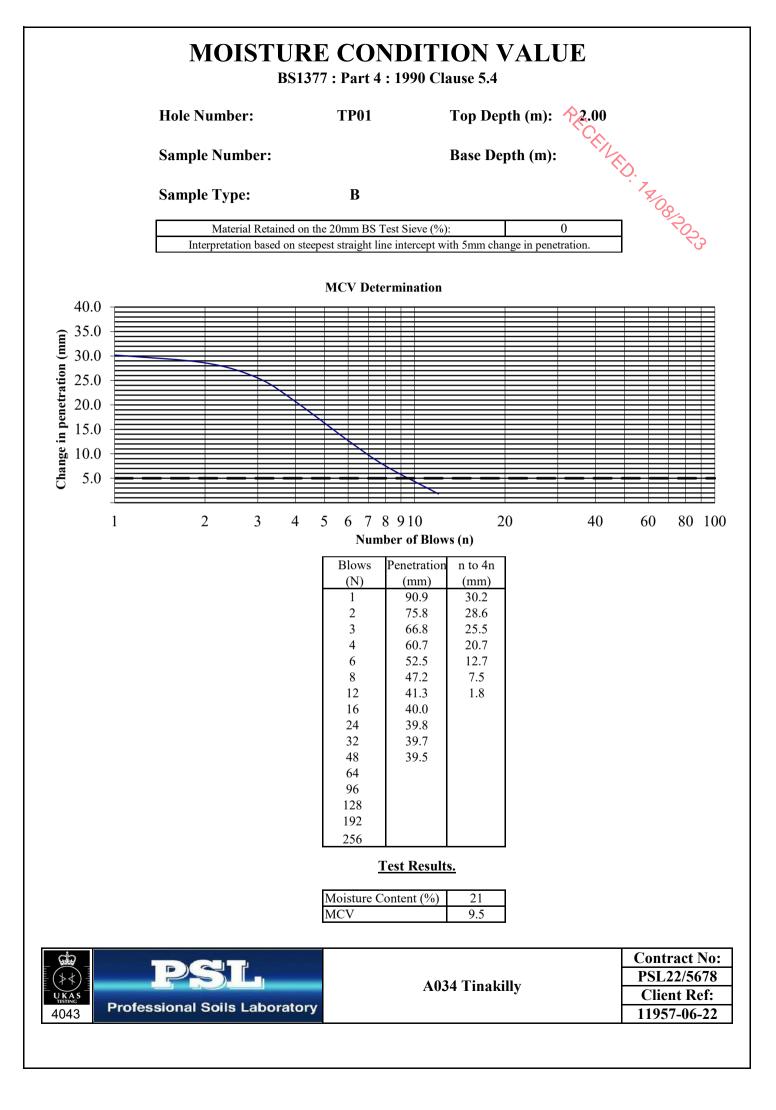


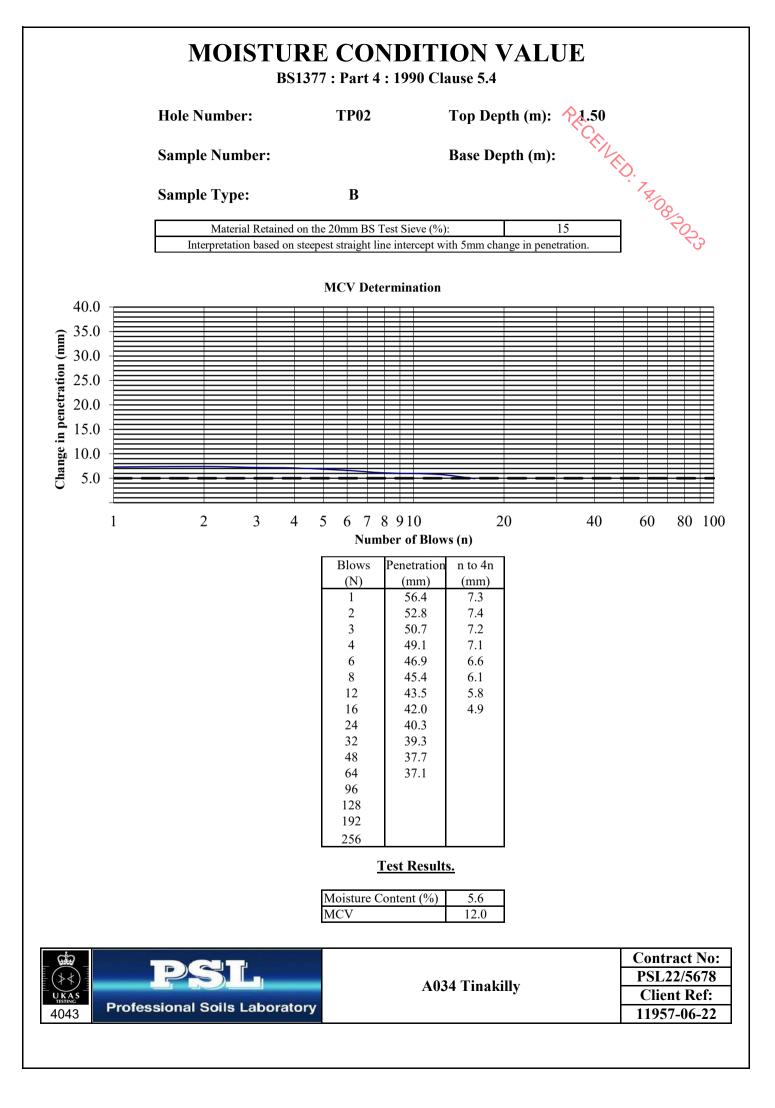
A034 Tinakilly

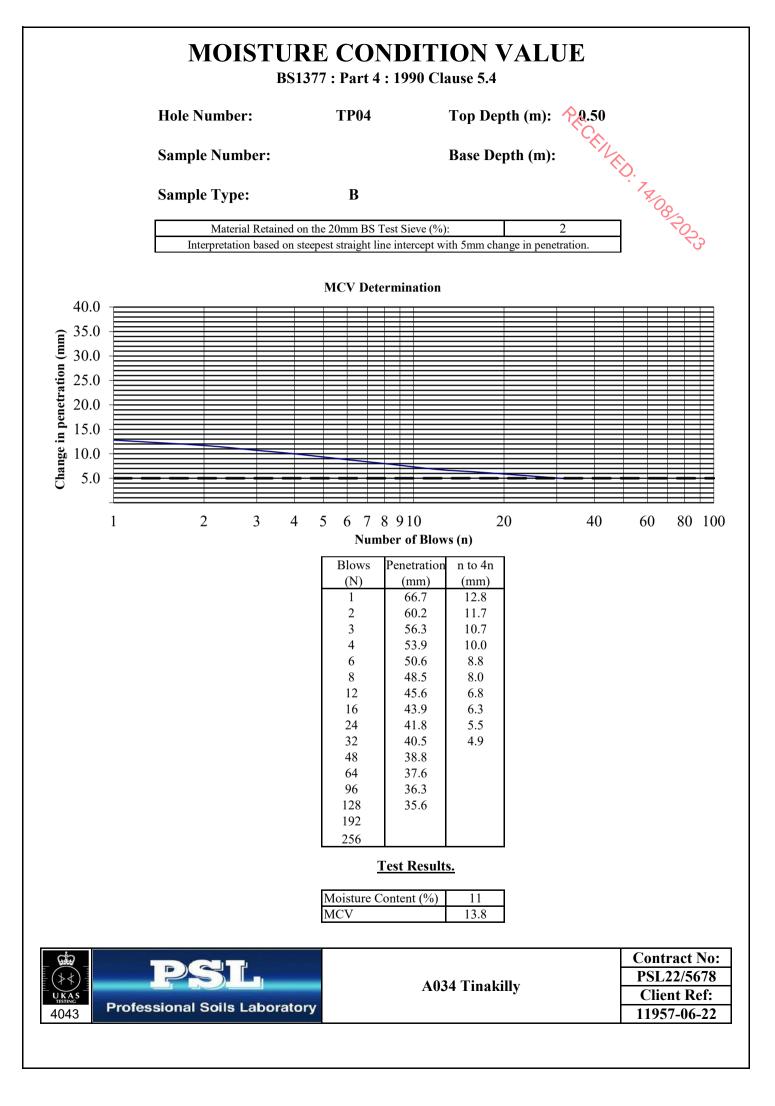


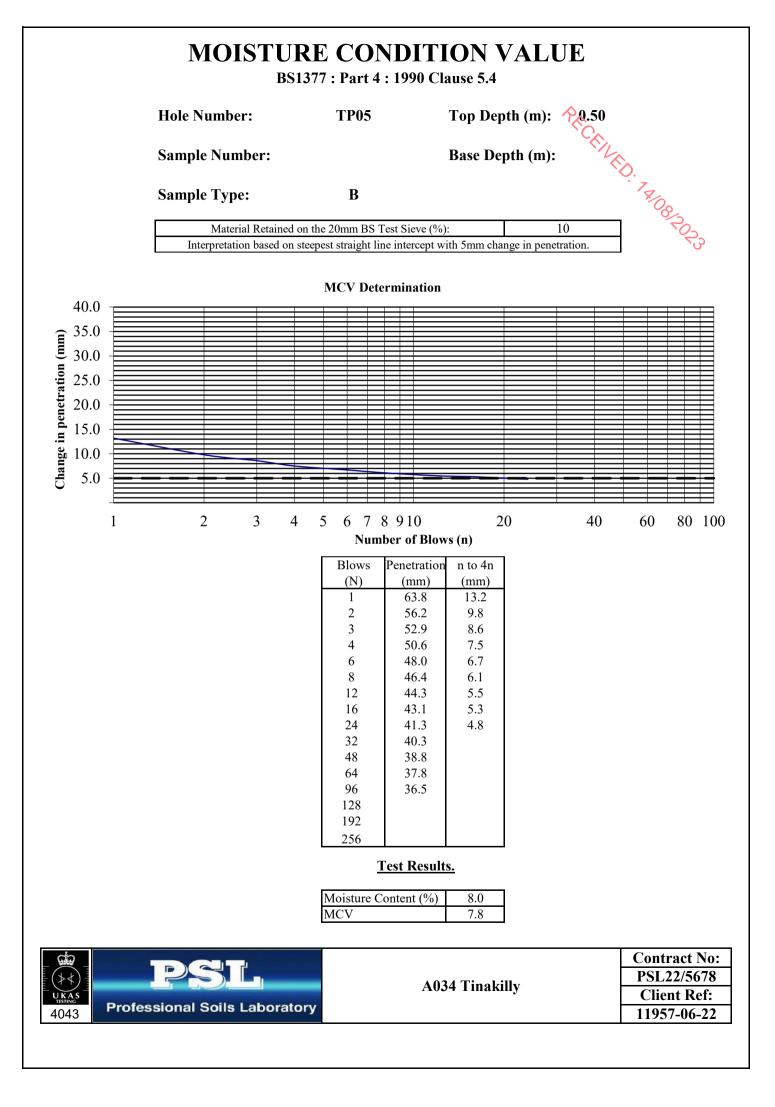
Initial Moisture Content:		7.2	Method of Compaction: 2.5kg		Separate Samples
Particle Density (Mg/m3):	2.55	Assumed	Material Retained on 37.5 mm Test Sieve (%):		0
Maximum Dry Density (Mg/m3):		1.94	Material Retained on 20.0 mm Test Sieve	2	
Optimum Moisture Content (%): 11		11			
Remarks See summary of s	oil descriptions				

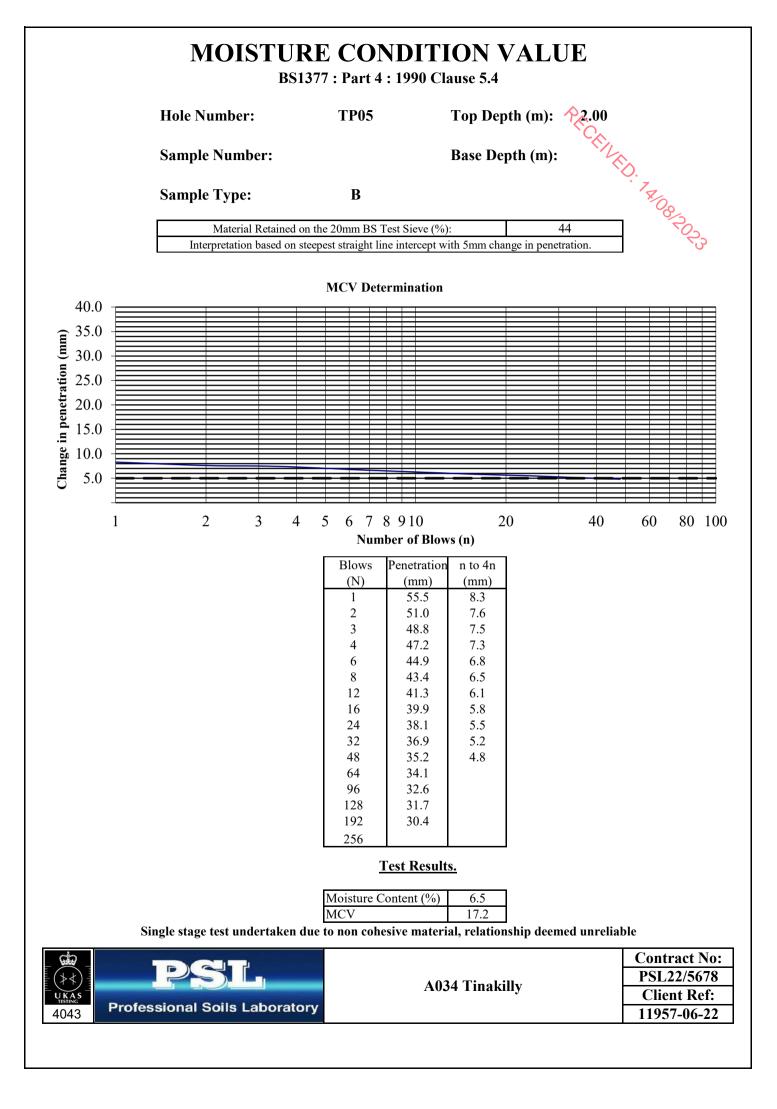


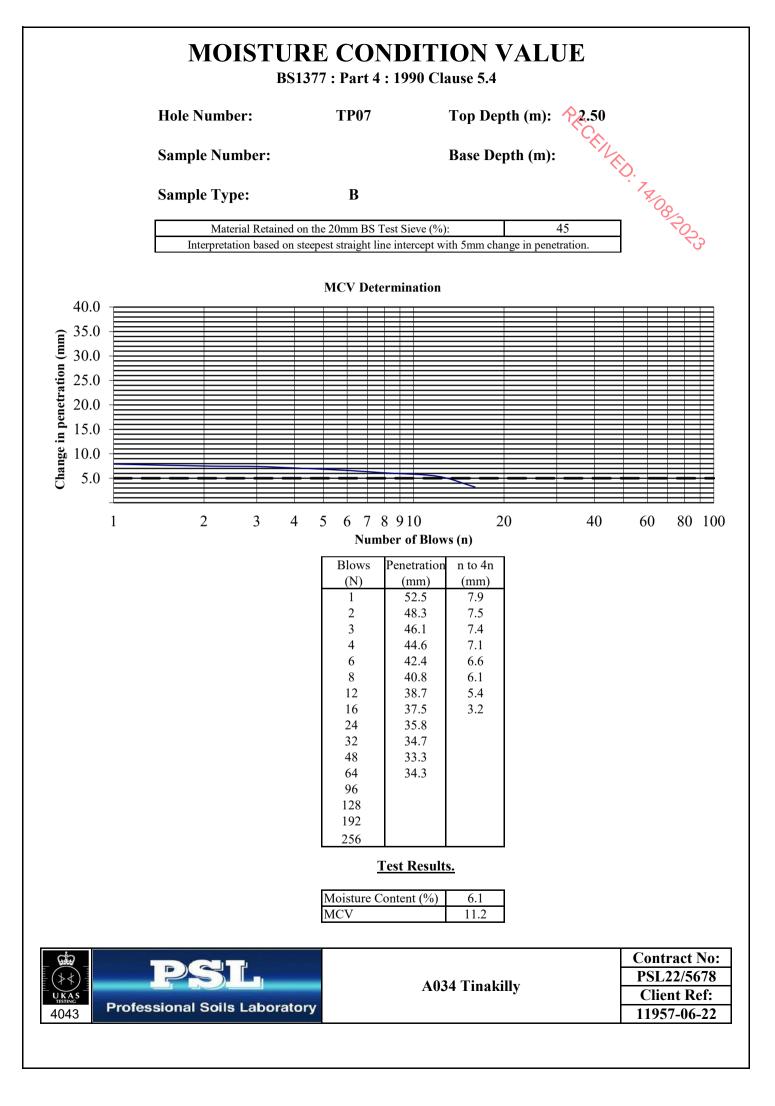

BS1377 : Part 4 : 1990 Clause 5.5

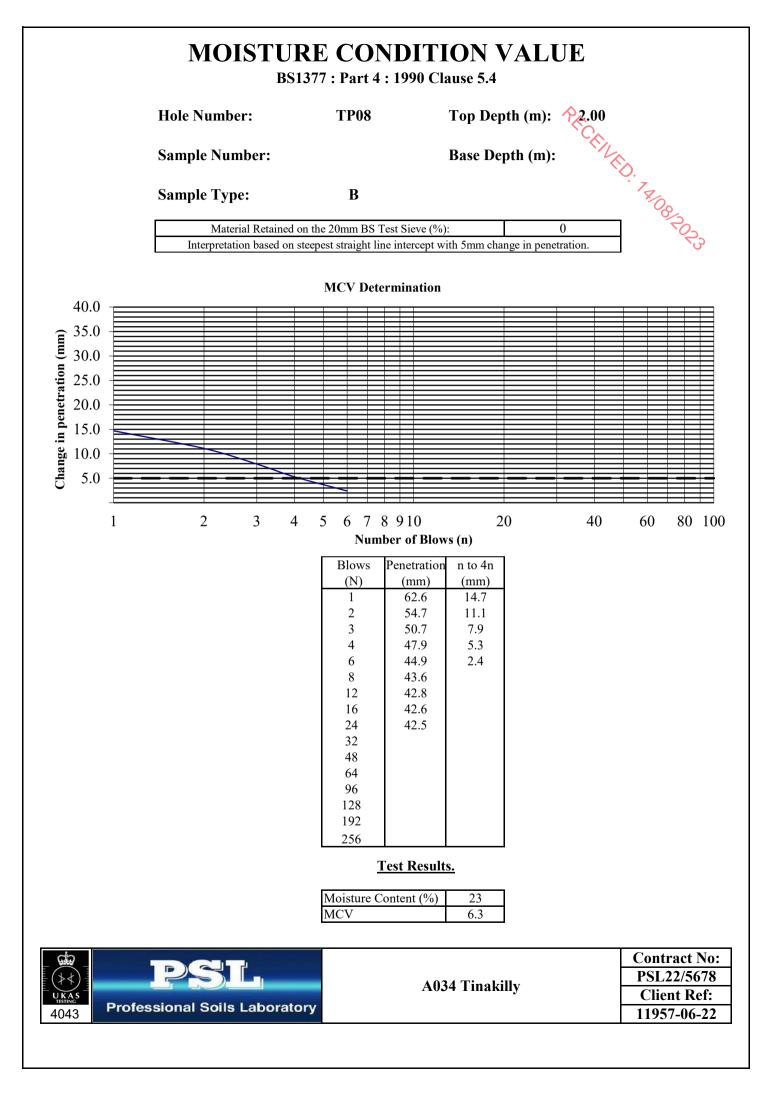


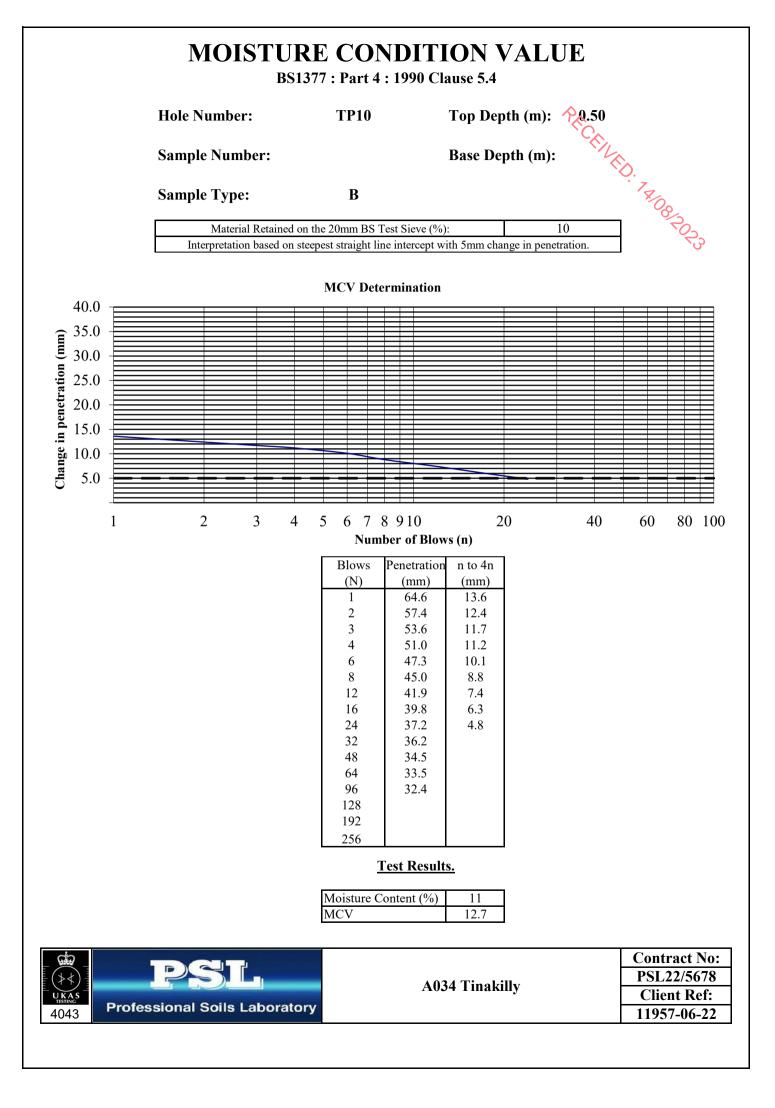

Test Number	1	2	3	4	5
Moisture Content (%)	5.1	7.2	9.3	11.5	13.7
MCV	16.3	12.8	8.2	5.2	2.7

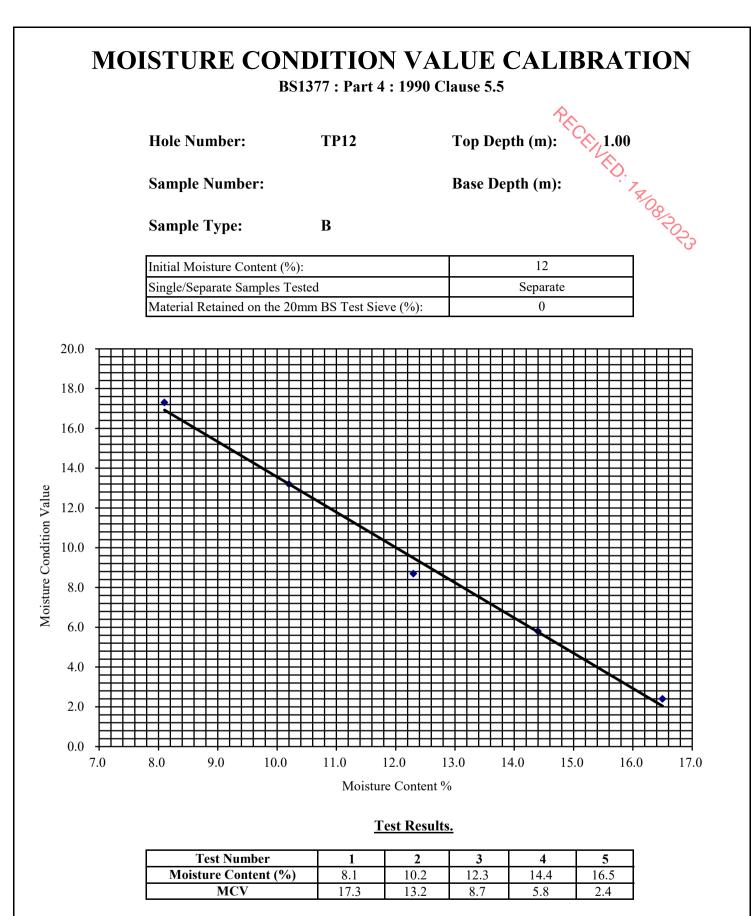


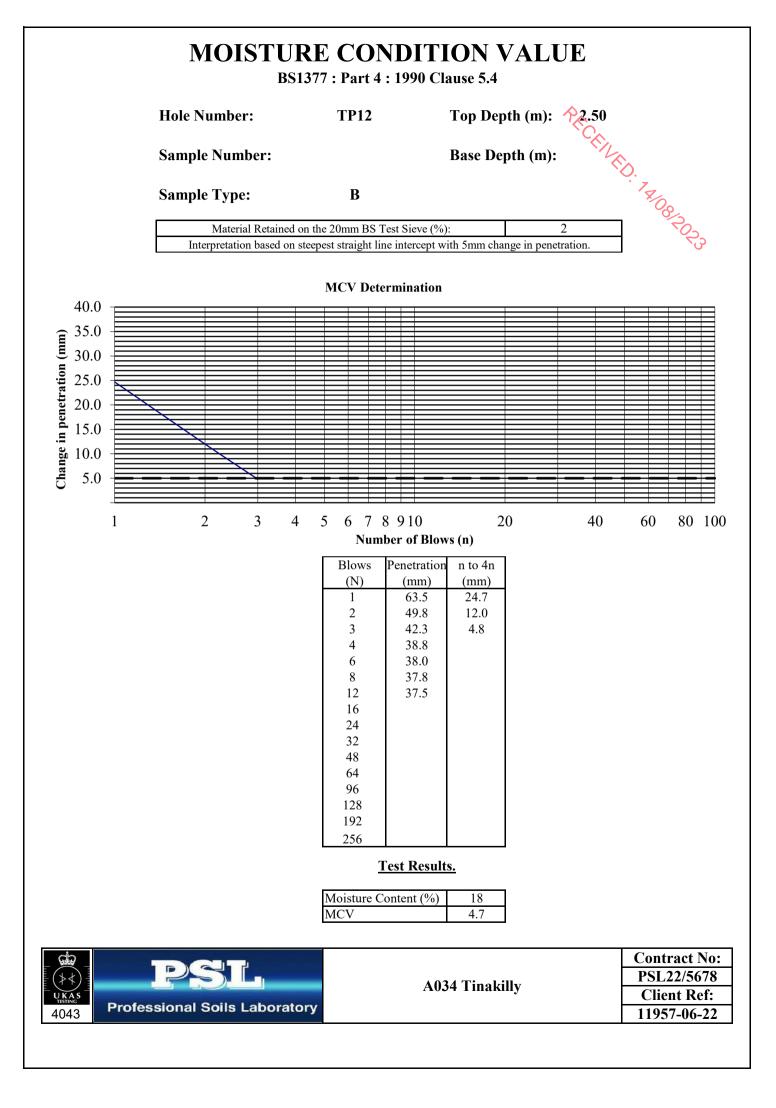


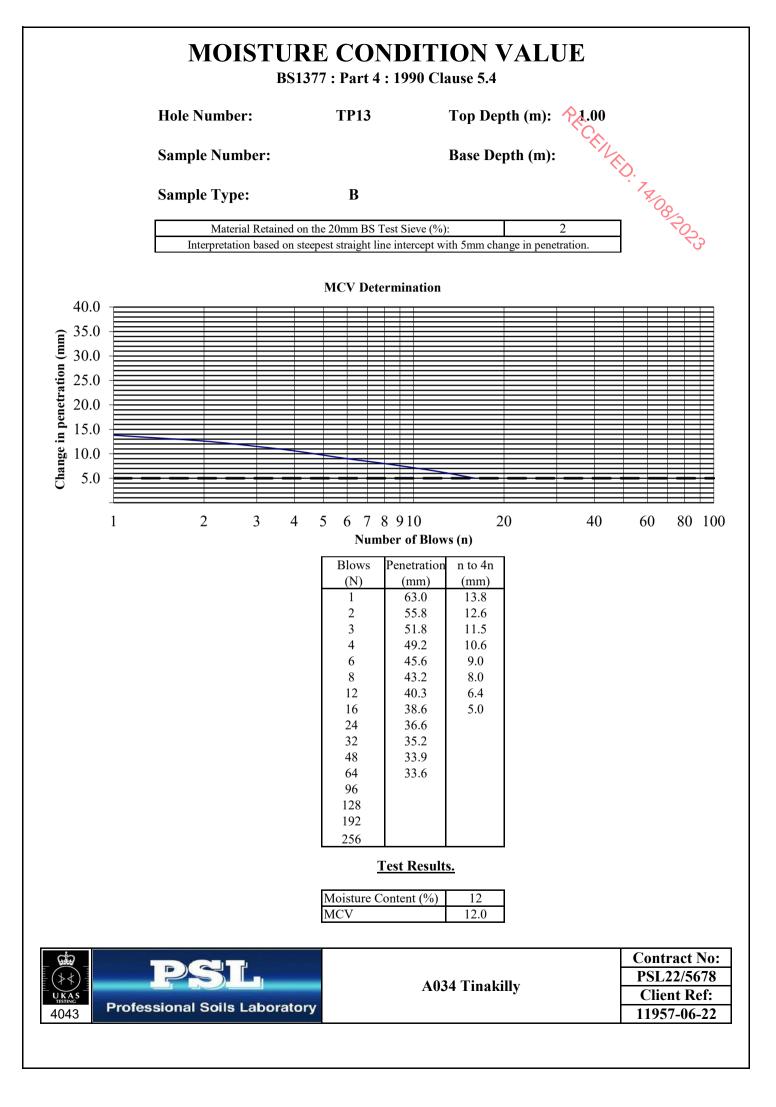


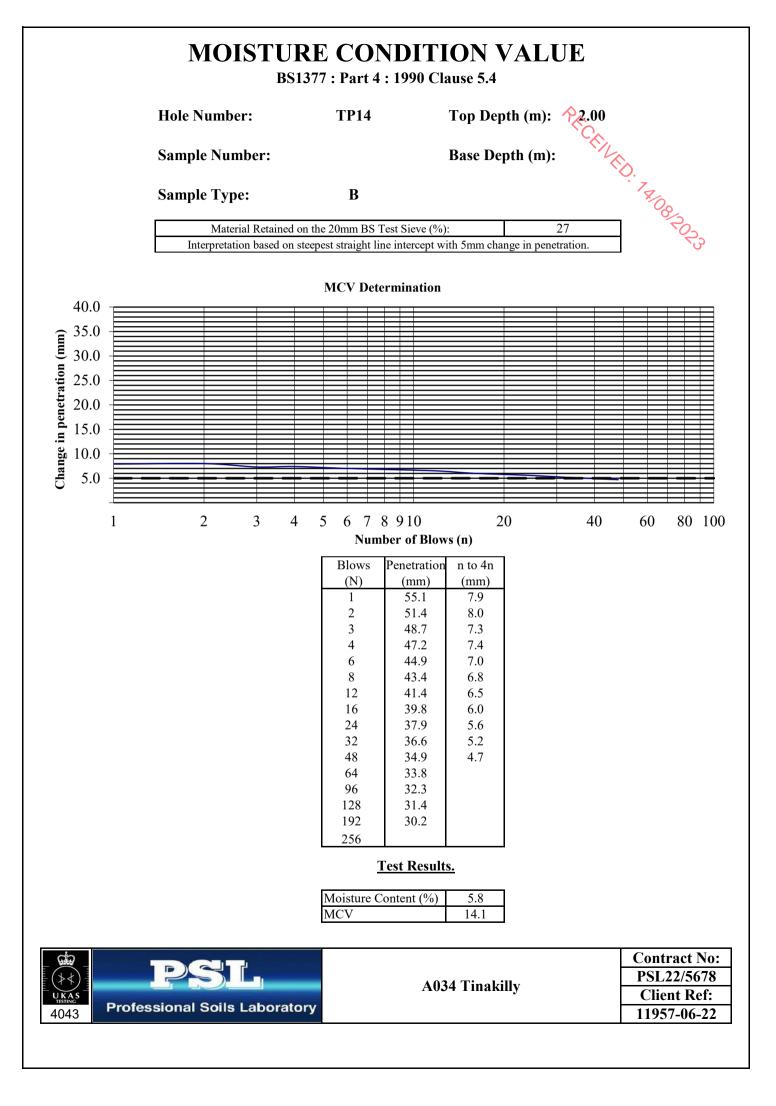


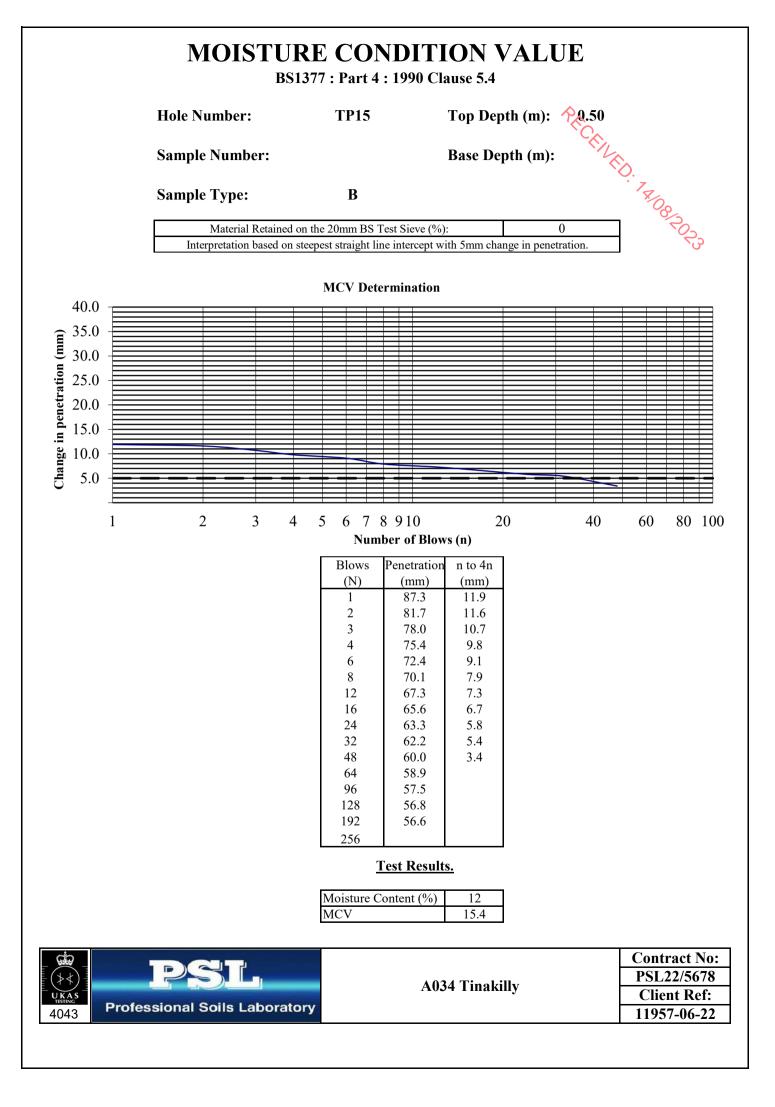


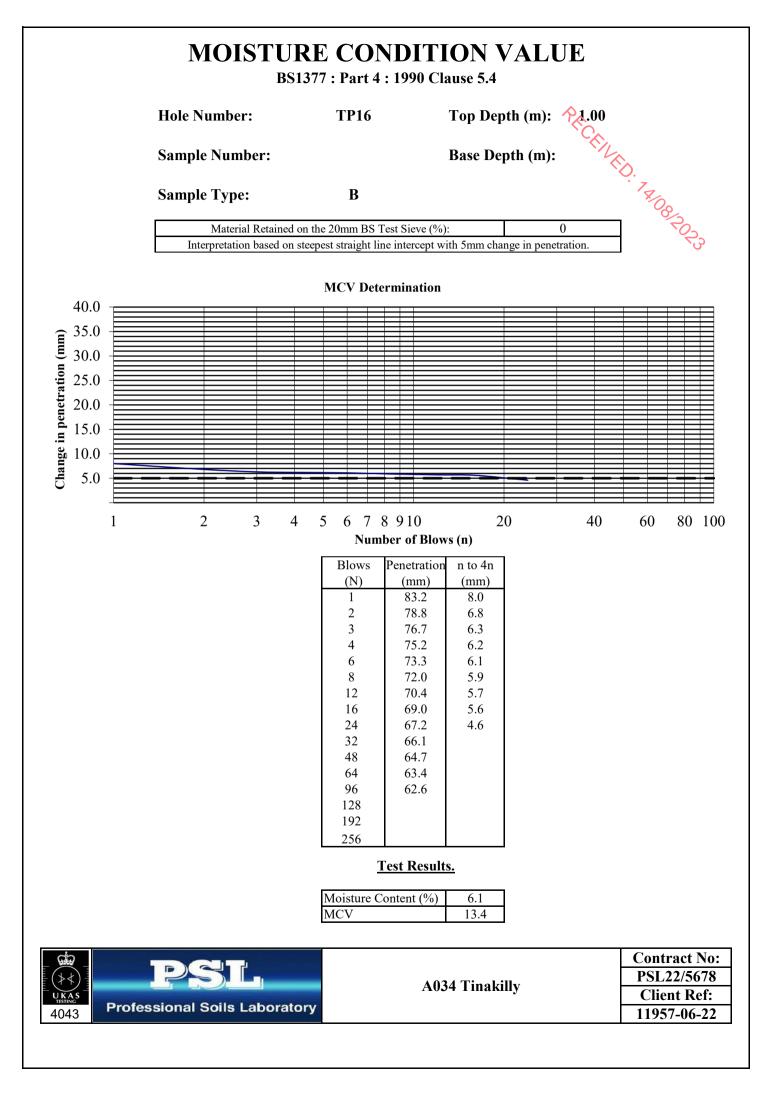


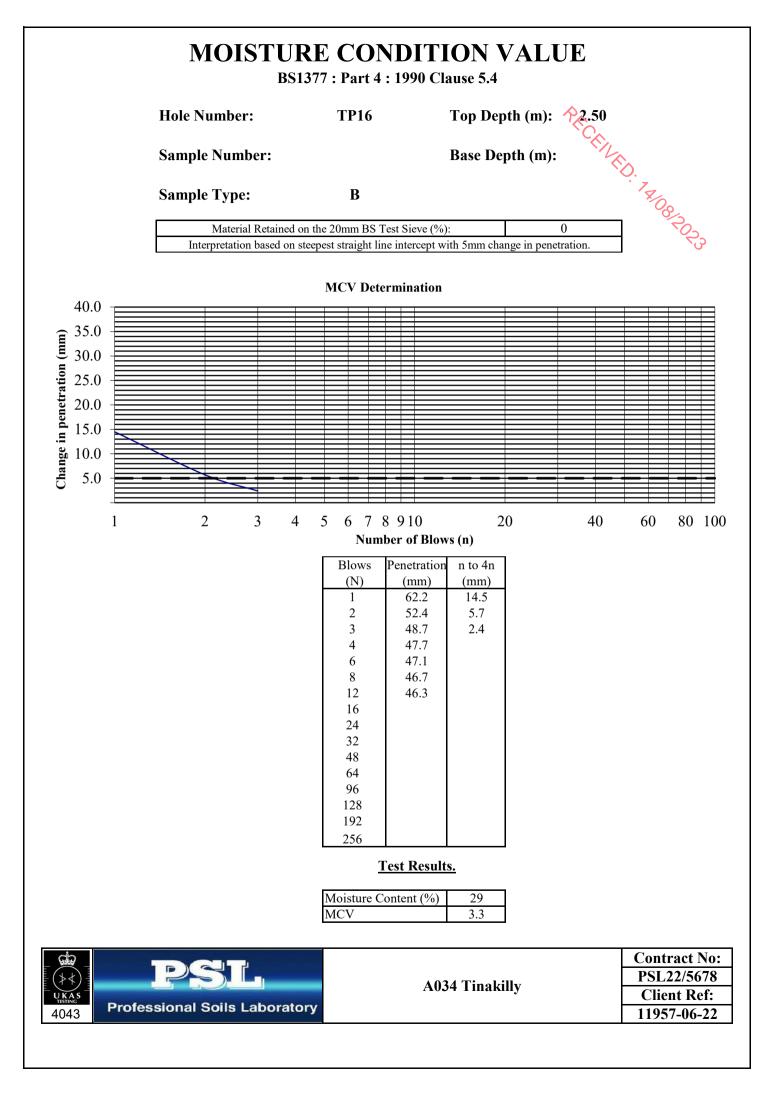


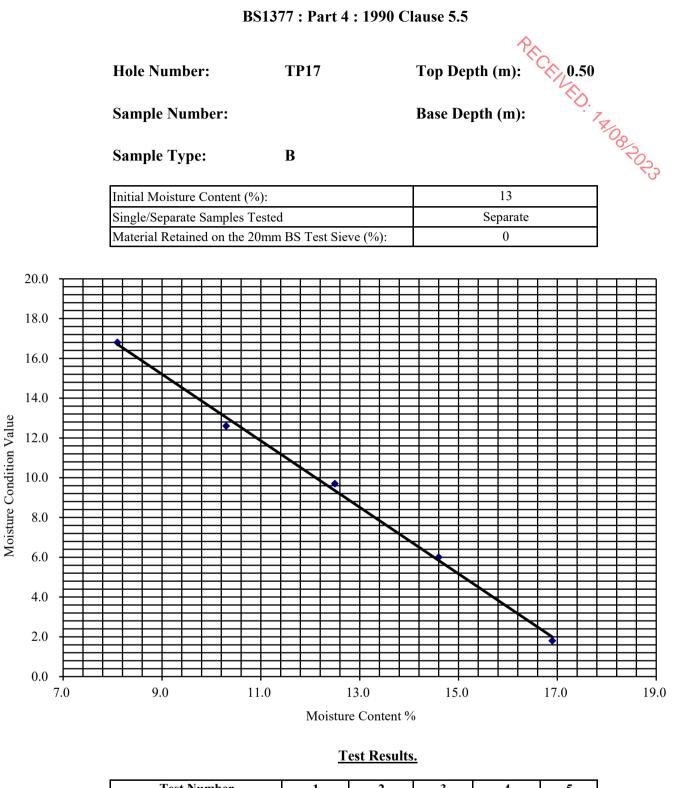


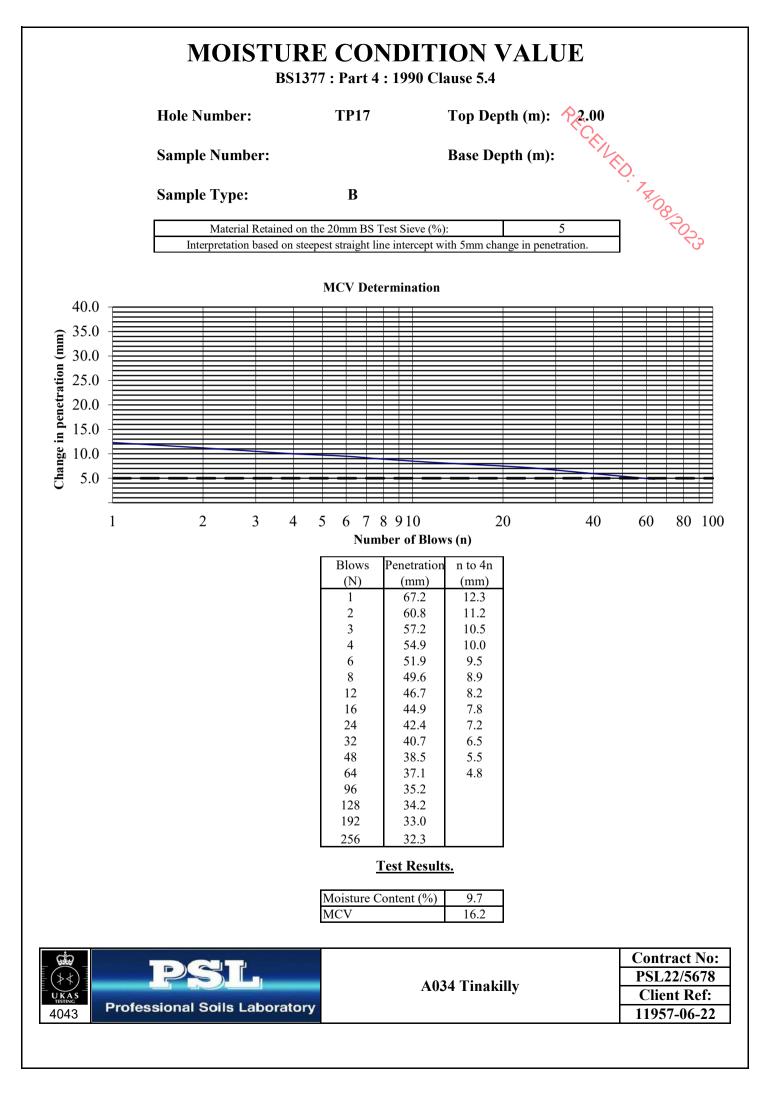


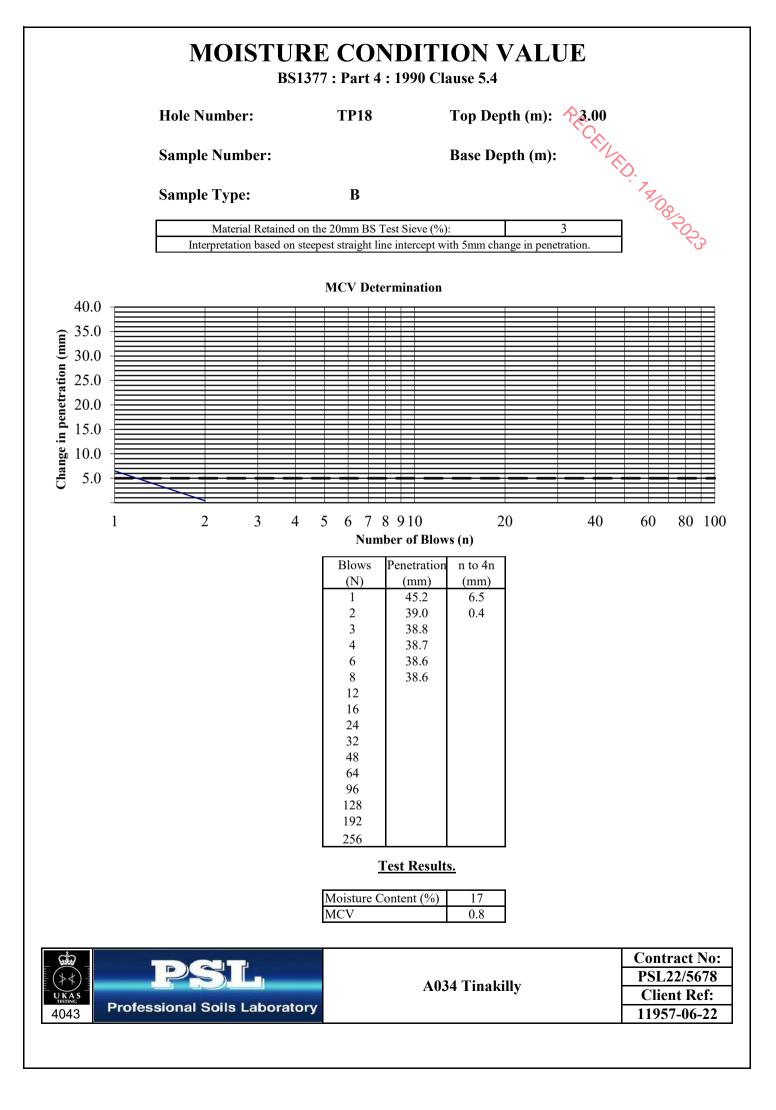


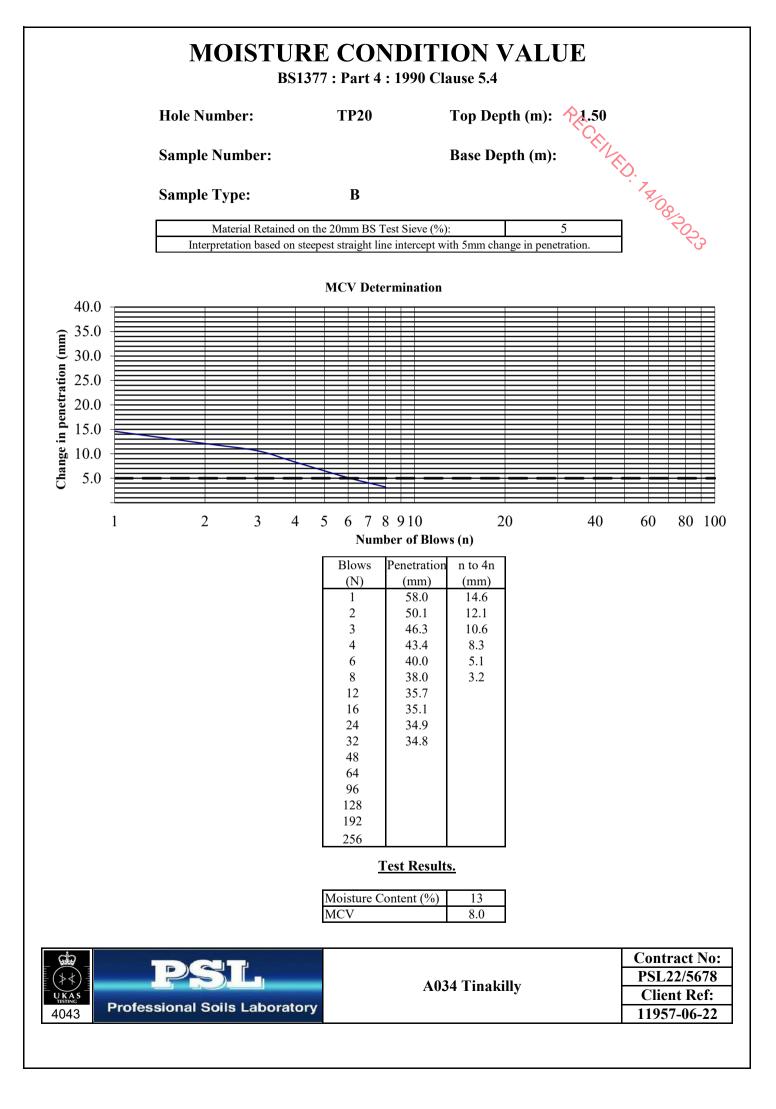


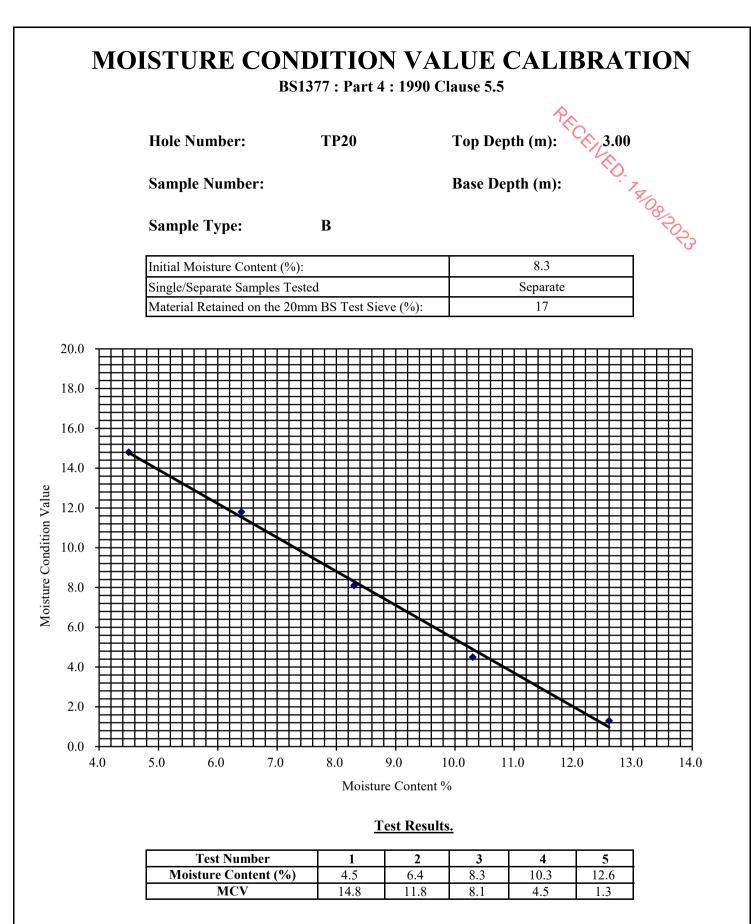


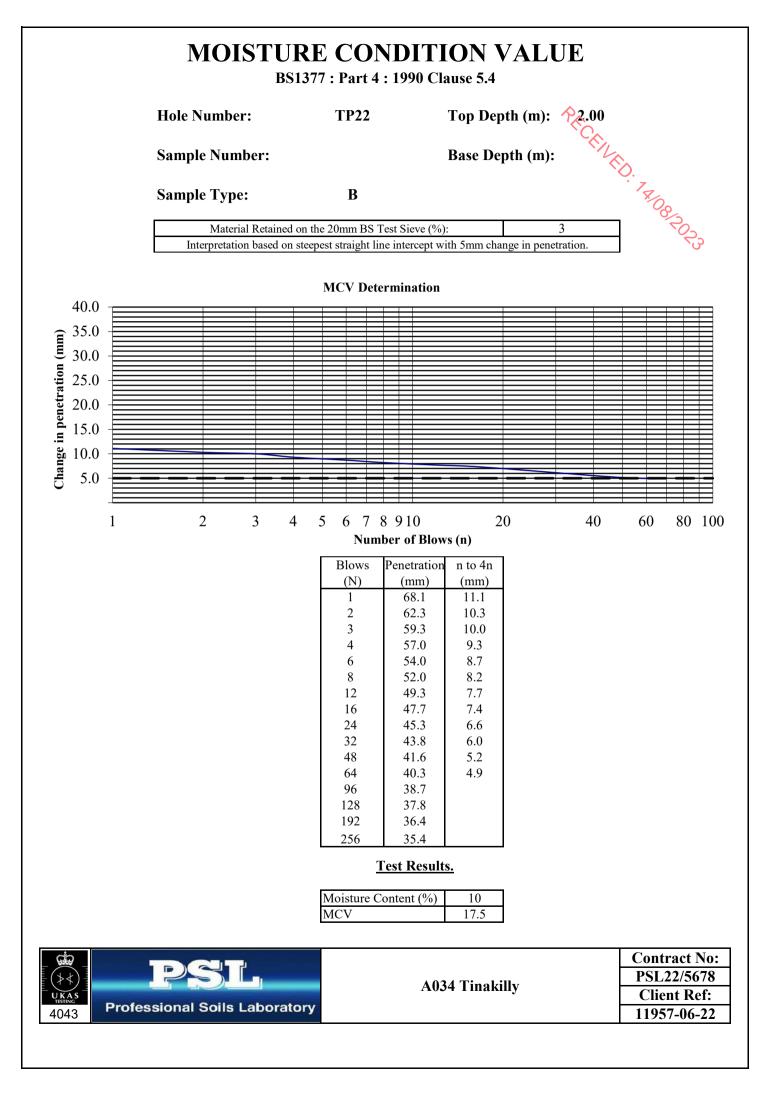


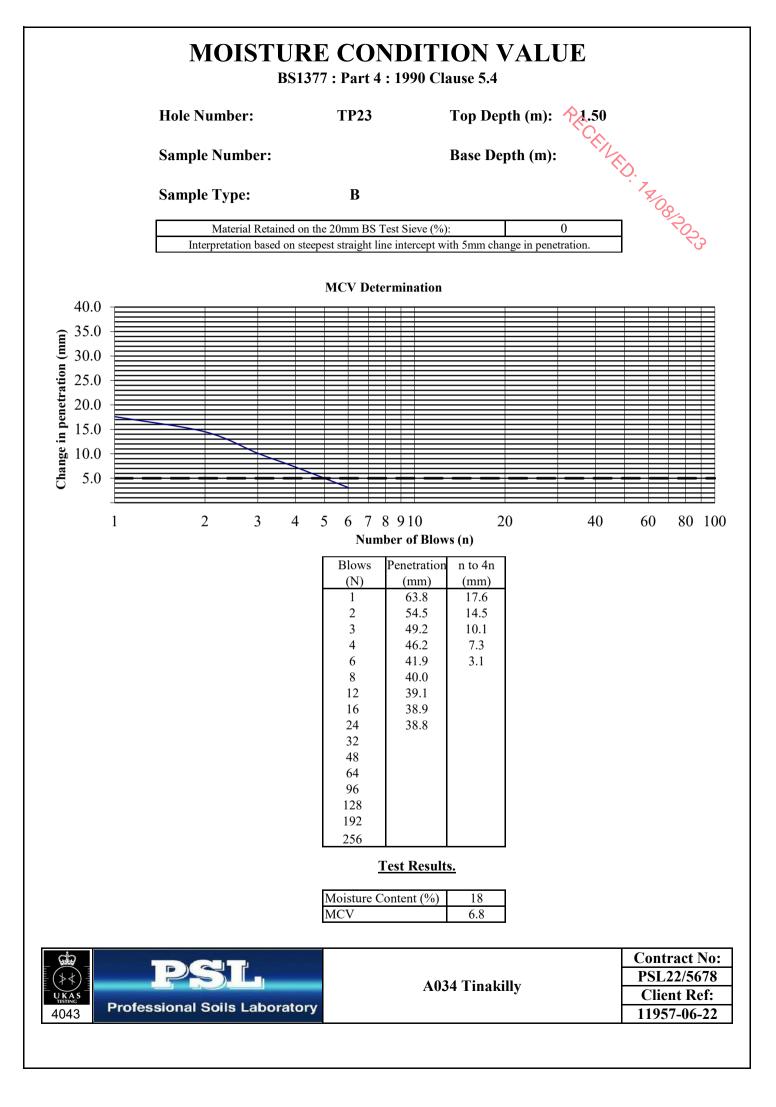


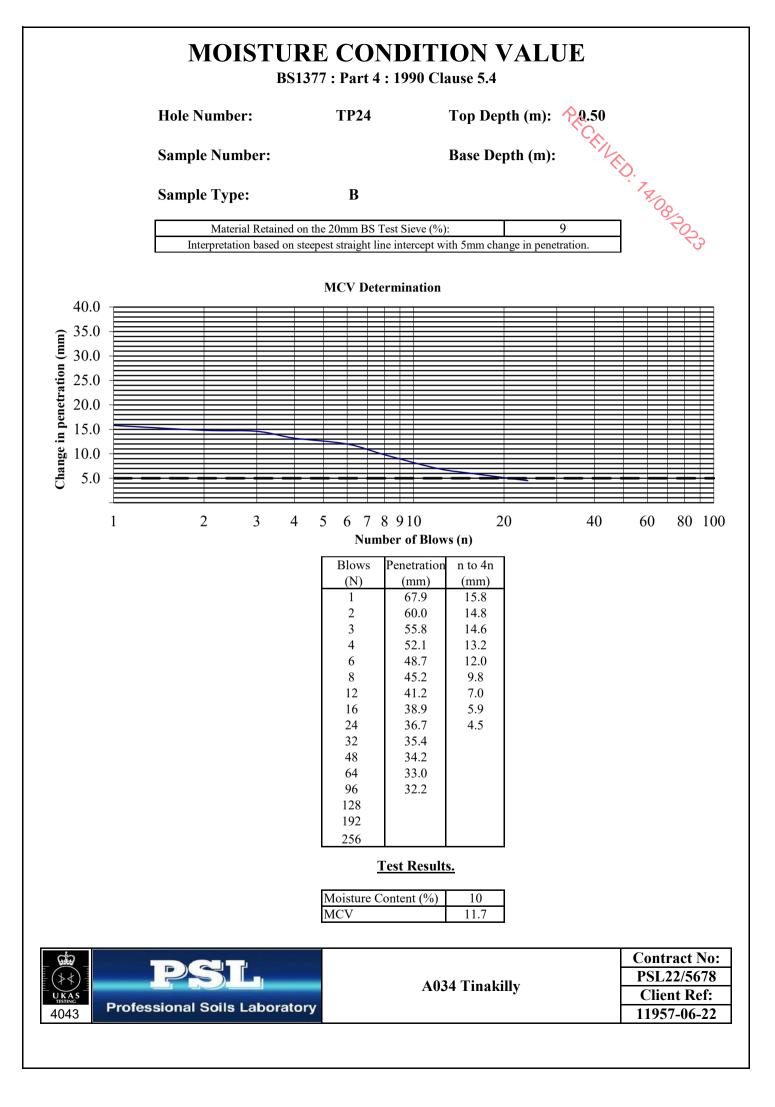

BS1377 : Part 4 : 1990 Clause 5.5

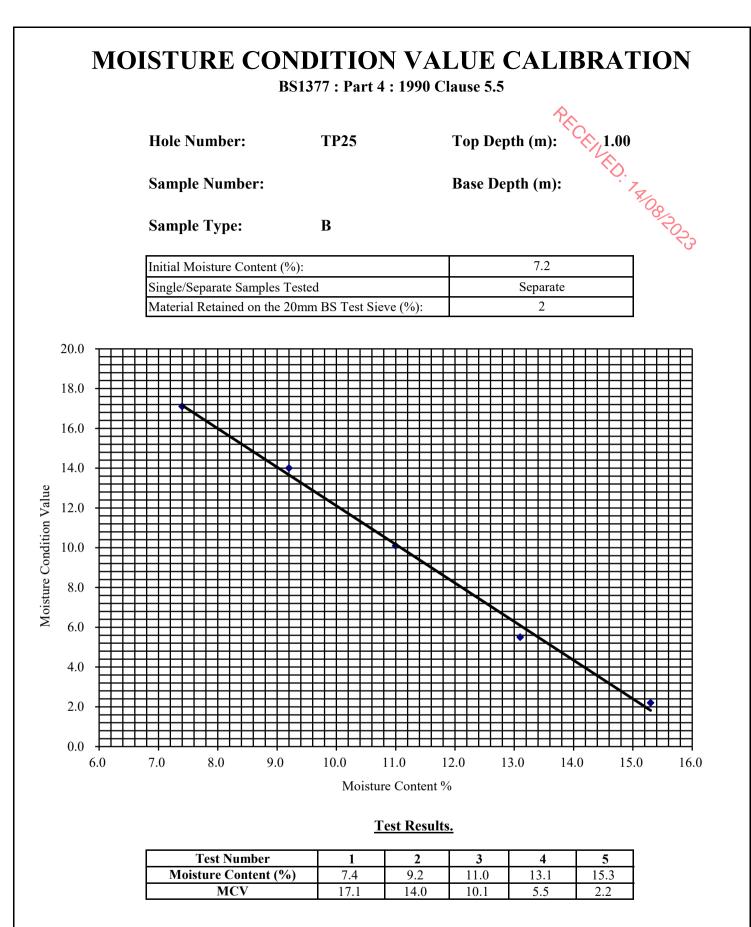



Test Number	1	2	3	4	5
Moisture Content (%)	8.1	10.3	12.5	14.6	16.9
MCV	16.8	12.6	9.7	6.0	1.8



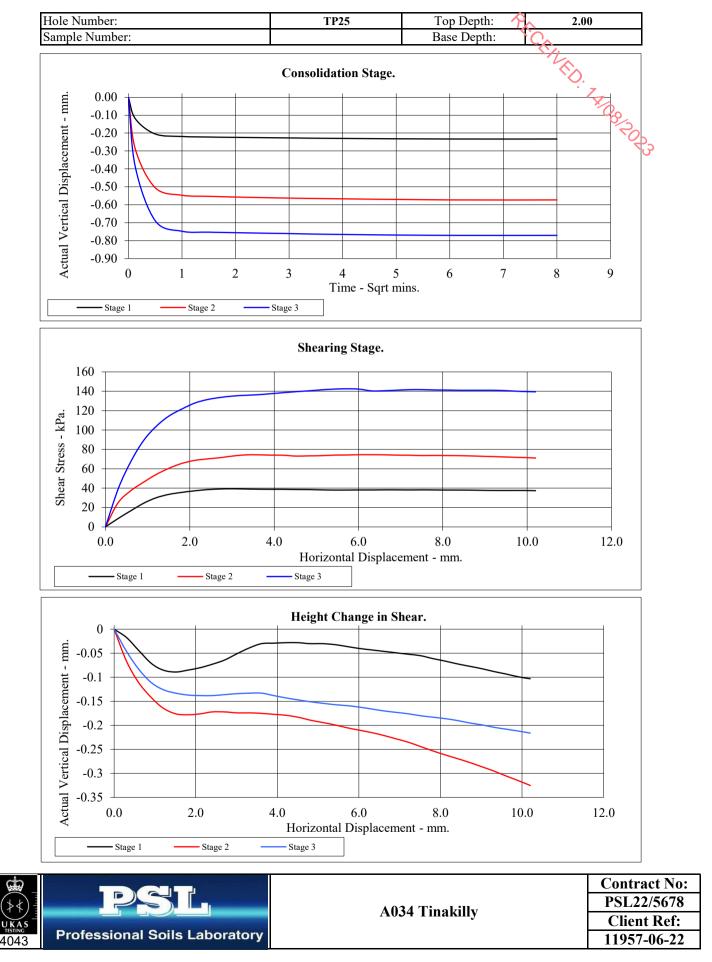






Т	
	Contract No:
	PSL22/5678
ŀ	
	Client Ref:
	11957-06-22
	11/3/-00-44

CONSOLIDATED DRAINED SHEARBOX TEST


BS1377:Part 7:1990 Clause 4

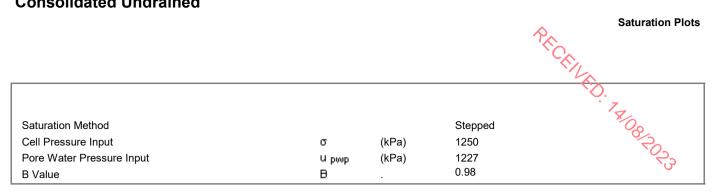
		7:1990 Clause 4			
Hole Number:	TP25	Top Depth		2.0	00
Sample Number:		· · · · · · · · · · · · · · · · · · ·	Base Depth:		
Sample Conditions:	Dry	Sample Ty		K I	3
Particle Density - Mg/m3:		med Remarks:		The second	
Sample Preparation:	Material tested passing 2r Remoulded using hand ta				7
Sample Description:	See summary of soil des	criptions.			~O_
STAGE			1	2	
	Initial C	Conditions			
Height - mm:			19.99	19.99	19.99
Length - mm:			60.05	60.05	60.05
Moisture Content - %:			12	12	12
Bulk Density - Mg/m3:			1.74	1.74	1.74
Dry Density - Mg/m3:			1.56	1.56	1.56
Voids Ratio:			0.698	0.699	0.699
Normal Pressure- kPa			50	100	200
	Consolid	ation Stage	20	100	200
Consolidated Height - mm:	Consoliu	anon suge	19.76	19.42	19.22
Consonaurou norgint - mill.	Shaari	ng Stage	17.70	17.42	17.22
Rate of Strain - mm/min	Sheari	ng stage	0.60	0.60	0.60
Displacement at peak shear s	tress - mm		3.01	6.01	5.72
Peak shear Stress - kPa:	1000 - 11111		3.01	75	143
i can siitai sutss - Kra:	Final Cana-Ha	lated Conditions	37	13	143
Moisture Content - %:	Final Consolid	lated Conditions	11	10	0.7
				10	8.7
Bulk Density - Mg/m3:			1.76	1.80	1.81
Dry Density - Mg/m3:			1.58	1.63	1.67
		eak		25	
Angle of Shearing Resistance	e:(0)			35	
Effective Cohesion - kPa:				4	
200 Spicar Stress - (KDa) 100 50					
0 0 PSI	Peak shear Stress - kPa:	150 tress -(kPa). 	200 est Fit Line	250	Contract N PSL22/56 Client Re
Professional Soils L	aboratory	100 F Finak	- J		Cli 119

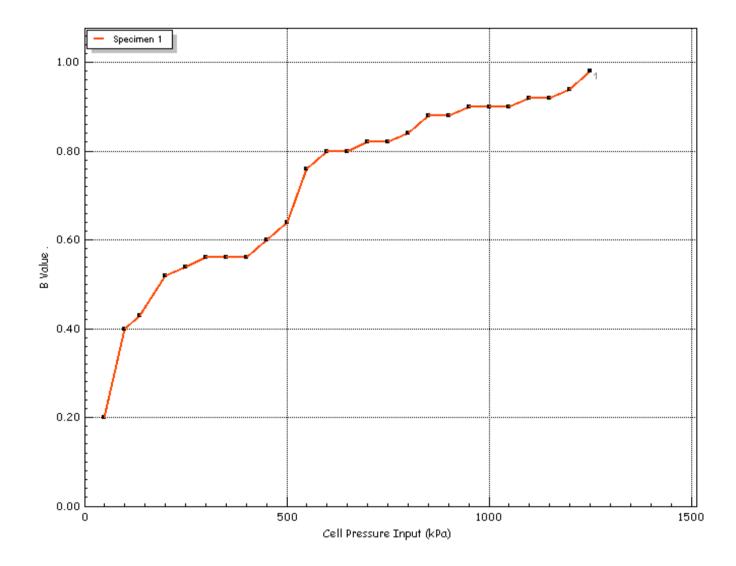
4043

CONSOLIDATED DRAINED SHEARBOX TEST

BS1377:Part 7:1990 Clause 4

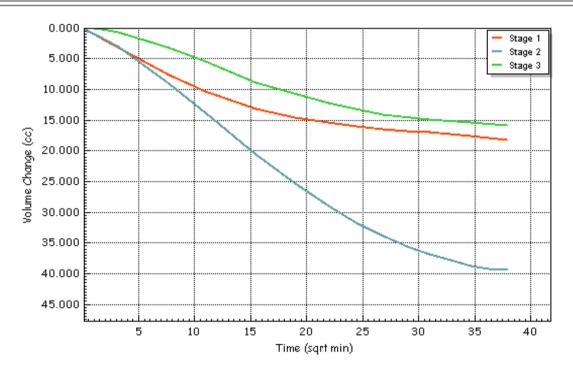
Consolidated Undrained


					$\hat{\gamma}_{\wedge}$		Summary Repor
Sample Details	Depth	2.00m			`C	EIL.	
	Description		ary of soil de				
	Туре	Recompac	ted at 2.5kg e	effort, natural	moisture cor	itent. Q.	_
							7410812023
i i i	Initial Sample Length	Lo	(mm) (mm)	200.0 101.7			6
	Initial Sample Diameter Initial Sample Weight	Do Wo	(mm) (gr)				RON
sketch showing specimen	Initial Bulk Density	ννο ρο	(gr) (Mg/m3)	3352.0 2.06			న సా
location in original sample	Particle Density	ρs	(Mg/m3)	2.66			
Initial Conditions				Stage 1	2	3	4
Initial Cell Pressure		σ3i	(kPa)	1300	1350	1450	
Initial Back Pressure		U bi	(kPa)	1250	1250	1250	
Membrane Thickness		mь	(mm)	0.600			
Displacement Input		LIP	(mm)	CH 2			
Load Input		N IP	(N)	CH 1			
Pore Water Pressure Input		U pwp	(kPa)	CH 3			
Sample Volume		V	(cc)	CH 2			
nitial Moisture		ωi	(%)	21			
Initial Dry Density		ρdi	(Mg/m3)	1.70			
Initial Voids Ratio		ei	•	0.562			
Initial Degree of Saturation		Si	(%)	100			
B Value		в		0.98			
Final Conditions							
Final Moisture		ωf	(%)	19			
Final Dry Density		ρdf	(Mg/m3)	1.80			
Final Voids Ratio		ef	•	0.474			
Final Degree of Saturation		Sf	(%)	100.0			
				Stage 1	2	3	4
-ailure Criteria				Max. Dev. Stress	Max. Dev. Stress	Max. Dev Stress	
Strain At Failure		εf	(%)	4.89	15.05	19.99	
Stress At Failure		(01-03)		78.3	127.6	209.0	
vinor Stress At Failure		σ3'	(kPa)	39.0	70.0	128.0	
Major Stress At Failure		σ1'	(kPa)	117.3	197.6	337.0	
Principal Stress Ratio At Failure		σ1'/σ3'		3.008	2.823	2.632	
lotes							

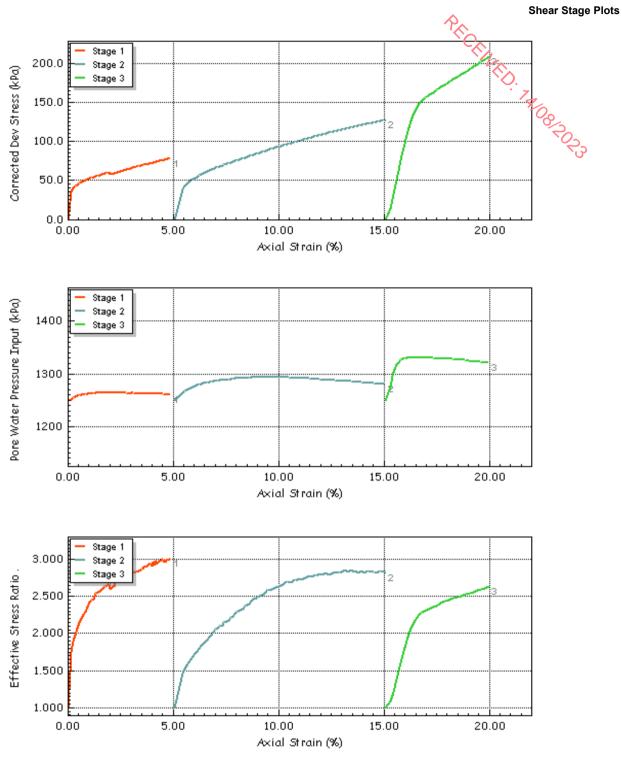


Plastic

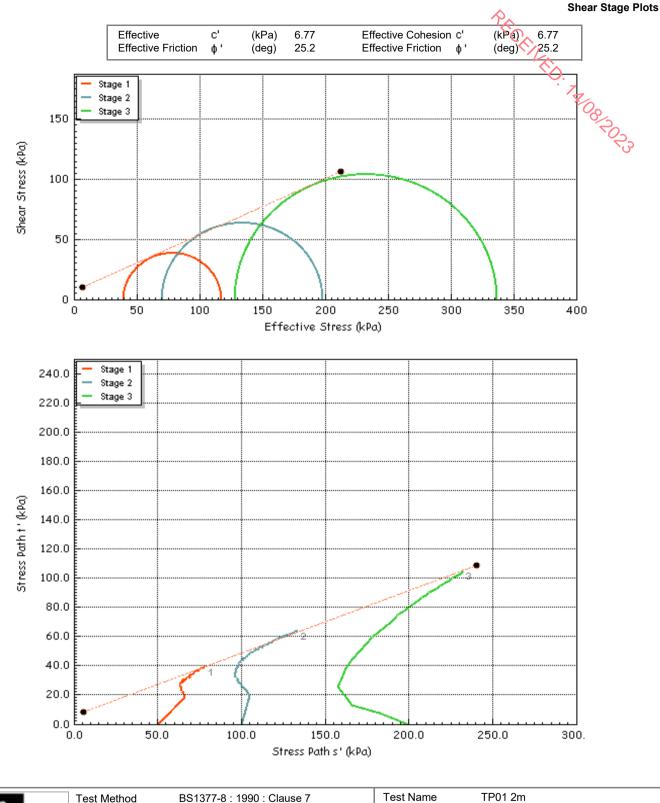
	Test Method	BS1377-8 : 1990 : Clause 7	Test Name	TP01 2m
-			Test Date	14/09/2022
) 4			Borehole	TP01
	Jobfile	AO34 Tinakilly	Sample	2m
S	Client	CS Consulting	Depth	2.00m



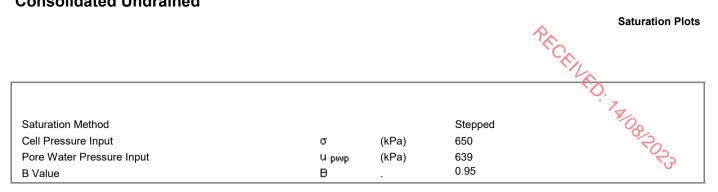
ġ and and and and and and and and and and	Test Method	BS1377-8 : 1990 : Clause 7	Test Name Test Date	TP01 2m 14/09/2022
	Jobfile	AO34 Tinakilly	Borehole Sample	TP01 2m
UKAS TESTING 4043	Client	CS Consulting	Depth	2.00m

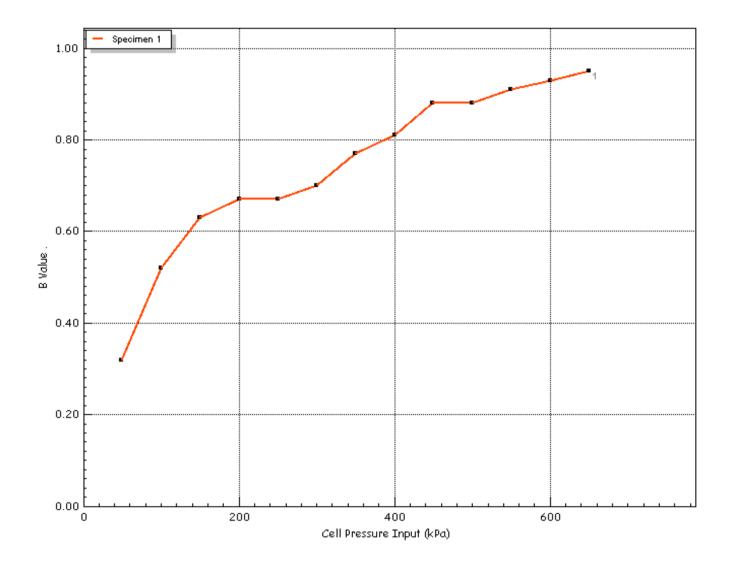


Initial Conditions stage 1 2 3 Initial Cell Pressure σ 3 (kPa) 1300 1350 4450 Initial Back Pressure u bi (kPa) 1250 1250 200 Pore Water Pressure Input u pwp (kPa) 1270 1306 1360 Drainage Method u pwp (kPa) 1270 1306 1360 Final Conditions readial+Orestrain Radial+Orestrain 3 100.00 100.00 100.00 Volumetric Strain Stage 1 2 3 3 98 168.7 Corrected Length L C (mm) 199.3 188.0 168.7 Corrected Volume Y C (cc) 1606.475 1551.234 1100 (min) 369.54 780.05 628.15 Consolidation C V (m2/WN) 0.560 0.433 0.349 Compressibility m V (m2/WN) 0.560 0.433 0.689 Statimated Strain to Failure t F					\wedge	Consolidation Pl
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Initial Conditions			Stage 1	2	3
Pore Water Pressure Input Drainage Methodu pwp w kPa 12701306 Radial+One1360 EndFinal ConditionsStage 123FWP Dissipation % Volumetric StrainU% $s v \%$ (%)100.00100.00100.00Volumetric Strain $s v \%$ (%)1.122.430.98Corrected LengthL c C (mm)(mm)199.3188.0168.7Corrected AreaA c V C(cc)1606.4751567.0761551.234Corrected VolumeV c C (cc)(cc)1606.4751567.0761551.234t100t 100(min)369.54780.05628.15Consolidationc v m v(m2/MN)0.5600.4330.089Test Timet F Estimated Strain to Failuret F s %(h:m:s) (%)11.05:1023:24:05 5.018:50:40	Initial Cell Pressure	σ3	(kPa)	1300	1350	1450
Drainage Method Radial+One End Final Conditions Stage 1 2 3 PWP Dissipation % U% (%) 100.00 100.00 100.00 Volumetric Strain ϵ_{V} % (%) 1.12 2.43 0.98 Corrected Length L c (mm) 199.3 188.0 168.7 Corrected Volume V c (cc) 1606.475 1567.076 1551.234 t100 t100 (min) 369.54 780.05 628.15 Consolidation c v (m2/WRN) 0.560 0.433 0.089 Test Time t F (h:m:s) 11:05:10 23:24:05 18:50:40 Estimated Strain to Failure t F (h:m:s) 11:05:10 23:24:05 5.0	Initial Back Pressure	и ы	(kPa)	1250	1250	1250
Drainage Method Radial+One End Final Conditions Stage 1 2 3 PWP Dissipation % U% (%) 100.00 100.00 100.00 Volumetric Strain ε v % (%) 1.12 2.43 0.98 Corrected Length L c (mm) 199.3 188.0 168.7 Corrected Area A c (cm2) 80.63 83.38 91.97 Corrected Volume V c (cc) 1606.475 1567.076 1551.234 t100 t 100 (min) 369.54 780.05 628.15 Consolidation c v (m2/WAIN) 0.560 0.433 0.089 Test Time t F (h:m:s) 11:05:10 23:24:05 18:50:40 Estimated Strain to Failure t K K (%) 5.0 5.0 5.0	Pore Water Pressure Input	И рмр	(kPa)	1270	1306	1360
Stage 123PWP Dissipation %U%(%)100.00100.00100.00Volumetric Strain ϵ_V %(%)1.122.430.98Corrected LengthL c(mm)199.3188.0168.7Corrected AreaA c(cm2)80.6383.3891.97Corrected VolumeV c(cc)1606.4751567.0761551.234t100t 100(min)369.54780.05628.15Consolidationc v(m2/year)0.5940.2810.349Compressibilitym v(m2/MN)0.5600.4330.089Test Timet F s %(h:m:s) s %11:05:1023:24:05 s 0.018:50:40 s 0.0	Drainage Method			Radial+On	e End	× 00
Stage 123PWP Dissipation %U%(%)100.00100.00100.00Volumetric Strain ϵ_{V} %(%)1.122.430.98Corrected LengthL c(mm)199.3188.0168.7Corrected AreaA c(cm2)80.6383.3891.97Corrected VolumeV c(cc)1606.4751567.0761551.234t100t 100(min)369.54780.05628.15Consolidationc v(m2/year)0.5940.2810.349Compressibilitym v(m2/MN)0.5600.4330.089Test Timet F Estimated Strain to Failuret F 5.0(h:m:s) 5.011:05:10 5.023:24:05 5.018:50:40 5.0	Final Conditions					EQ.
Volumetric Strain $\epsilon_V \%$ (%)1.122.430.98Corrected LengthL c(mm)199.3188.0168.7Corrected AreaA c(cm2)80.6383.3891.97Corrected VolumeV c(cc)1606.4751567.0761551.234t100t 100(min)369.54780.05628.15Consolidationc v(m2/year)0.5940.2810.349Compressibilitym v(m2/MN)0.5600.4330.089Test Timet F(h:m:s)11:05:1023:24:0518:50:40Estimated Strain to Failuret %%)5.05.05.05.0				Stage 1	2	3
Corrected LengthL c(m)199.3188.0168.7Corrected AreaA c(cm2)80.6383.3891.97Corrected Volume \forall c(cc)1606.4751567.0761551.234t100t 100(min)369.54780.05628.15Consolidationc v(m2/year)0.5940.2810.349Compressibilitym v(m2/MN)0.5600.4330.089Test Timet F(h:m:s)11:05:1023:24:0518:50:40Estimated Strain to Failure $\varepsilon \%$ (%)5.05.05.0	PWP Dissipation %	U%	(%)	100.00	100.00	100.00
Corrected Area A c (cm2) 80.63 83.38 91.97 Corrected Volume V c (cc) 1606.475 1567.076 1551.234 t100 t 100 (min) 369.54 780.05 628.15 Consolidation c v (m2/year) 0.594 0.281 0.349 Compressibility m v (m2/MN) 0.560 0.433 0.089 Test Time t F (h:m:s) 11:05:10 23:24:05 18:50:40 Estimated Strain to Failure t % % 5.0 5.0 5.0	Volumetric Strain	εν%	(%)	1.12	2.43	0.98
Corrected Volume V c (cc) 1606.475 1567.076 1551.234 t100 t 100 (min) 369.54 780.05 628.15 Consolidation c v (m2/year) 0.594 0.281 0.349 Compressibility m v (m2/MN) 0.560 0.433 0.089 Test Time t F (h:m:s) 11:05:10 23:24:05 18:50:40 Estimated Strain to Failure t % (%) 5.0 5.0 5.0	Corrected Length	Lc	(mm)	199.3	188.0	168.7
t100 t100 (min) 369.54 780.05 628.15 Consolidation c v (m2/year) 0.594 0.281 0.349 Compressibility m v (m2/MN) 0.560 0.433 0.089 Test Time t F (h:m:s) 11:05:10 23:24:05 18:50:40 Estimated Strain to Failure t % (%) 5.0 5.0 5.0	Corrected Area	Ac	(cm2)	80.63	83.38	91.97
Consolidation c ψ (m2/year) 0.594 0.281 0.349 Compressibility m ψ (m2/MN) 0.560 0.433 0.089 Test Time t F (h:m:s) 11:05:10 23:24:05 18:50:40 Estimated Strain to Failure ε % (%) 5.0 5.0 5.0	Corrected Volume	Vc	(cc)	1606.475	1567.076	1551.234
Compressibility m v (m2/MN) 0.560 0.433 0.089 Test Time t F (h:m:s) 11:05:10 23:24:05 18:50:40 Estimated Strain to Failure ε % (%) 5.0 5.0 5.0	t100	t 100	(min)	369.54	780.05	628.15
Test Time t F (h:m:s) 11:05:10 23:24:05 18:50:40 Estimated Strain to Failure ε % (%) 5.0 5.0 5.0	Consolidation	сv	(m2/year)	0.594	0.281	0.349
Estimated Strain to Failure ε% (%) 5.0 5.0 5.0	Compressibility	m v	(m2/MN)	0.560	0.433	0.089
	Test Time	t F	(h:m:s)	11:05:10	23:24:05	18:50:40
Shear Machine Speed d r (mm/min) 0.01498 0.01498	Estimated Strain to Failure	8%	(%)	5.0	5.0	5.0
	Shear Machine Speed	dr	(mm/min)	0.01498	0.01498	0.01498

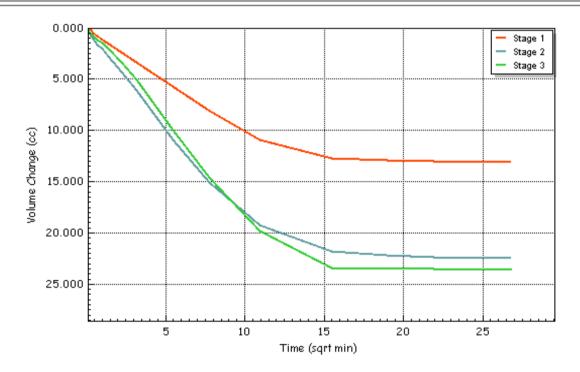

da	Test Method	BS1377-8 : 1990 : Clause 7	Test Name	TP01 2m
			Test Date	14/09/2022
· (>*)=			Borehole	TP01
	Jobfile	AO34 Tinakilly	Sample	2m
U K A S TESTING	Client	CS Consulting	Depth	2.00m
4043				

da	Test Method	BS1377-8 : 1990 : Clause 7	Test Name	TP01 2m	
			Test Date Borehole	14/09/2022 TP01	
	Jobfile	AO34 Tinakilly	Sample	2m	
U K A S TESTING	Client	CS Consulting	Depth	2.00m	
4043					

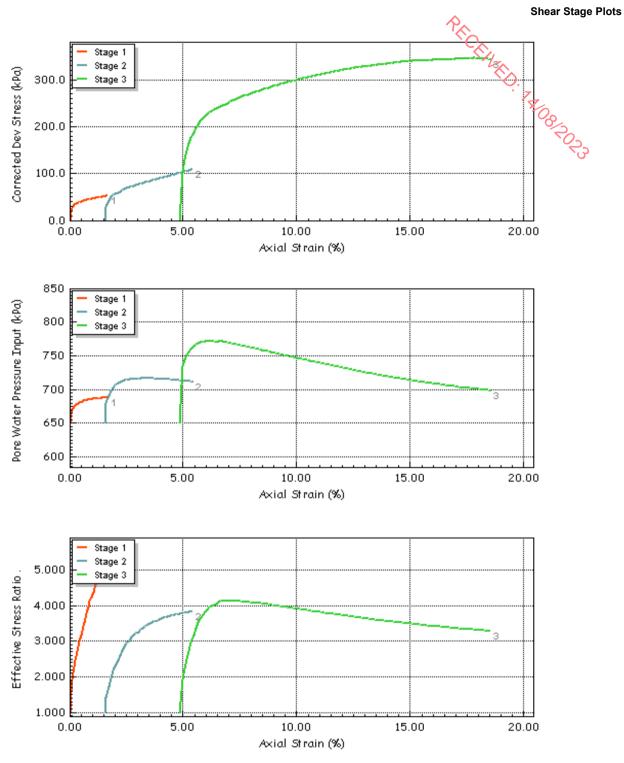

G and a	Test Method Database: .\SQI	BS1377-8 : 1990 EXPRESS \ tester	: Clause 7		Test Name Test Date	TP01 2m 14/09/2022	
-(34)-	Site Reference				Borehole	TP01	
	Jobfile	AO34 Tinakilly			Sample	2m	
UKAS	Client	CS Consulting			Depth	2.00m	
4043	Operator	*	Checked	*		Approved	*

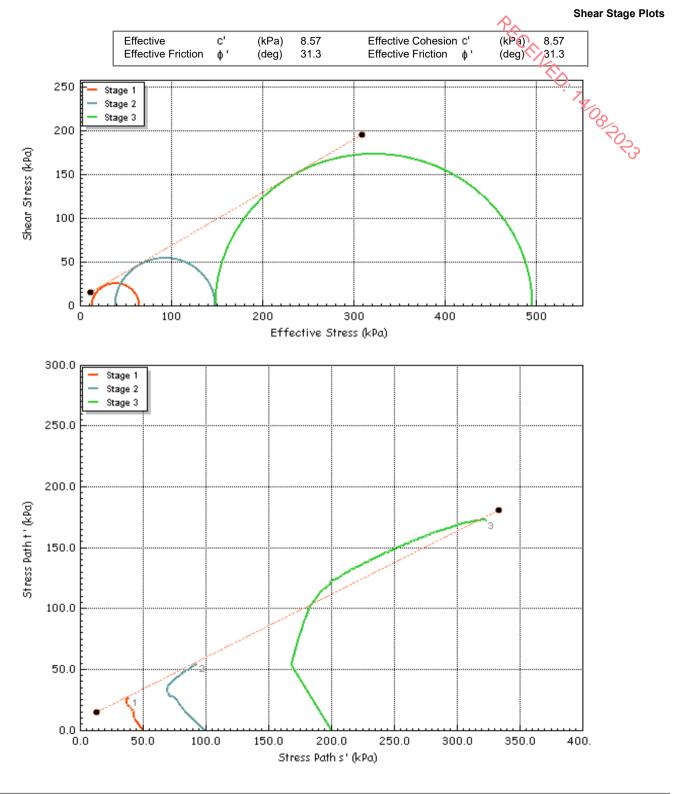

					Pro-		Summary Repor
Sample Details	Depth	1.50m			`C	×.	
	Description	See summ	ary of soil de	scriptions.		The second	
	Туре			effort, natural	moisture cor	nt 🚫.	Summary Report
	Initial Sample Length	Lo	(mm)	200.0			T.Oo
	Initial Sample Diameter	Do	(mm)	100.5			2
sketch showing specimen	Initial Sample Weight	Wo	(gr)	3427.0			22
location in original sample	Initial Bulk Density	ρο 0-	(Mg/m3) (Mg/m2)	2.16			0
· · · · · · · · · · · · · · · · · · ·	Particle Density	ρs	(Mg/m3)	2.66			
nitial Conditions				Stage 1	2	3	4
nitial Cell Pressure		σ3i	(kPa)	700	750	850	
nitial Back Pressure		U ы	(kPa)	650	650	650	
Membrane Thickness		mь	(mm)	0.600			
Displacement Input		LIP	(mm)	CH 4			
Load Input		N IP	(N)	CH 1			
Pore Water Pressure Input		Ա բաթ	(kPa)	CH 3			
Sample Volume		V	(cc)	CH 2			
nitial Moisture		ωi	(%)	16			
Initial Dry Density		ρdi	(Mg/m3)	1.86			
Initial Voids Ratio		ei		0.432			
Initial Degree of Saturation		Si	(%)	100			
B Value		в		0.95			
Final Conditions							
Final Moisture		ωf	(%)	15			
Final Dry Density		ρdf	(Mg/m3)	1.93			
Final Voids Ratio		ef		0.378			
Final Degree of Saturation		Sf	(%)	100.0			
				Stage 1	2	3	4
Failure Criteria				Max. Dev. Stress	Max. Dev. Stress	Max. Dev Stress	
Strain At Failure		εf	(%)	1.70	5.43	17.75	
Stress At Failure		(σ1-σ3)		53.1	109.2	346.6	
Minor Stress At Failure		σ3'	(kPa)	12.3	38.6	148.3	
Major Stress At Failure		σ1'	(kPa)	65.4	147.8	494.9	
Principal Stress Ratio At Failure		σ1'/σ3'		5.319	3.829	3.337	
lotes							

ch	Test Method	BS1377-8 : 1990 : Clause 7	Test Name	TP15 1.5m	
			Test Date	14/09/2022	
(>4)			Borehole	tp15	
	Jobfile	AO34 Tinakilly	Sample	1.5m	
UKAS	Client	CS Consulting	Depth	1.50m	
4043			i		



ġ	Test Method	BS1377-8 : 1990 : Clause 7	Test Name Test Date	TP15 1.5m 14/09/2022	
· (≱≮) -	Jobfile	AO34 Tinakilly	Borehole Sample	tp15 1.5m	
UKAS	Client	CS Consulting	Depth	1.50m	
4043					

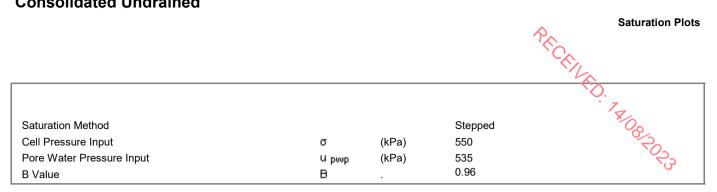

Initial Conditions stage 1 2 3 Initial Cell Pressure σ 3 (kPa) 700 750 850 Initial Back Pressure u bi (kPa) 650 650 650 Pore Water Pressure Input u pwp (kPa) 684 734 817 Drainage Method readiator Radiator 817 660 650				<u>_</u>	
$\begin{array}{llllllllllllllllllllllllllllllllllll$			Stage 1	2	3
$\begin{array}{llllllllllllllllllllllllllllllllllll$	σз	(kPa)	700	750	850
Drainage MethodRadial+One EndFinal ConditionsStage 123PWP Dissipation %U%(%)100.00100.00100.00Volumetric Strain ϵ_{V} %(%)0.822.243.73Corrected LengthL c(mm)199.5194.6184.7Corrected AreaA c(cm2)78.8979.0480.80Corrected VolumeV c(cc)1573.4651550.9711527.373T100 Time to Failuret 100(min)160.14130.54136.74Compressibilitym v(m2/MN)0.2430.2660.223Test Timet F(h:m:s)04:48:1503:54:5804:06:07Estimated Strain to Failuret F(h:m:s)04:48:1503:54:5804:06:07	и Бі	(kPa)	650	650	
Stage 1 2 3 Stage 1 2 3 PWP Dissipation % U% (%) 100.00 100.00 100.00 Volumetric Strain $\epsilon_v \%$ (%) 0.82 2.24 3.73 Corrected Length L c (mm) 199.5 194.6 184.7 Corrected Area A c (cm2) 78.89 79.04 80.80 Corrected Volume V c (cc) 1573.465 1550.971 1527.373 T100 Time to Failure t 100 (min) 160.14 130.54 136.74 Consolidation c v (m2/year) 1.313 1.611 1.538 Compressibility m v (m2/MN) 0.243 0.266 0.223 Test Time t F (h:m:s) 04:48:15 03:54:58 04:06:07 Estimated Strain to Failure t F (%) 5.0 5.0 5.0	И рмр	(kPa)	684	734	817 🖊
Stage 123 \checkmark PWP Dissipation %U%(%)100.00100.00100.00Volumetric Strain ϵ_{V} %(%)0.822.243.73Corrected LengthL c(mm)199.5194.6184.7Corrected AreaA c(cm2)78.8979.0480.80Corrected VolumeV c(cc)1573.4651550.9711527.373T100 Time to Failuret 100(min)160.14130.54136.74Consolidationc v(m2/year)1.3131.6111.538Compressibilitym v(m2/MN)0.2430.2660.223Test Timet F s %(%)0.4:48:1503:54:58 s.004:06:07 s.05.05.0			Radial+On	e End	×00
PWP Dissipation %U%(%)100.00100.00100.00Volumetric Strain ϵ_{V} %(%)0.822.243.73Corrected LengthL c(mm)199.5194.6184.7Corrected AreaA c(cm2)78.8979.0480.80Corrected VolumeV c(cc)1573.4651550.9711527.373T100 Time to Failuret 100(min)160.14130.54136.74Consolidationc v(m2/year)1.3131.6111.538Compressibilitym v(m2/MN)0.2430.2660.223Test Timet F ϵ %(%)04:48:15 5.05.05.05.0					E Con
Volumetric Strain $\epsilon_V \%$ (%) 0.82 2.24 3.73 Corrected LengthL c(mm) 199.5 194.6 184.7 Corrected AreaA c(cm2) 78.89 79.04 80.80 Corrected VolumeV c(cc) 1573.465 1550.971 1527.373 T100 Time to Failuret 100(min) 160.14 130.54 136.74 Consolidationc v(m2/year) 1.313 1.611 1.538 Compressibilitym v(m2/MN) 0.243 0.266 0.223 Test Timet F Estimated Strain to Failuret F ϵ %(%) $0.448:15$ $03:54:58$ 5.0 $04:06:07$ 5.0			Stage 1	2	3 0
Corrected LengthL c(m)199.5194.6184.7Corrected AreaA c(cm2)78.8979.0480.80Corrected VolumeV c(cc)1573.4651550.9711527.373T100 Time to Failuret 100(min)160.14130.54136.74Consolidationc v(m2/year)1.3131.6111.538Compressibilitym v(m2/MN)0.2430.2660.223Test Timet F(h:m:s)04:48:1503:54:5804:06:07Estimated Strain to Failuret S%(%)5.05.05.0	U%	(%)	100.00	100.00	100.00
Corrected AreaA c(cm2)78.8979.0480.80Corrected VolumeV c(cc)1573.4651550.9711527.373T100 Time to Failuret 100(min)160.14130.54136.74Consolidationc v(m2/year)1.3131.6111.538Compressibilitym v(m2/MN)0.2430.2660.223Test Timet F(h:m:s)04:48:1503:54:5804:06:07Estimated Strain to Failuret %%%5.05.05.0	εν%	(%)	0.82	2.24	3.73
Corrected Volume V c (cc) 1573.465 1550.971 1527.373 T100 Time to Failure t 100 (min) 160.14 130.54 136.74 Consolidation c v (m2/year) 1.313 1.611 1.538 Compressibility m v (m2/MN) 0.243 0.266 0.223 Test Time t F (h:m:s) 04:48:15 03:54:58 04:06:07 Estimated Strain to Failure t % % 5.0 5.0 5.0	Lc	(mm)	199.5	194.6	184.7
T100 Time to Failure t 100 (min) 160.14 130.54 136.74 Consolidation c v (m2/year) 1.313 1.611 1.538 Compressibility m v (m2/MN) 0.243 0.266 0.223 Test Time t F (h:m:s) 04:48:15 03:54:58 04:06:07 Estimated Strain to Failure t % (%) 5.0 5.0 5.0	Ac	(cm2)	78.89	79.04	80.80
Consolidation c ν (m2/year) 1.313 1.611 1.538 Compressibility m ν (m2/MN) 0.243 0.266 0.223 Test Time t F (h:m:s) 04:48:15 03:54:58 04:06:07 Estimated Strain to Failure ε % (%) 5.0 5.0 5.0	Vс	(cc)	1573.465	1550.971	1527.373
Compressibility m v (m2/MN) 0.243 0.266 0.223 Test Time t F (h:m:s) 04:48:15 03:54:58 04:06:07 Estimated Strain to Failure ε % (%) 5.0 5.0 5.0	t 100	(min)	160.14	130.54	136.74
Test Time t F (h:m:s) 04:48:15 03:54:58 04:06:07 Estimated Strain to Failure ε % (%) 5.0 5.0 5.0	сv	(m2/year)	1.313	1.611	1.538
Estimated Strain to Failure ε% (%) 5.0 5.0 5.0	mν	(m2/MN)	0.243	0.266	0.223
	t F	(h:m:s)	04:48:15	03:54:58	04:06:07
Shear Machine Speed d r (mm/min) 0.03460 0.03460 0.03460	ε%	(%)	5.0	5.0	5.0
	dr	(mm/min)	0.03460	0.03460	0.03460
Notes		υы υρωρ υ% εν% L c Α c V c t 100 c ∨ m ∨ t F ε%	U% (kPa) U% (kPa) U% (%) ε _ν % (%) L c (mm) A c (cm2) V c (cc) t 100 (min) c v (m2/year) m v (m2/year) m v (m2/MN) t F (h:m:s) ε% (%)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

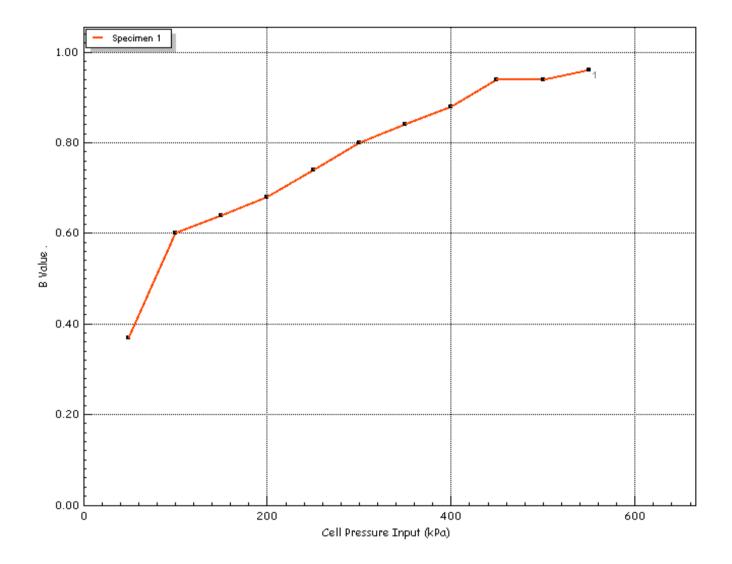

da	Test Method	BS1377-8 : 1990 : Clause 7	Test Name	TP15 1.5m
- 👾 -			Test Date	14/09/2022
(>4)-			Borehole	tp15
	Jobfile	AO34 Tinakilly	Sample	1.5m
UKAS	Client	CS Consulting	Depth	1.50m
4043				

ILS LABORAT

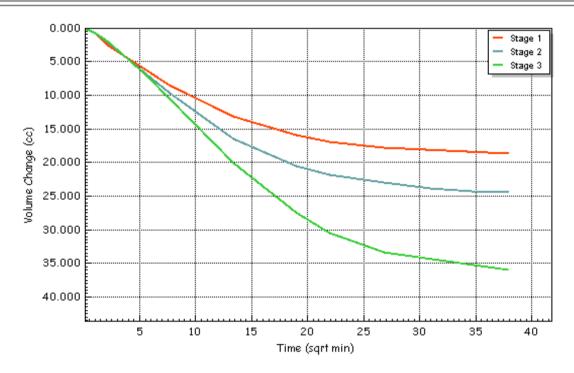
- GE	Test Method	BS1377-8 : 1990 : Clause 7	Test Name Test Date	TP15 1.5m 14/09/2022	
· (><)-	Jobfile	AO34 Tinakilly	Borehole Sample	tp15 1.5m	
UKAS TESTING 4043	Client	CS Consulting	Depth	1.50m	
ODC					

dia	Test Method	BS1377-8 : 1990 : Clause 7	Test Name Test Date	TP15 1.5m 14/09/2022
			Borehole	tp15
\odot	Jobfile	AO34 Tinakilly	Sample	1.5m
U K A S TESTING	Client	CS Consulting	Depth	1.50m
4043				

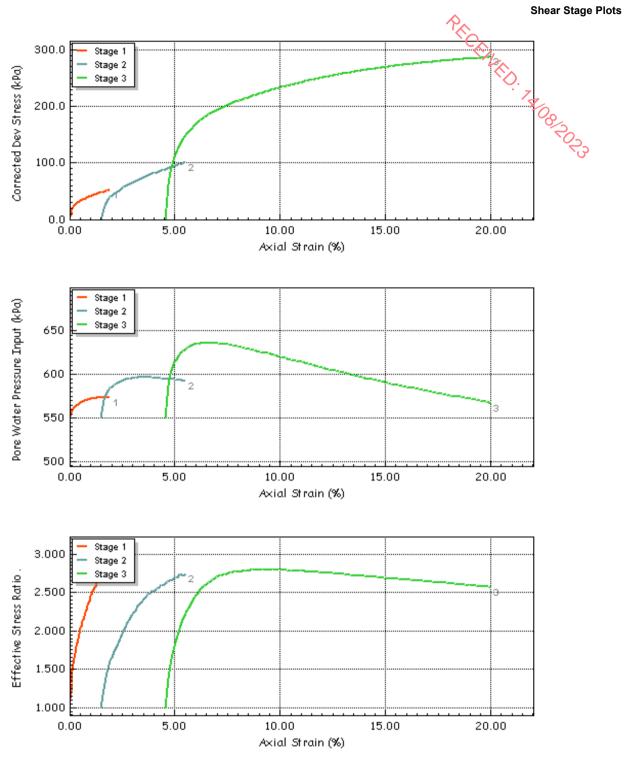


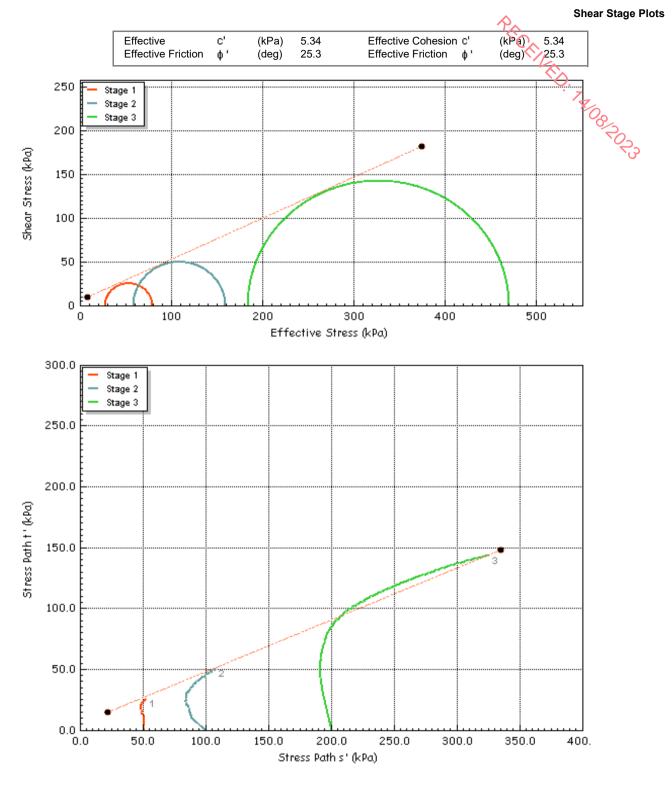

					Pr.		Summary Repor
Sample Details	Depth	2.00m			`C	R. La	
	Description Type		ary of soil de ted at 2.5kg e	scriptions. effort, natural		\sim	7
sketch showing specimen location in original sample	Initial Sample Length Initial Sample Diameter Initial Sample Weight Initial Bulk Density Particle Density	Lο Do Wo ρo ρs	(mm) (mm) (gr) (Mg/m3) (Mg/m3)	200.0 100.8 3323.0 2.08 2.66			741081013
Initial Conditions				Stage 1	2	3	4
Initial Cell Pressure		σ3i	(kPa)	600	650	750	
Initial Back Pressure		U bi	(kPa)	550	550	550	
Membrane Thickness		mь	(mm)	0.600			
Displacement Input		LIP	(mm)	CH 2			
Load Input		N IP	(N)	CH 4			
Pore Water Pressure Input		Ա թաթ	(kPa)	CH 3			
Sample Volume		V	(cc)	CH 2			
Initial Moisture		ωi	(%)	21			
Initial Dry Density		ρdi	(Mg/m3)	1.71			
Initial Voids Ratio		ei		0.552			
Initial Degree of Saturation		Si	(%)	100			
B Value		B		0.96			
Final Conditions							
Final Moisture		ωf	(%)	20			
Final Dry Density		ρdf	(Mg/m3)	1.80			
Final Voids Ratio		ef		0.474			
Final Degree of Saturation		Sf	(%)	100.0			
				Stage 1	2	3	4
Failure Criteria				Max. Dev. Stress	Max. Dev. Stress	Max. Dev Stress	Ι.
Strain At Failure		εf	(%)	1.91	5.53	20.00	
Stress At Failure		(σ1-σ3)	(kPa)	52.3	100.9	287.1	
Minor Stress At Failure		σ3'	(kPa)	27.0	58.0	183.0	
Major Stress At Failure		σ1'	(kPa)	79.3	158.9	470.1	
Principal Stress Ratio At Failure		σ1'/σ3'		2.936	2.740	2.569	
Notes							

dh	Test Method	BS1377-8 : 1990 : Clause 7	Test Name	TP19 2m
GER _			Test Date	14/09/2022
\$ ₹)-			Borehole	TP19
	Jobfile	AO34 Tinakilly	Sample	2m
KAS	Client	CS Consulting	Depth	2.00m



- 👾 -	Test Method	BS1377-8 : 1990 : Claus	Test Name Test Date	TP19 2m 14/09/2022	
·(≱≰)-	Jobfile	AO34 Tinakilly	Borehole Sample	TP19 2m	
UKAS	Client	CS Consulting	Depth	2.00m	
4043					


					Consolidation Pl
Initial Conditions			Stage 1	2	3
Initial Cell Pressure	σ3	(kPa)	600	650	750
Initial Back Pressure	и ы	(kPa)	550	550	550
Pore Water Pressure Input	И рмр	(kPa)	581	616	676 🖊
Drainage Method			Radial+On	e End	×00
Final Conditions					E Co
			Stage 1	2	3
PWP Dissipation %	U%	(%)	100.00	100.00	100.00
Volumetric Strain	εν%	(%)	1.17	1.53	2.25
Corrected Length	Lc	(mm)	199.2	194.4	185.1
Corrected Area	Ac	(cm2)	79.18	79.88	81.95
Corrected Volume	Vс	(cc)	1577.361	1552.932	1516.947
t100	t 100	(min)	255.73	328.27	420.56
Consolidation	сv	(m2/year)	0.831	0.647	0.505
Compressibility	m v	(m2/MN)	0.377	0.232	0.179
Test Time	t F	(h:m:s)	07:40:18	09:50:53	12:37:00
	ε%	(%)	5.0	5.0	5.0
Estimated Strain to Failure					


da	Test Method	BS1377-8 : 1990 : Clause 7	Test Name	TP19 2m
- 👾 -			Test Date	14/09/2022
(1)			Borehole	TP19
	Jobfile	AO34 Tinakilly	Sample	2m
UKAS	Client	CS Consulting	Depth	2.00m
4043				

AL SOILS LABORATORY

dh	Test Method	BS1377-8 : 1990 : Clause 7	Test Name	TP19 2m	
- 600			Test Date	14/09/2022	
-(34)-			Borehole	TP19	
	Jobfile	AO34 Tinakilly	Sample	2m	
UKAS	Client	CS Consulting	Depth	2.00m	
4043			1		
O D		-			
	51				

dh	Test Method	BS1377-8 : 1990 : Clause 7	Test Name	TP19 2m
- 👾 -			Test Date	14/09/2022
· (>4)-			Borehole	TP19
	Jobfile	AO34 Tinakilly	Sample	2m
U K A S TESTING	Client	CS Consulting	Depth	2.00m
4043				

APPENDIX 8 – Groundwater Monitoring

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. YD52 Tel: V1 601 5175 / 5176 Email: info@gii.ie Web: www.yii.ie

GROUNDWATER MONITORING

A034 Tinakilly, Co. Wicklow

BOREHOLE	DATE	TIME	GROUNDWATER (m BGL)	Comment
BH01	09/09/2022	09:30:00	8.91	
BH02	09/09/2022	09:25:00	7.75	
BH03	09/09/2022	09:20:00	9.76	
BH04	09/09/2022	09:10:00	5.82	
BH05	09/09/2022	09:00:00	-	Dry
BH06	09/09/2022	08:15:00	6.85	
BH01	20/09/2022	09:00:00	8.90	
BH02	20/09/2022	08:55:00	7.78	
BH03	20/09/2022	08:45:00	9.80	
BH04	20/09/2022	08:35:00	5.93	
BH05	20/09/2022	08:30:00	-	Dry
BH06	20/09/2022	08:25:00	6.34	