EIAR Attachments

Attachment 2.1 Site Location Map

NOTES

NOTES:-

FIGURED DIMENSIONS ONLY TO BE TAKEN FROM THIS DRAWING. DIMENSIONS TO BE CHECKED ON SITE.

Α1

- 2. THIS DRAWING TO BE READ IN CONJUCTION WITH ALL OTHER ARCHITECTURAL & ENGINEERING DRAWINGS & ALL OTHER RELEVANT DRAWINGS & SPECIFICATIONS
- ALL LEVELS RELATE TO O.S. DATUM AT MALIN HEAD UNLESS NOTED OTHERWISE

_				
Rev.	Date	drawn By	CHECKED By	Revision
Stat	us			

FOR PLANNING ONLY

Client

COUNTRY CREST ULC

Project

ANAEROBIC DIGESTION PLANT, COLLINSTOWN, LUSK CO DUBLIN

Drg.Title

SITE LOCATION AND ROADS LAYOUT

THIS DOCUMENT IS THE PROPERTY OF DOHERTY FINEGAN KELLY CONSULTING ENGINEER THIS DOCUMENT IS THE PROPERT OF DOHERT FINEGAN KELLT CONSULTING ENGIN THE DESIGN INFORMATION CONTAINED HEREIN IS STRICTLY CONFIDENTIAL. THIS DOCUMENT IS NOT TO BE USED, REPRODUCED, DISCLOSED OR CIRCULATED IN WHOLE OR IN PART WITHOUT THE PRIOR 'WRITTEN PERMISSION' IN EACH INSTANCE OF 'DOHERTY FINEGAN KELLY CONSULTING ENGINEERS' © PROPERTY OF 'DOHERTY FINEGAN KELLY CONSULTING ENGINEERS'

DFK								
DOHERTY FINEGAN KELLY DOHEKLA LINEGAN KELLY CONSULTING CIVIL & STRUCTURAL ENGINEERS Botanic Court, 30 Botanic Road, Glasnevin, Dublin D09 W2V9								
Tel:(01) 8301852 E—Mail mailroom@dfk.ie	Fax:(01) 8602265							
Drawn By KeB	Scale AS SHOWN							
Checked By EF	Date 06 Dec'24							

Rev.

_

Drg.No. 22221/1000 Attachment 2.2 Site Layout Map

DOHERTY FINEGAN KELLY DOHERTY FINEGAN KELLY DOHEKLA LINEGVIK & STRUCTURAL ENGINEERS Botanic Court, 30 Botanic Road, Glasnevin, Dublin D09 W2V9. Tel:(01) 8301852 E-Mail mailroom@dfk.ie		ELLY EFFX SINEERS :(01) 8602265	Project ANAEROBIC DIGESTION PLANT, COLLINSTOWN, LUSK, Co. DUBLIN Drg. Title SITE LAYOUT	Rev. Date Drawn By CHECKED By Revision Status	NOTES:- 1. FIGURED DIMENSIO 2. THIS DRAWING TO DRAWINGS & SPEC 3. ALL LEVELS RELAT 4. ALL WORKS TO BE AUTHORITY
Drawn By	Scale			PLANNING PERMISSION	
EY	1 :	500			
Checked By	Date 06/12	2/2024	THIS DOCUMENT IS THE PROPERTY OF DOHERTY FINEGAN KELLY CONSULTING ENGINEERS. THE DESIGN INFORMATION CONTAINED HEREIN IS STRICTLY CONFIDENTIAL.	Client	
Drg.No. Rev.		Rev.	THIS DOCUMENT IS NOT TO BE USED, REPRODUCED, DISCLOSED OR CIRCULATED IN WHOLE OR IN PART WITHOU' THE PRIOR 'WRITTEN PERMISSION' IN EACH INSTANCE OF 'DOHERTY FINEGAN KELLY CONSULTING ENGINEERS'		

	ID	SEE DRAWING	SITE OBJECT DESCRIPTION
	1	1206	DIGESTER POWER RING - Ø45.00m/Ø26.00m/hi=8.00m/h/substrate=7.50m, Primary Digester V/substrate=7947m ³ , Secondary Digester V/substrate=3981m ³ (PR)
	2	1203	FEEDING SYSTEM 100m ³ WITH HAMMER MILL
	3	1203	FEEDING SYSTEM 100m ³ WITH HPZ
	4	1234	RECEPTION TANK, Ø9.00m/hi=5.00m/h/substrate=4.50m, V/substrate=250m ³
	6		GAS VALVE CHAMBER (GVC)
	7		PUMP ENCLOSURE (CPS)
	8	1207	POWER DIGEST, Ø=32,00m, h/i=6,00m, h/substrate=5,30m, V=4.825m ³ , V/substrate 4.262m ³ (PD)
IGS)	9	1207	GAS SPHERE (DMGH), V=3.130m ³
	10	1235	PASTEURIZATION (PAS)
	11	1236	HYGENIZATION BUFFER TANK
	12	1210	SEPARATOR ON PLATFORM + ACCESS STAIRS IN SIGESTER SEPARATOR BUILDING
	13	1232	GAS UPGRADING UNIT + GAS PRE-TREATMENT (GUU)
	14	1230	COMBINED HEAT AND POWER (CHP)
	15	1231	GAS FLARE
	16	1231	BOILER CONTAINER
	17		CENTRAL PUMPING STATION (CPS)
	18	1234	02 COMPOUND WITH 5m CLEARENCE LINES SHOWN AROUND
	19	1215	DOUBLE WEIGHBRIDGE & INTEGRATED LEVER ARMS & ACCESS CONTROL
	20	1201	OFFICE BUILDING
	21	1235	HEAT DISTRIBUTION CONTAINER
	22	1231	SECONDARY BOILER CONTAINER
	22	1210	
	20	1210	
	24	1230	
	20	1203	
	101	1203	
	101	1204	
	102	1200	
	103	1203	
	104	1203	
	105	1208	
	106	11/2	LID COVERED DIGESTATE LAGOON, 4.5m DEEP WITH 300mm FREEBOARD ALLOWANCE
	107	11/2	LID COVERED DIGESTATE LAGOON, 4.5m DEEP WITH 300mm FREEBOARD ALLOWANCE
	108	1151	
•	110	1151	
	111	1215	
	113	1214	
	14	1214	
	115	209	MACHINERY SHED
	116		LAGOON FEEDING LOCATION WITH CONCRETE PIPE SUPPORT WALL
	117	1172	LAGOON EXTRACTION LOCATION WITH CONCRETE PIPE SUPPORT WALL & BURIED SPILL COLLECTION CHAMBER
	1 9		LA SOON FEEDING LOCATION WITH CONCRETE PIPE SUPPORT WALL
	119	117	L/ SOON EXTRACTION LOCATION WITH CONCRETE PIPE SUPPORT WALL & BURIED SPILL COLLECTION CHAMBER
	120		RECEPTION TANK FEEDING AREA, CONCRETE HEAD WALL AND BURIED SPILL COLLECTION CHAMBER
	121	1211	BUILDING
	122	1151	B. RIED SOIL CR. TER TANK
	123	1208	SOLID DIGLIST TE STORAGE BAY
	124	1212	BIKE STOR
	125	1213	BIN STORE

Attachment 2.3 Surface Water Drainage Plan

1500 @ 1:150	INDICATES PROPOSED SURFACE WATER DRAIN
SW (ref) 🙂	INDICATES PROPOSED SURFACE WATER MANHOLE
AJ. 🔶	INDICATES PROPOSED SURFACE WATER ACCESS CHAMBER
G. 🎟	INDICATES PROPOSED GULLY TRAP
RWP •	INDICATES PROPOSED RAIN WATER PIPE
KI.⊞ ∠ 1500 @ 1:150	INDICATES PROPOSED KERB INLET
	INDICATES EXISTING SURFACE WATER DRAIN
М.Н. 📃	INDICATES EXISTING SURFACE WATER MANHOLE
AJ. 🔷	INDICATES EXISTING SURFACE WATER ACCESS CHAMBER
1500 @ 1:150	INDICATES PROPOSED FOUL SEWER
FS (ref) 😃	INDICATES PROPOSED FOUL SEWER
AJ. 🔶	INDICATES PROPOSED FOUL ACCESS CHAMBER
	INDICATES PROPOSED 100mmø MoPVC WATERMAIN
S.V.	INDICATES PROPOSED SLUICE VALVE
	INDICATES PROPOSED HYDRANT
M	INDICATES PROPOSED WATERMETER
<u> </u>	INDICATES PROPOSED SCOUR VALVE
WM	INDICATES EXISTING WATERMAIN
WM	INDICATES EXISTING HYDRANT
₩MS.V.	INDICATES EXISTING SLUICE VALVE
	INDICATES PROPOSED SOILED WATER LINE
SW (ref) 🔮	INDICATES PROPOSED SOILED WATER MANHOLE
	INDICATES PROPOSED DIGESTATE / SLURRY LINE
	INDICATES SITE BOUNDARY
	INDICATES PROPOSED SWALE
	INDICATES PERMEABLE PAVING
· X	INDICATES PROPOSED CHECK DAMS @ 10.0m

Attachment 2.4 Nutrient Management Plan

PECEINED. 78-721202 Nutrient Management Plan

and Nitrates information based on si 605 of 2017

Country Crest Arable Ltd

Rathmooney Lusk Co. Dublin

Herd number: F1251208

Summary information 2024 Year Stocking rate (kg N/ha) 19.98 Grazing stocking rate (kg N/ha) 248.78 Stocking rate incl imports/ exports (kg N/ha) 19.98 County for Nitrates purposes: Dublin Number of weeks storage required 16

Hackett Agricultural Consultants

Knock cross, Balbriggan	Co. Dublin	Phone No:	01-8415523	Email	richard.hackett@hac.ie	VAT No
		Fax number:	01-8415523	Mobile	086-2703610	IE 6630479b

Country Crest	Arable Ltd	ŀ	lerd num	ber:	F1251208			
		Crop:	Wint	er Whe	at			
Field Name: Flanaga	ans Moate tillag	e fields					LPI numbe	r: F1013200010
Townland:	Palmerstown		Р	lot size	(ha): 14.4		P.C.	
		N	Р	К			EIL.	
Soil result (r	ng/L):		4.9	114	Base dressi	ng	2nd fertiliser	3rd fertiliser
Soil Index:		1	2	3	3 x 50kg 9-7.4-	25 +S	4.5 x 50kg N-	1 x 50 kg CAN
Max Fertiliser allo	wable (Kg/ha)	218	46.0	60		On form		Imported clurry
Fertiliser planned	(Kg/ha)	200	27.4	92.7	Lime recommended	(m3/Ha)	(m3/Ha)
Fertiliser planned (ur	iits/acre)	162	22.2	75		0		0
Field Name: John Fy	nes Beside Eve	rards					LPI numbe	r: F1210200014
Townland:	Balcunnin		Р	lot size ((ha): 3.01			
		Ν	Р	к				
Soil result (r	ng/L):		22.5	150	Base dressi	ng	2nd fertiliser	3rd fertiliser
Soil Index:		1	4	3				
Max Fertiliser allo	wable (Kg/ha)	218	0	60		• (
Fertiliser planned Fertiliser planned (ur	(Kg/ha) iits/acre)				Lime recommended	On farm (m3/Ha 0	n slurry)	(m3/Ha)
Field Name: John Fy	nes Beside Lian	ns yard					LPI numbe	r: F1210200025
Townland:	Balcunnin		Р	lot size ((ha): 7.78			
		N	Р	к				
Soil result (r	ng/L):		45	290	Base dressi	ng	2nd fertiliser	3rd fertiliser
Soil Index:		2	4	5				
May Fortilizar alle				0				
wax reruinser and	wable (Kg/ha)	188	0	0		0(
Fertiliser planned (ur	wable (Kg/ha) (Kg/ha) ^{iits/acre)}	188	0	J	Lime recommended	On farm (m3/Ha 0	n slurry)	Imported slurry (m3/Ha) 0
Fertiliser planned Fertiliser planned (ur Field Name: Francis	wable (Kg/ha) (Kg/ha) ^{iits/acre)} Everards 3 field	188	0		Lime recommended	On farm (m3/Ha 0	n slurry) LPI numbe	Imported slurry (m3/Ha) 0 r: F1210300004/
Fertiliser planned Fertiliser planned (ur Field Name: Francis Townland:	wable (Kg/ha) (Kg/ha) hits/acre) Everards 3 field Baldongan	188	O	lot size (Lime recommended (ha): 7.65	On farm (m3/Ha 0	n slurry) LPI numbe	Imported slurry (m3/Ha) 0 r: F1210300004/ F12103000010/F 1210300023
Fertiliser planned Fertiliser planned (ur Field Name: Francis Townland:	wable (Kg/ha) (Kg/ha) hits/acre) Everards 3 field Baldongan	188 ds N	O P	lot size (K	Lime recommended (ha): 7.65	On farm (m3/Ha 0	n slurry) LPI numbe	Imported slurry (m3/Ha) 0 r: F1210300004/ F12103000010/F 1210300023
Fertiliser planned Fertiliser planned (ur Field Name: Francis Townland: Soil result (r	wable (Kg/ha) (Kg/ha) hits/acre) Everards 3 field Baldongan mg/L):	188 ds N	0 P 47.7	lot size (K 93	Lime recommended (ha): 7.65 Base dressi	On farm (m3/Ha 0	LPI numbe	Imported slurry (m3/Ha) 0 r: F1210300004/ F12103000010/F 1210300023 3rd fertiliser
Fertiliser planned Fertiliser planned (ur Field Name: Francis Townland: Soil result (r Soil Index:	wable (Kg/ha) (Kg/ha) hits/acre) Everards 3 field Baldongan mg/L):	188 ds N 1	0 P 47.7 4	lot size (K 93 2	Lime recommended (ha): 7.65 Base dressi	On farm (m3/Ha 0	LPI numbe	Imported slurry (m3/Ha) 0 r: F1210300004/ F12103000010/F 1210300023 3rd fertiliser
Fertiliser planned Fertiliser planned (ur Field Name: Francis Townland: Soil result (r Soil Index: Max Fertiliser allo	wable (Kg/ha) (Kg/ha) hits/acre) Everards 3 field Baldongan mg/L):	188 ds N 1 218	0 P 47.7 4 20	lot size (K 93 2 75	Lime recommended (ha): 7.65 Base dressi	On farm (m3/Ha 0	LPI numbe	Imported slurry (m3/Ha) 0 r: F1210300004/ F12103000010/F 1210300023 3rd fertiliser

_

_

	Crop:	Wint	er Whea	at		
Field Name: Bobby Jones Top of hil	Butlers	s side			LPI numb	er: F1213000004
Townland: Popeshall		Р	lot size ((ha): 2.26	REC	
	Ν	Ρ	к		EIL.	
Soil result (mg/L):		13.5	379	Base dressi	ing 2nd fertilise	3rd fertiliser
Soil Index:	2	4	5			8-73
Max Fertiliser allowable (Kg/ha)	188	0				<u> </u>
Fertiliser planned (Kg/ha)				Lime recommended	On farm slurry (m3/Ha)	Imported slurry (m3/Ha)
Fertiliser planned (units/acre)					0	0
Field Name: Bobby Jones Beside re	servoir				LPI numb	er: F1213400011
Townland: Thomastown		Р	lot size ((ha): 3.22		
	N	Ρ	к			
Soil result (mg/L):		21.1	468	Base dressi	ing 2nd fertilise	r 3rd fertiliser
Soil Index:	1	4	5			
Max Fertiliser allowable (Kg/ha)	218	0				
Fertiliser planned (Kg/ha) Fertiliser planned (units/acre)				Lime recommended	On farm slurry (m3/Ha) 0	Imported slurry (m3/Ha) 0
Field Name: Bobby Jones Long pad	dock to	wards h	ill		LPI numb	er: F1213400013
Townland: Thomastown		Р	lot size ((ha): 4.94		
	N	Р	К			
Soil result (mg/L):		18.5	356	Base dressi	ing 2nd fertilise	r 3rd fertiliser
Soil Index:	1	4	5		-	
Max Fertiliser allowable (Kg/ha)	218	0				
Fertiliser planned (Kg/ha) Fertiliser planned (units/acre)				Lime recommended	On farm slurry (m3/Ha) 0	Imported slurry (m3/Ha) 0
Field Name: Bobby Jones Beside re	servoir				LPI numb	er: F1213400015
Townland: Thomastown		Р	lot size ((ha): 3.02		
	N	Р	к			
Soil result (mg/L):		18.5	356	Base dressi	ing 2nd fertilise	r 3rd fertiliser
Soil Index:	1	4	5			
Max Fertiliser allowable (Kg/ha)	218	0				
Fertiliser planned (Kg/ha) Fertiliser planned (units/acre)				Lime recommended	On farm slurry (m3/Ha) 0	Imported slurry (m3/Ha) 0

	Crop:	Wint	er Whe	at			
Field Name: Bobby Jones Paddock r	nearest	yard				LPI numbe	r: F1213400016
Townland: Thomastown		Р	lot size	(ha): 2.09		P.C.	
	N	Ρ	к			AL.	
Soil result (mg/L):		23.5	293	Base dressi	ing	2nd fertiliser	3rd fertiliser
Soil Index:	1	4	5			Č.	2
Max Fertiliser allowable (Kg/ha)	218	0			On farm	a clurry	
Fertiliser planned (Kg/ha) Fertiliser planned (units/acre)				Lime recommended	(m3/Ha 0)	(m3/Ha) 0
Field Name: Lyons estate Lawns in t	front of	house				LPI numbe	r: 11271000004/
Townland: Clonaghlis/ Lvons		Р	lot size	(ha): 34.24			11272300001
	N	Ρ	к				
Soil result (mg/L):		6.4	90	Base dressi	ing	2nd fertiliser	3rd fertiliser
Soil Index:	2	2	2	3 x 50kg 9-7.4-	25 +S	3 x 50kg CAN	2 x 50 kg N-Ric
Max Fertiliser allowable (Kg/ha)	188	46.0	75				<u> </u>
Fertiliser planned (Kg/ha)	193	27.4	92.7	Lime recommended	On farn (m3/Ha	n slurry)	Imported slurry (m3/Ha)
Fertiliser planned (units/acre)	156	22.2	75		0		0
Field Name: Lyons estate Main bloc	ck					LPI numbe	r: 11271000007
Townland: Clonaghlis		Р	lot size	(ha): 56.69			
	N	Ρ	к				
Soil result (mg/L):		2.8	157	Base dressi	ing	2nd fertiliser	3rd fertiliser
Soil Index:	2	1	4	3 x 50kg 9-7.4-	25 +S	4.5 x 50kg N- Rich	1 x 50 kg CAN
Max Fertiliser allowable (Kg/ha)	188	56.0	0		On form		Imported clurry
Fertiliser planned (Kg/ha)	200	27.4	92.7	Lime recommended	(m3/Ha)	(m3/Ha)
Fertiliser planned (units/acre)	162	22.2	75		0		0
Field Name: Lyons Top of hill, stony	/ area					LPI numbe	r:11271000008
Townland: Clonaghlis		Р	lot size	(ha): 5.63			
	N	Ρ	к				
Soil result (mg/L):		2.1	53	Base dressi	ing	2nd fertiliser	3rd fertiliser
Soil Index:	2	1	1				
Max Fertiliser allowable (Kg/ha)	188	56.0	95				
Fertiliser planned (Kg/ha) Fertiliser planned (units/acre)				Lime recommended	On farn (m3/Ha 0	n slurry)	Imported slurry (m3/Ha) 0

Herd number: F1251208

	Crop:	Wint	er Whe	at			
Field Name: Lyons estate Paddocks	beside	big hou	se			LPI numbe	er: 1127100003/
Townland: Clonaghlis/ Lvons		Р	lot size	(ha): 12.65	56	P.C.	11272300002
	Ν	Ρ	к			A.	
Soil result (mg/L):		2.8	90	Base dressi	ng	2nd fertiliser	3rd fertiliser
Soil Index:	2	1	2				8-73
Max Fertiliser allowable (Kg/ha)	188	56.0	75				
Eartilizar plannod (Kg/ha)				Lime	On far	m slurry a)	Imported slurry
Fertiliser planned (units/acre)				recommended	0	a)	0
Field Name: Pluckstown Corner fiel	d					LPI numbe	er: 11272500007
Townland: Pluckstown		P	lot size	(ha)· 3.18			
	N	D I	V NOT SIZE	(114). 5.10			
Soil result (mg/L):	IN I	г 21	70	Paco drocci	ng	and fortilicor	2rd fortilisor
Soil Index:	1		2	3 x 50kg 9-7.4-	25 +S	4.5 x 50kg	1 x 50 kg CAN
May Fartilizar allowable (Kg/ba)	-	-	- 75			CAN	
	210	50.0	75	Lime	On far	m slurry	Imported slurry
Fertiliser planned (Kg/ha)	217	27.4	92.7	recommended	(m3/H 0	a)	(m3/Ha)
Fertiliser planned (units/acre)	175.5	22.2	75		0		
Field Name: Pluckstown Road pade	locks					LPI numbe	er: 11272500008
Townland: Pluckstown		Р	lot size	(ha): 20.53			
	Ν	Ρ	К				
Soil result (mg/L):		2.8	90	Base dressi	ng	2nd fertiliser	3rd fertiliser
Soil Index:	1	1	2	3 x 50kg 9-7.4-	25 +S	4.5 x 50kg N- Rich	- 1 x 50 kg CAN
Max Fertiliser allowable (Kg/ha)	218	56.0	75		On fam		
Fertiliser planned (Kg/ha)	200	27.4	92.7	Lime recommended	(m3/H	a)	(m3/Ha)
Fertiliser planned (units/acre)	162	22.2	75		0		0
Field Name: Murty Sullivans House	side ins	side field	d			LPI numbe	er: Q1812600024
Townland: Rath		Р	lot size	(ha): 12.26			
	N	Р	к				
Soil result (mg/L):		3	86	Base dressi	ng	2nd fertiliser	3rd fertiliser
Soil Index:	1	1	2	3 x 50kg 9-7.4-	25 +S	4.5 x 50kg N- Rich	- 1 x 50 kg CAN
Max Fertiliser allowable (Kg/ha)	218	56.0	75				
Fertiliser planned (Kg/ha)	200	27.4	92.7	Lime recommended	On far (m3/H	m slurry a)	Imported slurry (m3/Ha)
Fertiliser planned (units/acre)	162	22.2	75		0		0

.

Herd number: F1251208

	Crop:	Wint	er Whe	at	
Field Name: Murty Sullivans house	side Ne	arest sv	words		LPI number: Q1812600028
Townland: Rath		F	Plot size (ha): 8.19	Pro Co
	Ν	Ρ	к		N.L.
Soil result (mg/L):		4.6	43	Base dressing	2nd fertiliser 3rd fertiliser
Soil Index:	1	2	1	3 x 50kg 9-7.4-25 +S	4.5 x 50kg N ² 1 x 50 kg CAN Rich
Max Fertiliser allowable (Kg/ha)	218	46.0	95		<u> </u>
Fertiliser planned (Kg/ha)	200	27.4	92.7	Lime On farm recommended (m3/Ha	a) (m3/Ha)
Fertiliser planned (units/acre)	162	22.2	75	0	0
Field Name: Murty Sullivans Neares	st Sword	ls			LPI number: Q1812600043
Townland: Rath		F	Plot size (ha): 8.45	
	N	Р	к		
Soil result (mg/L):		2.6	44	Base dressing	2nd fertiliser 3rd fertiliser
Soil Index:	2	1	1	3 x 50kg 9-7.4-25 +S	4.5 x 50kg N- 1 x 50 kg CAN Rich
Max Fertiliser allowable (Kg/ha)	188	56.0	95		
Fertiliser planned (Kg/ha)	200	27.4	92.7	Lime On farr recommended (m3/Ha	n siurry imported siurry a) (m3/Ha)
Fertiliser planned (units/acre)	162	22.2	75	0	0

Winter Wheat Fertiliser use summary

number of parcels	18	
Hectares under this crop	210.20	
Maxim	um fertiliser allowed	Fertiliser recommended
Nitrogen	43,707.78	31,412.34
Phosphorus	9,969.19	4,332.17
Potassium		14,635.71

Country Crest	Arable Ltd	н	erd nur	mber:	F1251208			
		Crop:	Sprii	ng Whea	at			
Field Name: Bergins	Behind house	and yard					LPI numbe	r: F1021500002
Townland:	Roscall/Brownstown		I	Plot size	(ha): 10.5	248	P.C.	
		Ν	Р	К			The second	
Soil result (n	ng/L):		6.3	145	Base dres	sing	2nd fertiliser	3rd fertiliser
Soil Index:		2	3	3	3 x 50kg 9-7.4	4-25 +S	3 x 50kg N-	2 1 x 50 kg CAN
Max Fertiliser allo	wable (Kg/ha)	132	29.2	60		On farm	slurry	Imported slurry
Fertiliser planned	(Kg/ha)	156	27.4	92.7	Lime recommended	(m3/Ha)	(m3/Ha)
Fertiliser planned (uni	ts/acre)	126	22.2	75		0		0
Field Name: Gleesor	ns Kilmartin roa	id 5 parc	el				LPI numbe	r: F1062400001/
Townland:	Killmartin		1	Plot size	(ha): 22.2	2		02/03/04/05
		N	Р	К				
Soil result (m	ng/L):		8.3	86	Base dres	sing	2nd fertiliser	3rd fertiliser
Soil Index:		2	3	2		0		
Max Fertiliser allo	wable (Kg/ha)	132	29.2	75				
Fertiliser planned Fertiliser planned (uni	(Kg/ha) ts/acre)				Lime recommended	On farm (m3/Ha 0	slurry	Imported slurry (m3/Ha) 0
Field Name: Bergins	Small corner fi	eld					LPI numbe	r: F1370700001
Townland:	Brownstown		1	Plot size	(ha): 3.4			
		N	Р	К				
Soil result (n	ng/L):		6	129	Base dres	sing	2nd fertiliser	3rd fertiliser
Soil Index:		2	2	3	3 x 50kg 9-7.4	4-25 +S	4.5 x 50kg N- Rich	
Max Fertiliser allo	wable (Kg/ha)	132	39.2	60		On form	alumn	Imported clurry
Fertiliser planned	(Kg/ha)	167	27.4	92.7	Lime recommended	(m3/Ha)) 	(m3/Ha)
Fertiliser planned (uni	ts/acre)	135	22.2	75		0		0
Field Name: Bergins	Crossroads fiel	ld					LPI numbe	r: F1370700004
Townland:	Brownstown		I	Plot size	(ha): 8.59			
		Ν	Р	К				
Soil result (n	ng/L):		5.5	105	Base dres	sing	2nd fertiliser	3rd fertiliser
Soil Index:		2	2	2	3 x 50kg 9-7.4	4-25 +S	4.5 x 50kg N- Rich	
Max Fertiliser allo	wable (Kg/ha)	132	39.2	75		On farme	aluuma	Imported alumn
Fertiliser planned	(Kg/ha)	167	27.4	92.7	Lime recommended	(m3/Ha	siurry	(m3/Ha)
Fertiliser planned (uni	ts/acre)	135	22.2	75		0		0

Crop: Spring Wheat

Spring Wheat Fertiliser use summary										
number of parcels	4	C.C.C.	~							
Hectares under this cr	op 44.73		S.							
	Maximum fertiliser allowed	Fertiliser recommended	18-1							
Nitrogen	6,104.67	3,861.85	22							
Phosphorus	1,469.08	656.93	2×							
Potassium		2,219.36								

Country Crest	Arable Ltd	н	erd num	nber:	F1251208			
		Crop:	Wint	er Barle	2V			
Field Name: Paul O	'Haras Inside To	p of hill			- 1		LPI numbe	r: F10110000017
Townland:	Courtlough		D	lot size	(ha), 517	P,		
		N	Б		(II a). 5.47		C.	
Soil result (mg/L):	IN	г 2 Д	200	Daca dracci	ng).		and fortilisor
, Soil Index			2.7	200	3 x 50kg 9.7-4-	ng 21 25 4.	.5 x 50kg	Sru lertiliser
Son muex	•	1	1	4	e n eeng en in	C	AN	22
Max Fertiliser all	owable (Kg/ha)	193	55.2	0		On farm sl	urry	Imported slurry
Fertiliser planned	l (Kg/ha)	186	14.8	92.7	recommended	(m3/Ha)		(m3/Ha)
Fertiliser planned (ur	nits/acre)	150.6	12	75		0		0
Field Name: Paul O	'Haras behind n	ew shed					LPI numbe	r: F1011000010
Townland:	Courtlough		Р	lot size	(ha): 5.75			
		Ν	Р	к				
Soil result (mg/L):		3.3	160	Base dressi	ng 2ı	nd fertiliser	3rd fertiliser
Soil Index	:	1	2	4	3 x 50kg 9.7-4-	25 4. C	5 x 50kg AN	
Max Fertiliser allo	owable (Kg/ha)	193	45.2	0		On farm sli		Imported slurry
Fertiliser planned	l (Kg/ha)	186	14.8	92.7	Lime recommended	(m3/Ha)	urry	(m3/Ha)
Fertiliser planned (ur	nits/acre)	150.6	12	75		0		0
Field Name: Paul O	'Haras Lower hil	l field ne	ear Mao	ckens			LPI numbe	r: F1011000016
Townland:	Courtlough		Р	lot size	(ha): 5.25			
		N	Р	к				
Soil result (mg/L):		3	170	Base dressi	ng 2ı	nd fertiliser	3rd fertiliser
Soil Index	:	1	1	4	3 x 50kg 9.7-4-	25 4. C	.5 x 50kg AN	
Max Fertiliser all	owable (Kg/ha)	193	55.2	0		On form du		Imported slurry
Fertiliser planned	l (Kg/ha)	186	14.8	92.7	Lime recommended	(m3/Ha)	urry	(m3/Ha)
Fertiliser planned (ur	nits/acre)	150.6	12	75		0		0
Field Name: Paul O	'Hara Top entra	nce field					LPI numbe	r: F1011000051
Townland:	Courtlough		Р	lot size	(ha): 5.48			
		N	Р	к				
Soil result (mg/L):		3.4	230	Base dressi	ng 2ı	nd fertiliser	3rd fertiliser
Soil Index	:	1	2	4	3 x 50kg 9.7-4-	25 4. C	.5 x 50kg AN	
Max Fertiliser all	owable (Kg/ha)	193	45.2	0		On forme d		Imported clumer
Fertiliser planned	l (Kg/ha)	186	14.8	92.7	Lime recommended	(m3/Ha)	urry	(m3/Ha)
-								

Country Crest	Arable Ltd	ŀ	lerd nun	nber:	F1251208			
		Crop:	Wint	er Barle	ey			
Field Name: Dowli	ngs Murrays Fiel	d across	railway	y bridge	-		LPI numbe	r: F1210700012
Townland:	Ballvkea		P	lot size	(ha): 12.54	1	P.C.	
		N	Р	к			E.L.	
Soil result	(mg/L):		4.8	121	Base dressi	ng	2nd fertiliser	3rd fertiliser
Soil Inde	к:	1	2	3	3 x 50kg 9.7-4-2	25	4.5 x 50kg CAN	22
Max Fertiliser al	lowable (Kg/ha)	193	45.2	60		On farm	slurry	
Fertiliser planne	d (Kg/ha)	186	14.8	92.7	Lime recommended	(m3/Ha)	Sidiry	(m3/Ha)
Fertiliser planned (u	units/acre)	150.6	12	75		0		0
Field Name: Joe A	rchers Lusk road	2 fields					LPI numbe	r: F1211300014/
Townland:	Collinstown		P	lot size	(ha): 6.76			F1211300027
		Ν	Ρ	к				
Soil result	(mg/L):		15.2	256	Base dressi	ng	2nd fertiliser	3rd fertiliser
Soil Inde	к:	1	4	5	3 x 50kg 9.7-4-2	25	4.5 x 50kg CAN	
Max Fertiliser al	lowable (Kg/ha)	193	0			On farm	slurry	Imported slurry
Fertiliser planne	d (Kg/ha)	186	14.8	92.7	Lime recommended	(m3/Ha)		(m3/Ha)
						0		0
Fertiliser planned (u	inits/acrej	150.6	12	/5				
Fertiliser planned (u Field Name: Mc na	allys towards road	150.6 d	12	/5			LPI numbe	r: F12113012
Fertiliser planned (u Field Name: Mc na Townland:	allys towards road	150.6 d	12 P	75 Plot size	(ha): 3.11		LPI numbe	r: F12113012
Fertiliser planned (u Field Name: Mc na Townland:	allys towards road	150.6 d N	12 P	Plot size K	(ha): 3.11		LPI numbe	r: F12113012
Fertiliser planned (u Field Name: Mc na Townland: Soil result	allys towards road 2 (mg/L):	150.6 d N	12 P 10.7	Plot size K 109.3	(ha): 3.11 Base dressi	ng	LPI numbe	r: F12113012 3rd fertiliser
Fertiliser planned (u Field Name: Mc na Townland: Soil result Soil Index	allys towards road 2 (mg/L): K:	150.6 d N 2	12 P 10.7 4	/lot size K 109.3 3	(ha): 3.11 Base dressi	ng	LPI numbe	r: F12113012 3rd fertiliser
Fertiliser planned (u Field Name: Mc na Townland: Soil result Soil Index Max Fertiliser all	allys towards road 2 (mg/L): k: lowable (Kg/ha)	150.6 d N 2 168	12 P 10.7 4 0	210t size K 109.3 3 60	(ha): 3.11 Base dressi	ng On farm	LPI numbe 2nd fertiliser	r: F12113012 3rd fertiliser
Fertiliser planned (u Field Name: Mc na Townland: Soil result Soil Index Max Fertiliser all Fertiliser planne Fertiliser planned (u	allys towards road 2 (mg/L): k: lowable (Kg/ha) d (Kg/ha) units/acre)	150.6 d N 2 168	12 P 10.7 4 0	210t size K 109.3 3 60	(ha): 3.11 Base dressin	ng On farm (m3/Ha) 0	LPI numbe 2nd fertiliser slurry	r: F12113012 3rd fertiliser Imported slurry (m3/Ha) 0
Fertiliser planned (u Field Name: Mc na Townland: Soil result Soil Index Max Fertiliser all Fertiliser planne Fertiliser planned (u Field Name: Derha	allys towards road 2 (mg/L): k: lowable (Kg/ha) d (Kg/ha) units/acre) ams Deebs Skerrig	150.6 d N 2 168 es road	12 P 10.7 4 0	210t size K 109.3 3 60	(ha): 3.11 Base dressin	ng On farm (m3/Ha) 0	LPI numbe 2nd fertiliser slurry LPI numbe	r: F12113012 3rd fertiliser Imported slurry (m3/Ha) 0 r: F12113018
Fertiliser planned (u Field Name: Mc na Townland: Soil result Soil Index Max Fertiliser all Fertiliser planne Fertiliser planned (u Field Name: Derha Townland:	allys towards road allys towards road (mg/L): k: lowable (Kg/ha) units/acre) ams Deebs Skerrid Collinstown	150.6 d N 2 168 es road	12 P 10.7 4 0	2lot size	(ha): 3.11 Base dressin Lime recommended (ha): 6.05	ng On farm (m3/Ha) 0	LPI numbe 2nd fertiliser slurry LPI numbe	r: F12113012 3rd fertiliser Imported slurry (m3/Ha) 0 r: F12113018
Fertiliser planned (u Field Name: Mc na Townland: Soil result Soil Index Max Fertiliser all Fertiliser planned Fertiliser planned (u Field Name: Derha Townland:	allys towards road 2 (mg/L): k: lowable (Kg/ha) units/acre) ams Deebs Skerrid Collinstown	150.6 d N 2 168 es road	12 P 10.7 4 0	Plot size K 109.3 3 60 Plot size	(ha): 3.11 Base dressin	ng On farm (m3/Ha) 0	LPI numbe 2nd fertiliser slurry LPI numbe	r: F12113012 3rd fertiliser Imported slurry (m3/Ha) 0 r: F12113018
Fertiliser planned (u Field Name: Mc na Townland: Soil result (Soil Index Max Fertiliser all Fertiliser planned Fertiliser planned (u Field Name: Derha Townland:	allys towards road 2 (mg/L): k: lowable (Kg/ha) d (Kg/ha) units/acre) ams Deebs Skerrid Collinstown (mg/L):	150.6 N 2 168 es road	12 P 10.7 4 0 P 108	Plot size K 109.3 3 60 Plot size K 165	(ha): 3.11 Base dressin Lime recommended (ha): 6.05 Base dressin	ng On farm (m3/Ha) 0	LPI numbe 2nd fertiliser slurry LPI numbe	r: F12113012 3rd fertiliser Imported slurry (m3/Ha) 0 r: F12113018 3rd fertiliser
Fertiliser planned (u Field Name: Mc na Townland: Soil result f Soil Index Max Fertiliser all Fertiliser planned (u Field Name: Derha Townland: Soil result f Soil Index	allys towards road 2 (mg/L): k: lowable (Kg/ha) d (Kg/ha) units/acre) ams Deebs Skerrid Collinstown (mg/L): k:	150.6 N 2 168 es road N	12 P 10.7 4 0 P 108 4	Plot size K 109.3 3 60 Plot size K 165 4	<pre>(ha): 3.11 Base dressi Lime recommended (ha): 6.05 Base dressi 3 x 50kg 9.7-4-2</pre>	ng On farm (m3/Ha) 0 ng 25	LPI numbe 2nd fertiliser slurry LPI numbe 2nd fertiliser 4.5 x 50kg CAN	r: F12113012 3rd fertiliser Imported slurry (m3/Ha) 0 r: F12113018 3rd fertiliser
Fertiliser planned (u Field Name: Mc na Townland: Soil result (Soil Index Max Fertiliser all Fertiliser planned (u Field Name: Derha Townland: Soil result (Soil Index Max Fertiliser all	allys towards road 2 (mg/L): k: lowable (Kg/ha) units/acre) ams Deebs Skerrid Collinstown (mg/L): k: lowable (Kg/ha)	150.6 N 2 168 es road N 1 193	12 P 10.7 4 0 P 108 4 0	Plot size K 109.3 3 60 Plot size K 165 4 0	(ha): 3.11 Base dressing Lime recommended (ha): 6.05 Base dressing 3 x 50kg 9.7-4-2	ng On farm (m3/Ha) 0 ng 25 On farm	LPI numbe 2nd fertiliser slurry LPI numbe 2nd fertiliser 4.5 x 50kg CAN	r: F12113012 3rd fertiliser Imported slurry (m3/Ha) 0 r: F12113018 3rd fertiliser
Fertiliser planned (u Field Name: Mc na Townland: Soil result f Soil Index Max Fertiliser all Fertiliser planned (u Field Name: Derha Townland: Soil result f Soil Index Max Fertiliser all Fertiliser planne	allys towards road 2 (mg/L): k: lowable (Kg/ha) d (Kg/ha) units/acre) ams Deebs Skerrid Collinstown (mg/L): k: lowable (Kg/ha) d (Kg/ha)	150.6 N 2 168 es road N 1 193 186	12 P 10.7 4 0 P 108 4 0 14.8	Plot size K 109.3 3 60 Plot size K 165 4 0 92.7	<pre>(ha): 3.11 Base dressin Lime recommended (ha): 6.05 Base dressin 3 x 50kg 9.7-4-2 Lime recommended</pre>	ng On farm (m3/Ha) 0 ng 25 On farm (m3/Ha)	LPI numbe 2nd fertiliser slurry LPI numbe 2nd fertiliser 4.5 x 50kg CAN slurry	r: F12113012 3rd fertiliser Imported slurry (m3/Ha) 0 r: F12113018 3rd fertiliser Imported slurry (m3/Ha)

Country Crest	Arable Ltd	ł	Herd nu	ımber:	F1251208			
		Crop:	Wir	nter Barle	ey			
Field Name: John Fyr	nes NewHagga	rd					LPI numbe	r: F1253400030
Townland:	New Haggard			Plot size	(ha): 3.13		P.C.	
		N	Р	к			A.L.	
Soil result (m	g/L):		16.5	126	Base dressi	ng	2nd fertiliser	3rd fertiliser
Soil Index:		1	4	3	3 x 50kg 9.7-4-	25	4.5 x 50kg CAN	222
Max Fertiliser allow	wable (Kg/ha)	193	0	60		On farm	slurry	Imported slurry
Fertiliser planned ((Kg/ha)	186	14.8	92.7	Lime recommended	(m3/Ha))	(m3/Ha)
Fertiliser planned (unit	ts/acre)	150.6	12	75		0		0
Field Name: Dowling	s Tyrellstown E	Big field	along	railway			LPI numbe	r: F1255100013
Townland:	Tyrelletown Big			Plot size	(ha): 23.31			
		Ν	Р	к				
Soil result (m	g/L):		5.46	68.2	Base dressi	ng	2nd fertiliser	3rd fertiliser
Soil Index:		1	2	2	3 x 50kg 9.7-4-	25	4.5 x 50kg CAN	
Max Fertiliser allow	wable (Kg/ha)	193	45.2	75		On farm	slurry	Imported slurry
Fertiliser planned ((Kg/ha)	186	14.8	92.7	Lime recommended	(m3/Ha)	(m3/Ha)
Fertiliser planned (unit	ts/acre)	150.6	12	75		0		0
Field Name: Tyrellsto	own Field at roa	ad at ra	ilway	bridge			LPI numbe	r: F1255100018
Townland:	Tyrelletown Big			Plot size	(ha): 4.22			
		Ν	Ρ	к				
Soil result (m	g/L):		4.3	75	Base dressi	ng	2nd fertiliser	3rd fertiliser
Soil Index:		1	2	2	3 x 50kg 9.7-4-	25	4.5 x 50kg CAN	
Max Fertiliser allow	wable (Kg/ha)	193	45.2	75		On farm	slurry	Imported slurry
Fertiliser planned ((Kg/ha)	186	14.8	92.7	Lime recommended	(m3/Ha))	(m3/Ha)
Fertiliser planned (unit	ts/acre)	150.6	12	75		0		0

Winter Barley Fertiliser use summary

number of parcels	11	
Hectares under this crop	81.07	
Maxim	um fertiliser allowed	Fertiliser recommended
Nitrogen	15,606.43	14,506.32
Phosphorus	2,907.92	1,155.88
Potassium		7,224.26

_

_

Country Crest	Arable Ltd	I	Herd num	ber:	F1251208			
		Crop:	Sprin	g Barle	y			
Field Name: John Fy	/nes Ardgillan fi	eld					LPI numbe	r: F1013100004/F1
Townland:	Margaretstown		Р	lot size	(ha): 4.62	1	¢€C.	013100005
		N	Р	к			EIL.	
Soil result (r	ng/L):		27.4	169	Base dress	ing	2nd fertiliser	3rd fertiliser
Soil Index:		2	4	4	3 x 50kg 9-7.4	-25 +S	3 x 50kg CAN	72
Max Fertiliser allo	wable (Kg/ha)	144	20	0		Ore forme	-l	
Fertiliser planned	(Kg/ha)	133	27.4	92.7	Lime recommended	(m3/Ha)	siurry	(m3/Ha)
Fertiliser planned (un	its/acre)	108	22.2	75		0		0
Field Name: Bergins	s Runway field						LPI numbe	r: F1021500008
Townland:	Roscall		Р	lot size	(ha): 20.46	i		
		N	Р	к				
Soil result (r	ng/L):		5.8	86	Base dress	ing	2nd fertiliser	3rd fertiliser
Soil Index:		2	2	2	3 x 50kg 9-7.4	-25 +S	3 x 50kg CAN	I
Max Fertiliser allo	wable (Kg/ha)	144	43.3	75		Ore forme	-l	
Fertiliser planned	(Kg/ha)	133	27.4	92.7	Lime recommended	(m3/Ha)	siurry	(m3/Ha)
Fertiliser planned (un	its/acre)	108	22.2	75		0		0
Field Name: Bergins	s Runway field S	mall se	ction				LPI numbe	r: F1021500018
Townland:	Roscall		Р	lot size	(ha): 6.42			
		Ν	Р	к				
Soil result (r	ng/L):		5.1	70	Base dress	ing	2nd fertiliser	3rd fertiliser
Soil Index:		1	2	2	3 x 50kg 9-7.4	-25 +S	3 x 50kg CAN	l
Max Fertiliser allo	wable (Kg/ha)	179	43.3	75		On farm	clurry	Imported slurry
Fertiliser planned	(Kg/ha)	133	27.4	92.7	Lime recommended	(m3/Ha)	siarry	(m3/Ha)
Fertiliser planned (un	its/acre)	108	22.2	75		0		0
Field Name: Gleeso	ns Nuttsown ro	ad 3 pa	rcels				LPI numbe	r: F1062400006/
Townland:	Mavne/ Kilmartin		Р	lot size	(ha): 19.23			011/ Q18935000002
		Ν	Ρ	К				
Soil result (r	ng/L):		5.9	72	Base dress	ing	2nd fertiliser	3rd fertiliser
Soil Index:		1	2	2				
Max Fertiliser allo	wable (Kg/ha)	179	43.3	75		On form	slurny	Imported slurry
Fertiliser planned Fertiliser planned (un	(Kg/ha) its/acre)				Lime recommended	(m3/Ha)	Sidil y	(m3/Ha) 0

Country Crest Arable Ltd	ł	Herd num	ber:	F1251208			
	Cron:	Sprin	a Barlo	W			
Field Name: John Fynes Across road	d Balcur	nin var	g Darie d	<u>у</u>		LPI numbe	r: F1210200021
Townland: Balcunnin		D	lot size	(ha): 01		PA .	
	NI	D P		(IId). 9.1		C.C.	
Soil result (mg/l):	N	Р ЭГ 4	к 210				
		25.4	310	Base dress	Sing	2nd fertiliser	3rd fertiliser
Soil Index:	1	4	5	3 X 50Kg 9-7.4	-25 +5	3 X SUKG CAN	22
Max Fertiliser allowable (Kg/ha)	179	0			On form	alumu.	Imported clurry
Fertiliser planned (Kg/ha)	133	27.4	92.7	Lime recommended	(m3/Ha)	(m3/Ha)
Fertiliser planned (units/acre)	108	22.2	75		0		0
Field Name: Joe Archers Beside the	ornes					LPI numbe	r: F12102032
Townland: Balcunnin		P	lot size	(ha): 3.23			
	N	Р	К				
Soil result (mg/L):		11	253	Base dress	sing	2nd fertiliser	3rd fertiliser
Soil Index:	1	Λ	1	3 x 50kg 9-7.4	-25 +S	3 x 50kg CAN	
	1	4	4	-		-	
Max Fertiliser allowable (Kg/ha)	179	0	0		On farm	n slurry	Imported slurry
Fertiliser planned (Kg/ha)	133	27.4	92.7	recommended	(m3/Ha)	(m3/Ha)
Fertiliser planned (units/acre)	108	22.2	75		0		0
Field Name: Archers 2 road fields e	irther si	de of la	ne			LPI numbe	r: F12102132/F121
Townland: Balcunnin		P	lot size	(ha): 3.42			02021
	N	Р	к				
Soil result (mg/L):		9.9	250	Base dress	sing	2nd fertiliser	3rd fertiliser
Soil Index:	1	3	4	3 x 50kg 9-7.4	-25 +S	3 x 50kg CAN	
May Fortiliser allowable (Kg/ba)	170	22.2	0				
	175			Lime	On farm	n slurry	Imported slurry
Fertiliser planned (Kg/ha)	133	27.4	92.7	recommended	(m3/Ha 0)	(m3/Ha) 0
Field Nemer, Asshare Deal, Cald Dish	108	22.2	/5				
Field Name: Archers Back field Rigr	it side					LPI numbe	r:F12102171
Townland: Balcunnin		P	lot size	(ha): 2.99			
	Ν	Р	К				
Soil result (mg/L):		4.7	237	Base dress	sing	2nd fertiliser	3rd fertiliser
Soil Index:	1	2	4	3 x 50kg 9-7.4	-25 +S	3 x 50kg CAN	
Max Fertiliser allowable (Kg/ha)	179	43.3	0				
Fertiliser planned (Kø/ha)	133	27.4	92.7	Lime recommended	On farm (m3/Ha	n slurry)	Imported slurry (m3/Ha)
Fertiliser planned (units/acre)	108	22.2	75	. commended	0		0

Country Crest	I	Herd num	ber:	F1251208				
		Crop:	Sprin	g Barle	y			
Field Name: Archers E	Back field Left	side					LPI numbe	r: F12102173
Townland:	Balcunnin		Ρ	lot size	(ha): 3.78		P.C.	
		Ν	Ρ	к			EIL.	
Soil result (mg	g/L):		10	215	Base dres	ssing	2nd fertiliser	3rd fertiliser
Soil Index:		1	3	4	3 x 50kg 9-7.4	4-25 +S	3 x 50kg CA	e z
Max Fertiliser allow	able (Kg/ha)	179	33.3	0		0		<u> </u>
Fertiliser planned (I	(g/ha)	133	27.4	92.7	Lime recommended	(m3/H	m siurry a)	(m3/Ha)
Fertiliser planned (units	acre)	108	22.2	75		0		0
Field Name: Archers	mall field						LPI numbe	r: F12102199
Townland:	Balcunnin		Ρ	lot size	(ha): 1.89	1		
		Ν	Ρ	к				
Soil result (mg	g/L):		19.2	273	Base dres	ssing	2nd fertiliser	3rd fertiliser
Soil Index:		1	4	5	3 x 50kg 9-7.4	4-25 +S	3 x 50kg CAN	J
Max Fertiliser allow	able (Kg/ha)	179	0			On fam	a alumni	Imported clurry
Fertiliser planned (I	Kg/ha)	133	27.4	92.7	Lime recommended	(m3/Ha	a)	(m3/Ha)
Fertiliser planned (units	/acre)	108	22.2	75		0		0
Field Name: Fynes Dr	omanagh						LPI numbe	r: F1210500002
Townland:	Ballustree		Ρ	lot size	(ha): 2.13			
		N	Р	к				
Soil result (mg	g/L):		16.5	126	Base dres	ssing	2nd fertiliser	3rd fertiliser
Soil Index:		2	4	3				
Max Fertiliser allow	able (Kg/ha)	144	0	60			_	
Fertiliser planned (l Fertiliser planned (units	(g/ha) ;/acre)				Lime recommended	On fari (m3/Ha 0	n slurry a)	Imported slurry (m3/Ha) 0
Field Name: Eileen Sv	veetmans Ball	aghstov	vn Long	parcel			LPI numbe	r: F1213100001
Townland:	Rallekavstown	-	P	lot size	(ha): 4.9			
		N	Р	к				
Soil result (mg	g/L):		10.8	134	Base dres	ssing	2nd fertiliser	3rd fertiliser
Soil Index:		1	4	3		0		
Max Fertiliser allow	able (Kg/ha)	179	0	60				
Fertiliser planned (I Fertiliser planned (units	(g/ha) ;/acre)				Lime recommended	On farı (m3/Ha 0	n slurry a)	Imported slurry (m3/Ha) 0

Country Crest	Arable Ltd

_

_

_

Arable Ltd Herd number: F1251208

	Crop:	Sprin	g Barle	У			
Field Name: Eileen Sweetmans Ske	rries roa	ad				LPI numbe	r: F1213100002
Townland: Rallekavstown		Р	lot size	(ha): 1.56			
	N	Ρ	к			AL.	
Soil result (mg/L):		10.8	129	Base dress	ing	2nd fertiliser	3rd fertiliser
Soil Index:	1	4	3	3 x 50kg 9-7.4-	-25 +S	3 x 50kg CA	Pro
New Fourtilizer elleweekle (Ke/ke)	170		<u> </u>				220
Max Fertiliser allowable (Kg/ha)	179	U	60	Lime	On farm	slurry	Imported slurry
Fertiliser planned (Kg/ha)	133	27.4	92.7	recommended	(m3/Ha)		(m3/Ha)
Fertiliser planned (units/acre)	108	22.2	75		U		0
Field Name: Eileen Sweetmans sma	all road	field				LPI numbe	r: F1213100004
Townland: Rallekavstown		Р	lot size	(ha): 3.34			
	N	Ρ	К				
Soil result (mg/L):		5.8	123	Base dress	ing	2nd fertiliser	3rd fertiliser
Soil Index:	1	2	3		-		
	470	42.2					
Max Fertiliser allowable (Kg/ha)	179	43.3	60	Lime	On farm	slurry	Imported slurry
Fertiliser planned (Kg/ha)				recommended	(m3/Ha)		(m3/Ha)
Fertiliser planned (units/acre)					U		0
Field Name: Eileen Sweetmans Insi	de 2 fie	ds				LPI numbe	r: F1213100005
Townland: Rallekaystown		Р	lot size	(ha): 9.84			
	N						
	IN	Ρ	К				
Soil result (mg/L):		Р 4.7	к 140	Base dress	ing	2nd fertiliser	3rd fertiliser
Soil result (mg/L): Soil Index:	1	Р 4.7 З	к 140 3	Base dress	ing	2nd fertiliser	3rd fertiliser
Soil result (mg/L): Soil Index:	1	Р 4.7 3	к 140 3	Base dress	ing	2nd fertiliser	3rd fertiliser
Soil result (mg/L): Soil Index: Max Fertiliser allowable (Kg/ha)	1 179	Р 4.7 3 33.3	к 140 3 60	Base dress	ing On farm	2nd fertiliser	3rd fertiliser
Soil result (mg/L): Soil Index: Max Fertiliser allowable (Kg/ha) Fertiliser planned (Kg/ha)	1 179	Р 4.7 3 33.3	к 140 3 60	Base dress	On farm (m3/Ha)	2nd fertiliser slurry	3rd fertiliser Imported slurry (m3/Ha)
Soil result (mg/L): Soil Index: Max Fertiliser allowable (Kg/ha) Fertiliser planned (Kg/ha) Fertiliser planned (units/acre)	1 179	Р 4.7 3 33.3	к 140 3 60	Base dress	ing On farm (m3/Ha) 0	2nd fertiliser slurry	3rd fertiliser Imported slurry (m3/Ha) 0
Soil result (mg/L): Soil Index: Max Fertiliser allowable (Kg/ha) Fertiliser planned (Kg/ha) Fertiliser planned (units/acre) Field Name: Gabriels Small triangle	1 179 field	P 4.7 3 33.3	к 140 3 60	Base dress	ing On farm (m3/Ha) 0	2nd fertiliser slurry LPI numbe	3rd fertiliser Imported slurry (m3/Ha) 0 r: F1255500002
Soil result (mg/L): Soil Index: Max Fertiliser allowable (Kg/ha) Fertiliser planned (Kg/ha) Fertiliser planned (units/acre) Field Name: Gabriels Small triangle Townland: Wimbletown	1 179 field	P 4.7 3 33.3 P	к 140 3 60	Base dress	ing On farm (m3/Ha) 0	2nd fertiliser slurry LPI numbe	3rd fertiliser Imported slurry (m3/Ha) 0 r: F1255500002
Soil result (mg/L): Soil Index: Max Fertiliser allowable (Kg/ha) Fertiliser planned (Kg/ha) Fertiliser planned (units/acre) Field Name: Gabriels Small triangle Townland: Wimbletown	1 179 field	Р 4.7 3 33.3 Р	к 140 3 60 lot size	Base dress	ing On farm (m3/Ha) 0	2nd fertiliser slurry LPI numbe	3rd fertiliser Imported slurry (m3/Ha) 0 r: F1255500002
Soil result (mg/L): Soil Index: Max Fertiliser allowable (Kg/ha) Fertiliser planned (Kg/ha) Fertiliser planned (units/acre) Field Name: Gabriels Small triangle Townland: Wimbletown Soil result (mg/L):	1 179 field N	P 4.7 3 33.3 P 5.8	к 140 3 60 lot size К 75	Base dress	ing On farm (m3/Ha) 0	2nd fertiliser slurry LPI numbe 2nd fertiliser	3rd fertiliser Imported slurry (m3/Ha) 0 r: F1255500002 3rd fertiliser
Soil result (mg/L): Soil Index: Max Fertiliser allowable (Kg/ha) Fertiliser planned (Kg/ha) Fertiliser planned (units/acre) Field Name: Gabriels Small triangle Townland: Wimbletown Soil result (mg/L): Soil Index:	1 179 field N	P 4.7 3 33.3 P P 5.8 2	к 140 3 60 lot size К 75 2	Base dress Lime recommended (ha): 3.55 Base dress 3 x 50kg 9-7.4-	ing On farm (m3/Ha) 0	2nd fertiliser slurry LPI numbe 2nd fertiliser 3 x 50kg CAN	3rd fertiliser Imported slurry (m3/Ha) 0 r: F1255500002 3rd fertiliser
Soil result (mg/L): Soil Index: Max Fertiliser allowable (Kg/ha) Fertiliser planned (Kg/ha) Fertiliser planned (units/acre) Field Name: Gabriels Small triangle Townland: Wimbletown Soil result (mg/L): Soil Index:	1 179 field N 1	P 4.7 3 33.3 P 5.8 2	к 140 3 60 lot size К 75 2	Base dress Lime recommended (ha): 3.55 Base dress 3 x 50kg 9-7.4-	ing On farm (m3/Ha) 0 ing -25 +S	2nd fertiliser slurry LPI numbe 2nd fertiliser 3 x 50kg CAN	3rd fertiliser
Soil result (mg/L): Soil Index: Max Fertiliser allowable (Kg/ha) Fertiliser planned (Kg/ha) Fertiliser planned (units/acre) Field Name: Gabriels Small triangle Townland: Wimbletown Soil result (mg/L): Soil Index: Max Fertiliser allowable (Kg/ha)	1 179 field N 1 179	P 4.7 3 33.3 P 5.8 2 43.3	к 140 3 60 lot size К 75 2 75	Base dress Lime recommended (ha): 3.55 Base dress 3 x 50kg 9-7.4-	ing On farm (m3/Ha) 0 -25 +S On farm	2nd fertiliser slurry LPI numbe 2nd fertiliser 3 x 50kg CAN slurry	3rd fertiliser
Soil result (mg/L): Soil Index: Max Fertiliser allowable (Kg/ha) Fertiliser planned (Kg/ha) Fertiliser planned (units/acre) Field Name: Gabriels Small triangle Townland: Wimbletown Soil result (mg/L): Soil Index: Max Fertiliser allowable (Kg/ha) Fertiliser planned (Kg/ha)	1 179 field N 179 133	P 4.7 3 33.3 P P 5.8 2 43.3 27.4	к 140 3 60 lot size К 75 2 75 92.7	Base dress Lime recommended (ha): 3.55 Base dress 3 x 50kg 9-7.4- Lime recommended	ing On farm (m3/Ha) 0 -25 +S On farm (m3/Ha)	2nd fertiliser slurry LPI numbe 2nd fertiliser 3 x 50kg CAN slurry	3rd fertiliser

Country Crest A	Arable Ltd	ł	Herd num	nber:	F1251208			
		Crop:	Sprin	g Barle	v			
Field Name: Hoeys. W	/imbletown Bi	g field	•	0	-		LPI numbe	r: F1255500003
Townland:	Wimbletown		Р	lot size	(ha): 11.88	3	P.C.	
		N	Р	к			A.	
Soil result (mg	g/L):		8.41	100	Base dress	sing	2nd fertiliser	3rd fertiliser
Soil Index:		1	2	3	3 x 50kg 9-7.4	l-25 +S	3 x 50kg CAR	7_
Max Fertiliser allow	able (Kg/ha)	179	43.3	60				<u> </u>
Fertiliser planned (H	(g/ha)	133	27.4	92.7	Lime recommended	On farm (m3/Ha)	slurry	(m3/Ha)
Fertiliser planned (units	/acre)	108	22.2	75		0		0
Field Name: Bergins L	ong field in fr	ont of V	Veldons	5			LPI numbe	r: F1370700002
Townland:	Brownstown		Р	lot size	(ha): 12.06	5		
		Ν	Ρ	к				
Soil result (mg	g/L):		12.3	101	Base dress	sing	2nd fertiliser	3rd fertiliser
Soil Index:		1	4	2	3 x 50kg 9-7.4	I-25 +S	3 x 50kg CAN	I
Max Fertiliser allow	able (Kg/ha)	179	0	75				
Fertiliser planned (H	(g/ha)	133	27.4	92.7	Lime recommended	On farm (m3/Ha)	slurry	Imported slurry (m3/Ha)
Fertiliser planned (units	/acre)	108	22.2	75		0		0
Field Name: Bergins B	ig field LHS						LPI numbe	r: F1370700003
Townland:	Brownstown		Р	lot size	(ha): 22.8			
		N	Р	к				
Soil result (mg	g/L):		4.8	73	Base dress	sing	2nd fertiliser	3rd fertiliser
Soil Index:		1	2	2	3 x 50kg 9-7.4	I-25 +S	3 x 50kg CAN	l
Max Fertiliser allow	able (Kg/ha)	179	43.3	75				
Fertiliser planned (H	(g/ha)	133	27.4	92.7	Lime recommended	On farm (m3/Ha)	slurry	Imported slurry (m3/Ha)
Fertiliser planned (units	/acre)	108	22.2	75		0		0
Field Name: Bergins T	ree field						LPI numbe	r: F1370700005
Townland:	Brownstown		Р	lot size	(ha): 19.12	1		
		Ν	Ρ	к				
Soil result (mg	g/L):		5.7	66	Base dress	sing	2nd fertiliser	3rd fertiliser
Soil Index:		2	2	2	3 x 50kg 9-7.4	l-25 +S	3 x 50kg CAN	l
Max Fertiliser allow	able (Kg/ha)	144	43.3	75				
Fertiliser planned (H	(g/ha)	133	27.4	92.7	Lime recommended	On farm (m3/Ha)	slurry	Imported slurry (m3/Ha)
Fertiliser planned (units	/acre)	108	22.2	75		0		0

Country Crest	Arable Ltd	ŀ	Herd num	ber:	F1251208			
		Crop:	Spring	g Barle	v			
Field Name: Bergins N	Nessies field		-	-			LPI numbe	r: F1370700007
Townland:	Brownstown		Pl	ot size	(ha): 14.64		P.C.	
		N	Р	к			A.L.	
Soil result (m	g/L):		4.8	73	Base dress	ing	2nd fertiliser	3rd fertiliser
Soil Index:		2	2	2	3 x 50kg 9-7.4	-25 +S	3 x 50kg CA	22
Max Fertiliser allow	vable (Kg/ha)	144	43.3	75		On farm	slurry	
Fertiliser planned (I	Kg/ha)	133	27.4	92.7	Lime recommended	(m3/Ha)	(m3/Ha)
Fertiliser planned (units	s/acre)	108	22.2	75		0		0
Field Name: Lyons es	tate Ardcloug	h entrar	nce 3 plo	ots			LPI numbe	r: 11271000005/00
Townland:	Clonaghlis		Pl	ot size	(ha): 13.18	}		006/00002
		N	Р	к				
Soil result (m	g/L):		4.8	47	Base dress	ing	2nd fertiliser	3rd fertiliser
Soil Index:		1	2	1				
Max Fertiliser allow	vable (Kg/ha)	179	43.3	95				<u> </u>
Fertiliser planned (I Fertiliser planned (units	Kg/ha) s/acre)				Lime recommended	On farm (m3/Ha 0	n slurry)	(m3/Ha) 0
Field Name: Lyons es	tate Paddocks	beside	big hous	se			LPI numbe	r: 1127100003/
Townland:	Clonaghlis/ Lyons		PI	ot size	(ha): 9.164	399		II1272300002
		N	Р	к				
Soil result (m	g/L):		2.8	90	Base dress	ing	2nd fertiliser	3rd fertiliser
Soil Index:		2	1	2	3 x 50kg 9-7.4	-25 +S	3 x 50kg CAN	1
Max Fertiliser allow	vable (Kg/ha)	144	53.3	75		.		
Fertiliser planned (l	Kg/ha)	133	27.4	92.7	Lime recommended	On farm (m3/Ha	n slurry)	(m3/Ha)
Fertiliser planned (units	s/acre)	108	22.2	75		0		0
Field Name: Lyons To	p Road field b	eside to	op shed				LPI numbe	r:11272300005
Townland:	Lvons		Pl	ot size	(ha): 6			
		N	Р	к				
Soil result (m	g/L):		2.1	53	Base dress	sing	2nd fertiliser	3rd fertiliser
Soil Index:		1	1	2				
Max Fertiliser allow	vable (Kg/ha)	179	53.3	75		0-1		
Fertiliser planned (I Fertiliser planned (units	Kg/ha) s/acre)				Lime recommended	On farm (m3/Ha 0))	(m3/Ha) 0

Country Crest		ł	Herd num	ber:	F1251208			
		Crop:	Sprin	g Barle	y			
Field Name: Jim Is	dales 2 long field	ls					LPI numbe	r:Q1812000010/
Townland:	Maaspool		Ρ	lot size	(ha): 8.44		P.C.	Q1812000011
		Ν	Ρ	К			EIL.	
Soil result	(mg/L):		0	0	Base dressi	ing	2nd fertiliser	3rd fertiliser
Soil Inde	к:	1	3	3			۲d	72
Max Fertiliser al	lowable (Kg/ha)	179	33.3	60		On for	m clurny	
Fertiliser planne Fertiliser planned (u	d (Kg/ha) units/acre)				Lime recommended	(m3/H	a)	(m3/Ha)
Field Name: Murty	/ Sullivans Top ro	ad L sha	aped fiel	ld			LPI numbe	r: Q1812600040
Townland:	Rath		Ρ	lot size	(ha): 11.81			
		N	Ρ	к				
Soil result	(mg/L):		14.2	53	Base dressi	ing	2nd fertiliser	3rd fertiliser
Soil Inde	к:	1	4	2	3 x 50kg 9-7.4-	-25 +S	3 x 50kg CAN	1
Max Fertiliser al	lowable (Kg/ha)	179	20	75		0		
Fertiliser planne	d (Kg/ha)	133	27.4	92.7	Lime recommended	(m3/H	a)	(m3/Ha)
Fertiliser planned (u	units/acre)	108	22.2	75		0		0
Field Name: Murty	y Sullivans Tillage	field be	ehind ho	ouse			LPI numbe	r: Q1812600041
Field Name: Murty Townland:	/ Sullivans Tillage _{Rath}	field be	ehind ho P	ouse lot size	(ha): 3.86		LPI numbe	r: Q1812600041
Field Name: Murty Townland:	y Sullivans Tillage _{Rath}	field be	ehind ho P P	ouse lot size K	(ha): 3.86		LPI numbe	r: Q1812600041
Field Name: Murty Townland: Soil result	/ Sullivans Tillage _{Rath} (mg/L):	field be	ehind ho P P 4.7	ouse lot size K 99	(ha): 3.86 Base dressi	ing	LPI numbe 2nd fertiliser	r: Q1812600041 3rd fertiliser
Field Name: Murty Townland: Soil result Soil Index	/ Sullivans Tillage Rath (mg/L): x:	field be N	ehind ho P P 4.7 2	ouse lot size K 99 2	(ha): 3.86 Base dressi 3 x 50kg 9-7.4-	ing 25 +S	LPI numbe 2nd fertiliser 3 x 50kg CAN	r: Q1812600041 3rd fertiliser
Field Name: Murty Townland: Soil result Soil Index Max Fertiliser all	/ Sullivans Tillage _{Rath} (mg/L): x: lowable (Kg/ha)	field be N 1 179	ehind ho P 4.7 2 43.3	ouse lot size K 99 2 75	(ha): 3.86 Base dressi 3 x 50kg 9-7.4-	ing -25 +S	LPI numbe 2nd fertiliser 3 x 50kg CAN	r: Q1812600041 3rd fertiliser
Field Name: Murty Townland: Soil result Soil Index Max Fertiliser all Fertiliser planne	/ Sullivans Tillage _{Rath} (mg/L): k: lowable (Kg/ha) d (Kg/ha)	field be N 1 179 133	ehind hc P 4.7 2 43.3 27.4	ouse lot size 99 2 75 92.7	(ha): 3.86 Base dressi 3 x 50kg 9-7.4- Lime recommended	ing 25 +S On fari (m3/H	LPI numbe 2nd fertiliser 3 x 50kg CAN m slurry a)	r: Q1812600041 3rd fertiliser J Imported slurry (m3/Ha)
Field Name: Murty Townland: Soil result Soil Index Max Fertiliser all Fertiliser planne Fertiliser planned (u	/ Sullivans Tillage Rath (mg/L): k: lowable (Kg/ha) d (Kg/ha) units/acre)	field be N 1 179 133 108	ehind hc P 4.7 2 43.3 27.4 22.2	ouse lot size 99 2 75 92.7 75	(ha): 3.86 Base dressi 3 x 50kg 9-7.4- Lime recommended	ing -25 +S On fari (m3/H	LPI numbe 2nd fertiliser 3 x 50kg CAN m slurry a)	r: Q1812600041 3rd fertiliser J Imported slurry (m3/Ha) 0
Field Name: Murty Townland: Soil result Soil Index Max Fertiliser all Fertiliser planned Fertiliser planned (u Field Name: Murty	/ Sullivans Tillage Rath (mg/L): K: lowable (Kg/ha) d (Kg/ha) units/acre) / Sullivans Wooto	field be N 1 1 179 133 108 000 field	ehind hc P 4.7 2 43.3 27.4 22.2	ouse lot size 99 2 75 92.7 75	(ha): 3.86 Base dressi 3 x 50kg 9-7.4- Lime recommended	ing -25 +S On fari (m3/H	LPI numbe 2nd fertiliser 3 x 50kg CAN m slurry a) LPI numbe	r: Q1812600041 3rd fertiliser J Imported slurry (m3/Ha) 0 r: Q1812800008
Field Name: Murty Townland: Soil result Soil Index Max Fertiliser all Fertiliser planned Fertiliser planned (u Field Name: Murty Townland:	/ Sullivans Tillage Rath (mg/L): K: lowable (Kg/ha) d (Kg/ha) units/acre) / Sullivans Wooto Wooton	field be N 1 179 133 108 000 field	ehind hc P 4.7 2 43.3 27.4 22.2	lot size K 99 2 75 92.7 75 lot size	(ha): 3.86 Base dressi 3 x 50kg 9-7.4- Lime recommended	ing -25 +S On fari (m3/H	LPI numbe 2nd fertiliser 3 x 50kg CAN m slurry a) LPI numbe	r: Q1812600041 3rd fertiliser J Imported slurry (m3/Ha) 0 r: Q1812800008
Field Name: Murty Townland: Soil result Soil Index Max Fertiliser all Fertiliser planned Fertiliser planned (u Field Name: Murty Townland:	/ Sullivans Tillage Rath (mg/L): K: lowable (Kg/ha) d (Kg/ha) units/acre) / Sullivans Wooto Wooton	field be N 1 179 133 108 0n field N	ehind ho P 4.7 2 43.3 27.4 22.2 P P	ouse lot size 99 2 75 92.7 75 lot size K	(ha): 3.86 Base dressi 3 x 50kg 9-7.4- Lime recommended (ha): 17.66	ing -25 +S On fari (m3/H	LPI numbe 2nd fertiliser 3 x 50kg CAN m slurry a) LPI numbe	r: Q1812600041 3rd fertiliser J Imported slurry (m3/Ha) 0 r: Q1812800008
Field Name: Murty Townland: Soil result Soil Index Max Fertiliser all Fertiliser planned Fertiliser planned (u Field Name: Murty Townland:	/ Sullivans Tillage Rath (mg/L): k: lowable (Kg/ha) d (Kg/ha) units/acre) / Sullivans Wooto Wooton (mg/L):	field be N 1 179 133 108 on field N	ehind ho P 4.7 2 43.3 27.4 22.2 P P 2.5	lot size K 99 2 75 92.7 75 lot size K 57.1	(ha): 3.86 Base dressi 3 x 50kg 9-7.4- Lime recommended (ha): 17.66 Base dressi	ing -25 +S On fari (m3/H 0	LPI numbe 2nd fertiliser 3 x 50kg CAN m slurry a) LPI numbe 2nd fertiliser	r: Q1812600041 3rd fertiliser Imported slurry (m3/Ha) 0 r: Q1812800008 3rd fertiliser
Field Name: Murty Townland: Soil result Soil Index Max Fertiliser all Fertiliser planned Fertiliser planned (u Field Name: Murty Townland: Soil result Soil Index	/ Sullivans Tillage Rath (mg/L): k: lowable (Kg/ha) d (Kg/ha) units/acre) / Sullivans Wooto Wooton (mg/L): k:	field be N 1 179 133 108 on field N 1	ehind hc P 4.7 2 43.3 27.4 22.2 P P 2.5 1	ouse lot size 99 2 75 92.7 75 lot size K 57.1 2	(ha): 3.86 Base dressi 3 x 50kg 9-7.4- Lime recommended (ha): 17.66 Base dressi 3 x 50kg 9-7.4-	ing -25 +S On fari (m3/H 0	LPI numbe 2nd fertiliser 3 x 50kg CAN m slurry a) LPI numbe 2nd fertiliser 3 x 50kg CAN	r: Q1812600041 3rd fertiliser Imported slurry (m3/Ha) 0 r: Q1812800008 3rd fertiliser
Field Name: Murty Townland: Soil result Soil Index Max Fertiliser all Fertiliser planned Fertiliser planned (u Field Name: Murty Townland: Soil result Soil Index Max Fertiliser all	/ Sullivans Tillage Rath (mg/L): k: lowable (Kg/ha) units/acre) / Sullivans Wooto Wooton (mg/L): k: lowable (Kg/ha)	field be N 1 1 179 133 108 0n field N 1 1 179	ehind ho P 4.7 2 43.3 27.4 22.2 P P 2.5 1 53.3	ouse lot size 99 2 75 92.7 75 lot size K 57.1 2 75	(ha): 3.86 Base dressi 3 x 50kg 9-7.4- Lime recommended (ha): 17.66 Base dressi 3 x 50kg 9-7.4-	ing -25 +S On farr (m3/H 0 ing -25 +S	LPI numbe 2nd fertiliser 3 x 50kg CAN m slurry a) LPI numbe 2nd fertiliser 3 x 50kg CAN	r: Q1812600041 3rd fertiliser Imported slurry (m3/Ha) 0 r: Q1812800008 3rd fertiliser
Field Name: Murty Townland: Soil result Soil Index Max Fertiliser all Fertiliser planned Fertiliser planned (u Field Name: Murty Townland: Soil result Soil Index Max Fertiliser all Fertiliser planned	/ Sullivans Tillage Rath (mg/L): K: lowable (Kg/ha) d (Kg/ha) units/acre) / Sullivans Wooto Wooton (mg/L): K: lowable (Kg/ha) d (Kg/ha)	field be N 1 179 133 108 0n field N 1 179 133 108 1 179 133	ehind ho P 4.7 2 43.3 27.4 22.2 P P 2.5 1 53.3 27.4	ouse lot size 99 2 75 92.7 75 lot size K 57.1 2 75 92.7	<pre>(ha): 3.86 Base dressi 3 x 50kg 9-7.4- Lime recommended (ha): 17.66 Base dressi 3 x 50kg 9-7.4- Lime recommended</pre>	ing -25 +S On farr (m3/H 0 -25 +S On farr (m3/H	LPI numbe 2nd fertiliser 3 x 50kg CAN m slurry a) LPI numbe 2nd fertiliser 3 x 50kg CAN m slurry a)	r: Q1812600041 3rd fertiliser Imported slurry (m3/Ha) 0 r: Q1812800008 3rd fertiliser Imported slurry (m3/Ha)

_

Herd number: F1251208

	Crop:	Sprin	g Barley	/			
Field Name: Kevin Gleeson corner	parcel					LPI number	:Q1893100001
Townland: Kinoristown		Р	lot size (ha): 3.62			
	Ν	Ρ	к			EN.	
Soil result (mg/L):		2.3	31	Base dressi	ing	2nd fertiliser	3rd fertiliser
Soil Index:	1	1	1			ۍ ک	72
Max Fertiliser allowable (Kg/ha)	179	53.3	95				- <u>``</u> ? <u>0</u>
Fertiliser planned (Kg/ha)				Lime recommended	On farm (m3/Ha)	slurry	Imported slurry (m3/Ha)
Fertiliser planned (units/acre)				recommended	0		0
Field Name: Kevin Gleeson 3 parce	ls					LPI number	:Q1893100002/
Townland: Kinoristown		Р	lot size (ha): 19.4			Q1893100003
	Ν	Ρ	К				
Soil result (mg/L):		2.4	18	Base dressi	ing	2nd fertiliser	3rd fertiliser
Soil Index:	1	1	1	3 x 50kg 9-7.4-	-25 +S	3 x 50kg CAN	
Max Fertiliser allowable (Kg/ha)	179	53.3	95				
Fertiliser planned (Kg/ha)	133	27.4	92.7	Lime recommended	On farm (m3/Ha)	slurry	Imported slurry (m3/Ha)
Fertiliser planned (units/acre)	108	22.2	75		0		0

Spring Barley Fertiliser use summary

number of parcels	30	
Hectares under this crop	274.08	
Maxin	num fertiliser allowed	Fertiliser recommended
Nitrogen	48,317.65	28,830.92
Phosphorus	10,950.08	5,926.36
Potassium		20,021.47

Country Crest	Arable Ltd	I	Herd num	ber:	F1251208		
		Crop:	Wint	er Oats			
Field Name: Dowlin	ngs Baldongan Fi	eld aro	und win	dows fa	actory	LPI nu	Imber: F1210300015
Townland:	Baldongan		Р	lot size	(ha): 7.43	P.C.	
		N	Р	к		E.L.	N
Soil result (mg/L):		17.4	260	Base dressi	ng 2nd fert	iliser 3rd fertiliser
Soil Index	:	2	4	5	3 x 50kg 9.2-7-	25 2 x 50kg	CAN _1 x 50 kg CAN
Max Fertiliser all	owable (Kg/ha)	147	0			On farm slurry	
Fertiliser planned	d (Kg/ha)	134	25.9	92.7	Lime recommended	(m3/Ha)	(m3/Ha)
Fertiliser planned (u	nits/acre)	108.6	21	75		0	0
Field Name: Laytow	vn Big field					LPI nu	Imber: F121230001
Townland:	Laytown		Р	lot size	(ha): 19.77		
		N	Ρ	к			
Soil result (mg/L):		8.5	163	Base dressi	ng 2nd fert	iliser 3rd fertiliser
Soil Index	:	1	3	4	3 x 50kg 9.2-7-	25 2 x 50kg	CAN 1 x 50 kg CAN
Max Fertiliser all	owable (Kg/ha)	172	34	0			
Fertiliser planned	d (Kg/ha)	134	25.9	92.7	Lime recommended	On farm slurry (m3/Ha)	Imported slurry (m3/Ha)
Fertiliser planned (u	nits/acre)	108.6	21	75		0	0
Field Name: Laytow	wn 25 acre botto	ms				LPI nu	Imber: F121230004
Townland:	Lavtown		Р	lot size	(ha): 10.55		
		N	Ρ	к			
Soil result (mg/L):		7.5	230	Base dressi	ng 2nd fert	iliser 3rd fertiliser
Soil Index	:	1	3	4	3 x 50kg 9.2-7-	25 2 x 50kg	CAN 1 x 50 kg CAN
Max Fertiliser all	owable (Kg/ha)	172	34	0			
Fertiliser planned	d (Kg/ha)	134	25.9	92.7	Lime recommended	On farm slurry (m3/Ha)	(m3/Ha)
Fertiliser planned (u	nits/acre)	108.6	21	75		0	0
Field Name: Dowlin	ngs Laytown 9 ac	res on l	RHS of la	ane		LPI nu	Imber: F121230005
Townland:	Lavtown		Р	lot size	(ha): 4.13		
		N	Ρ	к			
Soil result (mg/L):		4.7	106	Base dressi	ng 2nd fert	iliser 3rd fertiliser
Soil Index	(:	1	2	3	3 x 50kg 9.2-7-	25 2 x 50kg	CAN 1 x 50 kg CAN
Max Fertiliser all	owable (Kg/ha)	172	44	60		On farm slurry	Imported slurry
Max Fertiliser all Fertiliser planned	owable (Kg/ha) d (Kg/ha)	172 134	44 25.9	60 92.7	Lime recommended	On farm slurry (m3/Ha)	Imported slurry (m3/Ha)

Crop: Winter Oats

Winter Oats Fertiliser use summary								
number of parcels	4	C.C.C.	~					
Hectares under this cr	r op 41.88		Ó.					
	Maximum fertiliser allowed	Fertiliser recommended	8					
Nitrogen	7,023.30	5,619.49	22					
Phosphorus	1,211.08	1,086.64	2×					
Potassium		3,880.86						

Country Crest Arable Ltd	H	lerd numb	ber:	F1251208		
	Crop:	Spring	g Oats			
Field Name: Jim Isdales 2 fields alo	ng ashbo	ourne ro	ad		LPI numbe	er: Q1812000001/
Townland: Maaspool		Ple	ot size ((ha): 8.83	P.C.	Q1812000009
	N	Ρ	к		-FIL	
Soil result (mg/L):		0	0	Base dressir	ng 2nd fertiliser	3rd fertiliser
Soil Index:	1	3	3			22
Max Fertiliser allowable (Kg/ha)	110	25	60			<u> </u>
Fertiliser planned (Kg/ha)				Lime recommended	(m3/Ha)	(m3/Ha)
Fertiliser planned (units/acre)					0	0
Field Name: Jim Isdales Between ro	bads				LPI numbe	er: Q1812000003/
Townland: Maaspool		Ple	ot size ((ha): 5.73		Q1812000004
	N	Ρ	к			
Soil result (mg/L):		0	0	Base dressir	ng 2nd fertiliser	3rd fertiliser
Soil Index:	1	3	3			
Max Fertiliser allowable (Kg/ha)	110	25	60			
Fertiliser planned (Kg/ha)				Lime recommended	(m3/Ha)	(m3/Ha)
Fertiliser planned (units/acre)					0	0
Field Name: Jim Isdales Far side of	motorw	ау			LPI numbe	er: Q1812000012/
Townland: Maaspool		Pl	ot size ((ha): 6.66		Q1812000002/Q 1812000005
	Ν	Ρ	к			
Soil result (mg/L):		0	0	Base dressir	ng 2nd fertiliser	3rd fertiliser
Soil Index:	1	3	3			
Max Fertiliser allowable (Kg/ha)	110	25	60			
Fertiliser planned (Kg/ha) Fertiliser planned (units/acre)				Lime recommended	(m3/Ha) 0	(m3/Ha)

Spring Oats Fertiliser use summary

number of parcels	3	
Hectares under this crop	21.22	
Maxi	mum fertiliser allowed	Fertiliser recommended
Nitrogen	2,334.20	
Phosphorus	530.50	
Potassium		

Country Crest	Arable Ltd	l	Herd nun	nber:	F1251208		
		Crop:	Pota	toes Lat	e		
Field Name: Jim ro	oneys Middle fie	ld				LPI numb	er: F1210200030
Townland:	Balcunnin		P	Plot size	(ha): 5.1849		
		N	Р	к		EN.	
Soil result ((mg/L):		45	270	Base dressi	ng 2nd fertilise	3rd fertiliser
Soil Index	(:	2	4	5			or the second se
Max Fertiliser all	owable (Kg/ha)	190	50			0	TO TO
Fertiliser planne Fertiliser planned (u	d (Kg/ha) inits/acre)				Lime recommended	On farm slurry (m3/Ha) O	(m3/Ha)
Field Name: Jim ro	oneys back field					LPI numb	er: F1212600009
Townland:	Milverton		P	lot size	(ha): 6.64		
		N	Р	к			
Soil result	(mg/L):		37.4	328	Base dressi	ng 2nd fertiliser	- 3rd fertiliser
Soil Index	c	2	4	5	3 x 50kg DAP	6 x 50kg Muriate of	2 x 50 kg CAN
Max Fertiliser all	owable (Kg/ha)	190	50			On farm slurry	Imported slurry
Fertiliser planne	d (Kg/ha)	133	74.1	371	Lime recommended	(m3/Ha)	(m3/Ha)
Fertiliser planned (u	inits/acre)	108	60	300		0	0
Field Name: Castle	belllingham 75 a	cre blo	ck			LPI numb	er: 01110800002
Townland:	Maine		P	Plot size	(ha): 34.62		
	(Ν	Ρ	К			
Soli result	(mg/L):		4.7	84	Base dressi	ng 2nd fertiliser	3rd fertiliser
Soil Index	(:	1	3	2			
Max Fertiliser all	owable (Kg/ha)	250	75	245		On farm slurry	Imported slurry
Fertiliser planne Fertiliser planned (u	d (Kg/ha) inits/acre)				recommended	(m3/Ha) 0	(m3/Ha) 0
Field Name: Castle	belllingham besi	de yard				LPI numb	er: 01110900009
Townland:	Milestown		P	lot size	(ha): 48.65		
		Ν	Р	к			
Soil result ((mg/L):		14.2	147.6	Base dressi	ng 2nd fertiliser	r 3rd fertiliser
Soil Index	(:	1	4	3			
Max Fertiliser all	owable (Kg/ha)	250	50	185			
Fertiliser planne Fertiliser planned (u	d (Kg/ha) inits/acre)				Lime recommended	on farm siurry (m3/Ha) 0	(m3/Ha) 0

Country Crest	Arable Ltd	I	Herd nun	nber:	F1251208		
		Crop:	Pota	toes Lat	e		
Field Name: Castlebe	llingham					LPI numb	er: 010110700003/
Townland:	Drumcar		F	Plot size ((ha): 7	P.C.	05
		N	Р	к		EIL.	
Soil result (m	g/L):		14.2	147.6	Base dress	sing 2nd fertilise	r 3rd fertiliser
Soil Index:		1	4	3			8-73-
Max Fertiliser allov	vable (Kg/ha)	250	50	185		On farm slurry	
Fertiliser planned (Fertiliser planned (unit	Kg/ha) s/acre)				Lime recommended	(m3/Ha) 0	(m3/Ha) 0
Field Name: Castlebe	llingham 3 pai	rcels				LPI numb	er: 010110700009/
Townland:	Drumcar		F	Plot size ((ha): 14.33	3	10/11
		N	Р	к			
Soil result (m	g/L):		5.8	131.2	Base dress	sing 2nd fertilise	r 3rd fertiliser
Soil Index:		1	2	3			
Max Fertiliser allov	vable (Kg/ha)	250	100	185		On form clurry	Imported clurry
Fertiliser planned (Fertiliser planned (unit	Kg/ha) s/acre)				Lime recommended	(m3/Ha) 0	(m3/Ha) 0
Field Name: Castlebe	llingham split	field				LPI numb	er: 010110700018
Townland:	Drumcar		F	Plot size ((ha): 4.035	5	
		N	Р	к			
Soil result (m	g/L):		5.8	131.2	Base dress	sing 2nd fertilise	r 3rd fertiliser
Soil Index:		1	2	3			
Max Fertiliser allov	vable (Kg/ha)	250	100	185			
Fertiliser planned (Fertiliser planned (unit	Kg/ha) s/acre)				Lime recommended	On farm slurry (m3/Ha) 0	Imported slurry (m3/Ha) 0
Field Name: Sean Byr	nes Road field	1				LPI numb	er: Q1894700005
Townland:	Rathleek	-	F	Plot size ((ha) : 10.63	2	
		N	Р	K	10.03	,	
Soil result (m	g/L):		• 9.6	44.3	Base dress	sing 2nd fertilise	r 3rd fertiliser
Soil Index:		1	3	1			
Max Fertiliser allov	vable (Kg/ha)	250	75	305		On farm clurry	Imported slurry
Fertiliser planned (Fertiliser planned (unit	Kg/ha) s/acre)				Lime recommended	(m3/Ha) 0	(m3/Ha)

.....

Country Crest	Arable Ltd	Н	erd num	nber:	F1251208		
		Crop:	Pota	toes Lat	е		
Field Name: Sean I	Byrnes 2nd field i	in from r	oad			LPI numbe	er: Q1894700020
Townland:	Rathleek		Р	Plot size ((ha): 14.27	P.C.	
		Ν	Ρ	к		EIL.	
Soil result ((mg/L):		7.4	73.6	Base dressi	ng 2nd fertiliser	3rd fertiliser
Soil Inde	c :	1	3	2			872
Max Fertiliser all	owable (Kg/ha)	250	75	245		On farm slurry	
Fertiliser planned (u	d (Kg/ha) nits/acre)				Lime recommended	(m3/Ha) 0	(m3/Ha) 0
Field Name: Sean I	Byrnes yard field					LPI numbe	er: Q1894700021
Townland:	Rathleek		Р	lot size ((ha): 5.69		
		N	Ρ	к			
Soil result	(mg/L):		11	75.5	Base dressi	ng 2nd fertiliser	3rd fertiliser
Soil Inde	c :	1	4	2			
Max Fertiliser all	owable (Kg/ha)	250	50	245			
Fertiliser planne Fertiliser planned (u	d (Kg/ha) nits/acre)				Lime recommended	On farm slurry (m3/Ha) 0	(m3/Ha)
Field Name: Sean Byrnes small parcel beside yard LPI number: Q1894700022						er: Q1894700022	
Townland:	Rathleek		Р	Plot size ((ha): 3.12		
		N	Р	к			
Soil result	(mg/L):		11	75.5	Base dressi	ng 2nd fertiliser	3rd fertiliser
Soil Inde	c :	1	4	2			
Max Fertiliser all	owable (Kg/ha)	250	50	245			
Fertiliser planne Fertiliser planned (u	d (Kg/ha) nits/acre)				Lime recommended	(m3/Ha) 0	(m3/Ha)
Field Name: Sean I	Byrnes big field n	ear yard				LPI numbe	er: Q1894700023
Townland:	Rathleek	·	Р	Plot size ((ha): 10.28		
		N	Р	к	,		
Soil result ((mg/L):		6.5	74	Base dressi	ng 2nd fertiliser	3rd fertiliser
Soil Index	с:	1	3	2			
Max Fertiliser all	owable (Kg/ha)	250	75	245			Imported during
Fertiliser planne Fertiliser planned (u	d (Kg/ha) nits/acre)				Lime recommended	(m3/Ha) 0	(m3/Ha)

Crop: Potatoes Late

Potatoes Late Fertiliser use summary							
number of parcels	12	C. C	~				
Hectares under this cr	op 164.45	· · · · · · · · · · · · · · · · · · ·	S.				
	Maximum fertiliser allowed	Fertiliser recommended	- To-				
Nitrogen	41,317.80	886.04	22				
Phosphorus	11,172.50	492.24	PA				
Potassium		2,461.22					

Country Crest	Arable Ltd	ł	Herd numb	er:	F1251208		
		Crop:	Maize				
Field Name: Derh	ams Big field behi	nd hou	se			LPI numb	er: F12113067
Townland:	Collinstown		Plo	ot size	(ha): 11.88	PEC	
		N	Ρ	к		EIL.	
Soil result	(mg/L):		16.2	258	Base dressi	ng 2nd fertilise	3rd fertiliser
Soil Inde	ex:	1	4	5			072
Max Fertiliser a	llowable (Kg/ha)	180	20				
Fertiliser planned (ed (Kg/ha) units/acre)				Lime recommended	(m3/Ha) 0	(m3/Ha) 0
Field Name: Derh	ams North lane, L	ong mio	dle field			LPI numb	er: F12113068
Townland:	Collinstown		Plo	ot size	(ha): 2.3		
		Ν	Ρ	к			
Soil result	(mg/L):		9.7	207	Base dressi	ng 2nd fertilise	r 3rd fertiliser
Soil Inde	ex:	1	3	4			
Max Fertiliser a	llowable (Kg/ha)	180	40	0			
Fertiliser planned (ed (Kg/ha) units/acre)				Lime recommended	(m3/Ha) 0	(m3/Ha) 0
Field Name: Derh	ams North lane, 2	nd field	l on left			LPI numb	er: F12113081
Townland:	Collinstown		Plo	ot size	(ha): 0.98		
		N	Ρ	к			
Soil result	(mg/L):		11.6	352	Base dressi	ng 2nd fertilise	r 3rd fertiliser
Soil Inde	ex:	1	4	5			
Max Fertiliser a	llowable (Kg/ha)	180	20				
Fertiliser planne Fertiliser planned (ed (Kg/ha) units/acre)				Lime recommended	On farm slurry (m3/Ha) 0	Imported slurry (m3/Ha) 0
Field Name: Derh	ams North lane, 3	rd field	on left a	nd Rgl	nt hand side	LPI numb	er: F12113083
Townland:	Collinstown		Plo	ot size	(ha): 3.33		
		N	Р	К			
Soil result	(mg/L):		11.6	352	Base dressi	ng 2nd fertilise	r 3rd fertiliser
Soil Inde	ex:	1	4	5			
Max Fertiliser a	llowable (Kg/ha)	180	20			On fam. 1	
Fertiliser planned	ed (Kg/ha) units/acre)				Lime recommended	On farm slurry (m3/Ha) 0	imported slurry (m3/Ha) 0

Herd

Herd number: F1251208

	Crop:	Maize				
Field Name: Derhams Furthest field	l North				LPI nu	mber: F12113087
Townland: Collinstown		Plo	ot size ((ha): 4.41	P.C.	
	Ν	Р	к		E.L.	
Soil result (mg/L):		14.4	323	Base dressi	ng 2nd ferti	iser 3rd fertiliser
Soil Index:	1	4	5			18-72
Max Fertiliser allowable (Kg/ha)	180	20				
Fertiliser planned (Kg/ha) Fertiliser planned (units/acre)				Lime recommended	On farm slurry (m3/Ha) 0	Imported slurry (m3/Ha) 0

Maize Fertiliser use summary

number of parcels	5							
Hectares under this crop	22.90							
Maxim	um fertiliser allowed	Fertiliser recommended						
Nitrogen	4,122.00							
Phosphorus	504.00							
Potassium								
Country Crest	Arable Ltd	I	Herd nun	nber:	F1251208			
---	--------------------------	----------	----------	-----------	---------------------	-------------------	----------------	---------------------------------
		Crop:	Oilse	ed Rap	e winter			
Field Name: Mc nally	s towards road	d					LPI numbe	r: F12113012
Townland:	2		F	Plot size	(ha): 3.11		P.C.	
		N	Р	к			EIL.	
Soil result (m	g/L):		10.7	109.3	Base dress	sing	2nd fertiliser	3rd fertiliser
Soil Index:		2	4	3			٢d	72
Max Fertiliser allow	/able (Kg/ha)	180	0	25		On form		Importal clurry
Fertiliser planned (Fertiliser planned (units	Kg/ha) s/acre)				Lime recommended	(m3/Ha)	(m3/Ha) 0
Field Name: Kentstov	vn Corner tria	ngle fie	ld				LPI numbe	r: Q1560600003
Townland:	Danestown		F	Plot size	(ha): 8.99			
		N	Р	к				
Soil result (m	g/L):		2.8	42	Base dress	sing	2nd fertiliser	3rd fertiliser
Soil Index:		1	1	1	3 x 50kg 9-7.4	I-25 +S	3 x 50kg CAN	I 2 x 50 kg N-Rich
Max Fertiliser allow	vable (Kg/ha)	225	55	65				
Fertiliser planned (Kg/ha)	193	27.4	92.7	Lime recommended	On farn (m3/Ha	n slurry)	(m3/Ha)
Fertiliser planned (unit	s/acre)	156	22.2	75		0		0
Field Name: Kentstov	vn top long fie	ld					LPI numbe	r:Q1560600016
Townland:	Danestown		F	Plot size	(ha): 17.6			
Coil rooult (m	~/1).	Ν	Р	К				
Soli result (m	g/L):		6	70	Base dress	sing	2nd fertiliser	3rd fertiliser
Soil Index:		1	2	2	3 x 50kg 9-7.4	-25 +8	3 X 50Kg CAN	I 2 X 50 Kg N-RICh
Max Fertiliser allow	/able (Kg/ha)	225	45	35		On farm	n slurrv	Imported slurry
Fertiliser planned (Kg/ha)	193	27.4	92.7	recommended	(m3/Ha)	(m3/Ha)
Fertiliser planned (unit	s/acre)	156	22.2	75		0		0
Field Name: Kentstov	vn small shed	field					LPI numbe	r:Q1560600028
Townland:	Danestown		F	Plot size	(ha): 5.64			
	- /1).	Ν	Ρ	К				
Soli result (m	g/L):		8.1	28	Base dress	sing	2nd fertiliser	3rd fertiliser
Soil Index:		1	3	1	3 x 50Kg 9-7.4	1-20 +8	3 X SUKG CAN	$2 \times 50 \text{ kg N-Rich}$
Max Fertiliser allow	/able (Kg/ha)	225	35	65		On farm	n slurry	Imported slurry
Fertiliser planned (Kg/ha)	193	27.4	92.7	Lime recommended	(m3/Ha)	(m3/Ha)
Fertiliser planned (units	s/acre)	156	22.2	75		0		0

Country Crest	Arable Ltd	ŀ	lerd num	nber:	F1251208			
		Crop:	Oilse	ed Rap	e winter			
Field Name: Kents	town field aroun	d pig ya	rd	-			LPI numbe	r: Q1560600029
Townland:	Danestown		Р	lot size	(ha): 28.65	5	P.C.	
		N	Ρ	к			EL.	
Soil result	(mg/L):		6.2	70	Base dress	sing	2nd fertiliser	3rd fertiliser
Soil Inde	x:	1	3	1	3 x 50kg 9-7.4	-25 +S	3 x 50kg CAN	2 x 50 kg N-Rich
Max Fertiliser al	lowable (Kg/ha)	225	35	65		On farn	n slurry	
Fertiliser planned (Kg/ha)		193	27.4	92.7	Lime recommended	(m3/Ha	a)	(m3/Ha)
Fertiliser planned (units/acre)	156	22.2	75		0		0
Field Name: Kents	town Field behin	d pig ya	rd				LPI numbe	r: Q1560600045
Townland:	Danestown		Р	lot size	(ha): 14.11	L		
		Ν	Ρ	к				
Soil result	(mg/L):		4.3	60	Base dress	sing	2nd fertiliser	3rd fertiliser
Soil Inde	x:	2	2	1	3 x 50kg 9-7.4	-25 +S	3 x 50kg CAN	I 2 x 50 kg N-Rich
Max Fertiliser al	lowable (Kg/ha)	180	45	65		0	1	
Fertiliser planne	d (Kg/ha)	193	27.4	92.7	Lime recommended	(m3/Ha	n siurry i)	(m3/Ha)
Fertiliser planned (units/acre)	156	22.2	75		0		0
Field Name: Kents	town Middle fiel	d					LPI numbe	r: Q1560600046
Townland:	Danestown		Р	lot size	(ha): 12.22	<u>2</u>		
		N	Ρ	к				
Soil result	(mg/L):		4.4	55	Base dress	sing	2nd fertiliser	3rd fertiliser
Soil Inde	x:	1	2	1	3 x 50kg 9-7.4	-25 +S	3 x 50kg Urea	a
Max Fertiliser al	lowable (Kg/ha)	225	45	65				
Fertiliser planne	d (Kg/ha)	204	27.4	92.7	Lime recommended	(m3/Ha	n siurry i)	(m3/Ha)
Fertiliser planned (units/acre)	165	22.2	75		0		0
Field Name: Murty	y Sullivans Neare	st Ashbo	orne roa	ad			LPI numbe	r:Q1812600012
Townland:	Rath		Р	lot size	(ha): 10.74	1		
		Ν	Ρ	к				
Soil result	(mg/L):		7.3	54	Base dress	sing	2nd fertiliser	3rd fertiliser
Soil Inde	x:	1	3	2	3 x 50kg 9-7.4	-25 +S	3 x 50kg Urea	a
Max Fertiliser al	lowable (Kg/ha)	225	35	35		On farm	n slurry	Imported slurry
Fertiliser planne	d (Kg/ha)	204	27.4	92.7	Lime recommended	(m3/Ha	n)	(m3/Ha)
Fertiliser planned (units/acre)	165	22.2	75		0		0

Country Crest	Arable Ltd	Herd number:
----------------------	------------	--------------

	Crop:	Oilse	ed Rap	e winter	
Field Name: Murty Sullivans Ashbo	urne ro	ad, 2nd	field do	own	LPI number: Q1812600033
Townland: Rath		Р	lot size	(ha): 12.7	REC
	N	Ρ	к		EIL.
Soil result (mg/L):		6.2	54	Base dressing	2nd fertiliser 3rd fertiliser
Soil Index:	1	2	2	3 x 50kg 9-7.4-25 +S	3 x 50kg Urea
Max Fertiliser allowable (Kg/ha)	225	45	35		
Fertiliser planned (Kg/ha)	204	27.4	92.7	Lime On fail recommended (m3/H	rm siurry imported siurry la) (m3/Ha)
Fertiliser planned (units/acre)	165	22.2	75	0	0
Field Name: Murty Sullivans Corner	r field				LPI number: Q1812600034
Townland: Rath		Р	lot size	(ha): 6.18	
	N	Ρ	к		
Soil result (mg/L):		4.5	50	Base dressing	2nd fertiliser 3rd fertiliser
Soil Index:	1	2	1	3 x 50kg 9-7.4-25 +S	3 x 50kg Urea
Max Fertiliser allowable (Kg/ha)	225	45	65		
Fertiliser planned (Kg/ha)	204	27.4	92.7	Lime On fai recommended (m3/H	rm slurry Imported slurry Ha) (m3/Ha)
Fertiliser planned (units/acre)	165	22.2	75	0	0

F1251208

Oilseed Rape winter Fertiliser use summary

number of parcels	10	
Hectares under this crop	119.94	
Max	ximum fertiliser allowed	Fertiliser recommended
Nitrogen	26,211.60	22,983.75
Phosphorus	4,896.95	3,204.55
Potassium		10,826.20

Country Crest	Arable Ltd	ł	Herd num	nber:	F1251208		
		Crop:	Onio	ns			
Field Name: John Fy	ynes Behind Bal	cunnin	yard			LPI numb	er: F1210200002/
Townland:	Balcunnin		D	lot size	(ha)· 6.77	PA	F1210200023/
		NI	י ח	V	(110). 0.77	C.C.	F1210200053
Soil result (r	mg/L):	IN	Р 221	200	Describer of		
Coll Indow			33.1	200	Base dressi	ng 2nd fertilise	or 3rd fertiliser
Soli index:		1	4	4			122
Max Fertiliser allo	owable (Kg/ha)	140	20	105		On farm slurry	Imported slurry
Fertiliser planned Fertiliser planned (ur	(Kg/ha) nits/acre)				Lime recommended	(m3/Ha) 0	(m3/Ha) 0
Field Name: Dermo	t Rowans Road	field Ca	nal side			LPI numb	er: 11600400015
Townland:	Confey		п	lot sizo l	(ha), 7.22		
		N1	r D		(IId). 7.52		
Soil result (r	ng/L):	IN	Р Э 4	к 64	- · · ·		
			5.4	04	Base dressi	ng 2nd fertilise	r 3rd fertiliser
Soli Index:		1	2	2			
Max Fertiliser allo	owable (Kg/ha)	140	45	215		On farm slurry	Imported slurry
Fertiliser planned Fertiliser planned (ur	(Kg/ha) hits/acre)				Lime recommended	(m3/Ha) 0	(m3/Ha) 0
Field Name: Dermo	t Rowans Road	field be	hind ho	use		LPI numb	er: 11600400016
Townland:	Confev		Р	lot size	(ha): 11.48		
		N	Р	к	. ,		
Soil result (r	ng/L):		3.7	65	Base dressi	ng 2nd fertilise	r 3rd fertiliser
Soil Index:	:	1	2	2			Sta tertiliser
Max Fertiliser allo	wable (Kg/ha)	- 140	45	215			
					Lime	On farm slurry	Imported slurry
Fertiliser planned (ur	(Kg/na)				recommended	(m3/Ha) 0	(m3/na) 0
Field Name: Castler	ellingham onio	ns				LPI numb	er: 010110700008
Townland	Drumcar			lot size (
rownana.	Dramcar	•	р Т	iot size	(na): 5.95		
Soil result (r	mg/I)·	N	P	K			
			5.8	131.2	Base dressi	ng 2nd fertilise	r 3rd fertiliser
Soil Index:		1	2	3			
Max Fertiliser allo	wable (Kg/ha)	140	45	205		On farm clurry	Imported slurgy
Fertiliser planned Fertiliser planned (ur	(Kg/ha) hits/acre)				Lime recommended	(m3/Ha) 0	(m3/Ha)

-

Herd number:

mber: F1251208

	Crop:	Onio	ns			
Field Name: Castlebellingham big fi	ield				LPI nur	mber: 010110700060
Townland: Drumcar		F	Plot size ((ha): 10.33	P.C.	
	N	Р	к		EIL.	
Soil result (mg/L):		5.8	131.2	Base dressi	ng 2nd fertil	iser 3rd fertiliser
Soil Index:	1	2	3			872
Max Fertiliser allowable (Kg/ha)	140	45	205		0	<u> </u>
Fertiliser planned (Kg/ha) Fertiliser planned (units/acre)				Lime recommended	On farm slurry (m3/Ha) 0	(m3/Ha) 0

Onions Fertiliser use summary

number of parcels	5	
Hectares under this crop	41.85	
Maxin	num fertiliser allowed	Fertiliser recommended
Nitrogen	5,859.00	
Phosphorus	1,714.00	
Potassium		

Country Crest	Arable Ltd	ł	Herd num	oer:	F1251208		
		Crop:	Grass	130-17	0		
Field Name: Flanag	ans bottom field	d with l	ong piec	e		LPI numbe	er: F1013200002
Townland:	Palmerstown		Pl	ot size ((ha): 11.42	P.C.	
		N	Р	К		EIL.	
Soil result (ı	ng/L):		0	0	Base dressi	ing 2nd fertiliser	3rd fertiliser
Soil Index:	:	1	4	2		(2
Max Fertiliser allo	owable (Kg/ha)	185	0	45		On farm slurry	
Fertiliser planned Fertiliser planned (ur	(Kg/ha) hits/acre)				Lime recommended	(m3/Ha) 0	(m3/Ha) 0
Field Name: Flanag	ans 2nd down a	along lar	ne			LPI numbe	er: F1013200007
Townland:	Palmerstown		Pl	ot size ((ha): 6.31		
		Ν	Ρ	К			
Soil result (ı	mg/L):	1	L5130	0	Base dressi	ng 2nd fertiliser	3rd fertiliser
Soil Index	:	1	4	3			
Max Fertiliser allo	owable (Kg/ha)	185	0	15			
Fertiliser planned Fertiliser planned (ur	(Kg/ha) hits/acre)				Lime recommended	(m3/Ha) 0	(m3/Ha) 0
Field Name: Flanag	ans Top corner f	field				LPI numbe	er: F1013200009
Townland:	Palmerstown		Pl	ot size ((ha): 6.37		
		N	Ρ	к			
Soil result (ı	ng/L):		10.5	170	Base dressi	ng 2nd fertiliser	3rd fertiliser
Soil Index	:	1	4	4			
Max Fertiliser allo	wable (Kg/ha)	185	0	0			
Fertiliser planned Fertiliser planned (ur	(Kg/ha) hits/acre)				Lime recommended	(m3/Ha) 0	(m3/Ha) 0
Field Name: Flanaga	ans Along road					LPI numbe	er: F1013200012
Townland:	Palmerstown		Pl	ot size ((ha): 8.63		
		N	Р	к			
Soil result (ı	mg/L):		4.8	120	Base dressi	ng 2nd fertiliser	3rd fertiliser
Soil Index	:	1	2	3			
Max Fertiliser allo	owable (Kg/ha)	185	23	15			
Fertiliser planned	(Kg/ha)				Lime recommended	(m3/Ha)	(m3/Ha)

Country Crest	Arable Ltd	I	Herd num	ber:	F1251208		
		Crop:	Grass	130-17	0		
Field Name: Flana	gans Road field b	eside tł	nornes			LPI numb	er: F1013200013
Townland:	Palmerstown		P	lot size	(ha): 6.8	PEC	
		Ν	Ρ	к		EIL.	
Soil result	(mg/L):		4.2	120	Base dressi	ing 2nd fertilise	r 3rd fertiliser
Soil Inde	x:	1	2	3			8-73
Max Fertiliser al	lowable (Kg/ha)	185	23	15		On form clurry	
Fertiliser planne Fertiliser planned (I	e d (Kg/ha) units/acre)				Lime recommended	(m3/Ha) 0	(m3/Ha)
Field Name: Balcu	nnin yard Long gr	ass fiel	d behinc	l vintag	e shed	LPI numb	er: F1210200059
Townland:	Balcunnin		P	lot size	(ha): 8.1		
		Ν	Р	к			
Soil result	(mg/L):		16.5	180	Base dressi	ing 2nd fertilise	r 3rd fertiliser
Soil Inde	x:	1	4	4			
Max Fertiliser al	lowable (Kg/ha)	185	0	0		0	luce out of all sums
Fertiliser planne Fertiliser planned (u	e d (Kg/ha) units/acre)				Lime recommended	On farm slurry (m3/Ha) 0	(m3/Ha)
Field Name: Coun	try Crest Far Bott	om squ	are field			LPI numb	er: F1210800007
Townland:	Ballymaguire		P	lot size	(ha): 1.92		
		N	Ρ	к			
Soil result	(mg/L):		4.5	33	Base dressi	ing 2nd fertilise	r 3rd fertiliser
Soil Inde	x :	1	2	1			
Max Fertiliser al	lowable (Kg/ha)	185	23	75		On farma alumni	
Fertiliser planne Fertiliser planned(e d (Kg/ha) units/acre)				Lime recommended	(m3/Ha) 0	(m3/Ha) 0
Field Name: Coun	try Crest Maguire	s field l	Jnder Sh	neridan	S	LPI numb	er: F1210800008
Townland:	Ballymaguire		P	lot size	(ha): 8.63		
		N	Ρ	к			
Soil result	(mg/L):		10.4	200	Base dressi	ing 2nd fertilise	r 3rd fertiliser
Soil Inde	x :	1	4	4			
Max Fertiliser al	lowable (Kg/ha)	185	0	0		On farm slurry	Imported slurry
Fertiliser planne Fertiliser planned (I	e d (Kg/ha) units/acre)				Lime recommended	(m3/Ha) 0	(m3/Ha) 0

Country Crest	Arable Ltd	I	Herd num	ber:	F1251208		
		Crop:	Grass	130-17	0		
Field Name: Count	ry Crest Far corn	er 2 pa	ddocks E	Behind o	crush	LPI numbe	er: F1210800014
Townland:	Ballymaguire		Pl	ot size	(ha): 4.96	P.C.	
		Ν	Р	к		EIL	
Soil result (mg/L):		6.5	58	Base dressi	ng 2nd fertiliser	3rd fertiliser
Soil Index	:	1	3	2			S/72
Max Fertiliser all	owable (Kg/ha)	185	13	45		On farm slurry	
Fertiliser planne Fertiliser planned (u	d (Kg/ha) nits/acre)				Lime recommended	(m3/Ha) 0	(m3/Ha) 0
Field Name: Count	ry crest windmill	field				LPI numbe	er: F1210800016
Townland:	Ballymaguire		P	ot size	(ha): 8.18		
		N	Р	к			
Soil result (mg/L):		14.6	120	Base dressi	ng 2nd fertiliser	3rd fertiliser
Soil Index	:	1	4	3			
Max Fertiliser all	owable (Kg/ha)	185	0	15			
Fertiliser planned Fertiliser planned (u	d (Kg/ha) nits/acre)				Lime recommended	On farm slurry (m3/Ha) 0	Imported slurry (m3/Ha) 0
Field Name: Count	ry Crest Top pad	docks E	ast side			LPI numbe	er: F1211300017
Townland:	Collinstown		P	ot size	(ha): 6.1		
		N	Р	к			
Soil result (mg/L):		22.7	357	Base dressi	ng 2nd fertiliser	3rd fertiliser
Soil Index	:	1	4	3			
Max Fertiliser all	owable (Kg/ha)	185	0	15			
Fertiliser planne Fertiliser planned (u	d (Kg/ha) nits/acre)				Lime recommended	On farm slurry (m3/Ha) 0	(m3/Ha) 0
Field Name: Count	rv Crest Along ar	nd unde	rneath c	attle sl	hed	LPI numbe	er: F1211300022
Townland:	Collinstown		P	ot size	(ha): 6.76		
		N	P	K	(
Soil result (mg/L):		18	300	Base dressi	ng 2nd fertiliser	3rd fertiliser
Soil Index	:	1	4	5		-	
Max Fertiliser all	owable (Kg/ha)	185	0			On farm slurry	Imported slurry
Fertiliser planne Fertiliser planned (u	d (Kg/ha) nits/acre)				Lime recommended	(m3/Ha) 0	(m3/Ha) 0

Country Crest	Arable Ltd		Herd num	ber:	F1251208		
		Crop:	Grass	130-17	0		
Field Name: Antho	ony Rooneys					LPI numb	ber: F1212100017
Townland:	Jordanstown		PI	ot size ((ha): 13.46	P.C.	
		Ν	Ρ	к		- AL	
Soil result	(mg/L):		0	0	Base dressi	ng 2nd fertilise	er 3rd fertiliser
Soil Inde	k:	1	4	3			OF Z2
Max Fertiliser al	lowable (Kg/ha)	185	0	15		On farm slurry	Imported slurry
Fertiliser planne Fertiliser planned (u	d (Kg/ha) inits/acre)				Lime recommended	(m3/Ha) 0	(m3/Ha) 0
Field Name: Count	ry Crest Grass pa	ddocks	, 1st cor	ner pac	ldock	LPI numb	ber: F1213200024
Townland:	Rathmoonev		PI	ot size ((ha): 4.92		
		Ν	Ρ	к			
Soil result	(mg/L):		24.3	356	Base dressi	ng 2nd fertilise	er 3rd fertiliser
Soil Index	k:	1	4	5			
Max Fertiliser al	lowable (Kg/ha)	185	0			On farm slurny	Imported slurry
Fertiliser planne Fertiliser planned (u	d (Kg/ha) ınits/acre)				Lime recommended	(m3/Ha) 0	(m3/Ha) 0
Field Name: Count	try Crest Grass pa	ddocks	Second	field up	o along lane	LPI numb	per: F1213200037
Townland:	Rathmooney		Pl	ot size	(ha): 4.59		
		Ν	Ρ	к			
Soil result	(mg/L):		11.3	73	Base dressi	ng 2nd fertilise	er 3rd fertiliser
Soil Inde	K :	1	4	3			
Max Fertiliser al	lowable (Kg/ha)	185	0	15		On farm slurry	Imported slurry
Fertiliser planne Fertiliser planned (u	d (Kg/ha) inits/acre)				Lime recommended	(m3/Ha) 0	(m3/Ha) 0
Field Name: Gabri	els Around house	9				LPI numb	ber: F1255500025
Townland:	Wimbletown		Pl	ot size ((ha): 3.35		
		Ν	Ρ	к			
Soil result	(mg/L):		8.5	56	Base dressi	ng 2nd fertilise	er 3rd fertiliser
Soil Inde	k :	1	3	2			
Max Fertiliser al	lowable (Kg/ha)	185	13	45		On farm slurry	Imported slurry
Fertiliser planne Fertiliser planned (ι	d (Kg/ha) ınits/acre)				Lime recommended	(m3/Ha) 0	(m3/Ha) 0

Crop: Grass130-170

Grass130-	170 Fertiliser use sun	nmary
number of parcels	16	NC RIL
Hectares under this cro	op 110.50	×0.
	Maximum fertiliser allowed	Fertiliser recommended
Nitrogen	20,442.50	(2) (2)
Phosphorus	507.08	S. S
Potassium		

Country Crest	Arable Ltd		Herd num	iber:	F1251208		
		Crop:	Natu	ral Reg	eneration		
Field Name: Baldy	vinstown grass fie	eld				LPI numb	ber: F1180200013
Townland:	Baldwinstown		Р	lot size	(ha): 6.61	P.C.	
		N	Р	к		KIN .	
Soil result	(mg/L):		5.4	49	Base dress	ing 2nd fertilise	3rd fertiliser
Soil Inde	х:	2	2	1			OF Z
Max Fertiliser al	llowable (Kg/ha)	0	0	0			703
Fertiliser planne Fertiliser planned(ed (Kg/ha) units/acre)				Lime recommended	On farm slurry (m3/Ha) 0	imported slurry (m3/Ha) 0
Field Name: Baldy	vinstown inside lo	ong fie	eld			LPI numb	ber: F1180200058
Townland:	Baldwinstown		Р	lot size	(ha): 16.59		
		N	Р	к			
Soil result	(mg/L):		5.5	40	Base dress	ing 2nd fertilise	er 3rd fertiliser
Soil Inde	х:	2	2	1			
Max Fertiliser al	llowable (Kg/ha)	0	0	0			
Fertiliser planne Fertiliser planned (e d (Kg/ha) units/acre)				Lime recommended	On farm slurry (m3/Ha) 0	Imported slurry (m3/Ha) 0
Field Name: Baldy	vinstown middle 2	2 fields	5			LPI numb	ber: F1180200059
Townland:	Baldwinstown		Р	lot size	(ha): 13.33		
		N	Р	к			
Soil result	(mg/L):		5.5	40	Base dress	ing 2nd fertilise	er 3rd fertiliser
Soil Inde	x:	1	2	1			
Max Fertiliser al	llowable (Kg/ha)	0	0	0		0	
Fertiliser planne Fertiliser planned(e d (Kg/ha) units/acre)				Lime recommended	On farm slurry (m3/Ha) 0	(m3/Ha) 0
Field Name: Balcu	nnin yard Back fie	eld				LPI numb	ber: F1210200011
Townland:	Balcunnin		Р	lot size	(ha): 2.27		
		N	Р	к			
Soil result	(mg/L):		9.5	105	Base dress	ing 2nd fertilise	er 3rd fertiliser
Soil Inde	x:	1	3	3			
Max Fertiliser al	llowable (Kg/ha)	0	0	0			
Fertiliser planne Fertiliser planned (1	ed (Kg/ha) units/acre)				Lime recommended	On farm slurry (m3/Ha) 0	Imported slurry (m3/Ha) 0

Herd number: F1251208

	Crop:	Natur	al Rege	eneration		
Field Name: Balcunnin yard Middle	rectan	gle field			LPI nur	nber: F1210200017
Townland: Balcunnin		PI	ot size (ha): 2.36	REC	
	Ν	Р	к		EIL.	
Soil result (mg/L):		12.7	110	Base dressi	ing 2nd fertif	iser 3rd fertiliser
Soil Index:	1	4	3	3		872
Max Fertiliser allowable (Kg/ha)	0	0	0		On form clurry	Imported clurry
Fertiliser planned (Kg/ha) Fertiliser planned (units/acre)				Lime recommended	(m3/Ha) 0	(m3/Ha) 0

Natural Regeneration Fertiliser use summary

number of parcels	5	
Hectares under this cro	op 41.16	
	Maximum fertiliser allowed	Fertiliser recommended
Nitrogen	0.00	
Phosphorus	0.00	
Potassium		

Country Crest	Arable Ltd	Н	erd num	ber:	F1251208		
		Crop:	Field I	Beans			
Field Name: Keelin	igs Big field					LPI nu	mber: F1170500001
Townland:	Barberstown		Ple	ot size ((ha): 31.5	P.C.	
		N	Р	к		SIL.	N .
Soil result	(mg/L):		8.2	72	Base dress	ing 2nd ferti	iser 3rd fertiliser
Soil Index	c :	1	3	2			10-12-3
Max Fertiliser all	owable (Kg/ha)	0	20	60			
Fertiliser planne Fertiliser planned (u	d (Kg/ha) inits/acre)				Lime recommended	On farm slurry (m3/Ha) 0	(m3/Ha) 0

Field Beans Fertiliser use summary

number of parcels	1	
Hectares under this crop	31.50	
Ma	ximum fertiliser allowed	Fertiliser recommended
Nitrogen	0.00	
Phosphorus	630.00	
Potassium		

Herd

Herd number: F1251208

	Crop:	sunfl	owers			
Field Name: Bergins Behind house	and yard				LPI numb	er: F1021500002
Townland: Roscall/Brownstown		Р	lot size (ha): 1.4352	P.C.	
	N	Р	К		E.L.	
Soil result (mg/L):		6.3	145	Base dressing	2nd fertilise	c 3rd fertiliser
Soil Index:	2	3	3	3 x 50kg 9-7.4-25 +	-S 3 x 50kg N- Rich	8-72-2-2-
Max Fertiliser allowable (Kg/ha)	140	35	170			<u> </u>
Fertiliser planned (Kg/ha)	122	27.4	92.7	Lime On recommended (m	i farm siurry 13/Ha)	(m3/Ha)
Fertiliser planned (units/acre)	99	22.2	75		0	0

sunflowers Fertiliser use summary

number of parcels	1	
Hectares under this c	rop 1.44	
	Maximum fertiliser allowed	Fertiliser recommended
Nitrogen	1,674.40	1,462.94
Phosphorus	418.60	328.05
Potassium		1,108.29

Country Crest	Arable Ltd	Herd number:	F1251208		
	Crop:	sunflower	S		
Fertili	ser use summary			% area under cropping	91.97
Total H	lectares on holding	1206.92		Ha< P Index 3	630.79
Total	Hectares grazing	96.91		Ha>=P Index 3	576.12
Total H	lectares cropping	1110.01		% area< Index 3	0.52
	Maximum fertiliser Alle	owed	Fertiliser re	commended	A
Nitrogen	222,721.	32	109,56	53.64	
Phosphorus	4 6,880.	98	17,18	2.83	
Potassium			62,37	7.36	

Organic Fertiliser moved on or off farm				imported		Kg	Kg	Kg		
Date	Recipient /donor:	Herd numbe	Fertiliser type	availability	/ exported	Amount	total N	N availa	P	
			Cattle Slurry 2022	50	import	0.00	0	0		0
			Cattle Slurry 2022	50	import	0.00	0	0		0
			Farmyard manure	30	import	0.00	0	0		0
				Totals		0.00	0.00) 0.0	00	0.00

Arable Ltd

Crop: sunflowers

Additional N allowed due to higher yield

Сгор	Relevant Year:	Area Sown (Ha)	Tonnes produced (T)	Tonnes /ha	Additional Allowabie N (kg)	Additior Allowabl (kg)	nal le P	
Spring Barley	2022	2.88	25	8.680555	43.61	22	8	
Winter Barley	2021	85.03	780	9.173233	13.46	TO 2	10	
Spring Wheat	2021	105.11	800	7.611074	2.22		4	
Winter Wheat	2022	319.2	3000	9.398496	7.97		11	
Spring oats	1	1	1	1	0.00		-21	
Winter oats	2022	73.39	650	8.856792	27.14		9	

	Numbers of livestock	Livestock N produced	Livestock P produced		Numbers of livestock	Livestock N produced	Livestock P produced
Dairy cow:	0	0	0	Deer (red) >2 years:	0	0	0
Suckler cow:	0	0	0	Deer (fallow) 6 months-2 yea	ırs: 0	0	0
Cattle (0-1 year old):	0	0	0	Deer (fallow) >2 years:	0	0	0
Cattle (1-2 year old):	0	0	0	Deer (Sika) 6 months-2 year	s: 0	0	0
Cattle >2 years:	0	0	0	Deer (Sika) >2years:	0	0	0
Mountain ewes and Lan	nb: 0	0	0	Breeding unit (per sow place): 0	0	0
Lowland ewes and lamb	o: 0	0	0	Integrated unit (per sow plac	e): 0	0	0
Mountain hogget:	0	0	0	Finishing unit (per pig place)	. 0	0	0
Lowland Hogget:	0	0	0	Laying hen (per bird place):	0	0	0
Goat:	0	0	0	Broiler (per bird place):	0	0	0
Horse (>3 year old):	0	0	0	Turkey (per bird place):	0	0	0
Horse (2-3 years old):	0	0	0	SMC (Tonnes):	0	0	0
Horse(1-2 years old):	0	0	0				
Horse Foal:	0	0	0	Cattle Slurry 2022	0	0	0
Donkey/ small pony:	0	0	0				
Deer (red) 6 -24 mths:	0	0	0			Ν	Р
		Т	otal Produced o	on holding incl imports/expo	rts	24109.00	3508.00
DAFM statement:		24109	3508				
Concentrates fed in previ	ous year (kg)	1	0	Concentrates in excess of 300kg	g/LU	-850)90.59

Country Crest	Arable Ltd	Herd number:	F1251208		
	Ci	rop: sunflowers			
Available N a	allowed onto hol	ding	Total N	% availability	Available N
Amount of N p	roduced from other animals		0.00	50	0.00
Amount of N p	roduced from spent Mushroo	om Compost	0.00	20	· ~ 0.00
Amount of avail	able N from organic fertilise	r moved on/off holding			20
		Total N produced	d on holding	g	0.00
Maximum amou	int of chemical N that	can be brought on	to the holdi	ng:	222,721.32
		Fertiliser N to be a	pplied acco	rding to plan	109,563.64
Maximum P a	allowed onto hol	Fertilis ding	er N actuall	y purchased	
P produced by c	ther animals or spent mush	nroom compost on holding			0.00
P from Concenti	rates >300kg/LU used on fa	rm during year:		0	0.00
Weighted availa	bility of imported P			0.74	0.00
P moved in orga	nic fertiliser on or off farm	Total P	produced o	on holding	0.00
Maximun	n amount of chemica	I P that can be brou	aht onto th	e holding	0.00
maximum		Fortilizer D to be are		ing to plan	46.880.98
					17,182.83
		Fertiliser	r actually p	urcnasea:	

Notes:

Attachment 4.1 Air Quality Assessment

Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin

Prepared for:

Country Crest ULC

December 2024

Final

Prepared by:

Katestone Environmental Ireland Ltd Office 5a, Portlaoise Enterprise Centre, Clonminam Industrial Estate, Portlaoise, Co Laois www.katestone.global

admin@katestone.global Ph +353 (87) 365 6879

	a.global
	TD. TO
Document Control	
Deliverable #:	DK24007-7
Title:	Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin
Version:	1.0 (Final)
Client:	Country Crest ULC
Document reference:	DK24007-7 Country Crest Lusk AD AQA.docx
Prepared by:	Micheal Fogarty and Natalie Shaw
Reviewed by:	Simon Welchman
Approved by:	S. Welel
	Simon Welchman
	17 December 2023

Disclaimer

https://katestone.global/report-disclaimer/

Copyright

This document, electronic files or software are the copyright property of Katestone Environmental Ireland Ltd. and the information contained therein is solely for the use of the authorised recipient and may not be used, copied or reproduced in whole or part for any purpose without the prior written authority of Katestone Environmental Ireland Ltd. Katestone Environmental Ireland Ltd. makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document, electronic files or software or the information contained therein.

© Copyright Katestone Environmental Ireland Ltd.

Contents

Conte	ents		
1	Introduc	ction	1
1. O	Ovorvio	aw of the Proposed Davelopment	າ ດ
۷.		ew of the troposed bevelophient	Z
	2.1	The Bronesed Development	μΖ Ο 5
2	Z.Z	the Proposed Development aritaria	7.0
3.	Regulat	Tory framework and assessment criteria	
	3.1	Environmental Protection Agency Acts 1992 and 2003	
	3.2	Birds Directive and Habitats Directive	
	3.3	Air Contaminants – Assessment limits	10
		3.3.1 CAFE Limits	10
	0.4	3.3.2 Ammonia and nitrogen deposition	10
	3.4	Odour assessment limits	15
4.	Existing	Environment	
	4.1	Local terrain and land-use	17
	4.2	Local meteorology	17
	4.3	Background air quality	20
	4.4	Sensitive receptors	24
		4.4.1 Residential/Commercial locations	24
		4.4.2 Sensitive Ecological Locations	24
5.	Air Qua	ality Assessment	27
	5.1	Methodology	27
	5.2	Meteorological modelling	
	5.3	Sources of Emissions	
		5.3.1 Sources of emissions at the proposed development	
		5.3.2 Sources of emissions at facilities adjacent to the proposed	
		development	
	5.4	Development of an emissions inventory	
		5.4.1 Combustion emissions (including ammonia)	
		5.4.2 Odour Emissions (including ammonia where applicable)	
	5.5	Dispersion modelling	
		5.5.1 Modelled sources	
		5.5.2 Source Parameters – proposed development	
		5.5.3 Source Parameters – adjacent food processing facility	40
		5.5.4 Source Parameters – adjacent cattle yard	41
		5.5.5 Modelling domain	43
		5.5.6 Modelled Terrain	43
		5.5.7 Building Downwash	43
		5.5.8 Methods for the conversion of NO _x to NO ₂	43
		5.5.9 Method to consider Nitrogen Deposition	44
6.	Assessm	nent Results	45
	6.1	Odour at Commercial/Residential sensitive receptors	45
	6.2	Air Contaminants at Commercial/Residential sensitive receptors	48
	6.3	Air contaminants and nitrogen deposition at sensitive ecological receptors	51
7.	Conclus	usions	57
8.	Referen	nces	58
Append	dix A	Meteorological Modelling Methodology	69
1 1 1	A1	Calculation of Z ₀ and the Albedo and Bowen Ratio	
		A1.1 Calculation of Z ₀	
		A1.2 Calculation of Albedo and Bowen Ratio	71
Append	dix B	Meteorological Modelling Methodology	
1212 0111	-		

Tables

Table 1	Limit values of CAFE Directive 2008/50/EC	10
Table 2	The conservation objective of each Natura 2000 site with nitrogen sensitive habitat(s) and the	
	applicable deposition limit	13

Katestone Environmental Ireland Ltd DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

Table 3	The nitrogen deposition limit adopted for each habitat		15
Table 4	Ambient background data		23
Table 5	The Natura 2000 site(s) at each modelled location	<u>`C</u>	25
Table 6	Onsite sources of emissions included in the modelling assessment		30
Table 7	Onsite sources of emissions included in the modelling assessment		30
Table 8	Emission rates adopted in the dispersion modelling assessment for ea	ch biogas fired boiler at	the Site
Table 9	Emission rates adopted in the dispersion modelling assessment for the	• CHP unit at the Site	-32
Table 10	Emission rates adopted in the dispersion modelling assessment for the Food Processing Facility	duty boiler at the Adja	cent 33 ×
Table 11	Emission rates adopted in the dispersion modelling assessment for all the Adjacent Food Processing Facility	12 burners at the onion s	store at 33
Table 12	The odour and ammonia emission rate adopted for the odour contro development) unit at the proposed	34
Table 13	The odour and ammonia emission rate adopted for the de-watered proposed development	sludge storage area at t	he 36
Table 14	The odour emission rate adopted for sources at the Adjacent Food P	rocessing Facility	36
Table 15	The odour emission rate adopted for sources at the Adjacent Food P	rocessing Facility	37
Table 16	Dispersion modelling parameters used to represent the odour contro the biogas fired CHP unit at the proposed development in the disper	l unit, biogas fired boilers sion modelling assessme	s and ent39
Table 17	Dispersion modelling coordinates used to represent the de-watered proposed development in the dispersion modelling assessment	digestate storage area o	at the 39
Table 18	Dispersion modelling parameters used to represent the de-watered opproposed development in the dispersion modelling assessment	digestate storage area c	it the 39
Table 19	Dispersion modelling parameters used to represent the odour contro the biogas fired CHP unit at the proposed development in the disper	l unit, biogas fired boilers rsion modelling assessme	s and ent40
Table 20	Dispersion modelling parameters used to represent the onion store a facility in the dispersion modelling assessment	the adjacent food proc	cessing 40
Table 21	Dispersion modelling coordinates used to represent the wastewater t adjacent food processing facility in the dispersion modelling assessm	reatment plant sources ient	at the 40
Table 22	Dispersion modelling parameters used to represent the wastewater the adjacent food processing facility in the dispersion modelling assessment	reatment plant sources o ient	at the 41
Table 23	Dispersion modelling coordinates used to represent sources at the ac dispersion modelling assessment	Jjacent cattle yard in the	e 41
Table 24	Dispersion modelling parameters used to represent the sources at the facility in the dispersion modelling assessment	e adjacent food process	ing 41
Table 25	Ground-level concentrations of odour resulting from emissions from the isolation at the modelled discrete receptors	ne proposed developme	ent in 46
Table 26	Ground-level concentrations of odour resulting from emissions from the combination with baseline odour resulting from emissions at adjacent discrete receptors.	ne proposed developme It facilities at the modelle	ent in ed 47
Table 27	Ground-level concentrations of nitrogen dioxide resulting from emissi development in isolation at the modelled discrete receptors	ons from the Proposed	49
Table 28	Ground-level concentrations of nitrogen dioxide resulting from emissi development including emissions from adjacent facilities and with a concentration at the modelled discrete receptors	ons from the proposed representative baseline	50
Table 29	Ground-level concentrations of NOx and NH ₃ resulting from emissions development in isolation at the modelled ecological discrete recept	s from the proposed	52
Table 30	Predicted nitrogen deposition rates resulting from emissions from the isolation at the modelled ecological discrete receptors	proposed development	in 54

Figures

Figure 1	The Site and it's regional surrounds	3
Figure 2	The Site and immediate surrounds	4
Figure 3	Layout of the proposed development within the site boundary	7
Figure 4	Wind distribution monitored at Dublin Airport for each year between 2015 and 2019	18
Figure 5	Diurnal wind distribution at Dublin Airport between 2015 and 2019	19
Figure 6	Seasonal wind distribution at Dublin Airport between 2015 and 2019	20

Katestone Environmental Ireland Ltd DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

Figure 7 Figure 8	Modelled residential/commercial discrete receptor locations Modelled ecological receptors and discrete receptor locations representing the receptors	hese ecological
Contour P	lates	SILED.

Contour Plates

Plate 1	Highest 5-year modelling period, predicted 98 th percentile 1-hour average ground-level concentrations of odour due to sources of odour at adjacent facilities to the proposed development
Plate 2	Highest 5-year modelling period, predicted 98th percentile 1-hour average ground-level \checkmark
	concentrations of odour due to the proposed development in isolation
Plate 3	Highest 5-year modelling period, predicted 98 th percentile 1-hour average ground-level
	concentrations of odour due to the proposed development in combination with sources of odour
	emissions at adjacent facilities included in the dispersion modelling assessment
Plate 4	Highest 5-year modelling period, baseline predicted 18th highest 1-hour average ground-level NO $_2$
	concentrations due to due to sources of combustion at adjacent facilities to the proposed
	development in combination with conservative regional baseline levels of NO263
Plate 5	Highest 5-year modelling period, baseline predicted annual average ground-level NO $_2$
	concentrations due to due to sources of combustion at adjacent facilities to the proposed
	development in combination with conservative regional baseline levels of NO2
Plate 6	Highest 5-year modelling period, predicted 18th highest 1-hour average ground-level NO $_2$
	concentrations due to the proposed development in isolation65
Plate 7	Highest 5-year modelling period, predicted annual average ground-level NO $_2$ concentrations due
	to the proposed development in isolation
Plate 8	Highest 5-year modelling period, predicted 98th percentile 1-hour average ground-level NO $_2$
	concentrations due to the proposed development in combination with sources of combustion at
	adjacent facilities to the proposed development and conservative regional baseline levels of NO $_2$
Plate 9	Highest 5-year modelling period, predicted annual average ground-level NO2 concentrations due
	to the proposed development in combination with sources of combustion at adjacent facilities to
	the proposed development and conservative regional baseline levels of NO ₂ 68

17 December 2024 Page iii

Glossary

7	
Term	Definition
kg	kilogram
kg/m³	kilogram per cubic meter
km	kilometre
km/hr	kilometre per hour
m	metre
m/s	metres per second
m ²	square metres
m ³	cubic metres
m³/s	cubic metres per second
m³/hr	cubic metres per hour
mg	milligram
Mg	Megagram
mg/kg	Milligram per kilogram
MWh	Megawatt hour
Z ₀	roughness length
µg/m³	micrograms per cubic meter
Nomenclature	Definition
NO ₂	nitrogen dioxide
N_2O	nitrous oxide
PM ₁₀	particulate matter with a diameter less than 10 micrometres
PM _{2.5}	particulate matter with a diameter less than 2.5 micrometres
Abbreviations	Definition
AG4	Air Guidance 4
BAT	Best available techniques
CAFE	Cleaner Air for Europe
EC	European Council
EPA	Environmental Protection Agency
EF	Emission factor
EU	European Union
UK	United Kingdom
USEPA	United States Environmental Protection Agency

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

1. INTRODUCTION

Katestone Environmental Ireland Ltd (Katestone) was commissioned by Country Crest ULC to complete an air quality assessment (AQA) of a proposed anaerobic digestion plant (proposed development) at Collinstown, Lusk, Co. Dublin (Site). The air quality assessment will be used as supporting documentation for an Environmental impact Assessment Report (EIAR) being completed for the proposed development. The EIAR will be submitted as supporting documentation with the planning application for the proposed development.

The Site is adjacent to an existing food processing facility (The Country Crest Food Processing Facility) that produces ready meals. The applicant for the proposed development owns and operates the adjacent food processing facility.

The AQA has been conducted to determine the potential cumulative impact of emissions from the proposed development in conjunction with baseline air quality. It includes an assessment of odour impacts from the proposed development in combination with existing sources of odour emissions.

The AQA is underpinned by dispersion modelling assessments, which have been conducted in accordance with the EPA Ireland's Air Guidance note for dispersion modelling (AG4).

DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

2. OVERVIEW OF THE PROPOSED DEVELOPMENT

2.1 Local and regional context of the Site

The site is located in a rural area of north Co. Dublin. The closest town to the proposed development is losk, which is approximately 2 km south of the site. The village of Balrothery is approximately 4 km north of the site, with the town of Balbriggan being approximately 6 km north of the site. The urban areas of Skerries and Rush are each approximately 4.5 km northeast and southeast of the site respectively. The northern most suburbs of Dublin City including Swords and Malahide are approximately 9 km south of the site. The location of the site in relation to nearby regional and urban areas is presented in Figure 1.

The site's western boundary is adjacent to the eastern boundary of the Country Crest Food Processing Facility. There is a cattle lairage area immediately north of the site. The site and immediate surrounds are presented in Figure 2.

DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC - Air Quality Assessment - Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin - Final

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC - Air Quality Assessment - Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin - Final

2.2 The Proposed Development

The proposed development will involve the construction and operation of an anaerobic digestion plant. The anaerobic digestion process (AD Process) will involve the acceptance of a range of process input materials 18/12/2024 including:

- 7,000 tonnes per annum of poultry litter
- 1,080 tonnes per annum of cattle manure •
- 650 tonnes per annum of vegetable processing byproducts •
- 100 tonnes per annum of food processing byproducts •
- 400 tonnes per annum of draff Grains
- 10,000 tonnes per annum of whole crop silage •
- 24,500 tonnes per annum of grass silage ٠
- 17,080 tonnes per annum of slurry •
- 1,300 tonnes per annum of WWTP sludge. .

The layout of the proposed development within the site boundary is presented in Figure 3. A description of the processes at the site and an overview of emissions to air from the site are presented below.

Feedstocks delivered to the site will either be stored or processed immediately. Whole crop silage and grass silage will be stored in a structure that will be built as part of the proposed development. The structure is a series of eight sileage clamps each separated by a concrete wall. The seven northernmost clamps will be used for the storage of whole crop silage and grass silage. All other materials will be accepted in an enclosed feedstock reception building on a 'just-in-time' basis for immediate use in the AD Process.

To start the AD process, all feedstocks will be accepted, unloaded, temporarily stored and mixed before being fed into a sealed digester tank (called the Digester Power Ring at the Site). Primary digestion and secondary digestion, involving a series of biological processes will occur within the sealed Digester Power Ring involving the breakdown of biodegradable materials in the absence of oxygen resulting in the formation of biogas, liquid digestate and solid digestate. Feedstock from the Digester Power Ring will be fed into a second AD Tank (called the Power Digest at the site) for further secondary digestion.

Biogas is a mixture of methane, carbon dioxide and trace quantities of other gaseous contaminants such as sulphides, amines, ammonia and mercaptans. The biogas will be extracted from the AD tanks and processed to remove gaseous contaminants. A portion of the biogas will be fed to onsite combustion units including a combined heat and power (CHP) plant and two dual fuel boilers. The heat and electrical energy generated from these installations will be used to meet the energy requirements of the anaerobic digestion process. The remainder of the biogas will be fed to a gas upgrade unit (GUU) that will:

- Separate the biogas into pure methane and carbon dioxide gas streams
- Process the methane gas stream to a sufficient standard for injection into Ireland's gas network grid.

The carbon dioxide stream will be transferred to a unit for liquefaction. Liquefied CO₂ has a wide range of uses in industries including food processing and pharmaceutical production.

Digestate will be pasteurised before it is dewatered in an enclosed building at the site resulting in a dewatered digestate solid fraction and a liquid digestate fraction.

The southernmost silage clamp will be used for the storage of the solid fraction of the dewatered digestate. The liquid digestate fraction will be transferred to sealed lagoons for storage in the easternmost part of the site.

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin - Final

Emissions to air from aerobic digestion plants with the highest potential for adverse impacts are odour and products of combustion of biogas.

The primary sources of odour from the proposed development will be the feedstock reception building, the digestate dewatering building and the storage of dewatered digestate in one of the onsite clamps. The feedstock reception building and the digestate dewatering building will be maintained under negative pressure with odorous emissions exhausted to an onsite odour control unit (OCU). The dewatered digestate will be stored under a roofed structure. The AD tanks and liquid digestate storage lagoons are sealed and will, therefore, not be a source of odorous emissions at the site.

The sources of combustion emissions at the site are the onsite biogas boilers, the CHP unit and an emergency flare. The emergency flare will be used for the combustion of biogas if combustion equipment and the GUU are offline (e.g., due to maintenance). This is likely to be a highly infrequent occurrence.

Katestone Environmental Ireland Ltd DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

Figure 3 Layout of the proposed development within the site boundary

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC - Air Quality Assessment - Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin - Final

3. REGULATORY FRAMEWORK AND ASSESSMENT CRITERIA

3.1 **Environmental Protection Agency Acts 1992 and 2003**

FCENED. 78-72 The Environmental Protection Agency Act 1992 (EPA Act) and Part 2 of the Protection of the Environmental Act 2003 are collectively referred to as the Environmental Protection Agency Acts 1992 and 2003. The Environmental Protection Agency Acts 1992 and 2003 provide for the management of air emissions from activities (meaning any process, development or operation) specified in the First Schedule of the Environmental Protection Agency Acts 1992 and 2003.

Section 4 (2) of the Environmental Protection Agency Acts 1992 and 2003 states that Air Pollution:

"means the direct or indirect introduction to an environmental medium, as a result of human activity, of substances, heat or noise which may be harmful to human health or the quality of the environment, result in damage to material property, or impair or interfere with amenities and other legitimate uses of the environment, and includes -

- (a) 'air pollution' for the purposes of the Air Pollution Act 1987,
- (b)
- (c)"

The Air Pollution Act 1987 (AP Act) is "an act to provide for the control of air pollution and other matters connected with air pollution". According to the AP Act "pollutant' means any substance specified in the First Schedule or any other substance (including a substance which gives rise to odour) or energy which, when emitted into the atmosphere either by itself or in combination with any other substance, may cause air pollution".

Section 4 of the AP Act states:

"Air pollution" in this Act means a condition of the atmosphere in which a pollutant is present in such a quantity as to be liable to ---

(i) be injurious to public health, or

(ii) have a deleterious effect on flora or fauna or damage property, or

(iii) impair or interfere with amenities or with the environment."

Section 24 of the AP Act states:

- (1) The occupier of any premises, other than a private dwelling, shall use the best practicable means to limit and, if possible, to prevent an emission from such premises.
- (2) The occupier of any premises shall not cause or permit an emission from such premises in such a quantity, or in such a manner, as to be a nuisance.
- (3) In any prosecution for a contravention of this section, it shall be a good defence to establish that—
 - (a) the best practicable means have been used to prevent or limit the emission concerned, or
 - (b) the emission concerned was in accordance with a licence under this Act. or
 - (c) the emission concerned was in accordance with an emission limit value, or

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

(d) the emission concerned was in accordance with a special control area order in operation in relation to the area concerned, or

(e) in the case of an emission of smoke, the emission concerned was in accordance with regulations under . 78171/100 × section 25, or

(f) the emission did not cause air pollution.

Section 75 (1) the Environmental Protection Agency Acts 1992 and 2003 states:

"The Agency shall, in relation to any environmental medium and without prejudice to its functions under section 103, specify and publish quality objectives which the Agency considers reasonable and desirable for the purposes of environmental protection."

3.2 **Birds Directive and Habitats Directive**

Concerned with the decline of wild bird species, European Member States unanimously adopted the Birds Directive (79/409/EEC) in April 1979 that aims to conserve species of wild birds and the habitats that are crucial for their conservation. The Birds Directive was amended in 2009 (2009/147/EC).

The Habitats Directive (92/43/EEC) aims to promote the maintenance of biodiversity, taking account of economic, social, cultural and regional requirements. It forms the cornerstone of Europe's nature conservation policy with the Birds Directive and establishes the EU wide Natura 2000 ecological network of protected areas.

The Habitats Directive requires EU Member States to take measures to maintain or restore natural habitats and wildlife species at a favourable conservation status. Sites designated under the Birds Directive and the Habitats Directive form the Natura 2000 network. Maintaining or restoring the Natura 2000 network is an obligation that must be considered concurrently with requirements for increased food production and economic growth targets set for agricultural sectors in Member States.

The main aim of the Habitats Directive is to contribute towards the conservation of biodiversity by requiring Member States to take measures to maintain or restore natural habitats and wild species listed on the Annexes to the Directive at a favourable conservation status. These annexes list habitats (Annex I) and species (Annexes II, IV and V) that are considered threatened in the EU territory. The listed habitats and species represent a considerable proportion of biodiversity in Ireland and the Habitats Directive itself is one of the most important pieces of legislation governing the conservation of biodiversity in Europe.

The protection and conservation duties of EU Member States for Natura 2000 sites are specified in Article 6 of the Habitats Directive and are summarised below:

- Article 6(1): establish necessary conservation measures, management plans and appropriate statutory, administrative or contractual measures which correspond to the ecological requirements of the natural habitats and species present at the sites
- Article 6(2): take appropriate steps to avoid deterioration of Natura 2000 sites •
- Article 6(3) and 6(4): assess the impact of new plans and projects and only agree to the plan or project if it will not adversely affect the integrity of the site unless the plan or project is imperative for reasons of overriding public interest.

The European Communities (Birds and Natural Habitats) Regulations 2011 to 2015, as amended (Birds and Natural Habitats Regulations) give effect to the Habitats Directive in Irish law. The regulations require, inter alia, that a public authority carry out screening for Appropriate Assessment of a plan or project for which an application for consent is received, to assess, in view of best scientific knowledge and in view of the conservation objectives of the site, if that plan or project, individually or in combination with other plans or projects is likely to have a significant effect on the European site. Where it is determined that an Appropriate Assessment is required, the Birds and

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

Natural Habitats Regulations require that the assessment carried out by a public authority include a determination pursuant to Article 6(3) of the Habitats Directive as to whether or not the plan or project would adversely affect the NED. TO TRADOR integrity of a European site.

Air Contaminants – Assessment limits 3.3

3.3.1 CAFÉ Limits

The Ambient Air Quality and Cleaner Air for Europe (CAFE) Directive (2008/50/EC) was published in May 2008. It replaced the Framework Directive and the first, second and third Daughter Directives. The fourth Daughter Directive (2004/107/EC) will be included in CAFE at a later stage. The limit and target values for both Directives are outlined below.

The CAFE Directive was transposed into Irish legislation by the Air Quality Standards Regulations 2011 (S.I. No. 180 of 2011) (DEHLG, 2011). It replaced the Air Quality Standards Regulations 2002 (S.I. No. 271 of 2002), the Ozone in Ambient Air Regulations 2004 (S.I. No. 53 of 2004) and S.I. No. 33 of 1999. The Air Quality Standards Regulations 2011 (S.I. No. 180 of 2011) was revoked by the Ambient Air Quality Standards Regulations 2022 (S.I. No. 739 of 2022) (Irish Statute Book, 2023).

The limit values of the CAFE Directive as implemented by the Ambient Air Quality Standards Regulations 2022 in Ireland that were applied in this assessment are presented in Table 1.

Air contaminant	Averaging period	Limit value (µg/m³)	Basis of application of limit value
NO ₂	1-hour	200	Not to be exceeded more than 18 times in a calendar year
	annual	40	Average
DM	24-hour	50	35 th Highest
PMI10	annual	40	Average
PM _{2.5}	annual	25	Average
	1-hour	350	Not to be exceeded more than 24 times in a calendar year
SO ₂	24-hour	125	Not to be exceeded more than 3 times in a calendar year
	annual	20	Average
СО	8-hour	10,000	Maximum
Benzene	Annual	5	Average

Table 1 Limit values of CAFE Directive 2008/50/EC

3.3.2 Ammonia and nitrogen deposition

The compliance criteria adopted in the assessment are based on critical limits. A critical limit, in its simplest form, is a threshold set to indicate when impacts on the terrestrial environment occur from air pollution. These can be used as part of the regulatory process for the assessment of impacts of air quality on terrestrial ecology (Kelleghan et al., 2022). The EPA's Ammonia and Nitrogen Assessment Guidance adopts criteria based on critical limits including:

Critical levels for ammonia

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

• Empirical critical loads for nitrogen deposition.

Both critical levels and loads are international guidelines used to protect habitats, primarily across Europe. Critical levels here refer specifically to the threshold for impacts that can occur directly from atmospheric ammonia, allowing for an acute measurement of direct effects. Critical levels are defined as "the concentration in the atmosphere above which direct adverse effects on receptors, such as plants, ecosystems or materials, may occur according to present knowledge" (Posthumus, 1988; Kelleghan *et al.*, 2022).

Empirical critical loads are based on total nitrogen deposition. A critical load is defined as a deposition rate being which significant harmful effects do not occur "according to present knowledge" (Posthumus, 1988).

The critical level for ammonia and the critical load for nitrogen deposition for each of the species and habitat are developed and presented here for the modelled discrete receptors.

The critical level of ammonia relevant to each Natura 2000 site was determined based on the conservation objective of the site. The vegetated sea cliffs of the Atlantic and Baltic coasts [1230] habitat is one of the conservation objectives at the Lambay Island SAC. The vegetated sea cliffs of the Atlantic and Baltic coasts [1230] habitat can contain lichens and bryophyte plant species that are highly sensitive to ammonia. A lower critical level of ammonia of 1 µg/m³ was adopted as the critical level at the modelled receptor location on Lambay Island SAC.

The higher critical level of ammonia was adopted for all other modelled receptor locations.

The relevant nitrogen deposition limit for each modelled ecological receptor location was determined based on the conservation objective of the Natura 2000 site(s) at the modelled location. The conservation objective of each Natura 2000 site with nitrogen sensitive habitat(s) and the applicable deposition limit is presented in Table 2.

The potential impacts of emissions from the proposed development at modelled sensitive ecological locations was assessed based on the significance of potential impacts for oxides of nitrogen, nitrogen deposition and ammonia. If the predicted impact of the proposed development in isolation was determined to be less than 1% of the applicable criterion then it was determed to be an insignificant impact.

A critical criteria approach has been adopted for the assessment of significance of emissions from the proposed development on sensitive ecological habitats in this assessment

The critical criteria approach "can provide an initial estimate of the exceedance of critical loads and levels at specific designated sites and provide a risk assessment of air pollution impacts on the integrity of designated sites." (NPWS, 2022). A crucial component of the critical criteria approach is the use of thresholds or setback distances to exclude projects from detailed impact assessment requirements if a project is not likely to have a significant effect. Thresholds refer typically to a percent contribution of critical level and habitat specific critical loads (NPWS, 2022)

The Institute of Air quality Management (IAQM), which is the professional body for air quality professionals in the UK states:

In the case of Environment Agency permitting, an increment of 1% (or less) of the relevant long term critical level or critical load alone is considered inconsequential. A change of such magnitude, i.e. two orders below the criterion for harm to occur, is challenging to measure (even by the most precise air quality instrument) and difficult to distinguish from natural fluctuations in measured data (due to other variables such as variations in emissions and weather). For this reason, and others, it has been used as a precautionary screening criterion. The 1% threshold has become widely used throughout the air quality assessment profession to define a reasonable quantum of long term pollution which is not likely to be discernible from fluctuations in background/measurements

In Ireland, The Environmental Protection Agency (EPA) guidance entitled *Assessment of the impact of ammonia and nitrogen on Natura 2000 Sites from intensive agricultural installations*. (EPA, 2023) stipulates that the dispersion modelling predictions of emissions of ammonia from intensive agricultural facilities at sensitive ecological locations on Natura 2000 sites should be assessed against a threshold of 1% of:

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

- The critical load of nitrogen
- The critical level for ammonia.

PACK)

The predicted concentrations of ammonia and rates of deposition of nitrogen (calculated as total deposition of nitrogen resulting from emissions of ammonia and oxides of nitrogen from the proposed development) at modelled sensitive ecological receptor locations for the proposed development in isolation were assessed against threshold of 1% of:

- The critical load of nitrogen
- The critical level for ammonia.

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final
Table 2
 The conservation objective of each Natura 2000 site with nitrogen sensitive habitat(s) and the applicable deposition limit

Natura 2000 Site	Concernation Objective with Nitremen Dependition Limit	Deposition Limit
Natura 2000 Site	Conservation Objective with Nitrogen Deposition Limit	kg/ha/yr
	Mudflats and sandflats not covered by seawater at low tide [1140]	None Published
Deldevile Devi SAC	Salicornia and other annuals colonising mud and sand [1310]	×20
Baldoyle Bay SAC	Atlantic salt meadows (Glauco-Puccinellietalia maritimae) [1330]	20
	Mediterranean salt meadows (Juncetalia maritimi) [1410]	20
Baldoyle Bay SPA	None Listed	
Malahide Estuary SPA	None Listed	
	Mudflats and sandflats not covered by seawater at low tide [1140]	None Published
	Salicornia and other annuals colonising mud and sand [1310]	20
Molohido Estuary SAC	Atlantic salt meadows (Glauco-Puccinellietalia maritimae) [1330]	20
Malalide Estuary SAC	Mediterranean salt meadows (Juncetalia maritimi) [1410]	20
	Shifting dunes along the shoreline with Ammophila arenaria (white dunes) [2120]	10
	Fixed coastal dunes with herbaceous vegetation (grey dunes) [2130]	10
Rogerstown Estuary SPA	None Listed	
	Estuaries [1130]	20
	Mudflats and sandflats not covered by seawater at low tide [1140]	None Published
	Salicornia and other annuals colonising mud and sand [1310]	20
Rogerstown Estuary SAC	Atlantic salt meadows (Glauco-Puccinellietalia maritimae) [1330]	20
	Mediterranean salt meadows (Juncetalia maritimi) [1410]	20
	Shifting dunes along the shoreline with Ammophila arenaria (white dunes) [2120]	10
	Fixed coastal dunes with herbaceous vegetation (grey dunes) [2130]	10
Lambay Island SPA	None Listed	
Lambay Island SAC	Vegetated sea cliffs of the Atlantic and Baltic coasts [1230]	8
Rockabill to Dalkey SAC	None Listed	

		PA	
Noturo 2000 Site	Concernation Objective with Nitwerren Deposition Limit	C.	Deposition Limit
Natura 2000 Site	Conservation Objective with Nitrogen Deposition Limit	in the second se	kg/ha/yr
Rockabill SPA	None Listed	Ň.	
Skerries Island SPA	None Listed	78	
River Nanny Estuary and Shore SPA	None Listed		2
			POLX.

The lowest deposition limit applicable to each Natura 2000 habitat was adopted in the modelling assessment. The ECEIVED. nitrogen deposition limit adopted for each habitat is presented in Table 3.

Natura 2000 Site	Deposition Limit Adopted
Baldoyle Bay SAC	20
Baldoyle Bay SPA	30
Malahide Estuary SPA	30
Malahide Estuary SAC	10
Rogerstown Estuary SPA	30
Rogerstown Estuary SAC	10
Lambay Island SPA	30
Lambay Island SAC	8
Rockabill to Dalkey SAC	30
Rockabill SPA	30
Skerries Island SPA	30
River Nanny Estuary and Shore SPA	30

Table 3 The nitrogen deposition limit adopted for each habitat

3.4 Odour assessment limits

In 2020, the EPA issued its updated guidance document air quality impact assessment (known as AG4). Appendix H of this document provides guidance that is specific to the assessment of odour impacts using dispersion modelling techniques.

In relation to the odour assessment criteria. AG4 states:

Currently there is no general statutory odour standard in Ireland relating to industrial installations.

Guidance from the UK (EA, 2011, and adapted for Irish EPA use) recommends that odour standards should vary from 1.5 - 6.0 OUE/m3 as a 98th%ile of one hour averaging periods at the worst-case sensitive receptor based on the offensiveness of the odour and with adjustments for local factors such as population density...

Table A4 of AG4 contains indicative odour standards based on offensiveness of odour that have been adapted for use in Ireland. Relevant aspects are reproduced as follows:

- The most offensive odours should be assessed against an Indicative Criterion of 1.5 OU_E/m³ as a 98th%ile of hourly averages at the worst-case sensitive receptor
- Moderately offensive odours should be assessed against an Indicative Criterion of 3.0 OUE/m³ as a 98th%ile of hourly averages at the worst-case sensitive receptor
- Less offensive odours should be assessed against an Indicative Criterion of 6.0 OU_E/m³ as a 98th%ile of . hourly averages at the worst-case sensitive receptor.

The industrial sectors that fit into each category are described as follows:

- Most offensive:
 - 0 Processes involving decaying animal or fish remains.
 - Processes involving septic effluent or sludge waste sites including landfills, waste transfer 0 stations and non-green waste composting facilities.

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC - Air Quality Assessment - Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin - Final

- Moderately offensive
 - o Intensive Livestock Rearing
 - Fat Frying / Meat Cooking (Food Processing)
 - o Animal Feed
 - o Sugar Beet Processing
 - Well aerated green waste composting.
- Less offensive
 - o Brewery / Grain / Oats Production
 - o Coffee Roasting
 - o Bakery
 - o Confectionery.

PECEINED. 78-72/2028

The sources of odour at the proposed development predominantly fall into the moderately offensive category as the majority of feedstock at the site is silage, poultry manure and cattle manure. Baseline odours, considered in this assessment are predominantly from the cattle lairage area immediately north of the site. A small fraction of odours generated at the adjacent food processing facility fall in to the most offensive category (e.g. from the balance tank and the sludge handling area of the wastewater treatment plant at the adjacent food processing facility). These odours fall into the moderately offensive category. A small fraction of feedstock will result in odours that fall into the most offensive category. Emissions from this feedstock will be treated in the OCU, which in addition to reducing the concentration of odour in the air exhausted, will also change the character of the odour making it less offensive. Odours generated from digestate also have the potential to fall into the most offensive category, however this is unlikely as the dewatering process will have the effect of reducing the odour generating potential of digestate.

The assessment adopted a highly conservative approach with the combined effect of all odours generated at the Site being considered in the context of the criteria for the most offensive odours of C98, 1-hour $\leq 1.5 \text{ ou}_{\text{E}}/\text{m}^3$.

4. EXISTING ENVIRONMENT

4.1 Local terrain and land-use

PECENED The proposed development is in a rural location surrounded by pasture. The rural landuse surrounding the site and its proximity to residential towns and villages is evident in Figure 1.

The terrain of the site and surrounding area is rolling rural with gently undulating areas or relatively flat land. site has an elevation of approximately 55 metres (m) above sea level. There are no major features in the region that would affect local wind flows.

4.2 Local meteorology

Meteorological parameters recorded at the closest Met Eireann Observation Station to the site at Dublin Airport were extracted and processed to assess meteorological conditions.

The observation station at Dublin Airport is approximately 13 km southwest of the site and approximately 60 m above sea level. Dublin Airport is in a relatively flat part of Ireland with terrain that gently slopes from the higher ground to the west down to the Irish Sea to the east. The land between the observation station and the site is also primarily flat. The general climate (in terms of temperature, relative humidity and rainfall) and local meteorological conditions that affect dispersion (predominantly wind speed and direction) at Dublin Airport would provide a highly indicative representation of climate at the site.

The data from the observation station at Dublin Airport is considered representative of the site due to:

- The similar nature of the terrain at both locations
- The similar nature of land use at both locations
- The absence of major terrain features between the observation station and the site. •

Wind speed and wind direction are important parameters for the transport and dispersion of air pollutants. Wind roses representing the annual distribution of winds for each year between 2016 and 2020 are presented in Figure 4.

The prevailing wind direction in Ireland is between south and west. It is clear from Figure 4 that these winds have a strong influence on wind patterns at Dublin Airport. Winds at all times of day are dominated by the prevailing wind directions. During the afternoon, winds are stronger than all other times of day as indicated in the diurnal wind roses (Figure 5).

The seasonal distributions of wind speed and wind direction are presented in Figure 6. The strongest winds at Dublin Airport occur most frequently from south to west during the winter. Winds during summer are lighter than during the other seasons. Some southeasterly winds are observed throughout the year and a small proportion of winds occur from the east and northeast during spring.

Katestone Environmental Ireland Ltd DK24007-7 - Country Crest ULC - Air Quality Assessment - Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin - Final

Frequency of counts by wind direction (%)

Figure 4 Wind distribution monitored at Dublin Airport for each year between 2015 and 2019

Frequency of counts by wind direction (%)

Figure 5 Diurnal wind distribution at Dublin Airport between 2015 and 2019

Katestone Environmental Ireland Ltd DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

Frequency of counts by wind direction (%)

Figure 6 Seasonal wind distribution at Dublin Airport between 2015 and 2019

4.3 Background air quality

Under the Clean Air for Europe Directive, EU member states must designate "Zones" for the purpose of managing air quality. In Ireland, four zones are defined in the Ambient Air Quality Standards Regulations 2022 (Irish Statute Book, 2023).

Dublin is defined as Zone A and Cork as Zone B. Zone C is composed of 23 towns with a population of greater than 15,000. The remainder of the country, which represents rural Ireland but also includes all towns with a population of less than 15,000, is defined as Zone D.

The proposed development is in a rural area of Zone D. It is located within 300 m of the Zone C Area surrounding Balbriggan and Balrothery however the closest built up residential areas of Zone C at Balrothery is 4 km north of the site. The residential areas of the Zone D town of Lusk are approximately 2 km south of the site. The Zone A area of Swords is approximately 9 km south of the site.

Urban monitoring at locations in Zone D towns shows significantly higher baseline levels of air contaminants compared with monitoring locations in Zone D rural areas. Research published by the EPA demonstrates that

Katestone Environmental Ireland Ltd DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

baseline air quality levels outside of Zone D towns falls with distance, dropping to levels that are typical of Zone D rural areas within 2 km of residential areas of these towns (Donnelly, 2019).

Considering the proximity of the study area to residential areas of Zone A, Zone C and Zone D, air contaminant levels adopted to define baseline air quality in the study area level considered monitoring data from Zone D and the closest air monitoring stations on EPA's Air Monitoring Network to the study area in Zone A including data from:

- EPA's Air monitoring Station at Swords (10 km South of the site)
- EPA's Air monitoring Station at Dublin Airport (13 km South of the site)

This is considered to provide a conservative representation of baseline air quality in the study area. A description of the conservative assumptions are described for each air contaminant used to develop baseline air quality for the study area.

Background air quality data for Zone D was obtained from five reports:

- Air Quality in Ireland 2019 Indicators of Air Quality (EPA, 2020)
- Air Quality in Ireland 2020 Indicators of Air Quality (EPA, 2021)
- Air Quality in Ireland 2021 Indicators of Air Quality (EPA, 2022)
- Air Quality in Ireland 2022 Indicators of Air Quality (EPA, 2023)
- Air Quality in Ireland 2023 Indicators of Air Quality (EPA, 2024).

A summary of the background data that is relevant to the study area for the proposed development is provided in Table 4.

The relevant 1-hour average limit value for NO₂ is 200 μ g/m³ which is not to be exceeded more than 18 times in a calendar year. In 2022 a single 1-hour average concentration of 179 μ g/m³ was recorded in Zone D at Emo. This value is clearly an outlier for Zone D (including monitoring locations in Zone D towns) as it was the only 1-hour average value reported above 140 μ g/m³ between 2019 and 2023 for any rural Zone D location. The maximum 1-hour average concentration of NO₂ recorded at Emo in 2022 was therefore not considered in this assessment as the measured concentration is an outlier that overestimates typical maximum 1-hour average concentration of NO₂ in Zone D locations.

The 2nd highest 1-hour concentration of NO₂ recorded at a Zone D monitoring location between 2019 and 2023 also provides a conservative indication of maximum NO₂ levels recorded at the closest two Zone A monitoring locations to the site which are EPA's Swords ambient air monitoring site and at EPA's Dublin Airport Authority's ambient air monitoring station. Between 2019 and 2022 the maximum 1-hour average concentration of NO₂ observed at either of these Zone A locations was 114.2 μ g/m³. In 2023 a solitary 1-hour NO₂ monitoring observation above 140 μ g/m³ was observed at each of these two Zone A monitoring locations including 158 μ g/m³ at Dublin Airport and 149.4 μ g/m³ at Swords. At Swords, no other 1-hour average concentration of NO₂ above 100 μ g/m³ was observed in 2023. At Dublin Airport, there were three additional hours where the observed 1-hour average concentration of NO₂ was above 100 μ g/m³ in 2023.

This analysis indicates that observed 1-hour average concentration of NO₂ above 100 μ g/m³ in Zone D and at the closest Zone A monitoring locations closest to the site are outliers. The value of 111.7 μ g/m³ adopted as a baseline indication of NO₂ at the site is therefore considered to be a highly conservative indication of 1-hour average NO₂ levels in the study area.

The relevant annual average limit value for NO₂ is 40 μ g/m³. The maximum annual average concentration of NO₂ from any Zone D location (including monitoring locations in Zone D towns) between 2019 and 2023 was conservatively adopted as the baseline level of NO₂ for the study area. The annual average concentration of NO₂ adopted for the study area is considered conservative because:

• The study area is in a rural area, with the closest residential areas approximately 2.0 km from the site.

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

The highest annual average concentration of NO₂ observed at the closest Zone A monitoring location at EPA's Swords ambient air monitoring site between 2019 and 2023 was 15 pp/m³. Considering the proximity of the site and study area from residential areas and from Zone A, baseline, ambient levels of NO₂ in the study area are likely to be significant lower than the values adopted here.

Zone D monitoring locations on EPA's national monitoring network are predominantly located in urban areas of Zone D. The use of solid fuels such as wood, turf and coal is common in these urban areas for residential mating. The Solid Fuel Regulations came into effect on 31st October 2022 for the entire country which results in a barron the use of smoky coals in all counties of Ireland. This will have a positive effect on particulate matter levels in Zone D areas in the coming years as the used of smoky coal ceases. The impact of this change in regulations would not be immediate from 31st October 2022 as reserves of smoky coal are used up and wood and turf burning continues in many Zone D towns. Adopting observed levels of particulate matter from urban areas of Zone D would not significantly overestimate levels of particulate matter in the study area due to its predominant rural nature and proximity to Dublin City where the use of smoky coal has been prohibited since 1990. Baseline air quality in the study area was therefore developed based on observations from rural areas of Zone D and from monitoring locations in smaller urban areas of Zone D including Carrick-on-Shannon, Askeaton, Claremorris, Kilkitt and Malin Head. The baseline levels of particulate matter adopted in the modelling assessment for these locations were the maximum annual average and the third highest 24-hour average value observed from monitoring between 2019 and 2023.

In relation to PM_{10} , the Ambient Air Quality Standards Regulations 2022 states that the 50 µg/m³ daily limit value may not be breached more than 35 times in a calendar year. EPA does not report a daily limit that can be adopted as a baseline for modelled ground level concentrations of PM_{10} . UK DEFRA and EPA advise that the 36th high 24-hour mean process contribution can be added to the annual mean background PM_{10} to determine the cumulative daily impacts of PM_{10} from localised sources with background.

Air quality monitoring at the locations considered indicate that between 2019 and 2023 there were two 24-hour periods when the level of PM_{10} exceeded 50 µg/m³. The monitoring indicates that at the locations considered, the occasions when the 50 µg/m³ daily limit value are significant outliers and are well within the allowable frequency of exceedances of 35 times in a calendar year. The two 24-hour periods when the level of PM_{10} exceeded 50 µg/m³ was therefore not considered in the development of baseline PM_{10} .

The baseline levels of PM_{10} adopted in the modelling assessment were compared to observed levels of PM_{10} at the closest Zone A monitoring location to the site at Dublin Airport between 2020 and 2023. The annual average level of PM_{10} at Dublin Airport was 13 µg/m³. The maximum 24-hour level of PM_{10} observed was 55.5 µg/m³, which was the solitary 24-hour average observation that exceeded the 50 µg/m³ daily limit value at Dublin Airport. The second highest 24-hour level of PM_{10} observed between 2020 and 2023 was 40.0 µg/m³.

Considering the proximity of the site and study area from residential areas and from Zone A, baseline ambient levels of PM₁₀ in the study area are likely to be significant lower than the baseline levels adopted here.

In relation to PM_{2.5}, annual average baseline levels were developed based on rural Zone D locations for the reasons described earlier in this section. The baseline level adopted is based on monitoring locations at Shannon Estuary/Askeaton, Co. Limerick, and Carrick-on-Shannon.

The baseline levels of $PM_{2.5}$ adopted in the modelling assessment were compared to observed levels of $PM_{2.5}$ at the closest Zone A monitoring location to the site at Dublin Airport between 2020 and 2023. The maximum annual average level of $PM_{2.5}$ at Dublin Airport was 6.7 µg/m³.

Ambient levels of SO₂ in Ireland have generally declined over the past number of years. This decline is due, to the ban on bituminous coal in the larger cities and towns of Ireland, the switch away from coal towards oil and gas, and to the reduction in the sulphur content of fuel oil in order to comply with EU directives. EPA monitoring indicates that SO₂ levels in Zone D locations are well below the statutory daily and annual limits specified in the Ambient Air Quality Standards Regulations 2022. Since 2019, there have been two exceedances of the 1-hour limit for SO₂ at EPA's Letterkenny monitoring location. Baseline levels of SO₂ were adopted as the maximum levels of SO₂

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

observation at Zone D locations between 2019 and 2023, with the exception of observations at EPA's Letterkenny monitoring location.

The baseline levels of SO₂ adopted as a baseline were compared to observed levels of SO₂ at the closest Zone A monitoring location to the site at Dublin Airport between 2020 and 2023. The maximum 1-hour, daily and annual average level of SO₂ at Dublin Airport between 2020 and 2023 were 5.8 μ g/m³, 20.7 μ g/m³ and 48.4 μ g/m³ respectively. These levels indicate that the baseline values adopted in the modelling assessment provide a conservative indication of SO₂ levels within the study area.

Pollutant	Averaging period	Value (µg/m³)	Source
	1-hour	111.7	2 nd highest 1-hour average observed concentration of NO ₂ from any Zone D Location between 2019 and 2023
Nillogen dioxide	Annual	17	The maximum annual average concentration of NO ₂ from any Zone D Location between 2019 and 2023
DM	24-hour	41.2 ¹	Third highest value from Carrick-on- Shannon, Askeaton, Claremorris, Kilkitt and Malin Head between 2019 and 2023
PM ₁₀ Annual	Annual	12.8	Maximum from Carrick-on-Shannon, Askeaton, Claremorris, Kilkitt and Malin Head between 2019 and 2023
PM _{2.5}	Annual	7.0	Maximum from Carrick-on-Shannon, Askeaton, Shannon Estuary or Malin Head between 2019 and 2023
	1-hour	103.2	Maximum from Zone D (excluding Letterkenny observations) between 2019 and 2023
Sulphur Dioxide	24-hour	27.8	Maximum from Zone D (excluding Letterkenny observations) between 2019 and 2023
	Annual	6.3	Maximum from Zone D (excluding Letterkenny observations) between 2019 and 2023
Carbon Monoxide	8-hour	3,700	Maximum concentration measured at any Zone A, Zone B, Zone C or Zone D location between 2019 and 2023

Table 4 Ambient background data

Note:

 1 UK DEFRA and EPA advise that the 36th high 24-hour mean process contribution can be added to the annual mean background PM_{10} for modelling purposes

The baseline levels or air contaminants within the study area may be elevated above typical regional levels due to the presence of adjacent facilities which have sources that exhaust emissions to the atmosphere. Considering the nature of the adjacent facilities being a food processing facility which requires heat in the form of steam that is delivered by an onsite boiler with emission exhausted through an onsite stack and a cattle yard that will have associated emissions of odour, these facilities were considered in the development of baseline air quality levels.

The sources at these facilities included in the dispersion modelling assessment are described in Section 5.

Baseline levels of NO₂ within the modelling domain due to existing local sources and a conservative representation of the regional baseline is presented as a contour plot in Plate 4 (1-hour average) and Plate 5 (annual average) levels of NO₂.

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

4.4 Sensitive receptors

4.4.1 Residential/Commercial locations

PECEIVED. The sensitive residential/commercial receptors that are nearest to the site are presented in Figure 7.76 closest sensitive receptors are approximately 300 m south and Southeast of the site boundary. The closest sensitive receptors are isolated and clustered rural dwellings. The closest sensitive receptors in all directions from the facility were included in the dispersion modelling assessment.

Figure 7 Modelled residential/commercial discrete receptor locations

4.4.2 Sensitive Ecological Locations

The sensitive ecological receptors included in the dispersion modelling assessment are at ecologically sensitive locations on Natura 2000 sites within 15 km of the proposed development.

The sensitive receptor locations included in the dispersion modelling assessment are at points on Natura 2000 sites and at woodlands including:

- Rogerstown Estuary SPA at 4.4 km from the proposed development
- Rogerstown Estuary SAC at 4.4 at 4.4 km from the proposed development •
- Skerries Islands SPA at 5.5 at 4.4 km from the proposed development •
- Rockabill to Dalkey Island SAC at 6.6 at 4.4 km from the proposed development •
- Rockabill SPA at 7.5 at 4.4 km from the proposed development •
- Malahide Estuary SPA at 7.95 at 4.4 km from the proposed development

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC - Air Quality Assessment - Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin - Final

- Malahide Estuary SAC at 7.9 at 4.4 km from the proposed development •
- Lambay Island SPA at 10.5 at 4.4 km from the proposed development
- Lambay Island SAC at 10.7 at 4.4 km from the proposed development •
- River Nanny Estuary and Shore SPA at 11.9 at 4.4 km from the proposed development •
- Baldoyle Bay SAC at 14.2 at 4.4 km from the proposed development •
- Baldoyle Bay SPA at 14.3 at 4.4 km from the proposed development

RECEIVED. TO THROPS The sensitive ecological receptor locations includes in the modelling assessment are presented in Figure 8. The Natura 2000 site(s) at each modelled location is presented in Table 5.

Figure 8 Modelled ecological receptors and discrete receptor locations representing these ecological receptors

Table 5 The Natura 2000 site(s) at each modelled location

Discrete receptor	Natura 2000 site(s) at this point
DR1	Baldoyle Bay SAC
DR2	Baldoyle Bay SPA
DR3	Malahide Estuary SPA and Malahide Estuary SAC
DR4	Malahide Estuary SPA and Malahide Estuary SAC
DR5	Malahide Estuary SPA and Malahide Estuary SAC
DR6	Malahide Estuary SPA and Malahide Estuary SAC
DR7	Malahide Estuary SPA and Malahide Estuary SAC
DR8	Malahide Estuary SPA and Malahide Estuary SAC

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

Discrete receptor	Natura 2000 site(s) at this point
DR9	Malahide Estuary SAC
DR10	Rogerstown Estuary SPA and Rogerstown Estuary SAC
DR11	Rogerstown Estuary SPA and Rogerstown Estuary SA
DR12	Rogerstown Estuary SPA and Rogerstown Estuary SAC
DR13	Rogerstown Estuary SPA and Rogerstown Estuary SAC
DR14	Rogerstown Estuary SPA and Rogerstown Estuary SAC
DR15	Rogerstown Estuary SPA and Rogerstown Estuary SAC
DR16	Rogerstown Estuary SPA and Rogerstown Estuary SAC
DR17	Lambay Island SPA and Lambay Island SAC
DR18	Rockabill to Dalkey SAC
DR19	Rockabill to Dalkey SAC
DR20	Rockabill to Dalkey SAC
DR21	Rockabill to Dalkey SAC and Rockabill SPA
DR22	Skerries Island SPA
DR23	Skerries Island SPA
DR24	Skerries Island SPA
DR25	River Nanny Estuary and Shore SPA

5. AIR QUALITY ASSESSMENT

5.1 Methodology

PECENED

The methodology is based on a dispersion modelling study incorporating source characteristics and operational activity data with meteorological data that is representative of the site and surrounding region. The assessment has been prepared in accordance with industry standards, regulatory requirements and best practice approaches.

The assessment methodology has included:

- Selection of relevant air quality and odour assessment criteria.
- Relevant ammonia and nitrogen deposition assessment
- Derivation of an emissions inventory for onsite sources based on their design, capacity and monitoring reports.
- Derivation of an emissions inventory for sources at adjacent facilities based on their design, capacity and monitoring reports.
- Characterisation of regional and local meteorology.
- Characterisation of meteorological conditions in the region and generation of a representative meteorological dataset using observations from Dublin Airport.
- Dispersion modelling using the regulatory dispersion model, AERMOD, to predict ground-level concentrations of air contaminants across a Cartesian grid that covers the study area.
- Comparison of the predicted ground-level concentrations of air contaminants against the relevant air contaminant assessment.
- Comparison of the predicted ground-level concentrations of ammonia and nitrogen deposition against limits for significance of impact

The air contaminants included in the assessment were nitrogen dioxide (NO₂), Oxides of Nitrogen (NO_x), ammonia (NH₃) and odour. Particulate matter (PM) including PM₁₀ (fine particulate matter with an aerodynamic diameter \leq 10 µm) and PM_{2.5} (fine particulate matter with an aerodynamic diameter \leq 2.5 µm), carbon monoxide (CO) and sulphur dioxide (SO₂), were not included directly in the modelling assessment due to the limited nature of emissions of these air contaminants from the proposed development.

The combustion of gas (including natural gas, LPG and biogas) in small scale energy generation units (the energy generation units at the site are all less than 1 MW) is not associated with the generation of significant quantities of particulate matter. The biogas will be desulphurised before combustion at the site. Trace quantities of gaseous contaminants sulphides and mercaptans will be removed from the biogas by this process. Desulphurised biogas results in limited potential for the generation of emissions of SO₂.

 SO_2 , CO and PM emissions will not result in exceedances of the air quality criteria on the modelling domain due to the limited potential for the generation of emissions from the combustion of biogas, low baseline levels of SO_2 and PM and considerable setback distance between combustion sources and the closest sensitive locations (minimum of 500 m).

The potential impact of odour emissions from onsite sources in combination with sources of odour at adjacent facilities have also been considered.

The potential impact of airborne emissions of ammonia have been considered in terms of the significance of impacts at Natura 2000 sites within 15 km of the proposed development.

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

The potential impact of nitrogen deposition resulting from emissions of ammonia and oxides of nitrogen from the proposed development, that deposit on Natura 2000 sites within 15 km of the proposed development has been considered in terms of the significance of impacts at Natura 2000.

The following sections describes the dispersion modelling methodology that was adopted to assess the potential impacts of air contaminants and odour.

The approach to modelling sources at the proposed development is described in Section 5.5.1.1.

There are sources of emissions at adjacent facilities that will contribute to baseline levels of air contaminants and odour within the modelling domain. The approach to modelling sources at adjacent facilities is described in Section 5.5.1.2.

5.2 Meteorological modelling

The EPA's Air Dispersion Modelling Guidance Note (AG4) (EPA, 2020b) states:

"The dispersion process is dependent on the underlying meteorological conditions and ensuring that the air dispersion model includes representative meteorological data is critical.

The USEPA (24) has defined meteorological representativeness as:

"the extent to which a set of {meteorological} measurements taken in a space-time domain reflects the actual conditions in the same or different space-time domain taken on a scale appropriate for a specific application"

and has expanded on this definition by outlining the factors to consider in the selection of appropriate meteorological data:

- Proximity of the meteorological station to the modelling domain;
- The complexity of the terrain;
- The exposure of the meteorological monitoring site;
- The period of time during which data is collected."

Data gathered at Dublin Airport is likely to be representative of meteorological conditions at the Site as defined in AG4.

AERMET is a general-purpose meteorological preprocessor for organizing meteorological data into a format suitable for use by the AERMOD air quality dispersion model.

The AERMET meteorological pre-processor was configured with surface data from Dublin Airport and upper air data from Castor Bay in Co. Down and used to generate a meteorological file suitable for use in the AERMOD dispersion model.

AERMET requires inputs of roughness length (Z_o), Bowen ratio and Albedo. The AERMET User's Guide stipulates that Z_o should be determined based on land cover within a 1.0 km radius of the meteorological site. If the value of Z_o varies significantly by direction, then sector dependency should be used. Sector width should be >= 30°.

The Bowen ratio and Albedo should be determined based on land cover within a 10 km x 10 km domain. A simple unweighted mean has been used for the Albedo and a weighted geometric mean for the Bowen ratio as required by the AERMET User's Guide (USEPA (2019).

The approach to determine these parameters is described in Appendix A.

Katestone Environmental Ireland Ltd DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

5.3 Sources of Emissions

5.3.1 Sources of emissions at the proposed development

RECEIVED. The sources of combustion emissions at the proposed development considered in the dispersion modelling assessment include:

- The biogas fired boilers
- The biogas fired CHP Unit.

The emergency flare was not included in the dispersion modelling assessment. This is because the flare will only operate when combustion equipment is offline which is likely to be less than 2% of the time. Predicted impacts of combustion emissions from the boilers and the CHP unit will provide a conservative indication of the level of impacts for the highly intermittent operation of the flare.

The sources of odour emissions at the proposed development included in the dispersion modelling assessment include:

- The OCU Stack
- The dewatered digestate storage area.

5.3.2 Sources of emissions at facilities adjacent to the proposed development

5.3.2.1 Adjacent Food Processing Facility

The source of combustion emissions at the adjacent food processing facility considered in the dispersion modelling assessment include the onsite duty boiler and burners used to regulate the temperature in the onion storage shed. There is a standby boiler operating that the adjacent food processing facility however it only operates when the duty boiler is offline. It was therefore not included in the modelling assessment.

The sources of odour emissions at the adjacent food processing facility included in the dispersion modelling assessment are:

- Unit treatment processes at the wastewater treatment plant at the site including:
 - The balance tank 0
 - 0 The aeration tank
 - The sludge tank 0
 - The sludge dewatering plant 0
 - The clarifier 0
 - The dewatered digestate storage area. 0

These odours have a similar character to the odours of feedstocks that will be accepted at the proposed development and were therefore included in the dispersion modelling assessment.

5.3.2.2 Adjacent Cattle Yard

The sources of odour emissions at the adjacent cattle yard that have been included in the dispersion modelling assessment are:

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC - Air Quality Assessment - Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin - Final

- The cattle lairage area (two rows of enclosure pens that run along each side of the centralised feed • channel in the cattle lairage building)
- The dung storage area. •

These odours have a similar character to the odours of feedstocks that will be accepted at the proposed (2) DOLA development and were therefore included in the dispersion modelling assessment.

5.4 Development of an emissions inventory

The onsite sources included in the modelling assessment are presented in Table 6.

Table 6 Onsite sources of emissions included in the modelling assessment

Source	Model ID	Emissions modelled		
Sources of combustion				
Anaerobic Digestion Biogas Boiler 1	ADBoil1	Combustion emissions, ammonia		
Anaerobic Digestion Biogas Boiler 2	ADBoil2	Combustion emissions, ammonia		
Anaerobic Digestion Biogas CHP Unit	ADCHP	Combustion emissions, ammonia		
Non-combustion sources				
Odour Control Unit	OCUStack	Odour, ammonia		
De-watered Digestate Storage Area	Digestate	Odour, ammonia		

The ssources of emissions at adjacent facilities included in the modelling assessment are present in Table 7.

Table 7 Onsite sources of emissions included in the modelling assessment

Source	Model ID	Emissions modelled	
Non-combustion sources - Adjacent food processing facility			
Aeration Tank	Aeration	Odour	
Balance Tank	Balance	Odour	
Sludge Holding	Sludge	Odour	
Sludge Tank	SludgeT	Odour	
Clarifier	Clarifier	Odour	
Sources of combustic	on - Adjacent fo	bod processing facility	
Duty Boiler	Boiler	Combustion emissions	
Onion Store	Onion	Combustion emissions	
Non-combustion sources - Adjacent cattle yard			
Dung Store	Dung	Odour, ammonia	
Lairage 1	Lair1	Odour, ammonia	
Lairage 2	Lair2	Odour, ammonia	

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC - Air Quality Assessment - Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin - Final

5.4.1 Combustion emissions (including ammonia)

5.4.1.1 Onsite Sources

5.4.1.1.1 Biogas boilers

There will be two Veissmann Vitoplex 200 (Viessman, 2018) biogas boilers at the site, each with a thermal output capacity of 560 kW.

The emission rate of NO_x was derived for the biogas boiler as the product of:

- The thermal input of the boiler at rated capacity.
- The emission limits specified in Medium Combustion Plant (MCP) Directive for new plant (Annex II, Part 2, Table 1) for NO_x.

The emission rate of carbon monoxide was derived using emission factors published by the European Environment Agency (EEA) in conjunction with the European Monitoring and Evaluation Programme (EMEP) in the EMEP/EEA air pollutant emission inventory guidebook 2019 (EMEP/EEA, 2023). The emission rate of each air contaminant was calculated as the product of:

- The maximum energy input rate
- The emission factor published in EMEP/EEA, 2019 for that air contaminant. .

The emission rates of air contaminants based on this maximum energy input are presented inTable 8.

Table 8 Emission rates adopted in the dispersion modelling assessment for each biogas fired boiler at the Site

Parameter	Value	Unit
Thermal Output	560	kWh
Boiler Efficiency	90%	
Energy Input requirement ¹	622	KWh
Maximum energy input to burner ²	0.000622	GJ/s
Natural Gas Net Calorific Value ³	35.67	MJ/m ³
Biogas Calorific Value ⁴	21.402	MJ/m ³
Fuel Factor (flue gas generated) - Natural Gas ⁵	0.24	m³/MJ
Total Flue Gas Generated (273.1K, 101.3Kpa, 0% O ₂)	0.160905	m³/s
Total Flue Gas Generated (273.1K, 101.3Kpa, 3% O ₂)	0.187723	m³/s
Emission limit - NOx ⁶	200	mg/Nm³
Emission Factor – CO ⁷	29	g/GJ
Emission limit - NH3 ⁸	5	mg/Nm³
Emission rate - NO _x ²	0.037545	g/s
Emission Rate - CO ²	0.018038	g/s
Emission Rate - NH ₃	0.000939	g/s

¹ Calculated based on the assumed energy efficiency and the rated thermal output at nominal capacity

² Calculated based on the maximum energy input requirements

³ SEAI (2024) <u>https://www.seai.ie/data-and-insights/seai-statistics/conversion-factors</u>
 ⁴ calculated based on the assumption that the biogas will be 60% methane and 40% carbon dioxide

⁵ Exhaust velocity calculated in accordance with EPA approved methodology described in Annex E of EN ISO 16911-1 assuming an airflow fuel factor of 0.24 m³/MJ for gas (reported at standard temperature and pressure and 0% oxygen)

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin - Final

Parameter	Value	∧ Unit	
 ⁶ The boiler will comply with emission limit values (ELVs) specified in the Medium Combustion Plant (MCP) Directive for new plant ((Annex II, Part 2, Table 1) ⁷ Tier 1 Emission factor reported for NFR source categories 1.A.4.a/c using gaseous fuels including commercial institutional sources reported in Table 3.8 of EMEP/EEA (2023) ⁶ The boiler will comply with the typical emission limit values (ELVs) specified in EPA licences for boilers burning biogas in treated imit for the boiler is at reference conditions of 3% On dry. 273 15°C and 101 325 kPA 			
Details of source characterisation as configured in the dispersion model are provided in Section 5.5.			

There will be a single IET Energy CHP at the site that will operate from a containerized unit. The generator is a Leroy Somer Model LSA 47.2 L2 and the Engine is a MAN E 3262 LE 242 with a maximum rated output of 450 kW. The thermal system uses water as a heat carrier and has a maximum rated thermal output of 497 kW.

Emissions were calculated based on the exhaust air flowrate supplied by the manufacturer. The emission limit values were adopted from an identical containerised CHP unit (Shenton Group Cento 430 Biogas Containerised Unit, which used an identical engine, generator and heat exchange system) that is marketed by a different manufacturer (Shenton Group, 2023)

The emission rates of air contaminants based on this maximum energy input are presented in Table 9.

Parameter	Value	Unit
Total Flue Gas Generated (0°C, 101.3, 0%O ₂) ¹	0.50	Nm³/s
Total Flue Gas Generated (0°C, 101.3, 5%O ₂) ²	0.66	m³/s
Concentration - NOx (ELV @ 5%O ₂) ³	500	mg/Nm³
Concentration - CO (ELV @ 5%O ₂) ³	650	mg/Nm³
Concentration - NH3 (ELV @ 5%O ₂) ⁴	5	mg/Nm³
Emission rate (NO _x) ²	0.328	g/s
Emission rate (CO) ²	0.427	g/s
Emission rate (NH ₃) ²	0.0033	g/s
¹ IET Energy (2021)		

Table 9 Emission rates adopted in the dispersion modelling assessment for the CHP unit at the Site

² Calculated

³ ELV adopted from an identical CHP unit marketed by Shenton Group – The Cento 430 Biogas Containerised Unit. https://www.shentongroup.co.uk/wp-content/uploads/2020/05/Cento-430-Datasheet-BIO-Cont.-sc-p-Rev1.pdf ⁴ Ammonia ELV adopted by EPA for biogas combustion sources at AD plants in Ireland (specified limit for the CHP unit is at

reference conditions of 5% O₂, dry, 273.15°C and 101,325 kPA)

Details of source characterisation as configured in the dispersion model are provided in Section 5.5.2.1.

5.4.1.2 Sources at adjacent food processing facility

The source of combustion emissions at the adjacent food processing facility considered in the dispersion modelling assessment include the onsite duty boiler and burners used to regulate the temperature in the onion storage shed. There is a standby boiler operating at the adjacent food processing facility, which only operates when the duty boiler is offline. It was, therefore, not included in the modelling assessment. The fuel used in combustion sources at the adjacent food processing facility is natural gas.

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC - Air Quality Assessment - Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin - Final

5.4.1.2.1 Duty boiler

The duty boiler at the adjacent food processing facility is a natural gas fired Yorkshireman X4000 boiler with rated thermal output of 2508 kW. The burner attached to the boiler is a Unigas Model H365x.

The emission rates of air contaminants based on this maximum energy input are presented in Table 109

Table 10 Emission rates adopted in the dispersion modelling assessment for the duty boiler at the Adjacent Food Processing Facility

Parameter	Value	Unit
Thermal Output ¹	3,650	kWh
Maximum natural gas combustion rate ¹	386	m³/hr
Natural Gas Net Calorific Value ²	35.67	Mj/m³
Maximum natural gas combustion rate ³	13,769	MJ/h
Maximum natural gas combustion rate ³	3.8	MJ/s
Maximum natural gas combustion rate ³	3,825	KJ/s
Maximum natural gas combustion rate ³	3,825	kW
Maximum natural gas combustion rate per hour ³	3,825	kWh
Fuel Factor (flue gas generated) - Natural Gas ⁴	0.24	m³/MJ
Flue Gas generated (0% O ₂ , dry, 273.15, 101,325 kPA) ³	0.9	Nm³/s
Flue Gas generated (3% O ² , dry, 273.15, 101,325 kPA) ³	1.1	m³/s
Emission limit value – NO _x ⁵	200	mg/Nm³
Emission Factor – CO ⁶	29	g/GJ
Emission rate - NO _x	0.21	g/s
Emission rate - CO	0.111	g/s

¹ Maximum thermal output of the burner attached to the boiler as specified by the manufacturer

² SEAI (2024) <u>https://www.seai.ie/data-and-insights/seai-statistics/conversion-factors</u>

³Calculated based on the maximum energy input requirements

⁴ Exhaust air flowrate calculated in accordance with EPA approved methodology described in Annex E of EN ISO 16911-1 assuming an airflow fuel factor of 0.24 m³/MJ for gas (reported at standard temperature and pressure and 0% oxygen)
 ⁵ The boiler will comply with emission limit values (ELVs) specified in the Medium Combustion Plant (MCP) Directive for new

plant ((Annex II, Part 2, Table 1) ⁶ Tier 1 Emission factor reported for NFR source categories 1.A.4.a/c using gaseous fuels including commercial institutional sources reported in Table 3.8 of EMEP/EEA (2023)

Details of source characterisation as configured in the dispersion model are provided in Section 5.5.3.1.

5.4.1.2.2 Onion burners

The adjacent food processing facility includes a large onion storage shed. Onions placed in the onion storage shed are cured at the start of the storage which involves blowing warm air over the onions to maximize storage life and quality of the onions. The heated air is supplied by 12 burners. The burners are natural gas fired Master CF75 units supplied by Dantherm Group.

The emission rates of air contaminants based on the maximum energy input for all of the 12 burners are presented in Table 11.

Table 11Emission rates adopted in the dispersion modelling assessment for all 12 burners at
the onion store at the Adjacent Food Processing Facility

DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

Parameter	Value	Unit
Output (per burner) ¹	75 C	kW
Max Natural Gas Combustion (per burner) ¹	7.7	m³/hr
Natural Gas Net Calorific Value ²	35.67	MJ/m ³
Max Natural Gas Combustion ³	274.7	M3/p
Max Natural Gas Combustion ³	7.63E-05	GJ/s
Emission factor – NO _x ⁴	74	g/GJ
Emission factor - CO ⁴	29	g/GJ
Emission Rate - NOx (all 12 units operating) ³	0.067749	g/s
Emission Rate - CO (all 12 units operating) ³	0.02655	g/s
¹ Maximum thermal output and gas usage rate of the burner as specified by the mai ² SEAI (2024) <u>https://www.seai.ie/data-and-insights/seai-statistics/conversion-factor</u> ³ Calculated based on the maximum energy input requirements	nufacturer <u>s</u>	

⁴ Tier 1 Emission factor reported for NFR source categories 1.A.4.a/c using gaseous fuels including commercial institutional sources reported in Table 3.8 of EMEP/EEA (2023)

5.4.2 Odour Emissions (including ammonia where applicable)

The odour emission rates adopted in the modelling assessment for the proposed development and from local sources that were included as part of the development of baseline odour levels are presented in this section. Emissions of ammonia from onsite non-combustion sources are also presented in this section.

5.4.2.1 Onsite sources.

The sources of odour emissions adopted to represent onsite sources are presented in this section. The sources of emissions include:

- The OCU
- The dewatered digestate storage area.

The odour emission rate for the OCU was calculated based on the exhaust air flowrate of the stack and the emission limit value for odour (maximum odour concentration) of the air that has passed through the OCU. The odour emission rate for the OCU stack is presented in Table 12.

Table 12The odour and ammonia emission rate adopted for the odour control unit at the
proposed development

Parameter	Value	Unit					
Total Air Flowrate ¹	26,384	m³/hr					
Total Air Flowrate ¹	7.3	m³/s					
Odour ELV ²	1,000	ou/m³					
Odour emission rate ³	7,329	ou/s					
Ammonia ELV 10 mg/m²							
Ammonia ER	0.0733	g/s					
¹ Calculated as based on maintaining 2 air changes per hour in the feedstock reception building							

² A typical and readily achievable ELV adopted for odour control units treating air from material reception buildings at AD plants

plants ³ Calculated based on the relevant ELV and the total air flowrate

⁴ Ammonia ELV adopted by EPA for odour control units operating at AD plants in Ireland (specified limit for the OCU unit is at reference conditions of wet, 273.15°C and 101,325 kPA)

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

Katestone completed a comprehensive review of the literature to determine a suitable odour emission rate from the dewatered digestate storage area. The predominant feedstock that will be used to produce digestate at the site is sileage. Katestone was unable to source an odour emission rate from digestate produced for an AD plant with sileage as the predominant feedstock. There is limited published data specifying odour emission rates for digestate. Katestone sourced an odour emission rate from a report conducted by the James Hutton Institute in Scotland that measured odour emission rates from a range of sewage sludge cakes, including a sewage sludge cake that was used as a feedstock in an AD plant, which was dewatered after the AD process.

The odour emission rate was measured for sludge cake at 4-5 weeks and at 12 weeks. The geometric mean odour emission rate of the dewatered sludge cake that was processed in an AD plant was:

- 15.4 ou_E/m²/s with 95 percent confidence levels ranging from 9.7 to 24.3 ou_E/m²/s for 4-5 week sludge
- 9.0 ou_E/m²/s with 95 percent confidence levels ranging from 5.7 to 14.3 ou_E/m²/s for 12 week sludge.

Katestone conservatively adopted a specific odour emission rate of 24.3 ou_E/m²/s for all sludge stored in the digestate storage area of the proposed development.

This is considered to be a conservative as:

- It is the maximum of the 95th percentile confidence range of the odour samples reported in James Hutton Institute (2018).
- The digestate at the proposed development will be generated using energy crops and is therefore likely to be significantly less odorous than digestate sludge generated using sludge from a municipal waste water treatment plant.

Katestone also completed a comprehensive review of the literature to determine a suitable odour emission rate from the dewatered digestate storage area. There is limited data available on ammonia emission rates from digestate storage areas. Katestone sourced an odour emission rate from a report conducted in Italy (Zillo *et al.*, 2020).

Zillo *et al.* (2020) presented measured ammonia emission rates from one lagoon and three open tanks. The lagoon and one of the open tanks stored slurry. The material stored in two of the open tanks included:

- Tank 3: digestate from pig slurry and energy crops
- Tank 4: digestate from pig and cow slurries plus energy crop.

Ammonia sampling was conducted across the four seasons over the course of two years.

The research indicates that the average ammonia emission rate is:

- $30.68 \pm 28.1 \text{ g N-NH3 m-2 d -1}$ (equivalent to $0.000355 \text{ g NH}_3 \text{ m}^{-2} \text{ s}^{-1}$) from Tank 3
- 15.74 ± 21.91 g N-NH3 m-2 (equivalent to 0.000182 g NH₃ m⁻² s⁻¹) from Tank 4

The research indicates that temperature is the main predictor of ammonia emitted, with emissions being significantly higher in warmer seasons compared to colder winter months.

The ammonia emission rate adopted in the modelling assessment was the average value reported for digestate stored in Tank 3.

This is considered to be a conservative indication of emissions of ammonia from the de-watered sludge storage area as:

• Sludge will be predominantly stored in this area during the winter period. The average ammonia emission rated presented included measurements from sludge kept in storage during Italian summertime conditions, which would significantly increase average emission rates.

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

• The dewatering process is likely to significantly reduce emissions from the digestate.

The odour and ammonia emission rate adopted in the dispersion modelling assessment of the is presented in Table 13.

Table 13	The odour and ammonia emission rate adopted for the de-watered	sludge storage
	area at the proposed development	75

Parameter	Value	Unit
Maximum source length	85	m
Maximum source width	9.75	m
Maximum source surface area	828.75	m²
SOER	24.3	ou _E /m²/s
OER	20,139	ou _E /s
Specific NH₃ emission rate	0.000355	g/m²/s
NH ₃ emission rate	0.294	g/s

5.4.2.2 Sources at adjacent food processing facility

The odour emission rates of sources at the adjacent food processing facility considered in the dispersion modelling assessment are presented in this section. The sources included have odours with a similar character to the odours from the proposed development and include unit treatment processes at the wastewater treatment plant including:

- The balance tank
- The sludge holding tank
- The sludge handling area
- The aeration tank
- The clarifier.

Sources at the adjacent food processing facility with a characteristic cooking type odour were not included in the modelling assessment.

The odour emission rates adopted for each of the sources at the adjacent Food Processing Facility are presented in Table 14.

Table 14The odour emission rate adopted for sources at the Adjacent Food Processing
Facility

Source	Model Source ID	Surface Area	SOER	OER
Source	Model Source ID	m²	ou _E /m²/s	ou _E /s
Balance Tank	Balance	28.3	100 ¹	2,827
Aeration Tank	Aeration	176.7	6.1 ²	1,078
Clarifier	Clarifier	19.6	6.1 ²	120
Sludge Holding Tank	SludgeT	19.6	100 ³	1,963
Sludge Processing Area	Sludge	114.7	33.3 ^{3,4}	3,825

¹ A review of literature found no specific odour emissions rates that have been measured at the balance tank for a wastewater plant in accordance with European Standards for Olfactometry. Katestone therefore adopted a highly conservative value for this source. The odour emission rate adopted is considered conservative as it comparable to the highest specific odour emission rate measured for raw disturbed municipal sludge at an aged sludge storage facility in Ireland. During a site visit, Micheal Fogarty from Katestone observed that the intensity of odour in the vicinity of the balance

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

Sauraa	Surface Area		SOFR	OER			
	Model Source ID	m²	ou _E /m²/s	ou _E /s			
tank at the Adjacent Food Processing Facility was considerable less than the odour perceived in the vicinity of the sludge storage facility from which measurements were taken ² The SOER for the aerobic tank and clarifier are based on measurements from a poultry processing plant at Ballyhaunis, Mayo (Odour Monitoring Ireland, 2007). ³ Katestone was unable to find a SOER for dewatered sludge from wastewater generated at a food processing plant taken in accordance with European Standard EN13725. This SOER was adopted from a measurement taken from the sludge cake storage at the Carrick-on-Shannon municipal sewage treatment works. The OER measured was 1,200 ou _E /s from a cake storage area of 18 m ²							
for processing sludge. The exposed s conservatively assumed that the expo adjusted to reflect the fraction of mod	urface of the sludge is a sma used sludge surfaces make u elled area that contains expo	all fraction of the area p one third of the bu sed sludge surface	a modelled in AERN ilding area modelled	IOD. It was d. The SOER was			

5.4.2.3 Sources at the Adjacent Cattle Yard

The odour emission rates of sources at the adjacent cattle yard considered in the dispersion modelling assessment are presented in this section. The sources include odours with a similar character to the odours from the proposed development and include:

- The cattle lairage area (split into two areas to represent the rows of pens that house cattle on each side of a central feeding passage)
- The dung store.

Table 15The odour emission rate adopted for sources at the Adjacent Food Processing
Facility

Source	Madal Source ID	Surface Area	SOER	OER
	Model Source ID	m²	ou _E /m²/s	ou _E /s
Lairage area (Row1)	Lair1	652.6	10 ¹	6526
Lairage area (Row2)	Lair2	656.4	10 ¹	6564
Dung Store	Dung	249.2	20	4985

¹ Based on the conservative odour emission rate used in the SCAIL model for 'Slurry - Circular Store with a low tech cover. The SCAIL model is a conservative screening tool adopted by EPA in Ireland for the assessment of impacts from intensive agricultural operations. Slurry in the lairage area is stored in a tank below the lairage area that is partially covered with slats. Emissions of odour from open tanks are heavily influenced by wind as it blows across the exposed surface area. The exposed surface area of slurry in the shed is not exposed to such conditions due to the slatted floor above the slurry tanks and the roofed building that encloses the slatted area.

¹ Based on the conservative odour emission rate used in the SCAIL model for 'Slurry - Circular Store with no Cover.

Katestone Environmental Ireland Ltd DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

5.5 **Dispersion modelling**

The dispersion modelling was conducted in accordance with recognised techniques specified in EPA's Air Dispersion Modelling Guidance Note (AG4). AERMOD was used to predict ground-level concentrations of air a. 78/12/2024 contaminants across the model domain due to sources at the site.

5.5.1 Modelled sources

5.5.1.1 Proposed Development

The odour control unit, biogas fired boilers and the biogas fired CHP unit at the proposed development were configured in the dispersion modelling assessment as a point sources.

It was conservatively assumed that all modelled point sources at the proposed development operate continuously 24-hours per day, 365 days per year.

The dewatered digestate storage area at the proposed development was configured in the dispersion modelling assessment as an area source. Dewatered digestate storage will be limited to times of the year when organic fertilisers cannot be land spread due to regulatory restrictions that prohibit land spreading activities. It was conservatively assumed that sludge will be stored in the months of January and February and from September to December of each modelled year. It was assumed that the dewatered digestate storage area will be full for January, October, November and December and half full in September and February.

5.5.1.2 Sources at Adjacent Facilities

The duty boiler and the onion burners at the adjacent food processing facility were included in the dispersion modelling assessment as a point source and a volume source respectively.

The following sources at the adjacent food processing facility were included in the dispersion modelling assessment as area sources:

- The balance tank
- The aeration tank .
- The sludge tank •
- The sludge dewatering plant
- The clarifier.

It was conservatively assumed that all modelled point, area and volume sources at the adjacent food processing facility operate continuously 24-hours per day, 365 days per year.

The lairage area and the dung storage area at the adjacent cattle yard were included in the dispersion modelling assessment as area sources

It was conservatively assumed that all modelled point, area and volume sources at the adjacent food processing facility and the adjacent cattle yard operate continuously 24-hours per day, 365 days per year.

Katestone Environmental Ireland Ltd DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin - Final

5.5.2 Source Parameters – proposed development

5.5.2.1 Point sources

The parameters used to represent the odour control unit, biogas fired boilers and the biogas fired CHP unit at the proposed development in the dispersion modelling assessment are presented in Table 16.

Table 16Dispersion modelling parameters used to represent the odour control unit, biogas
fired boilers and the biogas fired CHP unit at the proposed development in the
dispersion modelling assessment

Source	Eastin g	Northin g	Base Elevation ¹	Height	Temperature ²	Exit Velocity ²	Diameter 2
Source	UTM (m)	UTM (m)	m	m	к	m/s	m
Odour control unit	687464	5936965	54.0	14.2	288.2	14.6	0.80
Biogas fired boiler1	687410	5936937	54.3	6.0	453.2	6.8	0.25
Biogas fired boiler2	687418	5936938	54.3	6.0	453.2	6.8	0.25
Biogas fired CHP	687421	5936942	54.3	6.0	423.2	25.0	0.25
¹ Adapted from site plan and elevation drawings ² Adopted from manufacturer supplied documents							

5.5.2.2 Area Source

The coordinates used to represent the de-watered digestate storage area at the proposed development in the dispersion modelling assessment are presented in Table 17.

Table 17Dispersion modelling coordinates used to represent the de-watered digestate
storage area at the proposed development in the dispersion modelling assessment

Source ID	X-Vertex 1	X-Vertex 2	X-Vertex 3	X-Vertex 4	Y-Vertex 1	Y-Vertex 2	Y-Vertex 3	Y-Vertex
	(m)	4 (m)						
Digestate	687,550	687,552	687,634	687,632	5,936,895	5,936,905	5,936,885	5,936,876

The coordinates used to represent the de-watered digestate storage area at the proposed development in the dispersion modelling assessment are presented in Table 18.

Table 18Dispersion modelling parameters used to represent the de-watered digestate storage
area at the proposed development in the dispersion modelling assessment

Source ID	Elevation (m) ¹	Effective Height (m)	Sigma-z (m)³				
Digestate	54	2.50 ²	0.23				
¹ Adapted from site plan and elevation drawings ² Adopted form site plans – wall height of storage area clamps							

³ Assumes the plume generated extends 1 m above the surface of the de-watered digestate storage area. Sigma z was calculated based on this value divided by 4.3

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

5.5.3 Source Parameters – adjacent food processing facility

The parameters used to represent the duty boiler at the adjacent food processing facility in the dispersion modelling assessment are presented in Table 19.

Table 19 Dispersion modelling parameters used to represent the odour control unit, biogas fired boilers and the biogas fired CHP unit at the proposed development in the dispersion modelling assessment

Sourco	Easting	Northin g	Base Elevation ¹	Height	Temperature 2	Exit Velocity ²	Diameter 2
Source	UTM (m)	UTM (m)	m	m	K	m/s	m
Duty Boiler	687155	5936865	48.7	8.7	373.2	11.5	0.40
¹ Adapted from site plan and elevation drawings							

² Adopted from manufacturer supplied documents

5.5.3.2 Volume source

The parameters used to represent the onion store at the adjacent food processing facility in the dispersion modelling assessment are presented in Table 20.

Table 20 Dispersion modelling parameters used to represent the onion store at the adjacent food processing facility in the dispersion modelling assessment

Source	Easting	Northing	Base Elevation ¹	Height ²	Sigma-z ³	Sigma-y ⁴
Jour Course	UTM (m)	UTM (m)	m	m	m	m
Onion	687322	5936989	54.0	5.8	5.3	23.3

¹ Adapted from site plan and elevation drawings

² Adopted form site plans – height of the onion store is 11.6 m. The initial height of the plume from this source was assumed to be half this height

³ Sigma z was calculated based on the height of the onion store divided by 2.15 in accordance with AERMOD guidance ⁴ Sigma y was calculated based on the length of the onion store (50 m) divided by 2.15 in accordance with AERMOD guidance

5.5.3.3 Area Source

The coordinates used to represent the wastewater treatment plant sources at the adjacent food processing facility in the dispersion modelling assessment are presented in Table 21.

Table 21 Dispersion modelling coordinates used to represent the wastewater treatment plant sources at the adjacent food processing facility in the dispersion modelling assessment

Source ID	X-Vertex 1 (m)	X-Vertex 2 (m)	X-Vertex 3 (m)	X-Vertex 4 (m)	Y-Vertex 1 (m)	Y-Vertex 2 (m)	Y-Vertex 3 (m)	Y-Vertex 4 (m)
Balance	687,194	687,189	687,189	687,194	5,936,866	5,936,865	5,936,871	5,936,871
SludgeT	687,188	687,193	687,193	687,188	5,936,878	5,936,878	5,936,874	5,936,873
Sludge	687,198	687,186	687,185	687,197	5,936,888	5,936,888	5,936,898	5,936,898
Aeration	687,149	687,136	687,137	687,150	5,936,744	5,936,744	5,936,758	5,936,757

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC - Air Quality Assessment - Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin - Final

So	ource	X-Vertex	X-Vertex	X-Vertex	X-Vertex	Y-Vertex	Y-Vertex	Vertex	Y-Vertex
	ID	1 (m)	2 (m)	3 (m)	4 (m)	1 (m)	2 (m)	(m)	4 (m)
CI	arifier	687,141	687,137	687,137	687,142	5,936,762	5,936,762	5,936,767	5,936,767

The coordinates used to represent the de-watered digestate storage area at the proposed development in the dispersion modelling assessment are presented in Table 22.

Table 22 Dispersion modelling parameters used to represent the wastewater treatment plant sources at the adjacent food processing facility in the dispersion modelling assessment

Source ID	Elevation (m) ¹	Effective Height (m) ²	Sigma-z (m) ³
Balance	50.64	7.80	0.23
SludgeT	50.64	4.27	0.23
Sludge	50.64	4.13	0.23
Aeration	44.02	4.93	0.23
Clarifier	44.04	4.05	0.23

¹ Adapted from site plan and elevation drawings

² Adopted form site plans – effective height was adopted based on the height on the source modelled e.g. tank height ³ Assumes the plume generated extends 1 m above the surface of the de-watered digestate storage area. Sigma z was calculated based on this value divided by 4.3

5.5.4 Source Parameters – adjacent cattle yard

5.5.4.1 Area Source

The coordinates used to represent sources at the adjacent cattle yard in the dispersion modelling assessment are presented in Table 23.

Table 23Dispersion modelling coordinates used to represent sources at the adjacent cattle
yard in the dispersion modelling assessment

Source ID	X-Vertex 1 (m)	X-Vertex 2 (m)	X-Vertex 3 (m)	X-Vertex 4 (m)	Y-Vertex 1 (m)	Y-Vertex 2 (m)	Y-Vertex 3 (m)	Y-Vertex 4 (m)
Lair1	687,507	687,448	687,451	687,509	5,937,032	5,937,045	5,937,056	5,937,043
Lair2	687,513	687,454	687,456	687,515	5,937,059	5,937,072	5,937,082	5,937,070
Dung	687,416	687,392	687,395	687,418	5,937,036	5,937,042	5,937,052	5,937,046

The coordinates used to represent the de-watered digestate storage area at the proposed development in the dispersion modelling assessment are presented in Table 24.

Table 24Dispersion modelling parameters used to represent the sources at the adjacent food
processing facility in the dispersion modelling assessment

Source ID	Elevation (m) ¹	Effective Height (m) ²	Sigma-z (m) ³			
Lair1	58.15	0.00	0.23			
Lair2	58.15	0.00	0.23			
Dung 58.06 0.00 0.23						
¹ Adapted from site plan and elevation drawings						

² Sources at the cattle lairage area were assumed to be ground level sources

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

³ Assumes the plume generated extends 1 m above the surface of the de-watered digestate storage area. Sigma z was calculated based on this value divided by 4.3
· 7 ₈₋₄

Katestone Environmental Ireland Ltd DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

5.5.5 Modelling domain

The dispersion modelling included gridded and discrete receptors. Two grids were modelled to determine the potential for adverse impacts at near-by sensitive locations (near-field grid) and at receptors on ecologically protected sites within 15 km of the proposed development (Far-field grid).

The modelling domain for the near field grid was configured as a 4.0 km x 4.0 km cartesian grid centered on the proposed development (UTM Coordinates 687,265, 5936,963). The near field grid was configured with a 25 m resolution. The near field grid is of sufficient size to determine the location of maximum impact that will result from the installation of the modelled sources.

The modelling domain for the far field grid was configured as a 30.0 km x 30.0 km cartesian grid centered on the proposed development (UTM Coordinates 687,265, 5936,963). The far field grid was configured with a 250 m x 250 m resolution. The far field grid is of sufficient size to determine the location of maximum impact that will result from the installation of the modelled sources on sensitive protected ecological habitats.

5.5.6 Modelled Terrain

The model was configured with terrain data derived from the U.S. Geological Survey (USGS) Shuttle Radar Topography Mission (SRTM) dataset. The terrain in this dataset has a resolution of 3 arc-seconds (approximately 90m). The base elevation of sources and buildings at the site were provided based on site specific surveys undertaken by the proponent of the proposed development.

5.5.7 Building Downwash

A plume of a short stack is likely to be down-washed if its height is less than two and a half times the height of nearby buildings within a distance of 10 x L from each source, where L is the lesser of the height or width of the building. A Building Profile Input Program (BPIP) was used to determine the effects of nearby buildings on all point sources of emissions at the configured in the dispersion modelling assessment. The Plume Rise Model Enhancements (PRIME) algorithm is recommended in EPA Guidance for use with AERMOD (EPA, 2020; USEPA, 2017). PRIME was used to determine the effect of building induced turbulence on plumes from point sources at the modelled farms. Building downwash is only applicable to point source of emissions and not to area or volume sources in dispersion models.

The PRIME algorithm takes into account the position of each stack relative to each relevant building and the projected shape of each building for 36 wind directions (at 10° intervals). The model determines the change in plume centreline location with downwind distance based on the slope of the mean streamlines and coupled to a numerical plume rise model.

The coordinates representing the vertices of the buildings included in BPIP are presented in Table B.1 of Appendix B.

5.5.8 Methods for the conversion of NO_x to NO₂

A conservative assessment of NO2 was conducted assuming:

- 50% conversion of NO_x to NO₂ for 1-hour average concentrations of NO₂
- 100% conversion of NO_x to NO₂ for annual average concentrations of NO₂.

This approach follows UK guidance, which is reproduced in Appendix G of EPA's AG4 guidance document. It is considered a conservative representation of potential short-term and long-term impacts of NO₂.

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

5.5.9 Method to consider Nitrogen Deposition

Deposition flux rates of nitrogen at sensitive ecological receptors were estimated based on the predicted concentrations of ammonia and NO_x across the far-field modelled domain and using the following calculation methodology that is described in AG4:

The critical loads in ecologically sensitive areas such as SPAs, SACs and NHAs can be determined using the methodology outlined in the UK publication "AQTAG06 – Technical Guidance on Detailed Modelling Approach For An Appropriate Assessment For Emissions To Air" (Environment Agency, 2014)(64) . The approach is based on using the maximum annual average ground level concentration within the ecologically sensitive area and converting this concentration into a deposition flux based on a chemical species specific deposition velocity (m/s) as outlined in Table A3.

The recommended dry deposition velocities for:

- Ammonia in Table A3 of AG4 are:
 - o 0.02 m/s for grassland
 - 0.03 m/s for forest.
- Nitrogen dioxide in Table A3 of AG4 are:
 - 0.0015 m/s for grassland
 - \circ 0.003 m/s for forest.

Dry deposition flux (μ g m⁻² s⁻¹) is calculated as the product of the ground-level process contribution (μ g/m³) and the deposition velocity (m/s).

The dry deposition velocities adopted in the modelling assessment for all modelled sensitive locations as there is no forestry within the nearby sensitive ecological habitats was:

- 0.02 m/s for ammonia
- 0.0015 m/s for oxides of nitrogen.

Total nitrogen deposition was calculated as the sum of ammonia and NO_x deposition.

Katestone Environmental Ireland Ltd DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

6. ASSESSMENT RESULTS

The following sections present the predicted ground-level concentrations of air contaminants and objur due to the sources of emissions at the proposed development in isolation and in combination with relevant baseline levels of air contaminants. Dispersion modelling has been conducted for five years of meteorological data. The relevant baseline sections present the highest concentrations across the five-year modelled period.

6.1 Odour at Commercial/Residential sensitive receptors

Contour plots presenting the ground-level concentrations of odour resulting from emissions from the proposed development in isolation and in combination with sources from adjacent facilities are presented in the following figures:

- The 98th percentile, 1-hour average ground-level concentrations of odour for the proposed development in isolation in Plate 1.
- The 98th percentile, 1-hour average ground-level concentrations of odour for the proposed development in combination with sources of odour at adjacent facilities in Plate 3.

Ground-level concentrations of odour resulting from emissions from the proposed development in isolation at the modelled discrete receptors are presented in Table 25.

Ground-level concentrations of odour resulting from emissions from the proposed development in combination with sources of odour at adjacent facilities at the modelled discrete receptors are presented in Table 26.

 Table 25
 Ground-level concentrations of odour resulting from emissions from the proposed development in isolation at the modelled discrete receptors

	Concentration of odour			
Receptor	98 Percentile			
	ou _E /m³			
DR1	0.3			
DR2	0.3			
DR3	0.4			
DR4	0.5			
DR5	0.5			
DR6	0.2			
DR7	0.2			
DR8	0.2			
DR9	0.1			
DR10	0.04			
DR11	0.05			
DR12	0.1			
DR13	0.1			
DR14	0.1			
DR15	0.1			
DR16	0.1			
DR17	0.1			
Assessment Criterion	1.5			

Katestone Environmental Ireland Ltd DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

Table 26Ground-level concentrations of odour resulting from emissions from the proposed
development in combination with baseline odour resulting from emissions at
adjacent facilities at the modelled discrete receptors

	Concentration of odour Q			
Receptor	98 Percentile			
	ouɛ/m³			
DR1	1.0			
DR2	0.9			
DR3	0.9			
DR4	1.2			
DR5	1.3			
DR6	0.6			
DR7	0.6			
DR8	0.8			
DR9	0.5			
DR10	0.2			
DR11	0.1			
DR12	0.3			
DR13	0.4			
DR14	0.4			
DR15	0.5			
DR16	0.3			
DR17	0.4			
Assessment Criterion	1.5			

Katestone Environmental Ireland Ltd DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

The results show that predicted concentrations of odour (1-hour, 98^{th} percentile) **comply** with the 1.5 ou_E/m³ criterion at all sensitive receptors in the vicinity of the proposed development.

It should be noted that the assessment is considered highly conservative due to the following assumptions adopted for the odour impact assessment:

- The dewatered sludge storage area is the source of odour with the highest odour emission rate of all sources modelled. The following assumptions were adopted in the dispersion modelling assessment;
 - The maximum observed odour emission rate from similar sources was adopted in the modeling assessment and from this value upper level from the 95th percent confidence limits of uncertainty that results from sensory measurements using olfactometry was adopted for this source.
 - This storage area will be completely full between October and February and half full in September and March. Land spreading organic fertiliser is prohibited in Dublin between mid-October and mid-January (referred to as the closed period). It is likely that the stockpiling of dewatered sludge will commence at the start of the closed period and sludge will be removed for land-spreading at the end of the closed period. The modelled period therefore overestimates the volume of dewatered digestate that will be stored and the period for which it will be stored.
- The 1.5 ou_E/m³ criterion has been adopted, which is applicable to highly offensive odours (such as waste that has been subject to anaerobic degradation). Whilst this criterion is applicable to some feedstocks and sources of odour at the proposed development, it has been applied to all sources, which is likely to overpredict potential odour impacts associated with emissions of odour from:
 - The silage and crop feedstocks that have not been subject to degradation, which are the predominant inputs to the AD process at the proposed development.
 - All sources of emissions at the adjacent cattle yard.
 - Some sources of odour emissions at the adjacent food processing plant such as the aeration tank and the clarifier.

6.2 Air Contaminants at Commercial/Residential sensitive receptors

Contour plots presenting the ground-level concentrations of air contaminants resulting from emissions from the proposed development in isolation are presented in the following figures:

- The 18th highest, 1-hour average ground-level concentrations of NO₂ in Plate 4
- The annual average ground-level concentrations of NO₂ in Plate 5.

Contour plots presenting the ground-level concentrations of air contaminants resulting from emissions from the proposed development in combination with a representative baseline and potential impact from adjacent facilities are presented in the following figures:

- The 18th highest, 1-hour average ground-level concentrations of NO₂ in Plate 8
- The annual average ground-level concentrations of NO₂ in Plate 9.

Ground-level concentrations of air contaminants resulting from emissions from the proposed development in isolation at the modelled discrete receptors are presented in Table 27. Ground-level concentrations of air contaminants resulting from emissions from the proposed development with a representative baseline concentration at the modelled discrete receptors are presented in Table 28.
Table 27	Ground-level concentrations of nitrogen dioxide resulting from emissions from the
	Proposed development in isolation at the modelled discrete receptors
	$\sim 0_{\star}$

NO ₂		
Discrete Receptor	1-hour average, 18 th High	Annual Average
DR1	7.8	0.40
DR2	5.3	0.36
DR3	7.0	0.48
DR4	5.6	0.55
DR5	6.8	0.52
DR6	5.1	0.24
DR7	6.1	0.23
DR8	9.2	0.33
DR9	5.8	0.19
DR10	4.2	0.10
DR11	3.9	0.10
DR12	4.8	0.12
DR13	5.4	0.18
DR14	4.2	0.15
DR15	5.9	0.13
DR16	6.6	0.13
DR17	5.5	0.16
Criteria	200	40

-

Table 28Ground-level concentrations of nitrogen dioxide resulting from emissions from the
proposed development including emissions from adjacent facilities and with a
representative baseline concentration at the modelled discrete receptors

Discrete Descritor	NO ₂		
Discrete Receptor	1-hour average, 18 th High	Annual Average	
DR1	119.5	17.59	
DR2	117.0	17.55	
DR3	118.7	17.70	
DR4	117.3	17.81	
DR5	118.5	17.78	
DR6	116.8	17.41	
DR7	117.8	17.39	
DR8	120.9	17.54	
DR9	117.5	17.37	
DR10	115.9	17.18	
DR11	115.6	17.18	
DR12	116.5	17.22	
DR13	117.1	17.35	
DR14	115.9	17.22	
DR15	117.6	17.21	
DR16	118.3	17.20	
DR17	117.2	17.30	
Criteria	200	40	

Katestone Environmental Ireland Ltd DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

6.3 Air contaminants and nitrogen deposition at sensitive ecological receptors

The potential impacts of emissions from the proposed development at modelled sensitive ecological ocations was assessed based on the significance of potential impacts. If the predicted impact of the proposed development in isolation was determined to be less than 1% of the applicable criterion then it was deemed to be an insignificant impact.

Ground-level concentrations of NO_x and NH₃ resulting from emissions from the proposed development in isolation at the modelled sensitive ecological locations are presented in Table 29.

Predicted nitrogen deposition rates resulting from emissions of NH₃ and NO_x from the proposed development in isolation at the modelled sensitive ecological locations are presented in Table 30.

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

Table 29 Ground-level concentrations of NOx and NH₃ resulting from emissions from the proposed development in isolation at the modelled ecological discrete receptors

ふ

			oncentration	Applicabl	e limit	Percentage of	applicable limit
Ecological Recentor	Natura 2000 Site	NOx	NH ₃	NOx	NH ₃	NOx	NH ₃
Receptor		μg	/m³	μg/m	1 ³		%
DR1	Baldoyle Bay SAC	0.0049	0.0022	30	3	0.02%	0.07%
DR2	Baldoyle Bay SPA	0.0043	0.0010	30	3	0.01%	0.03%
DR3	Malahide Estuary SPA and Malahide Estuary SAC	0.0061	0.0015	30	3	0.02%	0.05%
DR4	Malahide Estuary SPA and Malahide Estuary SAC	0.0087	0.0023	30	3	0.03%	0.08%
DR5	Malahide Estuary SPA and Malahide Estuary SAC	0.0105	0.0030	30	3	0.04%	0.10%
DR6	Malahide Estuary SPA and Malahide Estuary SAC	0.0118	0.0053	30	3	0.04%	0.18%
DR7	Malahide Estuary SPA and Malahide Estuary SAC	0.0105	0.0044	30	3	0.04%	0.15%
DR8	Malahide Estuary SPA and Malahide Estuary SAC	0.0080	0.0024	30	3	0.03%	0.08%
DR9	Malahide Estuary SAC	0.0093	0.0030	30	3	0.03%	0.10%
DR10	Rogerstown Estuary SPA and Rogerstown Estuary SAC	0.0154	0.0061	30	3	0.05%	0.20%
DR11	Rogerstown Estuary SPA and Rogerstown Estuary SAC	0.0207	0.0083	30	3	0.07%	0.28%
DR12	Rogerstown Estuary SPA and Rogerstown Estuary SAC	0.0210	0.0078	30	3	0.07%	0.26%
DR13	Rogerstown Estuary SPA and Rogerstown Estuary SAC	0.0260	0.0089	30	3	0.09%	0.30%
DR14	Rogerstown Estuary SPA and Rogerstown Estuary SAC	0.0218	0.0067	30	3	0.07%	0.22%
DR15	Rogerstown Estuary SPA and Rogerstown Estuary SAC	0.0223	0.0094	30	3	0.07%	0.31%
DR16	Rogerstown Estuary SPA and Rogerstown Estuary SAC	0.0183	0.0073	30	3	0.06%	0.24%
DR17	Lambay Island SPA and Lambay Island SAC	0.0146	0.0065	30	1	0.05%	0.65%
DR18	Rockabill to Dalkey SAC	0.0151	0.0060	30	3	0.05%	0.20%
DR19	Rockabill to Dalkey SAC	0.0208	0.0082	30	3	0.07%	0.27%
DR20	Rockabill to Dalkey SAC	0.0244	0.0103	30	3	0.08%	0.34%
DR21	Rockabill to Dalkey SAC	0.0249	0.0134	30	3	0.08%	0.45%
DR22	Skerries Island SPA	0.0408	0.0203	30	3	0.14%	0.68%
DR23	Skerries Island SPA	0.0293	0.0136	30	3	0.10%	0.45%

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

					PA			
		Predicted C	Predicted Concentration		Applicable limit		Percentage of applicable limit	
Ecological Receptor	Natura 2000 Site	NOx	NH ₃	NOx	NH ₃	NOx	NH ₃	
		μg/m³		μg/m	μg/m³		%	
DR24	Skerries Island SPA	0.0378	0.0208	30	3	0.13%	0.69%	
DR25	River Nanny Estuary and Shore SPA	0.0122	0.0094	30	3	0.04%	0.31%	
						7	2~	
							1×	

 Table 30
 Predicted nitrogen deposition rates resulting from emissions from the proposed development in isolation at the modelled ecological discrete receptors

P

Ecological Receptor	Natura 2000 Site	Predicted N-deposition rate (NH₃ + NOx)	Applicable Limit	Percentage of applicable limit
		kg/ha/year	kg/ha/year	~ %
DR1	Baldoyle Bay SAC	0.0120	20	0006%
DR2	Baldoyle Bay SPA	0.0059	20	0.03%
DR3	Malahide Estuary SPA and Malahide Estuary SAC	0.0088	10	0.09%
DR4	Malahide Estuary SPA and Malahide Estuary SAC	0.0134	10	0.13%
DR5	Malahide Estuary SPA and Malahide Estuary SAC	0.0171	10	0.17%
DR6	Malahide Estuary SPA and Malahide Estuary SAC	0.0292	10	0.29%
DR7	Malahide Estuary SPA and Malahide Estuary SAC	0.0244	10	0.24%
DR8	Malahide Estuary SPA and Malahide Estuary SAC	0.0136	10	0.14%
DR9	Malahide Estuary SAC	0.0167	10	0.17%
DR10	Rogerstown Estuary SPA and Rogerstown Estuary SAC	0.0340	10	0.34%
DR11	Rogerstown Estuary SPA and Rogerstown Estuary SAC	0.0461	10	0.46%
DR12	Rogerstown Estuary SPA and Rogerstown Estuary SAC	0.0438	10	0.44%
DR13	Rogerstown Estuary SPA and Rogerstown Estuary SAC	0.0498	10	0.50%
DR14	Rogerstown Estuary SPA and Rogerstown Estuary SAC	0.0382	10	0.38%
DR15	Rogerstown Estuary SPA and Rogerstown Estuary SAC	0.0519	10	0.52%
DR16	Rogerstown Estuary SPA and Rogerstown Estuary SAC	0.0405	10	0.41%
DR17	Lambay Island SPA and Lambay Island SAC	0.0358	8	0.45%
DR18	Rockabill to Dalkey SAC	0.0336	10	0.34%
DR19	Rockabill to Dalkey SAC	0.0455	10	0.45%
DR20	Rockabill to Dalkey SAC	0.0568	10	0.57%
DR21	Rockabill to Dalkey SAC	0.0735	10	0.73%

		\sim		
Ecological Receptor	Natura 2000 Site	Predicted N-deposition rate (NH ₃ + NOx)	Applicable Lumit	Percentage of applicable limit
		kg/ha/year	kg/ha/year	%
DR22	Skerries Island SPA	0.1116	30 🔇	0.37%
DR23	Skerries Island SPA	0.0748	30	0.25%
DR24	Skerries Island SPA	0.1138	30	0.38%
DR25	River Nanny Estuary and Shore SPA	0.0506	30	0.17%

The results show that:

- Predicted 98th percentile, 1-hour average ground-level concentrations of odour comply with the adopted odour criterion of 1.5 ou_E/m³ at all residential/commercial sensitive receptors included in the modelling assessment for the facility in isolation and in combination with local sources of odour at adjacent facilities.
- Predicted 18th highest 1-hour average ground-level concentrations of NO₂ comply with the air guality criterion of 200 µg/m³ at all areas beyond the site boundary for the operation of sources of emissions at the proposed development in isolation and in combination with local sources of combustion emissions plus a representative ambient background concentration.
- Predicted annual average ground-level concentrations of NO₂ **comply** with the air quality criterion of 40 µg/m³ at all areas beyond the site boundary for the operation of sources of emissions at the proposed development in isolation and in combination with local sources of combustion emissions plus a representative ambient background concentration.
- Predicted concentrations of NO₃ **comply** with the 1% threshold of significance at all sensitive ecological locations for the operation of sources of emissions at the proposed development in isolation.
- Predicted concentrations of NH₃ **comply** with the 1% threshold of significance at all sensitive ecological locations for the operation of sources of emissions at the proposed development in isolation.
- Predicted deposition rates of nitrogen **comply** with the 1% threshold of significance at all sensitive ecological locations for the operation of sources of emissions at the proposed development in isolation.

DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

7. CONCLUSIONS

Katestone was commissioned by Country Crest ULC to complete an air quality assessment of a proposed en. To 12 to 2 anaerobic digestion plant at a site at Collinstown, Co. Dublin.

The air quality assessment considered the impacts of:

- Emissions of odour from the proposed development and adjacent facilities
- Air contaminants from the sources at the site. •
- Air contaminants from the sources at the site in combination with relevant baseline levels of air contaminants for the area and local emissions sources.

The air quality assessment was conducted in accordance with recognised techniques for dispersion modelling specified in EPA's Air Dispersion Modelling Guidance Note (AG4). AERMOD was used to predict ground-level concentrations of odour and air contaminants across the model domain due to sources at the proposed development.

The air assessment found:

- Predicted ground-level concentrations of odour (1-hour average, 98th percentile) comply with the odour assessment criteria adopted for the modelling assessment of 1.5 our/m³ at all sensitive receptors beyond the site boundary for the operation of sources of emissions at the proposed development in isolation and in combination with baseline levels of odour that result from emissions of odour from adjacent facilities.
- Predicted 18th highest 1-hour average ground-level concentrations of NO₂ comply with the air quality criterion of 200 µg/m³ at all areas beyond the site boundary for the operation of sources of emissions at the proposed development in isolation and in combination with a representative ambient background concentration.
- Predicted annual average ground-level concentrations of NO₂ comply with the air quality criterion of 40 µg/m³ at all areas beyond the site boundary for the operation of sources of emissions at the proposed development in isolation and in combination with a representative ambient background concentration.
- Predicted concentrations of NO₃ comply with the 1% threshold of significance at all sensitive ecological locations for the operation of sources of emissions at the proposed development in isolation.
- Predicted concentrations of NH₃ comply with the 1% threshold of significance at all sensitive ecological locations for the operation of sources of emissions at the proposed development in isolation.
- Predicted deposition rates of nitrogen comply with the 1% threshold of significance at all sensitive ecological locations for the operation of sources of emissions at the proposed development in isolation.

8. **REFERENCES**

Byworth Boilers, 2024, Yorkshireman Steam Package Boilers. Parkwood Boiler Works, Parkwood Street, Keighley, West Yorkshire, BD21 4NW, United Kingdom. <u>https://byworth.co.uk/</u>

Dantherm Group, Master Climate Solutions (MCA) CF 75 - CF 75A

DEHLG, 2011, Air Quality Standards Regulations (2011). S.I. No. 180/2011 - Air Quality Standards Regulations 2011. http://www.irishstatutebook.ie/eli/2011/si/180/made/en/print

EHP (2021). Guideline - Odour Impact Assessment from Developments. Department of Environment and Heritage Protection, Queensland Australia. <u>https://environment.des.qld.gov.au/__data/assets/pdf_file/0021/90246/guide-odour-impact-assess-developments.pdf</u>

EMEP/CORINAIR, 2006, Emission Inventory Guidebook - 2006 - Group 2 Non-industrial combustion plants: Small Combustion Installations https://www.eea.europa.eu/publications/EMEPCORINAIR4/B216v2.pdf/view

EMEP/EEA (2023) air pollutant emission inventory guidebook 2019 Part B-1 Energy. Section 1.A.4 Small combustion 20123. <u>https://www.eea.europa.eu/publications/emep-eea-guidebook-2023/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-4-small-combustion/view</u>

EPA (2018) Air Quality in Ireland 2017- Indicators of Air Quality. Environmental Protection Agency, An Ghníomhaireacht um Chaomhnú Comhshaoil, PO Box 3000, Johnstown Castle Estate, County Wexford, Ireland. http://www.epa.ie/pubs/reports/air/quality/Air%20Quality%20In%20Ireland%202017.pdf

EPA (2019) Ireland's National Inventory Report 2018. Environmental Protection Agency. An Ghníomhaireacht um Chaomhnú Comhshaoil PO Box 3000, Johnstown Castle, Co. Wexford, Ireland. http://www.epa.ie/pubs/reports/air/airemissions/ghg/nir2018/Ireland%20NIR%202018.pdf

EPA (2020) Air Dispersion Modelling from Industrial Installations Guidance Note (AG4). Environmental ProtectionAgency,JohnstownCastleEstate,Wexford,Ireland.https://www.epa.ie/pubs/advice/air/emissions/AG4%20Guidance%20note%20for%20web.pdf

EPA (2021) EPA Air quality homepage https://airquality.ie/

EPA (2021) Air Quality in Ireland 2020 - Indicators of Air Quality. Environmental Protection Agency, An Ghníomhaireacht um Chaomhnú Comhshaoil, PO Box 3000, Johnstown Castle Estate, County Wexford, Ireland. http://www.epa.ie/pubs/reports/air/quality/Air%20Quality%20In%20Ireland%202017.pdf

EPA (2021) Air Quality in Ireland 2020 - Summary Data Tables <u>https://www.epa.ie/publications/monitoring-assessment/air/Summary-Data-Tables---2020.pdf</u>

EPA (2021) Air Emissions Monitoring Guidance Note (AG2). Version 7. Environmental Protection Agency, Johnstown Castle Estate, Wexford, Ireland. <u>https://www.epa.ie/publications/compliance--enforcement/air/air-guidance-notes/air-emissions-monitoring-guidance-note-ag2.php</u>

EPA (2022) Air Quality in Ireland 2021 - Summary Data Tables Environmental Protection Agency. An Ghníomhaireacht um Chaomhnú Comhshaoil PO Box 3000, Johnstown Castle, Co. Wexford, Ireland. https://www.epa.ie/publications/monitoring--assessment/air/Summary-Tables-2021-for-Zones-A---D-for-uploadwith-report.xlsx

EPA (2023) Air Quality in Ireland 2022 - Summary Data Tables. Environmental Protection Agency. An Ghníomhaireacht um Chaomhnú Comhshaoil PO Box 3000, Johnstown Castle, Co. Wexford, Ireland. <u>https://www.epa.ie/publications/monitoring--assessment/air/Summary-Tables-2022-for-Zones-A---D-for-upload-with-report-21.09.23.xlsx</u>

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final 17 December 2024 Page 58

18/7

EPA (2023) Licence Application Instruction Note 1 (IN1) - Assessment of the impact of ammonia and nitrogen on Natura 2000 Sites from intensive agricultural installations. Version 2.0 March 2023. Environmental Protection Agency. An Ghníomhaireacht um Chaomhnú Comhshaoil PO Box 3000, Johnstown Castle, 60 Wexford, Ireland. https://www.epa.ie/publications/licensing--permitting/industrial/ied/Assessment-of-Impact-of--Ammonia-and-Nitrogen-on-Natura-sites-from-Intensive-Agriculture-Installations-2023.pdf

IAQM. (2020). A guide to the assessment of air quality impacts on designated nature conservation sites. Institute of Air Quality Management. <u>https://iaqm.co.uk/text/guidance/air-gualityimpacts-on-nature-sites-2020.pdf</u>

IET Energy (2021) Technical Data Cogeneration Unit IET-BIO430V01_3262LE242. IET Energy GMBH, Chromstrasse 2, A9500 Villach. 06 May 2021 Revised September 2022.

James Hutton Institute, 2018, A Comparison of Odour Emission Rates from Three Different Types of Sewage Sludge Cakes (Bio-solids). Dr Rupert Hough, The James Hutton Institute, Room 306 Craigiebuckler, Aberdeen, AB15 8QH. Prepared by Steve Peirson, RSK ADAS Ltd, Unit 1, Rubicon Square, 4205 Park Approach, Park, LEEDS, LS15 8GB. 09 July 2018. <u>https://www.gov.scot/binaries/content/documents/documents/content/documents/content/documents/content/documents/assessment/documents/content/documents/content/documents/assessment/documents/content/</u>

NPWS (2022) Kelleghan, D.B., Fogarty, M., Welchman, S., Cummins, T., & Curran, T.P. (2022) Agricultural atmospheric ammonia: identification & assessment of potential impacts. Irish Wildlife Manuals, No. 135. National Parks and Wildlife Service, Department of Housing, Local Government and Heritage, Ireland

Official Journal of the European Union, Directive (EU) 2015/2193 of the European Parliment and of the Council of 25 November 2015 on the limitation of emissions of certain pollutants into the air from medium combustion plants. https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32015L2193

Reillo, 2012, Riello, Light oil burners (Installation, use and maintenance instructions) - Version 2916069 (6) - September 2012. <u>https://www.rielloburners.co.uk/images/content/downloads/RL70_2916069-6.pdf</u>

Shenton Group, 2023, <u>https://www.shentongroup.co.uk/wp-content/uploads/2020/05/Cento-430-Datasheet-BIO-Cont.-sc-p-Rev1.pdf</u>

SNIFFER, 2014, SCAIL-Agriculture update. Sniffer ER26: Final Report. March 2014. Edinburgh Quay, 133 Fountainbridge, Edinburgh, EH3 9AG. <u>http://www.scail.ceh.ac.uk/agriculture/Sniffer%20ER26_SCAIL-Agriculture%20USER%20GUIDE%20Final%20Issue%2011032014.pdf</u>

Thorpe Unigas, 2020, H365X, H440X and H500X LMV5x. Microprocessor controlled. Gas burners. M039552CA Rel 0,3 12/2020

Unigas, 2020, H365X, H440X and H500X LMV5x. Microprocessor controlled. Gas burners. M039552CA Rel 0,3 12/2020

Viessman, 2020, Oil/Gas Boilers. Technical guide. Version 5822426 GB April 2020. Viessmann Limited,
Hortonwood 30, Telford, Shropshire, TF1 7YP, GB.
https://cdn0.scrvt.com/2828ebc457efab95be01dd36047e3b52/f4fdbcc1ca7c41d0/149174ef3ada/5822426VPA00
012_1 vitoplex 200 technical guide.PDF

Viessmann Limited (2018) Viessman Vitoplex 200. Low Temperature Oil/Gas. 90 to 560 kW. Type SX2A. Hortonwood 30, Telford, Shropshire, TF1 7YP, UK

Katestone Environmental Ireland Ltd DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

APPENDIX A METEOROLOGICAL MODELLING METHODOLOGY

A1 CALCULATION OF Z0 AND THE ALBEDO AND BOWEN RATIO

According to the AERMET/AERMOD user guides, the Albedo and Bowen ratio should be determined from land use within a 10 km x 10 km rectangle centred on the meteorological station and roughness length, Z_0 , should be determined based on land cover within a 1.0 km radius from the meteorological station. If the value of Z0varies significantly by direction, sector dependency should be used with sector width >= 30°. The meteorological data were recorded at Dublin Airport. Details of the meteorological station are listed in Table A.1.

Table A.1	Parameters describing the I	ocation of the meteorological station at Dublin Airport
	Parameter	Value

Parameter	Value
Met. station name/identifier	Dublin Airport
Latitude (°)	53.428
Longitude (°)	-6.241
Easting (m)	683301
Northing (m)	5923429
UTM Zone	29 U
Altitude (m, AHD)	71

A1.1 Calculation of Z₀

From the aerial view in Figure A1, the land use within a 1 km radius is predominantly the airport with some cleared land (grassland) and industrial infrastructure (airport hangers, passenger terminals). The sector boundaries, land use, seasonal Z_0 values for each sector and individual sector weights are presented in Table A.2.

Table A.2 Sector boundaries and seasonal Z₀ values

Sector	WDir-1	WDir-2	Summer	Autumn	Winter	Spring
A	29	94	0.112	0.112	0.112	0.112
В	94	138	0.070	0.070	0.070	0.070
С	138	225	0.083	0.027	0.009	0.059
D	225	276	0.070	0.070	0.070	0.070
E	276	306	0.082	0.030	0.011	0.061
F	306	338	0.173	0.130	0.097	0.159
G	338	29	0.070	0.070	0.070	0.070

Figure A1 Land use in the vicinity of the meteorological monitoring site at Dublin Airport

Katestone Environmental Ireland Ltd DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

A1.2 Calculation of Albedo and Bowen Ratio

These should be determined based on land cover within a 10km x 10km domain with no need for sector dependency. A weighted geometric mean should be used to determine the Bowen ratio and a weighted arithmetic mean for the albedo which is subsequently used to calculate the diurnal variation.

From the 10 km aerial view shown in Figure A2, it is evident that the main land use groups are low density residential, industrial/commercial and grass (cleared land). The land use fractions and seasonal Albedo and Bowen ratios are summarized in the Table A.3 and Table A.4.

Figure A2 Land cover within a 10km x 10km domain of Dublin Airport monitoring location

Table A.3 Seasonal Albedo values

Table A.3	Seasonal Albedo values	A A A A A A A A A A A A A A A A A A A	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Land use	Fraction	C. C
	Airports	0.062	FD.
Qu	arries/Strip mines, gravel	0.007	18-1
l	_ow intensity residential	0.304	22
	Industrial/commercial	0.088	2
	Grassland	0.539	

Table A.4 Seasonal Bowen Ratio values

Land use	Summer	Autumn	Winter	Spring
Albedo Arithmetic Weighted Average	0.174	0.174	0.191	0.174
Bowen Ratio Geometric Mean	0.883	1.066	1.066	0.608

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

METEOROLOGICAL MODELLING METHODOLOGY APPENDIX B

Building ID in BPIP	Building Coordinates		Base Elevation	Building Height (max
	x-coord (m)	y-coord (m)	(m)	(m) <u>2</u>
	687186	5936813	- 48	9.75
_	687107	5936812		
Processing New	687108	5936843		
	687187	5936843		
	687162	5936864		
	687147	5936863	10.07	
Boiler Room	687147	5936874	48.65	7.66
	687162	5936875		
	687137	5936866		3.05
	687124	5936865	47.24	
ESB	687124	5936869		
	687137	5936870		
	687108	5936779	48	0.50
	687109	5936812		
Proposed Building	687186	5936813		8.58
	687185	5936780		
	687187	5936864	50.64	8.25
	687185	5936901		
WWIP	687198	5936902		
	687201	5936864		
	687223	5936865		8.6
	687210	5936864	50.50	
Cold Store	687207	5936902	50.52	
	687221	5936902		
Entrance Building	687139	5936929		7.15
	687119	5936928	52.9	
	687119	5936947		
	687138	5936948		
	687232	5936887		
Store1	687232	5936899	51.35	9.24
	687268	5936898		

Table B.1 Buildings and associated parameters included in BPIP

Katestone Environmental Ireland Ltd

DK24007-7 - Country Crest ULC – Air Quality Assessment – Proposed Anaerobic Digestion Plant at Collinstown, Co. Dublin – Final

Building ID in BPIP	Building Coordinates		Base Elevation	Building Height (max)
	x-coord (m)	y-coord (m)	(m)	(m)
	687268	5936886		TES .
	687376	5936901		. 7.0.
	687250	5936910	50.00	7.11
Potato Store 2	687252	5936942	52.22	7.44
	687379	5936934		
	687328	5936894		
	687274	5936898	50.00	7.44
Potato Store 2a	687276	5936908	52.22	7.44
	687328	5936904		
	687306	5937035		
	687282	5937035	50.00	0.0
Store2	687283	5937048	58.68	8.3
	687306	5937047		
	687415	5937036		6.37
5 0	687392	5937042	58.06	
Dung Store	687394	5937052		
	687418	5937047		
	687424	5937050	- 58.02	9.3
	687396	5937057		
Maize Store	687401	5937079		
	687429	5937073		
	687426	5937085	-	6.53
	687403	5937091		
Meal Store	687405	5937101	58.58	
	687428	5937096		
	687510	5937028		8.03
	687444	5937043	50.45	
Cattle Shed	687453	5937084	58.15	
	687519	5937070		
Shed1	687511	5937078	- 58.08 6.16	
	687481	5937085		
	687484	5937097		6.16
	687513	5937091		
01 10	687530	5937071	50	0.00
Shed2	687534	5937086	58 6.26	6.26

	Building C	oordinates	Base Elevation	Building Height (max)
Building ID in BPIP	x-coord (m)	y-coord (m)	(m)	(m)
	687557	5937081		TES .
	687554	5937065		
	687523	5937043	-	12,202
Store?	687528	5937066		
Stores	687555	5937061	56.07	0.30
	687549	5937037		
	687527	5937013		
Stored	687517	5937015	E7.00	7
510164	687520	5937029	57.99	/
	687530	5937027		
	687351	5936963		
	687290	5936966		
	687291	5937018		11.5
Onion Store	687353	5937014	F 4	
Union Store	687353	5936995	- 54	
	687360	5936994		
	687360	5936981		
	687352	5936982		
	687272	5936992		7.44
	687237	5936992		
Datata Otana	687239	5937094	- 55	
Potato Store	687229	5937094		
	687229	5937109		
	687272	5937108		
	687329	5937099	61.2	12
	687330	5937112		
Barn	687373	5937111		
	687373	5937086		
	687349	5937086		
	687349	5937099		
	687127	5936889		
	687126	5936920		
Processing 1	687158	5936923	52.9	7.15
	687158	5936930		
	687176	5936931		

Building ID in PDID	Building Coordinates		Base Elevation	Building Height (max)
Building ID in BPIP	x-coord (m)	y-coord (m)	(m)	(m)
	687176	5936924		ES .
	687203	5936925		
	687204	5936914		2
	687195	5936914		LON LON
	687196	5936906		
	687182	5936905		
	687182	5936893		
	687229	5936934		
	687139	5936929		
	687136	5936977	50.0	7.45
Office 1	687170	5936979	52.9	7.15
	687170	5936961		
	687226	5936964		
	687529	5936861		8.7
05 - 10	687505	5936863	51	
Sned3	687505	5936878		
	687530	5936877		
	687412	5936977	- 55.4	
055 0	687405	5936983		_
Office2	687414	5936994		5
	687421	5936988		
	687412	5936934		
Dellard	687410	5936933		2.26
Bolleri	687408	5936939	54.3	
	687411	5936940	-	
	687416	5936935	-	2.20
Distribution	687414	5936934		
Distribution	687412	5936940	54.3	2.20
	687414	5936941	-	
Boiler2	687420	5936936		
	687417	5936935	E4 0	2.06
	687416	5936941	54.3	2.20
	687418	5936941		
	687424	5936937	54.0	A
CHP	687421	5936936	54.3 4	4

Building ID in BDID	Building Coordinates		Base Elevation	Building Height (max)
Building ID in BPIP	x-coord (m)	y-coord (m)	(m)	(m)
	687419	5936945		NES .
	687422	5936945		
	687427	5936938	- 54.3	4
Curitable a and	687425	5936937		
Switchboard	687424	5936943		
	687426	5936943		
	687461	5936954		
Comisso	687434	5936934	54.4	0
Services	687430	5936940	54.4	0
	687457	5936959		
	687499	5936945		
1-4-1	687464	5936954	F 4	10.0
птаке	687473	5936989	54	12.2
	687508	5936980		
	687472	5936986	- 54	12.2
0011	687466	5936963		
OCU	687458	5936965		
	687464	5936988		
	687490	5936906	- 51	7
	687454	5936904		
ADTank	687451	5936946		
	687486	5936948		
	687489	5936868		
Divertete	687460	5936868	51	12.5
Digestate	687460	5936898		
	687489	5936899		
	687418	5936912		7
GUU	687414	5936928	53.6	
	687433	5936933		
	687437	5936916		
	687422	5936900	- 52.7 2.5	
	687420	5936909		
Injection	687436	5936913		2.5
-	687438	5936904		
ESB_N	687424	5936893	52.7	3.3

	Building C	oordinates	Base Elevation	Building Height (max)
Building ID in BPIP	x-coord (m)	y-coord (m)	(m)	(m)
	687423	5936897		TES .
	687440	5936901		
	687441	5936897		12
	687500	5936946		, CS
Tapk	687503	5936957	51	4.5
Tank	687524	5936952	51	4.5
	687521	5936941		
	687520	5936936		
Punkor	687524	5936952	51	0.2
Duikei	687532	5936950	51	9.0
	687528	5936934		

Attachment 4.2 Transportation Assessment & Mobility Management Plan

consulting engineers

Transportation Assessment Report Incl., Preliminary Mobility Management Plan (Appendix F)

for

Anaerobic Digestion Plant

At

Collinstown , Lusk, Co. Dublin.

On Behalf of "Country Crest ULC"

SUBMISSION ISSUE

5th Floor, 40 Mespil Road, Ballsbridge, Dublin 4 Tel: +353 1 292 1941, E-mail: info@nrb.ie, Web: <u>www.nrb.ie</u>

Registered in Ireland No. 491679

Contents

		Contents Rectify	
Page	Section	Description	
2		Executive Summary	22001
4	1.0	Introduction	X
6	2.0	Development Proposals Existing Conditions & Parking	
11	3.0	Vehicular Trip Generation Assignment and Distribution	
15	4.0	Traffic Impact - Traffic Capacity Analysis	
18	5.0	Conclusions	

Appendices.....

Α	Proposed Development – Layout & Access
В	2022 Raw Traffic Survey Data Collected
С	TRICS Trip Generation Output (Agri-Industry Developments)
D	Traffic Surveys, Trip Distribution & Traffic Flow Diagrams
Е	PICADY Capacity Model Output – Site Access/L1155 Existing T-Junction
F	Preliminary Planning Stage Mobility Management Plan (aka Travel Plan)

EXECUTIVE SUMMARY

NRB Consulting Engineers Ltd were appointed to address the Traffic & Transportation issues associated with a planning application for an Anaerobic Digestion (AD) Plant, at the long-established Country Crest Business Complex, at Collinstown, Lusk, Co. Dubin.

This Transportation Assessment Report (TA) has been prepared to address the Traffic and Transportation issues associated with the operation of the proposed development, the capacity of the existing road network and the impact of the development locally, conscious that the proposed site uses will generate low traffic volumes in the context of the road network and the long established nature of the business. The assessment takes account of the effect of traffic associated with the 2 x recently permitted and proposed developments on the site (FCC Ref F22A-0077 and F24A/0896E), with the traffic associated with both of these applications considered as 'committed' for assessment purposes.

The Report has been prepared in accordance with TII's Traffic & Transport Assessment Guidelines and addresses the worst case traffic impact of the proposals.

We originally commissioned and undertook 24Hr traffic surveys of the adjacent road network at a time when schools were fully open and then applied TII Growth Rates to Factor Flows to Projected Opening & Design Years. The collected traffic survey data formed the basis of the study.

The analysis includes the effects of the existing, committed and now-proposed traffic on the local roads and assesses the impact during the traditional peak commuter periods in accordance with Traffic & Transport Assessment Guidelines. We have assessed the traffic generated by the AD Plant from first principles based on anticipated maximum output operation. An assessment of the 24 Hr Annual Average Daily Traffic (AADT) has also been undertaken and is included within the **Appendix D** calculations.

The Transportation Assessment confirms that the road network and the proposed access junction arrangement is more than adequate to accommodate the worst case traffic associated with the now-proposed development along with committed / permitted elements. The assessment confirms that the full operation will have a negligible and unnoticeable impact upon the operation of the adjacent road network, with all traffic increases beyond the site access being below the TII threshold levels which, if breached, require further investigation.

An updated Preliminary Mobility Management Plan has been prepared and is again attached as *Appendix F*.

Based on our study and assessment, we believe that there are no adverse traffic/transportation capacity or operational issues associated with the operation of the now-proposed AD development which would prevent planning permission being granted by Fingal County Council.

1.0 INTRODUCTION

- 1.1 This Transportation Assessment (TA) has been prepared by NRB consulting Engineers Ltd and addresses the Traffic/ Transportation issues associated with a planning application for a new Anaerobic Digestion Facility at the long-established Country Crest Complex, Collinstown, Lusk, Co. Dublin.
- 1.2 The proposed development represents in traffic terms a relatively small extension to the long established food production complex. In this regard, the established vehicular access and existing infrastructure is not affected and is used to access this development. Refer to Drawings within *Appendix A*. The assessment within this study takes account of the effect of traffic associated with the recently permitted development on the site (FCC Ref F22A-0077) and also the application for a new Potato Peeling Plant (F24A/0896E), with the traffic considered as 'committed' for assessment purposes.
- 1.3 A site location plan for the site is included below as *Figure 1.1*.

Figure 1.1 - Site Location

1.4 In describing the Receiving Environment and the Proposed Future Environment, this report addresses the following aspects of the proposed development:

- Relatively small scale of the development in the context of the established road network nearby,
- The natural extension to the established business with a sustainable and required facility,
- Location of the development on the site, being within an established complex with already established traffic generation and characteristics,
- Traffic & Transportation impact,
- Capacity and Safety of the established vehicular access junction,
- Impact upon the capacity of the Existing Road Network,
- Adequacy and safety of the existing roads and junctions locally, within the area of influence,
- Impact upon the adjacent affected junctions locally.
- **1.5** A review of the original Road Safety Authority (RSA) online collision database indicated that there are no untoward significant accidents on the affected stretches of road network surrounding the site, and in particular at the site access points.
- 1.6 The Recommendations contained within this Transportation Assessment are based on the following sources of information and industry-standard practices; -
 - TII Traffic & Transport Assessment Guidelines,
 - Design Manual for Urban Roads and Streets,
 - Original Traffic Survey Data collected (Still Valid for use),
 - TA Report for Reg Ref F22A-0077 and F24A/0896E,
 - The TRICS Database for committed elements and from first principles for the current proposed development,
 - Relevant Design Guidance,
 - Our experience in assessing the impact of Developments of this Nature, and
 - Site Visits and Observations.
- 1.7 The Report has been prepared in accordance with the requirements of the TII's Traffic & Transport Assessment Guidelines. These are the professional Guidelines used to assess the impact of developments on public roads.
- 1.8 An updated Preliminary Mobility Management Plan has been prepared and is attached as *Appendix F*.

2.0 DEVELOPMENT PROPOSALS, EXISTING CONDITIONS & PARKING

DEVELOPMENT PROCESS

- 2.1 Country Crest Anaerobic Digestion facility will create biogas from a process of digesting organic material (feedstock) in anaerobic conditions (without oxygen) within a concrete tank structure. Ideal temperature and mixing are created within these tanks to produce the conditions needed for the biogas to be omitted from the feedstock. Once all the gas has been collected the feedstock is then classed as digestate, an organic liquid, black in colour which still contains all the NPK nutrients of the original feedstock only now they are much more available for other crops to use. The digestion process itself helps breakdown the cell walls of the feedstock meaning the nutrients can be taken up by a growing crop more readily. This digestate will be separated into a solid fraction, which looks and feels much like peat moss, and a liquid fraction which will be storage onsite as a liquid in the holding lagoons. Both these will be land spread as a fertiliser in accordance with a nutrient management plan for the ground receiving them.
- 2.2 This Report contains an assessment of the Traffic Movements associated with the import on site of raw products and the export off-site of produced materials. The calculations have taken account of the fact that the site itself itself will supply a significant amount of raw material, without a requirement for transportation on the public roads and also that the farm holding will use product as fertiliser within the agricultural fields which extend to approximately 3,000 acres.

Existing Conditions

2.3 An image showing the established entrance and access to the existing complex as extracted from Google Maps is included below as *Figure 2.1*.

Figure 2.1 – Google Maps View of Existing Site Access Road/Junction

2.4 It is proposed to again utilise the existing established lightly trafficked site access road and approach roads to serve the subject development. Images showing the current layout and approach from the Local Road L1155 are included as **Figure 2.1** above and below as **Figure 2.2**.

Figure 2.2 – High Quality Access Road Serving Site

2.5 An extract from the proposed Scheme Layout Plan is included below as *Figure 2.3* for ease of reference.

Figure 2.3 – GF Layout Plans (Refer Appendix A)

2.6 The proposed development represents a natural southern extension of the established and proposed extended businesses and the site location in relation to the remainder of the complex is illustrated below as *Figure 2.4*.

Figure 2.4 – Site Location Within Established Complex

- 2.7 Within the complex, the site is bound to the north by the permitted Phase 1 (F22A-0077) and by the proposed Potato Peeling Plant (F24A/0896E) which in turn bounds the existing Foods Complex, and to the south, west and east by fields currently in use for agricultural purposes. In terms of vehicular traffic, the main access road leads to the Local Road L1155 some 1km west of the site location.
- 2.8 The overall site itself currently generates a weekday AM Peak Hour 2-way flow of approximately 73 PCUs and a weekday PM Peak Hour 2-Way flow of approximately 35 PCUs, with a weekday 24Hr AADT 2-way flow of 816 PCUs. So, whilst it is a successful business, and a significant local employer, it is a relatively low generator of traffic movements.
- 2.9 The access road leads to the L1155 Quickpenny Lane. It is a lightly trafficked 2-way local road, primarily serving local employers and farming lands, which is subject to an 80kph speed restriction. It carries a weekday AM Peak Hour 2-way flow of approximately 181 PCUs and a weekday PM Peak Hour 2-Way flow of approximately 207 PCUs, measured immediately south of the existing site access. The traffic survey revealed a weekday 24Hr AADT 2-way flow of 2,238 PCUs. This is clearly a

very lightly trafficked road, with the current AADT being approximately 5% of the Link or Traffic Carrying Capacity.

2.10 The L1155 leads to the R132 Regional Road some 2km to the south. The junction takes the form of a simple priority T junction and an image showing the form and layout of the existing junction is included below as *Figure 2.5*.

Figure 2.5 – Existing L1155/R132 T Junction (View Looking South)

- 2.11 The R132 Regional Road is a moderately trafficked important Regional Road, which is also subject to an 80kph speed restriction. It carries a weekday AM Peak Hour 2way flow of approximately 664 PCUs and a weekday PM Peak Hour 2-Way flow of approximately 430 PCUs, measured immediately east of the L1155 Junction. The traffic survey revealed a weekday 24Hr AADT 2-way flow of 7,694 PCUs.
- 2.12 To set the observed traffic flows on these local roads in context, a wide Regional Road of the nature of the R132 has a theoretical free flow link capacity of approximately 1,500 to 1,800 PCUs <u>per-direction per-hour</u>. In this regard, all of the local roads can be considered to be lightly or at worst moderately trafficked in comparison with their link carrying capacity. However, it is accepted that the capacity of any road is generally limited by the capacity of road junctions along its length, particularly in urban areas.
- 2.13 In order to inform this Study, we originally commissioned and undertook 24hr Traffic Surveys of the adjacent network, as illustrated below as *Figure 2.6*. These were undertaken by independent specialist data collection company.

Figure 2.5 – Traffic Survey Details

3.0 VEHICULAR TRIP GENERATION, ASSIGNMENT & DISTRIBUTION

- 3.1 The Trip Rate Information Computer System (TRICS) database is ordinarily used to ascertain vehicular trip generation associated with the use of any particular site. This represents industry standard practice for Transportation Assessments in Ireland, and TRICS is in fact specifically referenced and recommended for use within the TII Guidance. TRICS was used to establish the appropriate levels of traffic associated with proposed / permitted elements, with this data extracted from TA Reports previously prepared by NRB. This is all as set out herein as *Appendix D*.
- 3.2 In this case the worst case assessment of traffic generated onto and from the local public roads has been undertaken from first principles, based on the anticipated sourced raw materials and the products generated by the AD Plant.
- 3.3 The quantification of traffic generated, and the associated network assessment is therefore undertaken in accordance with normal best practice in the context of the demonstrably low levels of traffic generated by the proposed development. We have also assigned traffic associated with the committed development elements, being Ref F22A-0077 and Ref F24A/0896, with the data for these planned and permitted elements extracted from the TA Reports prepared for those applications (by NRB Consulting Engineers Ltd).
- 3.4 The resulting TRICS Trip Rates applied for the 2 x "committed" elements in this case are as set out below as *Table 3.1.* The associated TRICS data output for these elements is included as *Appendix C*.
- 3.5 The Traffic Generated by the now proposed AD Plant, calculated from first principles is as illustrated below as **Table 3.2**, based on information provided to us for the purposes of calculating traffic generation figure.

Table 3.1 – TRICS Traffic Generation Estimations for Committed Element	<u>s</u> (Ref F22A-
0077 and Ref F24A/0896) – as utilised in TA Reports Prepared 🥂 🏹	

COMMITTED DEVELOPMENT (PERMITTED) EXTRACTED FROM ORIGINAL NRB TA REPORTS							
TRICS Assessment of Traffic Generated By Reg Ref F22A-0077							
2520 m2	2 GFA Agri-Business Uses	Arrivals		Departures		Troffic	
	Network Hour	Per 100m2	Trips	Per 100m2	Trips	Generated	
TOTAL	Weekday AM Peak Hr 8-9	0.349	9	0.066	2	117	
VEHICLES	Weekday PM Peak Hr 5-6	0.066	2	0.361	9	11	
	24 Hour Day	2.461	62	2.135	54	116 🖓	
	Network Hour	Per 100m2	Trips	Per 100m2	Trips	2-Way Traffic	
Of Which	Weekday AM Peak Hr 8-9	0.018	1	0.016	1	2	
OGVs	Weekday PM Peak Hr 5-6	0.008	1	0.008	1	2	
	24 Hour Day	0.203	5	0.191	5	10	
	Network Hour	Arrivals (PC	CUs)	Departures	(PCUs)	2-Way (PCUs)	
Equivalent	Weekday AM Peak Hr 8-9	10		3		13	
PCUs	Weekday PM Peak Hr 5-6	2 10				12	
	24 Hour Day	67 59			126		
	ASSESSMENT OF TRAFF	C GENERATED	BY IN PLA	NNING DEVEL	OPMENT		
	TRICS Assessment of Traffic	Generated By Re	g Ref F24	A/0896E (Refer	to NRB TT	A)	
2727m2 GFA	Agri-Business Industry Uses	Arrivals		Departures		Total 2-Way	
	Network Hour	Per 100m2	Trips	Per 100m2	Trips	Generated	
TOTAL	Weekday AM Peak Hr 8-9	0.349	10	0.066	2	12	
VEHICLES	Weekday PM Peak Hr 5-6	0.066	2	0.361	10	12	
	24 Hour Day	2.461	67	2.135	58	125	
	Network Hour	Per 100m2	Trips	Per 100m2	Trips	2-Way Traffic	
Of Which	Weekday AM Peak Hr 8-9	0.018	1	0.016	1	2	
OGVs	Weekday PM Peak Hr 5-6	0.008	1	0.008	1	2	
	24 Hour Day	0.203	6	0.191	5	11	
	Network Hour	Arrivals (PC	CUs)	Departures	(PCUs)	2-Way (PCUs)	
Equivalent	Weekday AM Peak Hr 8-9	11		3		14	
PCUs	Weekday PM Peak Hr 5-6	3		11		14	
	24 Hour Day	73		63		136	
	TOTAL OF THE ABOVE - AS	SIGNED AS "CO	MMITTED	" TRAFFIC TO	NETWORK		
	Network Hour	Arrivals (PC	CUs)	Departures	(PCUs)	2-Way (PCUs)	
Equivalent	Weekday AM Peak Hr 8-9	20		6		27	
PCUs	Weekday PM Peak Hr 5-6	5		21		26	
	24 Hour Day	140		122		262	

2

ESTIMATIO	N OF DIGESTATE P	LANT RAW MATERIALS USED ((IN)		
Materials	Total Tonnage	Generated Internally	Imported		
Chicken Manure	7,000	0	7000		
Cattle Manure	1080	600	480		
Grain / Grain Product	400	0	400		
Slurries	17080	2000	15080 🔗		
	Total Tonnag	e Imported to Plant Per Annum =	22960		
	Total Tonna	ge Imported to Plant Per Week =	442		
	Total Tonr	nage Imported to Plant Per Day =	63		
W	orst Case Max Num	ber of 28T Truckloads Per Day =	3		
Resulting V	Vorst Case Max AM	/ PM Peak Hour Trucks Arriving=	1		
ES	TIMATION OF DIG	ESTATE PRODUCT (OUT)			
Materials	Total Tonnage	Utilised / Spread Internally	Exported By Road		
Solids Output	9,342	1400	7942		
Liquid Output	49045	4904.5	44141		
Total	58,387	6304.5	52083		
	Total Tonnage E	Exported from Plant Per Annum =	52083		
Total Tonnage Exported from	m Plant Per Allowabl	e Week (36 Spreading Weeks) =	1447		
	Total Tonnag	e Exported from Plant Per Day =	207		
W	orst Case Max Num	ber of 28T Truckloads Per Day =	8		
Resulting Wo	rst Case Max AM / F	PM Peak Hour Trucks Departing=	2		
CONVERSION TO PEAK HOUR AND 24HR AADT (PCUS - Car Equivalents)					
Network Period	Arrivals	Departures	2-Way Flow		
Weekday AM Peak Hr 8-	9 6	6	12		
Weekday PM Peak Hr 5-	6 6	6	12		
24 Hour Day	22	22	44		

Table 3.2 – Worst Case Traffic Generation of Proposed Facility from First Principles

3.6 It is clear from the above that the now proposed development traffic generated is consistent with the established businesses and generates low volumes of additional traffic, with only an additional 44 PCUs or car equivalents generated during a 24hr day (ie an AADT of 44). That is in simple terms the equivalent of 22 car movements onto the public roads each way over a 24 hour day.

Assignment/Distribution - Future Year Traffic

- 3.7 For both the permitted and now-proposed elements we have used hand assignment techniques based on the observed movements, with the worst case traffic assigned to the roads based on the observed established traffic patterns, hand assignment being the industry-standard methodology.
- 3.8 The standard methodology applied was to firstly ascertain the base background traffic conditions for both the weekday AM and weekday PM Commuter Peak periods. To this end we commissioned the original Traffic Survey of the existing affected roads and junctions in order to establish base background traffic conditions. The survey was then extended to a 24hr period at the original specific request of Fingal County Council. Details of the traffic surveys are included as *Appendix B* and are reproduced as traditional commuter peak hour Network Flow Diagrams as *Appendix D*.

- 3.9 We then used the TII PE-PAG-02017 Project Appraisal Guidelines for National Roads Unit 5.3 (Travel Demand Projections 2019, Table 6.1: Central Growth Rates: Annual Growth Factors), to establish projected occupation/opening year 2026 and design year 2041 traffic conditions 15 years following opening on the local road network for the subject development. This is consistent with the requirements of the Guidelines.
- 3.10 The worst case traffic based on the content of *Table 3.1* & *Table 3.2* above was then applied in order to establish Opening Year and Design Year Traffic Conditions with the permitted and proposed development elements in place and fully occupied. This is all included in the calculations included herein as *Appendix D*.
- 3.11 It should be noted that we have selected an opening year of 2026 as being reasonable and appropriate. However, in our experience, varying the opening year and design year by 1-3 years, if required for whatever reason, would have no significant impact upon the conclusions of the study. In addition, given the favourable results reported in this study, if required to apply higher background traffic conditions for any reason we would not anticipate any changes whatsoever to the conclusions.
- 3.12 Traffic growth factors for future year assessments were calculated from data obtained in the TII PE-PAG-02017 Project Appraisal Guidelines for National Roads Unit 5.3 which provides the recommended method of predicting future year traffic growth on Roads.
- 3.13 Calculations of the relevant growth factors are included below in *Table 3.3* (based on tabulated 'Central Growth' for Dublin). It should be noted that any requirement to use different or higher growth factors will also have no implications whatsoever for the conclusions of the study.

Year	to Year	Factor		
Surveyed	2026	1.066		
2026	2041	1.127		

Table 3.3 - Traffic Growth Rates, TII Travel Demand Projections Unit 5.3

3.14 The resulting Traffic Flow Projections & Figures within *Appendix D* allowed the assessment of impact of the AD development to be undertaken.

4.0 TRAFFIC IMPACT - THRESHOLD ASSESSMENT/TRAFFIC CAPACITY ANALYSIS

- 4.1 The Institution of Highways and Transportation (IHT) Guidelines for Traffic Impact Assessment and the TII Traffic and Transport Assessment Guidelines sets out a strict mechanism for assessment of developments of this nature and determining whether further assessment is indeed required.
- 4.2 This TII Traffic and Transport Assessment Guidelines requires a **Threshold Assessment** of the impact on the local roads to be provided in order to determine whether additional more detailed modelling and assessment of particular critical junctions is necessary.
- 4.3 The professional guidance referenced above sets out specific increases in traffic volume associated with new development, which, if breached, requires further more detailed analysis and assessment to be undertaken. The recommendation is that, if the expected increase is 5% for networks that are considered heavily trafficked or congested, then further analysis is warranted. The threshold is set at 10% for uncongested networks, which would be considered applicable here.
- 4.4 In this case, it could reasonably be argued that the lower 10% threshold should be applied, in light of the existing lightly trafficked conditions. However, with the R132 being on an important arterial link for FCC, for robustness the 5% threshold has been applied.
- 4.5 In this regard, it is demonstrated herein that the proposed opening and operation of the facility, with relatively low volumes of vehicular traffic added to the local road network, with all elements in place, will not result in significant volumes of new trips on the local roads, with all anticipated traffic increases beyond the site access expected to be **below** the Industry-Standard level of 5% above which further assessment is required.
- 4.6 Our assessment, included within *Appendix D* (Page 10) confirms that the absolute worst case traffic increase on the adjacent road network junctions for the weekday AM/PM Peak Hours and 24 Hr basis are as summarised below as *Table 4.1* below.

Accessed Pood or Junction	Traf	fic Increas	se %	COMMENT
Assessed Road of Junction	АМ	РМ	24Hr	COMMENT
Established Site Access	5.3%	4.7%	5.0%	>5%, Therefore Junction Assessed
Local Rd/L1155 Junction to South	4.8%	3.6%	1.1%	<5% No Further Analysis Required
L1155/Q'penny Road Junction	1.6%	1.1%	0.3%	<5% No Further Analysis Required
L1155/R132 T Junction	0.6%	2.5%	0.3%	<5% No Further Analysis Required

Table 1 1: - Threshold Assessment	Worst Case Imp	act of Proposed	NDOD ovolonmon
1 abie 4.1 1111 esilolu Assessillelli.	, いいうこうしょうせ いいいの		AVDEVEIUDIIIEII

- 4.7 The Threshold assessment clearly confirms that, beyond the site access, the worst case traffic increase as a result of the proposed development are in all cases way below the TII recommended lower threshold level of 5% above which further assessment is warranted for congested networks. This is unsurprising for a development that generates an equivalent of 22 car movements each way over a full 24hr day.
- 4.8 To set the increased levels of traffic in context, the day-to-day variation in traffic volume (due to day-of-week or weather conditions) is generally accepted as being 10%. In this context alone, increases of way less than 5% in Traffic beyond the local road links will go entirely unnoticed.
- 4.9 Notwithstanding the above we have again undertaken detailed capacity modelling of the Site Access Junction with all of the proposed and permitted development traffic assigned to the junctions for robustness.
- 4.10 We have used the TII-approved software package 'Junctions 9' PiCADY' (**P**riority Intersection **C**apacity **A**nd **D**elay) software package (as part of the TRL Package 'Junction 9') to assess the capacity of the site access junction. PiCADY produces results based on a ratio of flow to capacity (RFC) and queue length. An RFC greater that 1.00 indicates that a junction is operating at or above capacity, with 0.85 considered to be the optimum RFC value. We have appended the detailed computer simulation model results for the existing site access junction as **Appendix E**.

SITE ACCESS JUNCTION CAPACITY ANALYSIS

4.11 A summary of the results is included below as *Table 4.2.*

Table 4.2 - PiCADY Summary Results, L1155/Site Access JunctionWith ALL Permitted and Proposed Developments

Modelled Scenario	Period Mean Max Q (PCUs)	Period Max RFC
2026 Opening Year AM Peak Hr	0.2	0.13
2026 Opening Year PM Peak Hr	0.1	0.11
2041 Design Year AM Peak Hr	0.2	0.14
2041 Design Year PM Peak Hr	0.1	0.12

- 4.12 The result of the modelling clearly shows that the existing site access junction will have significantly more than adequate capacity to accommodate the worst case traffic associated with both permitted and proposed phases the facility operating, with all of the new development traffic assigned. The RFCs are way below the theoretical optimum capacity of 0.85 and no significant queuing is anticipated.
- 4.13 The above assessment and analysis confirm that the proposed Development will have an acceptable & unnoticeable impact on traffic conditions locally.

5.0 CONCLUSIONS

- 5.1 NRB Consulting Engineers Ltd were appointed to address the Traffic & Transportation issues associated with a planning application for a new Anaerobic Digestion (AD) Facility, at the long-established Country Crest Business Complex at Collinstown, Lusk, Co. Dublin.
- 5.2 This Transportation Assessment Report (TA) has been prepared to address the Traffic and Transportation issues associated with the operation of the proposed development, the capacity of the existing road network and the impact of the development locally, conscious that the proposed site uses will generate low traffic volumes in the context of the road network and the long established nature of the business. The assessment takes account of the effect of traffic associated with the 2 x recently permitted and proposed developments on the site (FCC Ref F22A-0077 and F24A/0896E), with the traffic associated with both of these applications considered as 'committed' for assessment purposes.
- 5.3 The Report has been prepared in accordance with TII's Traffic & Transport Assessment Guidelines and addresses the worst case traffic impact of the proposals.
- 5.4 We originally commissioned and undertook 24Hr traffic surveys of the adjacent road network at a time when schools were fully open and then applied TII Growth Rates to Factor Flows to Projected Opening & Design Years. The collected traffic survey data formed the basis of the study.
- 5.5 The analysis includes the effects of the existing, committed and now-proposed traffic on the local roads and assesses the impact during the traditional peak commuter periods in accordance with Traffic & Transport Assessment Guidelines. We have assessed the traffic generated by the AD Plant from first principles based on anticipated maximum output operation. An assessment of the 24 Hr Annual Average Daily Traffic (AADT) has also been undertaken and is included within the **Appendix D** calculations.
- 5.6 The Transportation Assessment confirms that the road network and the proposed access junction arrangement is more than adequate to accommodate the worst case traffic associated with the now-proposed development along with committed / permitted elements. The assessment confirms that the full operation will have a negligible and unnoticeable impact upon the operation of the adjacent road network,

with all traffic increases beyond the site access being below the TII threshold levels which, if breached, require further investigation.

- 5.7 A Preliminary Mobility Management Plan has again been prepared and is attached as *Appendix F*.
- 5.8 Based on our study and assessment, we believe that there are no adverse traffic/transportation capacity or operational issues associated with the operation of the now-proposed AD development which would prevent planning permission being granted by Fingal County Council.

Α	Proposed Development – Layout Drawing
В	Original Raw Traffic Survey Data Collected
С	TRICS Trip Generation Output (Agri-Industry Developments – Previous TTAs)
D	Traffic Surveys, Trip Distribution & Traffic Flow Diagrams
Е	PICADY Capacity Model Output – Site Access/L1155 Existing T-Junction
F	Preliminary Planning Stage Mobility Management Plan (aka Travel Plan)

Proposed Development Layout Drawing

DOHERTY FINEGAN KELLY DOHEKLIX EINEGAN KELLY DOHEKLIX EINEGAN KELLY CONSULTING CIVIL & STRUCTURAL ENGINEERS Botanic Court, 30 Botanic Road, Glasnevin, Dublin D09 W2V9. Tel:(01) 8301852 E-Mail mailroom@dfk.ie		Project ANAEROBIC DIGESTION PLANT, COLLINSTOWN, LUSK, Co. DUBLIN Drg. Title SITE LAYOUT	Rev. Date Drawn By CHECKED By Revision Status	NOTES:- 1. FIGURED DIMENSIO 2. THIS DRAWING TO DRAWINGS & SPEC 3. ALL LEVELS RELAT 4. ALL WORKS TO BE AUTHORITY
Drawn By	Scale		PLANNING PERMISSION	
EY	1 : 500			
Checked By EF	Date 06/12/2024	THIS DOCUMENT IS THE PROPERTY OF DOHERTY FINEGAN KELLY CONSULTING ENGINEERS. THE DESIGN INFORMATION CONTAINED HEREIN IS STRICTLY CONFIDENTIAL.	Client	
Drg.No. Rev. 22221-1101		THIS DOCUMENT IS NOT TO BE USED, REPRODUCED, DISCLOSED OR CIRCULATED IN WHOLE OR IN PART WITHOUT THE PRIOR WRITTEN PERMISSION IN EACH INSTANCE OF 'DOHERTY FINEGAN KELLY CONSULTING ENGINEERS' C PROPERTY OF 'DOHERTY FINEGAN KELLY CONSULTING ENGINEERS'	COUNTRY CREST ULC	

	ID	SEE DRAWING	SITE OBJECT DESCRIPTION
	1	1206	DIGESTER POWER RING - Ø45.00m/Ø26.00m/hi=8.00m/h/substrate=7.50m, Primary Digester V/substrate=7947m ³ , Secondary Digester V/substrate=3981m ³ (PR)
	2	1203	FEEDING SYSTEM 100m ³ WITH HAMMER MILL
	3	1203	FEEDING SYSTEM 100m ³ WITH HPZ
	4	1234	RECEPTION TANK, Ø9.00m/hi=5.00m/h/substrate=4.50m, V/substrate=250m ³
	6		GAS VALVE CHAMBER (GVC)
	7		PUMP ENCLOSURE (CPS)
	8	1207	POWER DIGEST, Ø=32,00m, h/i=6,00m, h/substrate=5,30m, V=4.825m ³ , V/substrate 4.262m ³ (PD)
GS)	9	1207	GAS SPHERE (DMGH), V=3.130m ³
	10	1235	PASTEURIZATION (PAS)
	11	1236	HYGENIZATION BUFFER TANK
	12	1210	SEPARATOR ON PLATFORM + ACCESS STAIRS IN SIGESTER SEPARATOR BUILDING
	13	1232	GAS UPGRADING UNIT + GAS PRE-TREATMENT (GUU)
	14	1230	COMBINED HEAT AND POWER (CHP)
	15	1231	GAS FLARE
	16	1231	BOILER CONTAINER
	17		CENTRAL PUMPING STATION (CPS)
	18	1234	02 COMPOUND WITH 5m CLEARENCE LINES SHOWN AROUND
	19	1215	DOUBLE WEIGHBRIDGE & INTEGRATED LEVER ARMS & ACCESS CONTROL
	20	1201	OFFICE BUILDING
	21	1235	HEAT DISTRIBUTION CONTAINER
	22	1231	SECONDARY BOILER CONTAINER
	23	1210	LOADING BUNKER BUILDING
	24	1236	SWITCHBOARD CONTAINER
	25	1233	CO2 LIQUEFACTION UNIT
	26	1203	EXTRA SWITCHBOARD AREA
	101	1204	GNI GAS INJECTION AREA
	102	1205	ESB SUB STATION
	103	1203	
	104	1200	
	104	1200	
	100	1172	LID COVERED DIGESTATE LAGOON 4 5m DEEP WITH 300mm EREEBOARD ALLOWANCE
	100	1172	LID COVERED DIGESTATE LAGOON, 4 5m DEEP WITH 300mm FREEBOARD ALLOWANCE
	109	1151	RURIED SOILED WATER TANK
	110	1151	PERCOLATION WASTEWATER TREATMENT
	111	1215	WHEELSPRAY BIO SECLIRITY
	112	1213	
	11	1214	
	115	1214	
	116	203	
	110	1170	
	110	117	
	119		
	120		
	121	1217	
	122	1151	
	123	1208	
	124	1212	
	125	1213	BINSTORE

Original Raw Traffic Survey Data

Irish Traffic Survey Name : Site: Date: Time: Location: Classification:	Surveys L TD TTS J-612 WAN O War TC Survey 1005 2022 00:00 - 22:59 Site 1 Car, LGV, OGV1, OGV2, PSV, MC, PC	Irish Traffic Surveys			
тіме —ш— 00:15 00:30 00:45 н/тот	A => A CAR LGV 0GV1 0GV2 P5V N/C P/C 	A => 0 H/C P/C Tor 2 - - - 2 3 <t< th=""><th>A > C C Can Lev Gov2 PSV M/C P/C TO 2 - - - 2 2 2 2 2 - 2 2 2 1 - - 3</th><th>CAR Lev B => A 2 -</th><th>0. </th></t<>	A > C C Can Lev Gov2 PSV M/C P/C TO 2 - - - 2 2 2 2 2 - 2 2 2 1 - - 3	CAR Lev B => A 2 -	0.
01:00 01:15 01:30 01:45 H/TOT 02:00 02:15 02:30		<	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- -	0171102×
02:45 H/TOT 03:00 03:15 03:30 03:45 H/TOT 04:00			Image: second	1 - - - - - - - - 1	^
04:15 04:30 04:45 H/TOT 05:00 05:15 05:30		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
03:43 H/TOT - Ш 06:15 06:30 06:45 H/TOT 07:00		3 - - - - - - 1 - - 1 1 - - - 1 0 - - - 1 0 - - - 1 0 - - - 1 0 - - - - 1 0 - - - - 1 0 - - - - 1 0 -	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
07:15 07:30 07:45 H/TOT 08:00 08:15 08:30 08:45		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	43 24 1 3 1 2 74 51 21 1 3 - - 76 50 24 3 1 2 - 1 8 8 16 50 1 1 8 50 20 2 3 1 - 1 70 20 20 3 1 - - 78 50 20 2 3 1 - - 78 57 15 1 3 2 - - 78 51 13 1 2 1 - 74 58 51 13 1 2 2 3 1 1 - 78 51 13 1 2 1 - 74 44 1 3 1 1 - 74 1 3 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
H/TOT 09:00 09:15 09:30 09:45 H/TOT 10:00 10:15		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	208 5 11 5 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 3 1 1 1 7 7 1 3 5 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	33 5 3 3 7 1 45 7 3 1 - - - 1 1 4 1 2 - - - 7 7 1 7 - 1 - - - - 7 7 7 - 1 - - - - 8 5 3 1 1 - - - 10 23 7 5 1 - - - 8 3 1 1 - - - - 8 4 2 1 1 - - - 8 3 1 1 - - - 8 3	
10:30 10:45 H/TOT 11:00 11:15 11:30 11:45 H/TOT		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28 4 3 4 - - - - 9 30 5 2 3 1 - - 14 117 27 10 13 2 - - 160 21 5 2 - - - 160 160 55 20 4 3 1 - - 28 55 20 4 3 1 1 - 28 7 - - 2 - 1 1 - 14 92 31 2 - 1 - 1 - 14	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
12:00 12:15 12:30 12:45 H/TOT 13:00 13:15 13:30		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
13:45 H/TOT 14:00 14:15 14:30 14:45 H/TOT		9 1 10 23 3 1 27 8 2 10 4 2 1 1 6 4 2 1 1 8 4 2 1 8 4 2 1 8 4 2 1 7 7 21 7 1 3 1 30 1 3 1 30 1 1 7 30 1 1	30 2 1 - 1 - 4 0 119 4 7 2 1 1 153 39 4 2 1 2 1 - 40 28 9 4 4 1 1 - 42 19 5 2 4 4 1 - - 42 19 5 2 4 - - - 42 19 5 2 4 - - - 42 19 5 2 4 - - - 1 111 26 12 13 4 2 1 1 - - 1 1 27 5 1 1 4 - - 1 1 - - 1 1 - - 1 1 1 - - 1	9 3 3 - - - 15 20 4 1 - - - 31 5 1 - 1 - - 7 7 7 1 1 - - - - 9 11 - - - - - 9 11 - - - - - 9 11 - - - - - 1 1 0 3 1 1 - - - - 6 300 3 1 1 - - - - 32	
15:15 15:15 15:30 15:45 H/TOT 16:00 16:15 16:30		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 3 - - - - 1 13 1 - 2 - - 9 9 12 1 - - - - 13 39 11 - 3 - - - 13 18 7 - - - - - 13 19 11 - 3 - - - 13 19 11 - 3 - - - - 13 18 7 - - - - - 13 53 18 7 - - - - - 12 12 7 4 - 1 - - 14 12 12 12 7 - - - - - - 7 12 12 7 -	
10:45 H/TOT 17:00 17:15 17:30 17:45 H/TOT 18:00		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		a a 1 9 36 15 2 - 53 13 5 - 1 - - 13 4 - - - 19 16 3 - - - 19 - 1 - - 7 7 48 12 1 1 - 7 9 1 - - 10	
18:15 18:30 18:45 H/TOT 19:00 19:15 19:30 19:45		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 2 1 9 1 3 3 - - - - 3 3 3 - - - - 3 3 3 - - - - 3 3 3 1 1 - - - 30 30 1 1 2 3 3 1 1 - - 30 30 1 1 - 30 30 1 1 - 30 3 1 1 - 30 30 1 1 - 30 30 1 1 - 30 30 1 1 - 30 30 1 1 - 30 30 1 1 - 30 30 1 1 - 30 30 1 1 - 30 30 1 1 - 30 30 1 1 - 30 3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
H/TOT 20:00 20:15 20:30 20:45 H/TOT 21:00 21:15		24 2 1 1 - 28 -3 - - - - 3 -5 - - - - 5 1 1 - - - 2 9 1 - - - 10 -138 2 - - - 20 -3 7 1 - - - 20 -3 7 - - - - 8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
21:30 21:45 H/TOT 22:00 22:15 22:30 22:45 H/TOT		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
23:00 23:15 23:30 23:45 H/TOT 24 HP TOT		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

Site: Date: Time:	ITS 5-512 Man O War JTC survey 10.05.2022 00:00 - 23:59	• 🚺		A	
Location: Classification:	Site 1 Car, LGV, OGV1, OGV2, PSV, MC, PC	Irish Traffic Surveys		18ECA	
тіме —ш— 00:15	B => B CAR LGV OGV1 OGV2 PSV M/C P/C 	B=> C TOT CAR LGV 0GV1 0GV2 PSV M/C P/C TOT - 1 1 - 2 1 3	CAR LGV OGV1 OGV2 PSV M/C P/C TO 1 - 1 - - - 3 3 - - 3 3 - - - 3 2 - - 3 2 - - - 3 2 - - - 2 2 - - - - 2 2 - - - 2 2 - - - - 2 2 - - - 2 2 - - - 2 2 - - - - 2 2 - - - - 2 2 - - - - 2 - - - 2 - - - - - - 1 - - - 1 - - - - - 2 -	CAR LEV OGV1 OGV2 PSV M/C P/C TO	C=>C CAR LGV 0GV1 0GV2 PSV M/C P/C T
00:30 00:45 H/TOT 01:00 01:15		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 1 1 ⁻ 1 ⁻ 5 ⁻ 2 1 1 ⁻ 1 ⁻ 5 ⁻ ⁻ 2 1 ⁻ ⁻ 5 3 1 ⁻ ⁻ 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
01:30 01:45 H/TOT 02:00		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 2	
02:15 02:30 02:45 H/TOT 03:00		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
03:15 03:30 03:45 H/TOT			1 1 1 1 1 3 - 1 1		
04:00 04:15 04:30 04:45		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 2 2 2 3 2 8	
05:00 05:15 05:30 05:45	- -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 4 2 8 - 2 4 8 - 2 10 7 3 - 1 11		
н/тот - ш 06:15 06:30 06:45		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	21 3 - - - - 27 12 4 1 2 1 - - 20 1 1 1 - - - 9 9 2 1 1 1 - - 14 11 2 1 1 1 - - 14	4 2 1 - - - 7 7 7 4 - - 7 4 - - 4 - - 4 - - - 4 - - - 4 - - - 4 - - - 4 - 1 - - - - - - - - - - - - - - - 1 - - - - - - 1 - - - - - - - 1 - - - - - - - - - - - - - - - - - -	
H/TOT 07:00 07:15 07:30		- 19 4 13 5 - 1 - 42 - 8 4 2 1 - - 15 - 19 1 2 1 - - 12 - 19 1 2 1 - - 23 - 11 2 2 3 - - 18	38 9 4 5 2 - - 58 10 2 2 2 1 - - 1 1 16 3 - 1 - - 2 2 1 - - 2 2 2 1 - - 2 2 2 1 - - 2 2 2 1 - - 2 2 2 1 - - - 2 2 2 1 - - - 2 2 2 - - - 2 2 4 5 1 - 2 4 5 - - - 2 4 5 - - - 2 4 5 - - 2 4 5 - - - - - - - - - - - - - <td>24 4 1 7 1 31 5 1 - - - - 1 1 - 3 - - - 1 1 13 1 - - - 1 1 1 - 1</td> <td></td>	24 4 1 7 1 31 5 1 - - - - 1 1 - 3 - - - 1 1 13 1 - - - 1 1 1 - 1	
07:45 H/TOT 08:00 08:15 08:30		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29 2 3 1 - 1 42 84 18 5 11 3 - 3 12 37 2 3 1 - - 49 30 2 2 - 1 - - 35 47 1 - 4 - - - 55	19 5 - - 1 - 2 2 5 4 8 - 1 - 2 - 5 4 - - 1 - - - 5 19 3 3 - - - 2 2 2 19 2 2 2 - - - 2 2	
08:45 H/TOT 09:00 09:15		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42 9 5 3 1 1 61 156 18 9 10 3 1 197 36 3 2 4 1 4 50 10 1 4 1 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
09:30 09:45 H/TOT 10:00 10:15		8 3 1 15 - 8 - - - - 8 - 8 8 - 10 <t< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>9 1 10 3 3 1 - - 1 18 47 7 4 3 - - 1 62 5 2 2 2 - - 1 16 7 3 - - 1 1 11 7 1 10</td><td></td></t<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 1 10 3 3 1 - - 1 18 47 7 4 3 - - 1 62 5 2 2 2 - - 1 16 7 3 - - 1 1 11 7 1 10	
10:30 10:45 H/TOT 11:00		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 7 - 3 - - - 25 27 8 3 3 1 - - 42 79 22 13 3 - - 12 18 5 2 1 1 - - 72 16 5 2 1 1 - - 72	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
11:13 11:30 11:45 H/TOT 12:00	 	- - - - - - 15 - - - - - - 15 - - - - - - 15 - - - - - - - 15 - - - - - - - - 15 - - - - - - - - - - 15 - 14 - 9 4 1 - - - 14	10 8 16 4 1 - - - 55 72 29 9 2 - - 1 1 1 18 7 1 2 - - 28 28 28 28 1 1 1 29 1 1 20 1 <	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
12:15 12:30 12:45 H/TOT 13:00		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24 10 1 4 1 - - 40 24 15 3 4 - - - 40 26 15 3 2 - - - 40 26 7 2 - - - 41 92 38 12 12 1 - - 43 34 10 2 1 1 - - 48	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
13:15 13:30 13:45 H/TOT		- 2 1 - - - 10 - 15 3 1 - - - 10 - 15 2 - 2 - - 19 - 40 8 3 3 - - 54	25 4 2 1 1 33 31 8 1 5 1 1 47 25 9 2 1 33 31 8 1 5 1 1 47 25 9 2 1 2 39 115 31 7 8 3 3 167	7 2 2 1 - - 1 11 1 1 - - - 12 16 1 2 1 - - - 2 47 5 5 3 - - 1 6	
14:00 14:15 14:30 14:45 H/TOT		14 4 20 20 - 9 1 1 - - 12 - 12 3 - - - 15 - 8 5 3 - - - 15 - 8 1 - - - 63	34 7 2 2 1 46 29 9 1 3 1 - 2 45 27 8 2 3 1 1 - 42 35 7 1 3 1 - - 47 125 31 1 1 - 47 - 47	2 1 - - - 7 5 1 1 - - - 7 16 2 5 1 - - - 24 13 5 - - - - 24 24 0 40 10 2 - - 58	
15:00 15:15 15:30 15:45		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 5 4 - - - - 12 13 2 2 - - 22 22 - - 22 22 - - 22 23 - - 23 - - 23 - - 33 - - 33 - - 33 - - 33 - - 33 - - 33 - - 33 - - - 33 - - - 33 - - - 33 - - - - - - 33 -	
16:00 16:15 16:30 16:45		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50 15 4 3 1 - 1 74 58 11 1 - 2 - - 72 56 29 3 1 1 1 - 9 55 18 3 1 2 - 1 80	15 3 - - - 2 15 3 - 2 - - 2 14 2 - - 1 - 23 25 7 2 1 - - 1 33 17 5 3 - - 1 - 26	
H/TOT 17:00 17:15 17:30 17:45		45 15 2 - - 2 64 - 2.2 3 - - 1 - 26 - 15 1 2 1 - - 1 20 - 5 3 - - - 1 2 1 - 16 2 - - - 1 2 1	219 73 11 5 1 2 31 78 12 - 1 2 - 1 31 78 15 1 4 - 1 - 75 81 15 1 4 - 1 - 70 - 9 1 3 1 1 - 75 47 8 - 2 1 - 1 59	7 21 7 3 2 1 10 20 4 2 1 - 1 - 28 25 8 1 - - - 1 45 20 5 8 1 - - - 1 45 20 5 1 1 - - - 1 45 20 5 1 1 - - - 1 45 20 5 1 1 - - - 1 27 25 3 - - - 1 27 27 25 3 - - 1 27 27 37 3 - - 1 27 27 3 - - 1 1 27 3 - - 1 27 3 - - 1 1 37 3<	
H/TOT 18:00 18:15 18:30		- 56 9 2 1 - 3 3 74 - 12 2 - - 1 1 16 - 10 4 - - - 1 1 16 - 10 4 - - - 1 15 - 7 1 - - - 1 9	266 44 2 10 4 2 1 325 57 - - 3 1 1 2 70 36 5 1 - - - 2 44 33 1 1 1 - - 1 43	100 20 4 2 - 1 2 12	
18:45 H/TOT 19:00 19:15 19:30		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23 7 2 1 2 3 149 24 4 3 1 7 192 20 4 - 1 1 - 1 27 20 4 - 1 1 - 1 27 25 2 - - - - 27 27 23 3 - 1 1 - 8 36	15 1	
19:45 H/TOT 20:00 20:15		- 9 - - - - - - 9 - - - 9 - - - 9 - - - 9 - - - 9 - - - - 9 - - - 1 48 2 1 - - - 1 11 - - - - 1 11 - - - - - 1 11 - - - - - - - 1 11 - - - - - - - 11 - </td <td>25 2 2 - - - - 2 2 93 11 2 2 2 - 9 111 22 - 2 - 1 - 4 29 16 3 - - 1 - 4 29 16 - - 1 - 2 2 - 1 - 2 2 - 1 - 2 22 - - 1 - 2 2 - 1 - 2 2 2 - 1 - 2 2 2 - 1 - 2 2 2 - 1 - 2 2 2 - 1 - 2 2 2 - 1 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 <t< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td></td></t<></td>	25 2 2 - - - - 2 2 93 11 2 2 2 - 9 111 22 - 2 - 1 - 4 29 16 3 - - 1 - 4 29 16 - - 1 - 2 2 - 1 - 2 2 - 1 - 2 22 - - 1 - 2 2 - 1 - 2 2 2 - 1 - 2 2 2 - 1 - 2 2 2 - 1 - 2 2 2 - 1 - 2 2 2 - 1 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 <t< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td></td></t<>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
20:30 20:45 H/TOT 21:00 21:15	- -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
21:30 21:45 H/TOT 22:00 22:15		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
22:30 22:45 H/TOT 23:00			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
23:15 23:30 23:45 H/TOT 24 HB TOT		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

C Surveys LTD

Irish Traffie Survey Name :	C Surveys LTD		To continue a const a transformer a		
Site:	JTC survey		Stand! 1		
Time:	00:00 - 23:59		1 11	A	•
Classification:	Car, LGV, OGV1, OGV2, PSV, MC, PC	Irish Traffic Surveys	1		$\mathcal{P}_{\mathbf{A}}$
		1-11-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	the second second second	B	· (*)
TIME	A => A CAR LGV OGV1 OGV2 PSV M/C P/C	A => B TOT CAR LGV OGV1 OGV2 PSV M/C P/C TOT	A => C CAR LGV OGV1 OGV2 PSV M/C P/C TO	B => A T CAR LGV OGV1 OGV2 PSV M/C P/C TOT	
 00:15		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 - 1 2	N/L
00:30 00:45		- 1 1 2 		1 1	
H/TOT 01:00		- 3 - 2 s			` Ø.
01:15				,	· 7.
01:45			1 1		6
02:00		3 3	2 2 2		-75
02:30				1 1	5
02:45 H/TOT		$-\frac{1}{4}$ $-\frac{1}{4}$ $-\frac{1}{4}$	2 2	1 1	\sim
03:00 03:15					PA -
03:30 03:45				2 2	· · · · · · · · · · · · · · · · · · ·
04:00				2 2 2 2	
04:15 04:30				2 2	
04:45 H/TOT		2 2 - 5 - 1 1 7	1 1 3	11 11	
05:00				1 1	
05:30		- 3 3			
H/TOT					
06:15			2 1 3		
06:45					
07:00		1/ 7 3 / 1 32 6 4 1 2 13	4 2 6	4 1 2 7 7	
07:15		15 1 1 17 - 11 2 1 2 16	3 3 6 4 2 - 1 7	3 3 ⁻ 1 ⁻ 15 9 2 2 ⁻ ⁻ ⁻ 13	
07:45 H/TOT		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20 6 1 27 41 9 7 3 2 62	
-ш- 08:15		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 3 1 9	6 1 2 9 17 3 3 - 23	
08:30 08:45		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 4 4 2 6	12 1 2 2 ⁻ 1 18 9 1 ⁻ 2 ⁻ 1 12	
H/TOT 09:00		- 30 5 7 5 - 1 1 49 - 11 1 3 2 - - - 17		44 5 6 6 - - 1 62 16 2 - 3 - - - 21	
09:15 09:30		- 9 1 1 11 - 5 4 2 1 12	7 1 3 1 1 5	13 2 1 2 7 7 18 9 1 1 1 1 11	
09:45 H/TOT		- 6 - 3 1 10 - 31 6 9 4 50	2 2 4 13 4 1 18	4 2 1 1 42 6 3 6 1 58	
10:00 10:15			3 3	5 1 2 1 9 6 3 - 2 - 1 - 12	
10:30 10:45		- 6 4 1 - 11 - 3 1 2 2	3 1 1 5 4 4	5 4 1 3 ⁻ ⁻ ¹ 13 6 3 ⁻ 4 ⁻ ⁻ 13	
H/TOT 11:00		1 22 5 4 4 ⁻ 1 1 37 - 4 ⁻ 3 ⁻ 7		22 11 3 10 - 1 - 47 11 2 1 - - - 14	
11:15 11:30		- 4 3 1 4 12 - 5 - 1 1 - 7 7	3 - 1 4 3 2 5	5 1 - 4 10 4 2 6	
11:45 H/TOT		- 3 1 4 16 3 2 9 30	6 6 16 2 1 19	6 2 1 1 - - 1 11 26 7 2 5 - - 1 41	
12:00 12:15		- 10 2 1 1 14 - 7 4 - 2 - 1 14	3 5 1 2 3	6 2 1 9 2 1 3 1 7	
12:30 12:45		- 2 1 1 2 6 - 4 4 1 9	2 1 3 2 2	10 2 2 14 13 2 1 1 17	
H/TOT 13:00		- 23 11 3 5 1 43 - 6 1 1	5 1 ⁻ 2 16 7 1 1 9	31 5 6 4 1 47 9 2 11	
13:15 13:30		- 7 1 1 1 10 - 13 2 15	1 1 7 7 7	5 1 1 3 10 12 - 1 1 14	
13:45 H/TOT		- 2 1 2 13 - 34 6 3 3 46	23 1 1 25	14 1 ⁻ 1 ⁻ ⁻ 1 17 40 4 2 5 ⁻ ⁻ 1 52	
14:00 14:15		15 3 2 20 - 7 1 1 9			
14:30 14:45			5 5		
H/TOT 15:00		- 40 11 6 2 59 - 16 3 3 1 23	37 5 42	34 7 4 3 ⁻ 1 ⁻ 49	
15:15 15:30		- 12 2 - 1 15 - 18 2 20	1 9 2 10	12 4 1 3 20 18 2 2 1 23	
15:45 H/TOT		- 1 2 11 - 54 6 5 4 69	5 1 6	9 1 1 11	
16:00			6 6	11 2 1 2 16 11 5 2 1 - 10	
16:30 16:45			9 1 1 11 10 1 11		
H/TOT		51 16 1 2 7 7 2 72 7 23 5 1 7 1 7 3	34 3 7 7 1 38		
17:15		- 14 2 1 17 - 7 2 1 - 10		32 6 ⁻ 1 ⁻ ⁻ 39	
17:45		-9 3 1 $ 1$ $ 14- -$			
18:00					
18:30		- 5 5 - 7 2 5			
н/тот			24 1 2 27	48 3 3 2 56	
19:15			5 2 7 7	6 2	
19:45			2 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
20:00		- 7 2 - 1 - 1 10		5 7 1 1 1 34 5 7 7 7 7 7 7 7 7 7 7	
20:15		* 1 5 4 1 5 5	7 7	<u> </u>	
20:45 H/TOT				24 2 7 7 2 28	
21:00		5 <u>- 5</u> 1 1 2			
21:30 21:45		1 - 1 9	4 - 4 3 - 3	5 1 6 4 1 5	
H/TOT 22:00		15 1 1 17 5 5 5			
22:15 22:30			2 2		
22:45 Н/ТОТ			4 4	- 4	
23:00					
23:30				2 2	
H/TOT 24 HR TOT	- 1	4 1 5 1 554 107 53 60 7 10 791	3 320 49 6 1 - 9 38	2 1 1 4 5 652 121 53 60 7 12 905	

Irish Traffi Survey Name : Site: Date: Time: Location: Classification:	IC Surveys LTD ITS-512 Man O War ITC survey 10.05.2022 00:00 - 23:59 Site 2 Car, LGV, OGV1, OGV2, PSV, MC, PC	Irish Traffic Surveys	Al approximate a street.	A	<i>∕</i> ₽
	B => B	B => C		B	
тіме —_ш— 00:15	CAR LGV 0GV1 0GV2 PSV M/C P/C 	TOT CAR LGV OGV1 OGV2 PSV M/C P/C 2	TOT CAR LGV OGV1 OGV2 PSV M/C P/C TO 2 -	CAR LGV OGV1 OGV2 PSV M/C P/C TOT 2 - - - - - 2 2 2 2 2 - - 2	CAR LEV OGVI-0012 VSV M/C P/C TOT
00:30 00:45					
01:00			• •		
01:30 01:45 H/TOT			1 		
02:00 02:15 02:30					
02:45 H/TOT					
03:00					
03:45 H/TOT 04:00			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
04:15 04:30 04:45			5 5 5 5 5 1 6 7 6 5 5		
H/TOT 05:00				1 1 1	
05:15 05:30 05:45			1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
H/TOT 06:00 06:15			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 4 - 2 - - - - 7 7 - - - 7 7 - - 7 7 - - 7 7 - - 7 7 - - 7 7 - - 7 7 - - 7 7 - - 7 7 - - 7 7 - - - 7 7 - - - 7 7 - - - 7 7 - - - 7 7 - - - 7 7 -	
06:30 06:45		- <u>2</u>	2 6 1 7 9 5 5 12 16 1 7		
07:00				10 1 1 11	
07:45 H/TOT		b 1 10 1 - - - 23 14 - - - -	7 6 6 6 11 7 1 - 1 15 - - - 1 15 - - - 1 15 - - 1 15 - - 1 15 - - 1 15 - - 1 15 - - 1 15 - - 1 15 - - 1 15 - - 1 15 - - 1 15 - - 1 15 - - 1 15 - -	2 10 - 1 9 34 3 1 38	
- ω 08:15 08:30			13 2 - - - - - 2 23 5 - - - - - 5 9 6 1 - - - 7 7	12 - 1 13 9 1 10 12 5 17	
08:45 H/TOT 09:00		5 2	7 5 1 6 52 18 2 20 9 11 11	12 3 1 16 45 9 2 56 7 1	
09:15 09:30		9 3 1 2	12 3 1 1 2 2	6 1 1 10	
09:45 H/TOT 10:00		2 3	5 1 1 - - - 2 29 21 2 - - - - 2 3 3 - - - - 3	3 11 29 5 3 37 6 2	
10:15 10:30 10:45		4 2	6 4 2 1 7 7 7 3 2 7 7 5 3 2 7 7 7 7 7 5	3 4 7 5 5 5 - 1 6	
H/TOT 11:00		14 5 1 -	20 12 4 1 - - - 17 5 3 1 - - - - 4 1 - - - - - 4	19 6 1 7 7 7 26 1 7 7 7 7 7 7 7 26	
11:15 11:30 11:45		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
H/TOT 12:00 12:15			20 9 2 1 - - 12 6 3 2 1 - - - 6 6 5 - - - - - 6	16 7 - - - 23 6 3 - - - - 9 6 2 1 - - - 9 6 2 1 - - - 9	
12:30 12:45 H/TOT				6 1 15 5 1 6 25 12 2	
13:00 13:15			9 5 7 1 7 6 7 3 7 7 3 7 7 7 3	3 - 1 4 4 2 6	
13:30 13:45 H/TOT		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 b b 9 22 1 23	6 1 1 10 3 2 - - - 15 23 6 4 - - - 33	
14:00 14:15 14:30			2 2 9 3 1 4 10 5 1 6	4 3 - 1	
14:45 H/TOT 15:00		- 5 2 - 25 1	7 5 5 34 15 1 1 17 3 7 5	9 9 29 6 - 1 36 11 6	
15:15 15:30				5 4 9 3 2 5	
15:45 H/TOT 16:00		- 32 6 2	40 17 9	15 3 1 1 20 34 15 1 - 1 - 51 14 5 - - - - 19 19	
16:15 16:30 16:45		- 7 1	3 3 18 5 4 9 14 6 1 7 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
H/TOT 17:00			48 18 10 7 22 11 4 3 7 7 12 4 2 7 7	32 13 1 46 10 2 12	
17:30 17:45				10 2 2 14 10 2 1 10	
H/TOT 18:00 18:15		38 5 2 1 - 4 2	45 20 7 1 28 9 5 1 - - - 6 6 5 - - - - 5	40 1 3 52 10 1 - - - 11 10 3 - - - 11 10 3 - - - 13	
18:30 18:45 H/TOT		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 5 - 1 6 18 1 2 3 43 16 1 1 2 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
19:00 19:15			6 2 - 2 2 5 4 - 2 4 11 4 1 - 2 - 4	6 6 7 1 1 9	
19:45 H/TOT		27 2 1	2 2 30 12 1 1 2	4 4 21 1 1 23	
20:00 20:15 20:30			4 4 4 5 5 1 2 2	b 1 - - 7 10 - - - - 7 2 - - - - 10	
20:45 H/TOT 21:00			4 5 1 6 17 16 1 1 - 17 4 1 1 - 1	9 2 1 7 7 12 27 3 1 7 7 3 1 3 7 7 7 7 3	
21:15 21:30			6 4 4 4 2 2 1 2	4 4 2 2 1 2	
H/TOT 22:00			15 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	- 1 10 10 2 2	
22:15 22:30 22:45		3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2 2 1 1	
H/TOT 23:00 23:15			6 4 4 3	7 7	
23:30 23:45					
24 HR TOT		416 75 14 2 - 6	513 269 45 4 1 5 32	450 110 19 2 1 - 3 585	

B => B
В

тіме —ш—	CAR LGV OGV1 OGV2 PSV M/C P/C TOT	CAR LGV OGV1 OGV2 PSV M/C P/C	TOT	CAR LGV OGV	1 OGV2 PSV M/C P/C	тот -	CAR LGV OGV1 OGV2	PSV M/C P/C T	CAR	LGV OGV1 OGV2 PSV	M/C P/C TOT
00:15 00:30		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2			-	1 - 1 - 1			X I I I	
00:45 H/TOT		3 2	- 5			-	1		1 - 3 -	Y.,	
01:00			-			_	1			8	
01:30			-			-	2		2 -		
01:45 H/TOT		1	1 1			-	3		3 -		
02:00 02:15		4 1	5			-					05 -
02:30 02:45		1	- 1			-	1				NY I
H/TOT		5 1	6 -			-	1				
03:15			-			-					
03:30 03:45			-			-	2		2 -		
H/TOT 04:00			-			1	4		1 - 2 -		
04:15		2 - 2	4			-	5 2		, –		
04:45		3	3			-	14 3	1	7 -		
05:00		1 2	3			-	25 0		-		
05:15 05:30		1 1 1 2 1	3 3	1		1	1 - 1 -		2 -		
05:45 H/TOT		2 1 $-$ 1 $ -$	4 13			-	5 1	1	5 - 0 -		
06:00		2 2 1 7 7	5			-	7 2		ə —		
06:30			9			-	10 2 1	1 1	4 -		
06:45 H/TOT		6 1 1 17 5 1 7 ⁻ 1 ⁻	31	1 2		1 2	12 1 40 7 ⁻ 1	1 4	3 9 -		
07:00		5 3 1 2 13 4 - 2	11 19	1	1	1	6 2 1 1 6 3 3 3	1	0 - 7 -		
07:30		12 4 1 2	19 16		1	1	2 1 1	1	2 -		
н/тот		40 15 2 7 1	65	3 - 1	2	6	45 12 5 5	2 1 7	0 -		
Ш 08:15		12 4 2 2 9 2 2 1	20 14	2 - 1		1 3	5 2 1 2 16 4 2 1	2	0 3 -		
08:30 08:45		2 3 2 - 1 1 5 3 - 1	17 9	1		1 -	12 4 2 2 12 3 1 1	1 2	1 – 7 –		
H/TOT 09:00		34 11 7 6 ⁻ 1 1 9 3 2 3 ⁻ ⁻ ⁻	60 17	3 - 2		5 1	45 13 6 6 14 4 1 2	2	1 -		
09:15			15	3		3	17 4 2 1	2	4 -		
09:45		6 2 2 2	12	1		1	5 2 1 -	- 1			
10:00		31 12 / / 7 2 - 2 -	12			-	43 14 4 5 7 2 1 2	1	2 -		
10:15 10:30		4 1 1 1 9 3 - 1 - 1 -	7 14	1		1	3 1 2 9 3 2 2	1	5 6 [–]		
10:45 H/TOT		5 1 1 3 ⁻ ⁻ ⁻ 25 7 2 7 ⁻ 2 ⁻	10 43	1 1 ⁻ 3 1 ⁻		2 4	7 2 1 3 31 10 5 9	1	3 ⁻		
11:00		5 1 1 2	9	2 1 -		3	10 2 1		3 -		
11:30		5 1 2	13	1		1	5 2		, _		
11:45 H/TOT		5 2 1 20 7 3 [–] [–] [–]	38	4 1 -		5	3 1 1 27 3 5	1 4	4 -		
12:00 12:15		12 4 2	18 12	1		1 -	7 1 1 1 4 2 2 2		0 -		
12:30		3 1 2 2	9	2		2	9 3 1 1 13 4 1 1	1	4 -		
Н/ТОТ		27 10 3 6 7 1	47	4		4	33 10 5 5	- <u>1</u> 5	4 -		
13:00		7 2 1 1	12	2		2	12 2 1 5 2 2 2	1	1 -		
13:30 13:45		15 2 13 2 1 2	17 18	1 3 1 -		1 4	13 3	1 2	6 – 2 –		
H/TOT 14:00		43 3 4	58 29	7 3 -	1	9 11	45 10 4 4 7 2		4 -		
14:15		7 2 2	11	2		2	4 1 1 1		, –		
14:45		15 5 2	22	1		1	13 4	- 1 - 1	8 -		
15:00		57 15 4 3 17 4 2 2 -	25	3		3	10 3 1 1	1	5 -		
15:15 15:30		14 3 - 1 20 4 1 1	18 26	1 1 -		2 2	13 4 1 2 16 4 2 2	2	0 - 4 -		
15:45 H/TOT		7 4 1 1 ⁻ ⁻ 1 58 15 4 5 ⁻ ⁻ 1	14 83	1 6 2 -		1	13 3 1 52 14 5 5	1	7 -		
16:00		23 4	27	5 1 -		6 -	15 2 1 2	z	0 -		
16:30			18	4 1 -		5	24 1	1 3	4 -		
16:45 H/TOT		20 5 1 1 75 16 1 2 1 2	27 97	2 1 ⁻ 11 3 ⁻		3 14	12 4 2 1 65 17 4 4	1 7 2	3		
17:00 17:15		24 5 1 2 1 1 12 3 1 1 1 1	33 17	4 2 -		6	15 7 ⁻ 1 33 6 ⁻ 1	- 1 - 2	4 – 0 –		
17:30		11 3 1 - 12 5 - 1 1	15 19	6 1 ⁻ 1 ⁻		7	24 5 1 2 28 6	1 3	3 - 5 -		
Н/ТОТ		59 16 1 4 ⁻ 2 2	84	11 3 -		14	100 24 1 4	1 2 1	82 -		
18:15			13	1	1	2	19 1 1	2	1 -		
18:30 18:45		5 1	6 10	1		1	16 - 1 - 11	1	7 -		
H/TOT 19:00		39 9 ⁻ ⁻ ⁻ 1 1 13 3 ⁻ ⁻ ⁻ ⁻ ⁻	50 16	5 1 -	1	7	58 4 3 3 6 2	6	8 -		
19:15 19:30		9 2	11 25	3		3	7 2 - 1 4		0 - 2 -		
19:45			7	10		-	5 2 1 1	1 1	0 -		
20:00		3 - 1	59 12			-	1		-		
20:15 20:30		3 1 9 2	4 11	1 3 1 -	1	1 5	4 1		1 –		
20:45			2 29	1		1	10 3	1	3 -		
21:00		5 2	7			-	1		-		
21:15 21:30			3 1	3		3	3 1 1		-		
21:45 H/TOT		9 2 ⁻ 1 ⁻ ⁻ ⁻ ⁻ ⁻ ⁻ ⁻ ⁻	12 23	2		2 5	4 1 10 2 - 1	1	3		
22:00		5	5 1	2		2 -	3		3 -		
22:30		3	3			1	1 - 1	2 2 2	-		
22:45 Н/ТОТ		13	4 13	2		2	11 - 1	1	2 -		
23:00 23:15			1 2	1		1 -	1		-		
23:30 23:45		2 1 1 1 1	4			-	1				
H/TOT 24 HR TOT		5 2 - 1 651 174 38 77 - 11	959	1 103 16 4	5	1 128	1 ⁻ ⁻ 1 742 176 50 66	1 - 7 15 10	56 -		

Survey Name : Site:	ITS J-612 Man O War JTC survey		Countrieuter: 33.54073; 4(19324)		
Date: Time:	10.05.2022 00:00 - 23:59		Den part	AB	
Location: Classification:	Site 3 Car, LGV, OGV1, OGV2, PSV, MC, PC	Irish Traffic Surveys	the self-	Pro-	
	B => C	C => A	C => B	C≡>C	
тіме —ш—	CAR LGV OGV1 OGV2 PSV M/C P/C	TOT CAR LGV OGV1 OGV2 PSV M/C P/C TOT	CAR LGV OGV1 OGV2 PSV M/C P/C TOT	CAR LGV OGV1 OGV2 PSV M/C P/C 10	La la
00:15 00:30					SO.
H/TOT 01:00					· 70
01:15 01:30					7
01:45 H/TOT					T2
02:15 02:30					· C2
02:45 H/TOT					×.
03:00 03:15					
03:45 H/TOT					
04:00 04:15					
04:30 04:45					
05:00 05:15					
05:30					
H/TOT 06:00		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
06:15 06:30			$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
H/TOT 07:00		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 2 2 5 3		
07:15 07:30		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
07:45 H/TOT		2 5 1 6 11 14 3 17 17	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
08:15 08:30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
08:45 H/TOT	2 1	3 2 - - - - - 2 11 9 1 2 - - - 12	4 4 14 2 16		
09:00 09:15	5 1 6 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
09:30 09:45 H/TOT			3 1 4 1 1 2 9 2 11		
10:00		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
10:30 10:45		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
H/TOT 11:00			$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
11:30 11:45	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
H/TOT 12:00	5 3 1 2 1	9 3 2 5 3 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
12:15 12:30		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
H/TOT 13:00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
13:15 13:30	2 2	2 3 2 5 2 3 1 4			
13:45 H/TOT	3 2		3 3 11 - 2 13		
14:00 14:15 14:30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
14:45 H/TOT	4	4 3 3 12 9 9	2 1 ⁻ ⁻ ⁻ ⁻ 11 17 4 1 ⁻ ⁻ ⁻ ⁻ 22		
15:00 15:15	4 1	5 3 1 7 7 7 4 2 2 7 7 7 7 7 2	7 2 9 4 1 5		
15:30 15:45 H/TOT	7 2	2 3 9 1 1 18 9 1 10	5 2 2 18 3 21		
16:00 16:15	4 1	5 2 2 4 - 1 1	2 2 4 4		
16:30 16:45		7 1 2 3 3 2 5	3 3 3 4		
17:00	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
17:30 17:45	2 2	2 1 1 2 2 4 1 5	2 2		
H/TOT 18:00		15 12 4 - - - 2 18 3 4 1 - - - - 5	16 5 7 7 7 7 21 3 7 7 7 7 7 2 5		
18:15 18:30 18:45			$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
H/TOT 19:00	6 2 1 2	11 1 2 14 1 2 1 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
19:15 19:30	2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
19:45 H/TOT 20:00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
20:15	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
20:45 H/TOT	4	4 1 1 7 3 3			
21:00 21:15 21:30		1 1 1 1 1 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
21:45 H/TOT	5 1		6 1 7		
22:00 22:15					
22:30 22:45 H/TOT					
23:00 23:15					
23:30 23:45					
H/TOT 24 HR TOT	1	1 175 129 33 5 1 - 4 172	1 1 169 36 4 1 2 5 217		

Irish Traffic	c S	iurv	ey	; L1	D																																								
Survey Name :	IT	S J-61	2 M	an O	War											-		2				Co-ord 53.551	1041, 0.1			1	1												1		в		400	1.1.1	
Date:	10	0.05.2	022																						1	-	k.	_	100	-										-	-			6.19	2
Time:	00	:00 -	23:5	9													-	-				-														~			2						2
Location: Classification:	Si	<u>te 4</u> Ir. I G'	v o	5V1.	ogv	2. PS	V.N	C PC			Iri	sh	Ira	ffic	Su	rve	ys																			γ			1				100	-	
clussification.		, 20	•, •	<i></i> ,	001	., • .	•,.•	6,16		1																				1						_ 'X			A			1	20	24	
																								1				- 11	(Last		9			P ->			C,			-	P = 2			85.98g	
TIME		AR	LG	/ O	GV1	OG	2	PSV	M/C	P/C	тот	CA	R	LGV	OGV1	OGV	2 PS	V M	1/C P	/c	тот	CAR	LG	v 00	5V1 (OGV2	PSV	M/	C P/G	с то	T CAF	۱ LG	V OGV	1 OGV:	2 PSV	M/C	P/C	TOT	CAR LG	5V 00	V1 OGV2	PSV	M/C	P/C T	тот
—ш—		_	-		_	_		_	_	_	_	-		_	_	_	_		_	_	_	1	-		_	_	_	-	_	1	-	-	-	_	-	_	_	1		_		_	_	_	_
00:15								-		-				-							-						-	-											$\langle \rangle$						
00:45		-	-		-	-		-	-	-	-	-		-	-	-		-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-0	/.		-	-	-	-
H/TOT		-			-			-	-	-	_			-	-	-		-	-	-	_	1			-	-	-		-	1						-	-	-	•	- 7			-	-	_
01:00		-	-		-	-		-	-	-	-	-		-	-	-	-		-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-		- ' (- ? -	-	-	-	-
01:30		-	-		-	-		-	-	-	-	-		-	-	-			-	-	-	-	-			-	-	-	-	-	-	-		-		-	-	-		-	7	-	-	-	-
01:45		-	-		-	-		-	-	-	12			-	-	-	-		-		_	-	-		-	-	-	-	-		3	-	-	-	-	-	1	3						-	-
02:00		-	-		-	-		-	-	-	-			-	-	-	-		-	- "	-	1	-		-	-	-	-	-	1	1	-	-	-	-	-	-	1		-		2	<u> </u>	-	-
02:15		_	_					_	_	_				_	_				_	_	_				_	-											_	_				<u>````(</u>	ろ	_	_
02:30		-	-			-		-	-	-		-		-	-				-	-	-					-	-	-	-							-	-	-					$\overline{}$	-	
Н/ТОТ		-	-		-	-		-	-	-	-			-	-	-	-	-	-		-	1	-		-	-	-	-	-	1	1	-	-	-	-	-	-	1		-		-	-×	-	-
03:00			_					_											-	_	-						_										-	_						-	
03:30		-	-		-	-		-	-	-	-	-		-	-	-	-		-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-	-
03:45	-	-	-		_	-		_	-	-	_	1		-	-	-	_		_		1	-	_		-	-	_	-	_		_		-	-	-	-	_	_				-	_	_	_
04:00		-	-		-	-		-	-	-	-	3		-	-	-	-		-	- ''	2	1	-		-	-	-	-	-	1	1	-	-	-	-		-	1		-		-	-	-	
04:15		-	-		-	-		-	-	-	-	5		-	-	-			-	-	5	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-
04:30								-		-		2							-		2	1					-	-	-	1	2					-	-	2					-	-	
н/тот		-	-		-	-		-	-	-	-	1	5	-	-	-	-	-	-		15	2	-		-	-	-	-	-	2	3	-	-	-	-	-	-	3		-		-	-		-
05:00		_			_			-	_	-	-			_	_				_	- 1	_	-	-		1	_	_		-		2			-		_	_	2	-				-	-	
05:30		-	-		-	-		-	-	-	-	1		-	-	-	-		-	-	1	3	1		1	-	-	-	-	5	-	-	-	-	-		-	-				-	-	-	-
05:45		-	-		-	-		-	-	-		1		-					-		1	2	1		-	-	-	-	-	3	_		-		_		-	-			_		-	-	_
06:00	F	-	-		-	-		-	-	-	-	2		-	-	-			-	-	-	2	2		2	-	-	-	-	1:	2		-	-	-	-	-	2	-		-	-	-	-	-
06:15	1	_	-		_			-	_	-	-	2		1	_				_		3	6	1		-	_	-	-	-	6	-	_	-	-		1	2	-	_	_		-	-	2	_
06:30								_			-	2		1						-	2	4			1		-	1		5	3						-	3					-		
H/TOT		-	-		-	-		-	-	-	-	1		2	-	-	-		-	-	13	20	3		1	-	-	1	-	2	; 3	-	-	-	-	-	-	3				-	-	-	-
07:00		_			_			_	_	_		1			_				-	_	1	2			1	1	_			4	2	1		-				3	_					_	
07:15		-	-			-		-	-	-	-	2		-	-				-	-	2	11	2		1	-	-	-	-	14		-		-		-	-	1					-	-	-
07:45		-	-		-	-		-	-	_	_	4		2	1	-	_		_	_	7	10	2		-	-	_		-	13	2		-	_	-	_	-	2		_		-	_	_	_
- _ш -	E	-	-		-	-		-	-	-	-	1		-	-	-	-		-	-	1	12	1		1	-	-	-	1	1	-		-	-	-	-	-	-				-	-	-	-
08:15		_	_					_		_	_	1		-					_	_	1	10	2		1		_			1	_					_	_	_					_	_	_
08:30		-	-		-	-		-	-	-	-	2		1	-	-	-		-	-	3	6	1		-	-	-	-	-	7	2	-	-	-	-	-	-	2				-	-	-	-
н/тот		-	-		-	-			-	-	1	5		1	-	-	-		2		6	34	5		4	2	-	1	2	48	2	-	-	-	-		-	2				-	-	-	_
09:00								-		-		-		-							-	9	2		1	-	-			1	1						-	1							
09:30		_	_		_	_		_	_	_	_	1		-	_	_	-		_	_	1	6	3		-	1	_	_	_	10	-	-	-	_	-	_	_	_				-	_	-	_
09:45 H/TOT		-	-		-	-		-	-	-	-	3		-	-	-	-	-	-		3	26	10		3	3	-	-	-	4	2	-	-	-	-	-	-	2		-		-	-	-	
10:00		-	-		-	-		-	-	-	-	2		-	-	-		-	-	-	2	7	2		-	-	-	-	1	10	1	-	-	-	-		-	1		-		-	-	-	-
10:15 10:30								-		-		1			1				-		1	2	2		1	1	-			1	1						-	1					-	-	
10:45		-	-		-	-		-	-	-	-	-		1	-	-	-	-	-	-	1	3	2		1	1	-	-	-	7	2	-	-	-	-	-	-	2		-		-	-	-	-
H/TOT 11:00		-	-		-	-			-	-	-	1		-	-	-	-			-	5	24	2		2	2	-	-	-	38	2	-	-	-	-	-	-	2				-	-	-	-
11:15		_	-		-	-		-	-	-	-	-		-	-	-			-	-	-	7	2		-	-	-	-		9	-	-	-			-	-	-				-	-	_	-
11:30		-	-		-	-		-	-	-	-	1		-	-	-	-		-	-	-	4	1		1	-	-	-	-	6	1	-	-	-	-	-	-	1				-	-	-	-
H/TOT		-	-		-	-		-	-	-		2		-	-	-	-	-	-		2	22	7		3	1	-	-	-	3	4	-	-	-	-			4				-	-		_
12:00		-	-		-	-		-	-	-	-	-		-	-	-	-		-	-	-	7	2		-	-	-	-	1	10		-	-	-	-	-	-	-				-	-	-	-
12:30		_	-					_		-		-		_					-	_	-	4	2			_	-	_		6	1	1					-	2					_	_	_
12:45 H/TOT	H	-	-		-	-		-	-	-	-	1		-	-	-	-	-	1	-	2	26	10		-	-	-	-	1	3	2	1	-	-	-	-	-	1		-		-	-	-	-
13:00		-	-		-	-		2	-		-	2		1	-	-			-		2	6	1		1	1	1	1	1.2	9	2		-	-	-	1.2.1	-	2				-			_
13:15								-		-		1		1					-		1	5	2				-		-	7	2						-	2					-	-	
13:45		-	-		-	-		-	-	-	-	5		1	-	-	-	-	-	-	6		3		-	-	-	-	-	1	-	-	-	-	-	-	-	-				-	-	-	-
H/TOT		-	_		-			-	-	-	_	1	2	2	-	_			-		14	28			1	1	-		-	38	5				_	-		5					-	-	
14:15		-	-			-		-	-	-	-	1		-	-	-			-	-	1	6	1		1	-	-	-		-	1	-	-	-	-	-	-	1				-	-	-	-
14:30		_						-		-									-	_	-	10	2				-	-	-	12	1	_		_			-	1		-			-	-	_
н/тот		-	-		-	-		-	-	-	-	3		2	-	-	-	-	-		5	45	10		2	-	-	-	1	58	14	1	-	-	-	-	-	15				-	-	-	-
15:00						1		-			1			-					-	_	1	12	2		1	2	-			1	1						-	1					-	-	-
15:30		-	-		-	-		-	-	-	-	1		-	-	-	-		-	-	1	16	4		-	-	-	-	-	20	1	-	-	-	-	-	-	1		- ·		-	-	-	-
15:45		-	-			-		-	-	-		1		-	-	-			-	1	2	7	2		1	1	-		1	1:	3		-		-			3						-	_
16:00		-	-		-	-		-	-	-	-			-	-	-			-	-	-	13	3		-	-	-	-	-	10	5	1	-	-	-	-	-	6			-	-	-	-	-
16:15		-	-			-		_	_	_		2		_	_	-	-		-	-	2	16	2		1	_	_	_	-	19		-	-	-	-	_	_	6		_		-	-	-	_
16:45		-	-		-	_		-	-	-	-	-		-	-				-	-	-	14	4			-	-		-	18	1			-			-	1					-	-	-
H/TOT	F				-							2		-					-		2	54	12		1	-			2	69	10	3						13				-			
17:15			-					-		-	-	1		-					-	-	1	6	2			-	-	÷	-	-	2	_		-			-	2				-	-	-	-
17:30		-						-	-		-			_					_	_	_	12	2		1	-		-		14	2	-					_	2					_	-	
н/тот		-	-		-	-		-	-	=	-	1		-		-			-	-	1	45	10		1	-	-	2	-	58	6	1	-	-	_	-	-	7				-	-	-	-
18:00								-						_					_	-	1	12	4						-	10	1						-	1					_	-	-
18:30	-							-	-	-	-	1		-					-	-	1	7	1			-	-		÷		1	_		-			-	1					-	-	-
18:45		-	-		-	-		-	-	-	-			-	-	-	-	-	-	-	-	3	1		-	-	-		1	5	-	-	-	-	-	-	-	-		-		-	-	-	
19:00		1	-		-	-		-	-	-	1	-		-	-	-	-	-	-	-	-	14	2		-	-	-	-	-	10	1		-	-	-	-	-	1				-	-	-	-
19:15		-						-	-										-	-	_	10	3			-				1	- 1						-	1					-	-	
19:45		-	-		-	-		-	-	-	-	-		-	-	-	-	-	-	-	-	5	2		-	-	-	-	-	7	-	-	-	-	-	1	-	1				-	-	-	-
H/TOT		1						-			1								-		_	44 F	11				-			55	2					1		3							_
20:15		-	-		-	-		-	-	-	-	-		-	-	-	-		-	-	-	3	1		1	-	-	-	-	5	-	-	-	-	-	-	-	-		- ·		-	-	-	-
20:30		-						_		_	-			_					-	_	- 2	9	2			_	-		2	1	1	_					-	1		_			-	-	_
н/тот		-	-		-	-		-	-	-	-	1		-	-	-	_		1	-	2	19	4		1	-	-	i -	2	20	1		-	-	-	-	-	1				-	-	-	-
21:00		_			_			_	-	_				_	_				-	- 1	_	4	1			_	_	-	-	5	-		-	-	-		-	_				-	-	-	_
21:15		-	-		-	-		-	-	-	-	-		-	-	-	-		-	-	-	2	2		-	-	-	-	-	5	-	-	-	-	-	-	-	-		- ·		-	-	-	-
21:45		-	-		-	-		-	-					-	-				-		_	10	4		-	1				1	1		-	-	-		-	1	-	-	-	-	_	-	_
22:00		-	-		-	-		-		-	-	-		-		_	-		-	-	-	5	2		-	-	-	-	-	7	-	-	-	-	-	-	-	-				-	-	-	-
22:15		-	-		-	-		_	-	-		2		-	-	-	-		-	_	2	-	-			-	-	-	-	_	-	-	-	-	-	1	_	1				-	_	-	_
22:30		-	-		-	_		-	-	-	-	1		-	-				-	-	1	2	1			-	-	-	-	3	3		_	-		-	-	3				-	-	-	-
H/TOT 23:00			-									5		-					-		5	7	3				-		-	10	3					1		4							_
23:15	-	-	-					-	-	-	-	-		-	_		-		-	-	-	-				-	-	-	-	-	-	_	_	-		-	-	-				-	-		-
23:30					_			-						_					_	-	_					-											-	_		_			_	-	-
н/тот		-	-		-	-		-	-	-	-	1		-	-	-	-		-		-	-	-		-	-	-	-	-	-	4	-	-	-	-	-	-	4		-		-		-	-

Irish Traffic Survey Name : Site: Date: Time:	Surveys LTD ITS J-612 Man O War JTC survey 10.05,2022 00:00 - 23:59	• 🌒	Contentions Sisteria calarity	B CON	1
Location: Classification:	<u>Site 4</u> Car, LGV, OGV1, OGV2, PSV, MC, PC B => C	Irish Traffic Surveys			1
тіме 00:15 00:30 00.45	CAR LSV OGV1 OGV2 PSV M/C P/C -	TOT CAR LGV OGV1 OGV2 PSV H/C P/C TO 1 - - - - 1	T CAR LGV OGV1 OGV2 PSV M/C P/C T 	OT CAR LGV OGV1 OGV2 PSV H/C P/C TO 1	R Contraction
01:00 01:00 01:15 01:30					· To
01:45 H/TOT 02:00 02:15 02:30		4 2 - - - - 2 2 - - - - - - 2 2 - - - - - - - - 2 2 - - - - - - - - 1 - - - - - - - - 1 1		1 7 7 7 7 7 7 7 7 7 7 	T POL
02:45 H/TOT 03:00 03:15 03:30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				` 7
03:45 H/TOT 04:00 04:15 04:30			2	2 -	
04:45 H/TOT 05:00 05:15					
05:45 H/TOT 06:00 06:15			$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
06:30 06:45 H/TOT 07:00 07:15	1	1 5 1 5 1 5 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33	
07:30 07:45 H/TOT - ш- 08:15	2	9 2 - - 1 12 3 20 3 - - 1 22 10 35 7 1 - - 24 5 5 1 2 1 - - 9 5 12 3 1 - - - 14	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	
08:30 08:45 H/TOT 09:00 09:15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 13 2 - 1 - - - - 1 15 12 45 3 3 - - 1 16 5 15 3 - 1 - - 1 60 3 20 4 - 2 - - 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	
09:30 09:45 H/TOT 10:00 10:15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 10 3 - 1 1 2 6 3 1 1 11 115 51 13 4 2 7 1 7 2 1 1 2 7 1 7 2 1 1 1 2 10 3 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 -	
10:30 10:45 H/TOT 11:00 11:15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
11:30 11:45 H/TOT 12:00 12:15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 -	
12:30 12:45 H/TOT 13:00 13:15	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 7 2 1 - - 1 5 16 4 - - - - 2 2 13 32 10 1 2 - 2 2 1 - - 2 1 5 6 2 1 - - - 1 3 3 10 2 - 1 - - - 1 3 3 10 2 - 1 - - - 1 3 3 1 - - - 1 3 - - - 1 3 - - - 1 3 - - - 1 3 - - - - 1 3 - - - - - 1 3 - - - 1 3 - - - - - - </th <th></th> <th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th> <th></th>		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
13:30 13:45 H/TOT 14:00	6 1 - - - 5 1 - 1 - - 17 3 - 2 - - 12 2 - - - -	7 12 3 - - - 11 7 3 - 1 - - 1 12 22 35 1 - - 1 12 14 7 2 1 - - - - 10			
14:15 14:30 14:45 H/TOT 15:00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 0 1 1 14 7 10 3 1 14 4 13 2 - - 1 1 17 27 36 3 - 1 1 4 11 10 3 - - - 1 1		2	
15:15 15:30 15:45 H/TOT 16:00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 13 2 - - 13 6 12 3 1 - - 13 7 10 2 - - - 13 29 45 10 1 1 - - 15 13 13 3 - - - 16 16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	
16:15 16:30 16:45 H/TOT 17:00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 12 3 1 - - 1 6 22 4 - 1 - - 1 22 11 14 3 1 - - 1 22 37 61 13 2 2 - - 1 22 13 20 4 - - - 1 2 27	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 5 7 9 - - - - - - - - - - - - - - - - - -	
17:15 17:30 17:45 H/TOT 18:00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 31 5 - - - 1 23 3 22 4 - - - 1 22 3 32 5 - - - 1 33 24 105 18 - - - 1 33 1 16 4 1 1 - 1 22		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
18:15 18:30 18:45 H/TOT 19:00	3 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 6		
19:15 19:30 19:45 H/TOT 20:00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 6 2 - - 1 - - 9 7 10 3 - - - 12 12 12 12 12 12 12 12 1 1 13 14 12 12 - 1 1 12 12 12 12 1 1 13 13 13 14 12 12 12 12 1 1 13 13 14 12 14 12 14 12 14		1	
20:15 20:30 20:45 H/TOT 21:00		- 5 2 2 9 3 2 1 2 3 7 3 3 3 6 20 7 2 2 2 3 1 2 2 2 2 2			
21:15 21:30 21:45 H/TOT 22:00		1 - - - - 1 3 1 - - - - 4 1 3 1 - 1 - - - 5 1 0 3 1 - 1 - - - 4 2 - - 1 - - - - 4			
22:15 22:30 22:45 H/TOT 23:00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
23:15 23:30 23:45 H/TOT 24 HR TOT	2	2 1 1 258 632 147 18 25 1 5 21 84	9 193 31 17 24 1 1 2	- - - - - - - - - - - - - 67 2 - 1 - - -	

TRICS Trip Generation Output, Committed Apps (Permitted Agri-Industry Developments)

TRICS Trip Generation Output, Committed Apps (Permitted Agri-Industry Developments)

ICS 7.9.1	1 300322 B20.41 Database right of TRICS C	onsortium Limited, 2022. Al	l rights reserved	Monday 23/05/22 Page 1
B Consult	ing Engineers Ltd 8 Leopardstown Business	Centre, Ballyogan Avenue	Dublin 18	Licence No: 160301
		Cal	culation Reference: A	AUDIT-160301-220523-0550
TRI	P RATE CALCULATION SELECTION PARAM	ETERS:	A.	
Land			×	
Cate	Pagry : C - INDUSTRIAL UNIT		C,	
TO	TAL VEHICLES			1/2
<u>Sele</u>	ected regions and areas:			
02	SOUTH EAST			07
	BD BEDFORDSHIRE	1 days		2
		2 days		R Co
03	NS WEST SUSSEX	2 uays		2 Parts
03		1 days		×
	DV DEVON	1 days		
	GS GLOUCESTERSHIRE	1 days		
04	FAST ANGLIA	1 ddy5		
0.	NF NORFOLK	2 davs		
05	EAST MIDLANDS			
	DS DERBYSHIRE	1 days		
	NR NORTHAMPTONSHIRE	1 days		
06	WEST MIDLANDS			
	WK WARWICKSHIRE	1 days		
	WM WEST MIDLANDS	2 days		
07	YORKSHIRE & NORTH LINCOLNSHIRE			
	WY WEST YORKSHIRE	2 days		
08	NORTH WEST			
	CH CHESHIRE	3 days		
	LC LANCASHIRE	3 days		
09	NORTH			
		2 days		
10		1 days		
10		1 days		
11		1 uays		
11		1 days		
12	CONNAUGHT	I days		
12	CS SLIGO	1 days		
		1 days		
	MA MAYO	1 days		
	RO ROSCOMMON	2 days		
13	MUNSTER			
	KE KERRY	1 days		
14	LEINSTER	,		
	KK KILKENNY	2 days		
	WC WICKLOW	1 days		
15	GREATER DUBLIN			
	DL DUBLIN	1 days		
16	ULSTER (REPUBLIC OF IRELAND)			
	DN DONEGAL	1 days		
	MG MONAGHAN	2 days		
17	ULSTER (NORTHERN I RELAND)			
	AN ANTRIM	1 days		
	IY TYRONE	1 days		

T

This section displays the number of survey days per TRICS® sub-region in the selected set

TRIP RATE f	or Land Use	02 - EMPLOYI	MENT/C - INI	OUSTRIAL UN	NIT					
TOTAL VE Calculatio	EHICLES on factor:	100 sqm	t) a suis d				PA			
BOLD print	indicates p	eak (busies	t) period				°C	<u>\$</u> ,		
		ARRIVALS		D	EPARTURES		40TALS			
Time Dance	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip	
	Days	GFA	Rate	Days	GFA	Rate	Days	GFA	Rate	
00:00 - 00:30								Q	7	
00.30 - 01.00									2	
01.00 - 01.00 01.30 - 02.00										
02:00 - 02:30									2	
02:30 - 03:00									×	
03:00 - 03:30										
03:30 - 04:00										
04:00 - 04:30										
04:30 - 05:00										
05:00 - 05:30	11	14037	0.095	11	14037	0.001	11	14037	0.096	
05:30 - 06:00	11	14037	0.149	11	14037	0.002	11	14037	0.151	
06:00 - 06:30	14	12911	0.048	14	12911	0.022	14	12911	0.070	
06:30 - 07:00	15	12207	0.243	15	12207	0.018	15	12207	0.261	
07:00 - 07:30	42	6718	0.168	42	6718	0.021	42	6718	0.189	
07:30 - 08:00	42	6718	0.236	42	6718	0.034	42	6718	0.270	
08:00 - 08:30	43	6605	0.219	43	6605	0.036	43	6605	0.255	
08:30 - 09:00	43	6605	0.130	43	6605	0.030	43	6605	0.160	
09:00 - 09:30	44	6461	0.080	44	6461	0.033	44	6461	0.113	
09:30 - 10:00	44	6461	0.070	44	6461	0.055	44	6461	0.125	
10:00 - 10:30	44	6461	0.062	44	6461	0.047	44	6461	0.109	
10:30 - 11:00	44	6461	0.058	44	6461	0.046	44	6461	0.104	
11:00 - 11:30	44	6461	0.048	44	6461	0.048	44	6461	0.096	
11:30 - 12:00	44	6461	0.050	44	6461	0.045	44	6461	0.095	
12:00 - 12:30	44	6461	0.055	44	6461	0.062	44	6461	0.117	
12:30 - 13:00 13:00 - 13:30	44	6461	0.062	44	6461	0.075	44	6461	0.137	
13:30 - 14:00	44	6461	0.074	44	6461	0.065	44	6461	0.157	
14.00 - 14.00	44	6461	0.097	44	6461	0.000	44	6461	0.102	
14.30 - 14.30	44	6461	0.091	44	6461	0.000	44	6461	0.151	
15:00 - 15:30	44	6461	0.100	44	6461	0.100	44	6461	0.147	
15:30 - 16:00	44	6461	0.071	44	6461	0 159	44	6461	0 230	
16:00 - 16:30	44	6461	0.043	44	6461	0.189	44	6461	0.232	
16:30 - 17:00	44	6461	0.032	44	6461	0.172	44	6461	0.204	
17:00 - 17:30	44	6461	0.036	44	6461	0.173	44	6461	0.209	
17:30 - 18:00	44	6461	0.030	44	6461	0.188	44	6461	0.218	
18:00 - 18:30	44	6461	0.023	44	6461	0.101	44	6461	0.124	
18:30 - 19:00	43	6557	0.010	43	6557	0.047	43	6557	0.057	
19:00 - 19:30	13	8198	0.013	13	8198	0.023	13	8198	0.036	
19:30 - 20:00	13	8198	0.006	13	8198	0.022	13	8198	0.028	
20:00 - 20:30	11	8631	0.002	11	8631	0.015	11	8631	0.017	
20:30 - 21:00	11	8631	0.005	11	8631	0.007	11	8631	0.012	
21:00 - 21:30	1	8000	0.000	1	8000	0.000	1	8000	0.000	
21:30 - 22:00	1	8000	0.000	1	8000	0.000	1	8000	0.000	
22:00 - 22:30										
22:30 - 23:00										
23:00 - 23:30										
23:30 - 24:00			2.461			2 4 2 5			4 505	
Total Rates:			2.461			2.135			4.596	

Database right of TRICS Consortium Limited, 2022. All rights reserved

Dublin 18

8 Leopardstown Business Centre, Ballyogan Avenue

Monday 23/05/22

Licence No: 160301

Page 2

TRICS 7.9.1 300322 B20.41

NRB Consulting Engineers Ltd

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TRICS 7.9.1 300322 B20.41	Database right of TRICS Consortium Limited, 2022. Al	l rights reserved	Monday 23/05/22
			Page 3
NRB Consulting Engineers Ltd	8 Leopardstown Business Centre, Ballyogan Avenue	Dublin 18	Licence No: 160301

The survey data, graphs and all associated supporting information, contained within the TRICS Database are published by TRICS Consortium Limited ("the Company") and the Company claims copyright and database rights in this published work. The Company authorises those who possess a current TRICS licence to access the TRICS Database and copy the data contained within the TRICS Database for the licence holders' use only. Any resulting copy must reprint all copyrights and other proprietary notices, and any disclaimer contained thereon.

The Company accepts no responsibility for loss which may arise from reliance on data contained in the TRICS_Database. [No warranty of any kind, express or implied, is made as to the data contained in the TRICS Database.] S 122 POLA

Parameter summary

150 - 67459 (units: sqm) Trip rate parameter range selected: Survey date date range: 01/01/14 - 22/11/21 Number of weekdays (Monday-Friday): 44 Number of Saturdays: 0 Number of Sundays: 0 Surveys automatically removed from selection: 0 Surveys manually removed from selection: 0

This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

This graph is a visual representation of the trip rate calculation results screen. The same time periods and trip rates are displayed, but in addition there is an additional column showing the percentage of the total trip rate by individual time period, allowing peak periods to be easily identified through observation. Note that the type of count and the selected direction is shown at the top of the graph.

Monday 23/05/22 Page 4

This graph is a visual representation of the trip rate calculation results screen. The same time periods and trip rates are displayed, but in addition there is an additional column showing the percentage of the total trip rate by individual time period, allowing peak periods to be easily identified through observation. Note that the type of count and the selected direction is shown at the top of the graph.

This graph is a visual representation of the trip rate calculation results screen. The same time periods and trip rates are displayed, but in addition there is an additional column showing the percentage of the total trip rate by individual time period, allowing peak periods to be easily identified through observation. Note that the type of count and the selected direction is shown at the top of the graph.

NRB Consulting Engi	ineers Ltd	8 Leopardsto	wn Business	Centre, Ball	yogan Avenu	e Dublin 1	.8	Licen	ce No: 16030
TRIP RATE f	or Land Use	02 - EMPLOYN	IENT/C - IN	DUSTRIAL UI	NIT				
OGVS									
Calculatio	on factor:	100 sqm					γ_{\wedge}		
BOLD print	indicates p	beak (busiest	t) period				°C _χ	N	
		ARRIVALS		C	DEPARTURES			FOTALS	
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip
Time Range	Days	GFA	Rate	Days	GFA	Rate	Days	GFA 🚽	Rate
00:00 - 00:30								6	
00:30 - 01:00								7	<u></u>
01:00 - 01:30									×2
01:30 - 02:00									<u>`</u>
02:00 - 02:30									<u>`</u> Z
03.00 - 03.30									
04.00 - 04.30									
04:30 - 05:00									
05:00 - 05:30	11	14037	0.001	11	14037	0.001	11	14037	0.002
05:30 - 06:00	11	14037	0.003	11	14037	0.000	11	14037	0.003
06:00 - 06:30	14	12911	0.001	14	12911	0.002	14	12911	0.003
06:30 - 07:00	15	12207	0.003	15	12207	0.002	15	12207	0.005
07:00 - 07:30	42	6718	0.006	42	6718	0.003	42	6718	0.009
07:30 - 08:00	42	6718	0.006	42	6718	0.006	42	6718	0.012
08:00 - 08:30	43	6605	0.009	43	6605	0.008	43	6605	0.017
08:30 - 09:00	43	6605	0.009	43	6605	0.008	43	6605	0.017
09:00 - 09:30	44	6461	0.013	44	6461	0.008	44	6461	0.021
09:30 - 10:00	44	6461	0.013	44	6461	0.011	44	6461	0.024
10:00 - 10:30	44	6461	0.013	44	6461	0.010	44	6461	0.023
11:00 - 11:00	44	6461	0.013	44	6461	0.008	44	6461	0.021
11.00 - 11.30	44	6461	0.010	44	6461	0.011	44	6461	0.021
12:00 - 12:30	44	6461	0.011	44	6461	0.005	44	6461	0.020
12:30 - 13:00	44	6461	0.010	44	6461	0.010	44	6461	0.020
13:00 - 13:30	44	6461	0.011	44	6461	0.009	44	6461	0.020
13:30 - 14:00	44	6461	0.008	44	6461	0.007	44	6461	0.015
14:00 - 14:30	44	6461	0.008	44	6461	0.008	44	6461	0.016
14:30 - 15:00	44	6461	0.008	44	6461	0.008	44	6461	0.016
15:00 - 15:30	44	6461	0.007	44	6461	0.007	44	6461	0.014
15:30 - 16:00	44	6461	0.005	44	6461	0.006	44	6461	0.011
16:00 - 16:30	44	6461	0.007	44	6461	0.008	44	6461	0.015
16:30 - 17:00	44	6461	0.002	44	6461	0.005	44	6461	0.007
17:00 - 17:30	44	6461	0.006	44	6461	0.004	44	6461	0.010
18:00 - 18:00	44	6401	0.002	44	6401	0.004	44	6/61	0.000
18.30 - 19.00	44 4/	6461	0.001	44	6461	0.002	44	6461	0.003
19:00 - 19:30	13	8198	0.001	13	8198	0.002	13	8198	0.009
19:30 - 20:00	13	8198	0.001	13	8198	0.003	13	8198	0.004
20:00 - 20:30	11	8631	0.000	11	8631	0.002	11	8631	0.002
20:30 - 21:00	11	8631	0.000	11	8631	0.003	11	8631	0.003
21:00 - 21:30	1	8000	0.000	1	8000	0.000	1	8000	0.000
21:30 - 22:00	1	8000	0.000	1	8000	0.000	1	8000	0.000
22:00 - 22:30									
22:30 - 23:00									
23:00 - 23:30									
23:30 - 24:00			0.000			0.101			0.201
Total Rates:			0.203			0.191			0.394

Monday 23/05/22

TRICS 7.9.1 300322 B20.41 Database right of TRICS Consortium Limited, 2022. All rights reserved

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

This graph is a visual representation of the trip rate calculation results screen. The same time periods and trip rates are displayed, but in addition there is an additional column showing the percentage of the total trip rate by individual time period, allowing peak periods to be easily identified through observation. Note that the type of count and the selected direction is shown at the top of the graph.

This graph is a visual representation of the trip rate calculation results screen. The same time periods and trip rates are displayed, but in addition there is an additional column showing the percentage of the total trip rate by individual time period, allowing peak periods to be easily identified through observation. Note that the type of count and the selected direction is shown at the top of the graph.

This graph is a visual representation of the trip rate calculation results screen. The same time periods and trip rates are displayed, but in addition there is an additional column showing the percentage of the total trip rate by individual time period, allowing peak periods to be easily identified through observation. Note that the type of count and the selected direction is shown at the top of the graph.

Traffic Surveys, Trip Distribution & Network Traffic Flow Diagrams

TII PE-PAG-02017 Project Appraisal Guidelines for National Roads Unit 5.3	Surv to 2026 = 1.066
(Travel Demand Projections 2019, Table 6.1: Central Growth Rates: Annual Growth Factors Metropolitan Dublin)	2026 to 2041 = 1.127

ASSESSIV		DEVELOPI				- =	
	(IN PLANNING / PERM	VITTED A	ND OR	JNBUILT)			-
COMMITTED DEV	ELOPMENT (PERMITTED)	EXTRACT	ED FROM	/I ORIGINA	L NRB T	A REPORTS	
TRI	CS Assessment of Traffic	Generate	d By Reg	Ref F22A-	0077		°C _A
2520 m2 GFA Agri-Business Industry Uses		Arri	Arrivals		tures	Total 2-Way Traffic	S'L
	Network Hour	Per 100m2	Trips	Per 100m2	Trips	Generated	S.
	Weekday AM Peak Hr 8-9	0.349	Ŕ	0.066	2	11	· 70
IOTAL VEHICLES	Weekday PM Peak Hr 5-6	0.066	2	0.361	ƙ	11	Troffic Concretizer Coloulation
	24 Hour Day	2.461	62	2.135	54	116	
	Network Hour	Per 100m2	Trips	Per 100m2	Trips	2-Way Traffic	Based on TRICS; Effect of Recen
Of Which OGVa	Weekday AM Peak Hr 8-9	0.018	1	0.016	1	2	Completion & Operation of
Of Which Odvs	Weekday PM Peak Hr 5-6	* Ű	1	* Ű	1	2	Already Permitted Agri-Busines
	24 Hour Day	0.203	5	0.191	5	10	Unit
	Network Hour	Arrivals	(PCUs)	Departur	es (PCUs)	2-Way (PCUs)	
Equivalant DCLIC	Weekday AM Peak Hr 8-9	1	0	ξ		13	1
Equivalent PCOS	Weekday PM Peak Hr 5-6		2	1	0	12	
	24 Hour Day	6	7	5	٩	126	
ASSESSMEN		D BY IN PL	ANNING	DEVELOP		T SITE	
ASSESSMEN TRICS Assessn 2727 m2 GFA Agri-Busine	T OF TRAFFIC GENERATE nent of Traffic Generated ess Industry Uses	D BY IN PL By Reg R	ANNING ef F24A/	DEVELOP 0896E (Re Depar	MENT AT fer to NR tures	T SITE B TTA) Total 2-Way Traffic	-
ASSESSMEN TRICS Assessn 2727 m2 GFA Agri-Busine	T OF TRAFFIC GENERATE nent of Traffic Generated ess Industry Uses Network Hour	D BY IN PL By Reg R Arri Per 100m2	ANNING ef F24A/ vals Trips	DEVELOP 0896E (Re Depar Per 100m2	MENT AT fer to NR tures Trips	T SITE B TTA) Total 2-Way Traffic Generated	-
ASSESSMEN TRICS Assessn 2727 m2 GFA Agri-Busine	T OF TRAFFIC GENERATE nent of Traffic Generatec ess Industry Uses Network Hour Weekday AM Peak Hr 8-9	D BY IN PL By Reg R Arri Per 100m2 0.349	ANNING ef F24A/ vals Trips 10	DEVELOP 0896E (Re Depar Per 100m2 0.066	MENT AT fer to NR tures Trips 2	T SITE B TTA) Total 2-Way Traffic Generated 12	
ASSESSMEN TRICS Assessn 2727 m2 GFA Agri-Busine TOTAL VEHICLES	T OF TRAFFIC GENERATE nent of Traffic Generated ess Industry Uses Network Hour Weekday AM Peak Hr 8-9 Weekday PM Peak Hr 5-6	D BY IN PL By Reg R Per 100m2 0.349 0.066	ANNING ef F24A/ vals Trips 10 2	DEVELOP 0896E (Re Depar Per 100m2 0.066 0.361	MENT AT fer to NR tures Trips 2 10	T SITE B TTA) Total 2-Way Traffic Generated 12 12	
ASSESSMEN TRICS Assessn 2727 m2 GFA Agri-Busine TOTAL VEHICLES	T OF TRAFFIC GENERATE nent of Traffic Generated ess Industry Uses Network Hour Weekday AM Peak Hr 8-9 Weekday PM Peak Hr 5-6 24 Hour Day	BY IN PL By Reg R Per 100m2 0.349 0.066 2.461	ANNING ef F24A/ vals Trips 10 2 67	DEVELOP 0896E (Re Per 100m2 0.066 0.361 2.135	MENT AT fer to NR tures Trips 2 10 58	T SITE B TTA) Total 2-Way Traffic Generated 12 12 12 125	Traffic Generation Calculation,
ASSESSMEN TRICS Assessn 2727 m2 GFA Agri-Busine TOTAL VEHICLES	T OF TRAFFIC GENERATE nent of Traffic Generated ss Industry Uses Network Hour Weekday AM Peak Hr 8-9 Weekday PM Peak Hr 5-6 24 Hour Day Network Hour	BY IN Pl By Reg R Per 100m2 0.349 0.066 2.461 Per 100m2	ANNING ef F24A/ vals Trips 10 2 67 Trips	DEVELOP 0896E (Re Per 100m2 0.066 0.361 2.135 Per 100m2	MENT AT fer to NR tures Trips 2 10 58 Trips	T SITE B TTA) Total 2-Way Traffic Generated 12 12 125 2-Way Traffic	Traffic Generation Calculation,
ASSESSMEN TRICS Assessn 2727 m2 GFA Agri-Busine TOTAL VEHICLES	T OF TRAFFIC GENERATE nent of Traffic Generated ress Industry Uses Network Hour Weekday AM Peak Hr 8-9 Weekday PM Peak Hr 5-6 24 Hour Day Network Hour Weekday AM Peak Hr 8-9	BY IN PI By Reg R Per 100m2 0.349 0.066 2.461 Per 100m2 0.018	ANNING ef F24A/ vals 10 2 67 Trips 1	DEVELOP 0896E (Re 0er 100m2 0.066 0.361 2.135 Per 100m2 0.016	MENT AT fer to NR tures Trips 2 10 58 Trips 1	T SITE B TTA) Total 2-Way Traffic Generated 12 12 125 2-Way Traffic 2	Traffic Generation Calculation, Based on TRICS; Effect of Recen
ASSESSMEN TRICS Assessn 2727 m2 GFA Agri-Busine TOTAL VEHICLES Of Which OGVs	T OF TRAFFIC GENERATE nent of Traffic Generated ess Industry Uses Network Hour Weekday AM Peak Hr 8-9 Weekday PM Peak Hr 5-6 24 Hour Day Network Hour Weekday AM Peak Hr 8-9 Weekday AM Peak Hr 8-9	BY IN PL By Reg R Per 100m2 0.349 0.066 2.461 Per 100m2 0.018 * Ú	ANNING ef F24A/ vals Trips 10 2 67 Trips 1 1	DEVELOP 0896E (Re 0.066 0.361 2.135 Per 100m2 0.016 * Ú	MENT AT fer to NR tures Trips 2 10 58 Trips 1 1	T SITE B TTA) Total 2-Way Traffic Generated 12 12 125 2-Way Traffic 2 2	Traffic Generation Calculation, Based on TRICS; Effect of Recen Application for Agri-Business
ASSESSMEN TRICS Assessn 2727 m2 GFA Agri-Busine TOTAL VEHICLES Of Which OGVs	T OF TRAFFIC GENERATE nent of Traffic Generated ss Industry Uses Weekday AM Peak Hr 8-9 Weekday PM Peak Hr 5-6 24 Hour Day Weekday AM Peak Hr 8-9 Weekday AM Peak Hr 8-9 Weekday AM Peak Hr 8-9 Weekday PM Peak Hr 8-9 Weekday PM Peak Hr 5-6 24 Hour Day	BY IN PI By Reg R Per 100m2 0.349 0.066 2.461 Per 100m2 0.018 * Ú 0.203	ANNING ef F24A/ vals Trips 10 2 67 Trips 1 1 1 6	DEVELOP 0896E (Re Per 100m2 0.066 0.361 2.135 Per 100m2 0.016 * Ú 0.191	MENT AT fer to NR tures Trips 2 10 58 Trips 1 1 1 5	T SITE B TTA) Total 2-Way Traffic Generated 12 12 125 2-Way Traffic 2 2 11	Traffic Generation Calculation, Based on TRICS; Effect of Recen Application for Agri-Business Industry Unit
ASSESSMEN TRICS Assessn 2727 m2 GFA Agri-Busine TOTAL VEHICLES Of Which OGVs	T OF TRAFFIC GENERATE nent of Traffic Generated ss Industry Uses Network Hour Weekday AM Peak Hr 8-9 Weekday PM Peak Hr 5-6 24 Hour Day Weekday AM Peak Hr 8-9 Weekday AM Peak Hr 8-9 Weekday AM Peak Hr 8-9 Weekday PM Peak Hr 5-6 24 Hour Day Network Hour	BY IN PI By Reg R Per 100m2 0.349 0.066 2.461 Per 100m2 0.018 * Ú 0.203 Arrivals	ANNING ef F24A/ vals Trips 10 2 67 Trips 1 1 1 6 5 (PCUs)	DEVELOP 0896E (Re Per 100m2 0.066 0.361 2.135 Per 100m2 0.016 * Ú 0.191 Departur	MENT AT fer to NR tures Trips 2 10 58 Trips 1 1 1 5 ses (PCUs)	T SITE B TTA) Total 2-Way Traffic Generated 12 12 125 2-Way Traffic 2 2 11 2-Way (PCUs)	Traffic Generation Calculation, Based on TRICS; Effect of Recen Application for Agri-Business Industry Unit
ASSESSMEN TRICS Assess 2727 m2 GFA Agri-Busine TOTAL VEHICLES Of Which OGVs	T OF TRAFFIC GENERATE nent of Traffic Generated ess Industry Uses Network Hour Weekday AM Peak Hr 8-9 Weekday PM Peak Hr 5-6 24 Hour Day Weekday AM Peak Hr 8-9 Weekday AM Peak Hr 8-9 Weekday AM Peak Hr 8-9 Weekday AM Peak Hr 8-9 Weekday AM Peak Hr 8-9	BY IN PI By Reg R Per 100m2 0.349 0.066 2.461 Per 100m2 0.018 * Ú 0.203 Arrivals 1	ANNING ef F24A/ vals Trips 10 2 67 Trips 1 1 1 6 (PCUs) 1	DEVELOP 0896E (Re 0er 100m2 0.066 0.361 2.135 Per 100m2 0.016 * Ú 0.191 Departure	MENT AT fer to NR tures Trips 2 10 58 Trips 1 1 5 ses (PCUs)	Total 2-Way Traffic Generated 12 12 125 2-Way Traffic 2 125 2-Way Traffic 2 11 2 11 2 12 125 12 12 12 12 12 12 12 12 12 12 12 12 12	Traffic Generation Calculation, Based on TRICS; Effect of Recen Application for Agri-Business Industry Unit
ASSESSMEN TRICS Assess 2727 m2 GFA Agri-Busine TOTAL VEHICLES Of Which OGVs	T OF TRAFFIC GENERATE nent of Traffic Generated ess Industry Uses Weekday AM Peak Hr 8-9 Weekday PM Peak Hr 5-6 24 Hour Day Weekday AM Peak Hr 8-9 Weekday AM Peak Hr 8-9 Weekday PM Peak Hr 5-6 24 Hour Day Weekday AM Peak Hr 8-9 Weekday AM Peak Hr 8-9 Weekday AM Peak Hr 8-9 Weekday AM Peak Hr 8-9	BY IN PI By Reg R Per 100m2 0.349 0.066 2.461 Per 100m2 0.018 * Ú 0.203 Arrivals 1 2	ANNING ef F24A/ vals Trips 10 2 67 Trips 1 1 6 c (PCUs) 1	DEVELOP 0896E (Re Per 100m2 0.066 0.361 2.135 Per 100m2 0.016 * Ú 0.191 Departuro E	MENT AT fer to NR tures Trips 2 10 58 Trips 1 1 5 es (PCUs) 5	T SITE B TTA) Total 2-Way Traffic Generated 12 12 125 2-Way Traffic 2 2 11 2-Way (PCUs) 14 14	Traffic Generation Calculation, Based on TRICS; Effect of Recen Application for Agri-Business Industry Unit
ASSESSMEN TRICS Assessn 2727 m2 GFA Agri-Busine TOTAL VEHICLES Of Which OGVs Equivalent PCUs	T OF TRAFFIC GENERATE nent of Traffic Generated ss Industry Uses Network Hour Weekday AM Peak Hr 8-9 Weekday PM Peak Hr 5-6 24 Hour Day Weekday AM Peak Hr 8-9 Weekday AM Peak Hr 8-9 Weekday PM Peak Hr 5-6 24 Hour Day Network Hour Weekday AM Peak Hr 8-9 Weekday PM Peak Hr 5-6 24 Hour Day	BY IN PI By Reg R Per 100m2 0.349 0.066 2.461 Per 100m2 0.018 * Ú 0.203 Arrivals 1 2	ANNING ef F24A/ vals Trips 10 2 67 Trips 1 1 1 6 6 (PCUs) 1 5 5	DEVELOP 0896E (Re Per 100m2 0.066 0.361 2.135 Per 100m2 0.016 * Ú 0.191 Departure 8 1 1 6	MENT AT fer to NR tures Trips 2 10 58 Trips 1 1 5 es (PCUs) 5 1 3	T SITE B TTA) Total 2-Way Traffic Generated 12 12 125 2-Way Traffic 2 11 2-Way (PCUs) 14 14 136	Traffic Generation Calculation, Based on TRICS; Effect of Recen Application for Agri-Business Industry Unit
ASSESSMEN TRICS Assessn 2727 m2 GFA Agri-Busine TOTAL VEHICLES Of Which OGVs Equivalent PCUs	T OF TRAFFIC GENERATE nent of Traffic Generated ss Industry Uses Network Hour Weekday AM Peak Hr 8-9 Weekday PM Peak Hr 5-6 24 Hour Day Weekday AM Peak Hr 8-9 Weekday AM Peak Hr 8-9 Weekday PM Peak Hr 5-6 24 Hour Day Network Hour Weekday AM Peak Hr 8-9 Weekday AM Peak Hr 8-9 Weekday AM Peak Hr 5-6 24 Hour Day THE ABOVE - ASSIGNED A	D BY IN PI By Reg R Per 100m2 0.349 0.066 2.461 Per 100m2 0.018 * Ú 0.203 Arrivals	ANNING ef F24A/ vals Trips 10 2 67 Trips 1 1 1 6 (PCUs) 1 5 5 <i>MITTED</i>	DEVELOP 0896E (Re 0er 100m2 0.066 0.361 2.135 Per 100m2 0.016 * Ú 0.191 Departur 0.191 Departur 6 TRAFFIC T	MENT AT fer to NR tures Trips 2 10 58 Trips 1 1 5 es (PCUs) 5 5 1 3 O NETWO	T SITE B TTA) Total 2-Way Traffic Generated 12 12 125 2-Way Traffic 2 2 11 2-Way (PCUs) 14 14 14 136 DRK	Traffic Generation Calculation, Based on TRICS; Effect of Recen Application for Agri-Business Industry Unit
ASSESSMEN TRICS Assessin 2727 m2 GFA Agri-Busine TOTAL VEHICLES Of Which OGVs Equivalent PCUs	T OF TRAFFIC GENERATE nent of Traffic Generated ss Industry Uses Network Hour Weekday AM Peak Hr 8-9 Weekday PM Peak Hr 5-6 24 Hour Day Weekday AM Peak Hr 8-9 Weekday AM Peak Hr 8-9 Weekday AM Peak Hr 8-9 Weekday AM Peak Hr 8-9 Weekday AM Peak Hr 5-6 24 Hour Day Network Hour Weekday PM Peak Hr 5-6 24 Hour Day	BY IN PL By Reg R Per 100m2 0.349 0.066 2.461 Per 100m2 0.018 * Ú 0.203 Arrivals * Ú 0.203 Arrivals * Ú Arrivals	ANNING ef F24A/ vals Trips 10 2 67 Trips 1 1 6 (PCUs) 1 5 5 5 MITTED"	DEVELOP 0896E (Re 0epar Per 100m2 0.066 0.361 2.135 Per 100m2 0.016 * Ú 0.191 Departure 6 TRAFFIC T Departure	MENT AT fer to NR tures Trips 2 10 58 Trips 1 1 5 (PCUs) 5 3 O NETWO es (PCUs)	T SITE B TTA) Total 2-Way Traffic Generated 12 12 125 2-Way Traffic 2 11 2-Way (PCUs) 14 14 14 136 DRK 2-Way (PCUs)	Traffic Generation Calculation, Based on TRICS; Effect of Recen Application for Agri-Business Industry Unit
ASSESSMEN TRICS Assessin 2727 m2 GFA Agri-Busine TOTAL VEHICLES Of Which OGVs Equivalent PCUs	T OF TRAFFIC GENERATE nent of Traffic Generated ss Industry Uses Network Hour Weekday AM Peak Hr 8-9 Weekday PM Peak Hr 5-6 24 Hour Day Weekday AM Peak Hr 8-9 Weekday PM Peak Hr 8-9 Weekday PM Peak Hr 8-9 Weekday AM Peak Hr 8-9 Weekday AM Peak Hr 8-9 Weekday AM Peak Hr 8-9 Weekday AM Peak Hr 8-9	BY IN PI By Reg R Per 100m2 0.349 0.066 2.461 Per 100m2 0.018 * Ú 0.203 Arrivals * Ú 0.203 Arrivals * Í Arrivals • TOOMI	ANNING ef F24A/ vals Trips 10 2 67 Trips 1 1 1 6 3 (PCUs) 1 5 5 5 7 (PCUs) 0	DEVELOP 0896E (Re Depar Per 100m2 0.066 0.361 2.135 Per 100m2 0.016 * Ú 0.191 Departure ERAFFIC T Departure 0 0 0 0 0 0 0 0 0 0 0 0 0	MENT AT fer to NR tures Trips 2 10 58 Trips 1 1 1 5 es (PCUs) 5 5	Item Total 2-Way Traffic Generated 12 12 12 12 2 2 11 2-Way (PCUs) 14 136 DRK 27	Traffic Generation Calculation, Based on TRICS; Effect of Recen Application for Agri-Business Industry Unit
ASSESSMEN TRICS Assessin 2727 m2 GFA Agri-Busine TOTAL VEHICLES Of Which OGVs Equivalent PCUs TOTAL OF	T OF TRAFFIC GENERATE nent of Traffic Generated ss Industry Uses Network Hour Weekday AM Peak Hr 8-9 Weekday PM Peak Hr 5-6 24 Hour Day Weekday AM Peak Hr 8-9 Weekday AM Peak Hr 8-9 Weekday PM Peak Hr 5-6 24 Hour Day Network Hour Weekday AM Peak Hr 8-9 Weekday PM Peak Hr 5-6 24 Hour Day THE ABOVE - ASSIGNED / Network Hour Weekday AM Peak Hr 8-9 Weekday AM Peak Hr 8-9	D BY IN PI By Reg R Per 100m2 0.349 0.066 2.461 Per 100m2 0.018 * Ú 0.203 Arrivals * *	ANNING ef F24A/ vals Trips 10 2 67 Trips 1 1 1 6 5 5 5 7 (PCUs) 0 5 5	DEVELOP 0896E (Re Per 100m2 0.066 0.361 2.135 Per 100m2 0.016 * Ú 0.191 Departure 6 TRAFFIC T Departure 6	MENT AT fer to NR tures Trips 2 10 58 Trips 1 1 1 5 es (PCUs) 5 1 3 O NETWO 5 1 1	Ite Total 2-Way Traffic Generated 12 12 12 12 2 2 11 2-Way (PCUs) 14 136 DRK 27 26	Traffic Generation Calculation, Based on TRICS; Effect of Recen Application for Agri-Business Industry Unit

	UN OF DIGESTATE	PLANI RA	W MATERIALS USED (IN)	·
Materials	Total Tonnage	Ge	enerated Internally	Imported
Chicken Manure	7,000		0	7000
Cattle Manure	1080		600	480
Grain / Grain Product	400		0	400
Slurries	17080		2000	15080
	Total Ton	nage Impo	rted to Plant Per Annum =	22960
	Total Ton	nage Impo	orted to Plant Per Week =	442
	Total T	onnage Im	ported to Plant Per Day =	63
	Worst Case Max N	umber of 2	8T Truckloads Per Day =	3
Resulti	ng Worst Case Max A	M / PM Pe	eak Hour Trucks Arriving=	1
	ESTIMATION OF DIG	ESTATE F	PRODUCT (OUT)	
Materials	Total Tonnage	Utilised / Spread Internally		Exported By Roa
Solids Output	9,342	9,342 1400		7942
Liquid Output	49045		4904.5	44141
Total	58,387	6304.5		52083
	Total Tonnag	ge Exporte	d from Plant Per Annum =	52083
Total Tonnage Exported	from Plant Per Allowa	able Week	(36 Spreading Weeks) =	1447
	Total Ton	nage Expo	orted from Plant Per Day =	207
	Worst Case Max N	umber of 2	8T Truckloads Per Day =	8
Resulting	Worst Case Max AM	/ PM Peak	K Hour Trucks Departing=	2
CONVERSION	TO PEAK HOUR AN	D 24HR A	ADT (PCUS - Car Equivale	ents)
Network Period	Arriva	ls	Departures	2-Way Flow
Weekday AM Peak Hr 8-9	6		6	12
Weekday PM Peak Hr 5-6	6		6	12
24 Hour Day	22		22	44

RECEIVED. JOI 12 1028

JUNCTION9 - PICADY Simulation Capacity Model Output Site Access/L1155 Existing T-Junction

Existing Priority Controlled Site Access Junction Summary PICADY Results in Order as included herein (Including All Committed and Current Proposed Development Traffic)

Modelled Scenario	Period Mean Max Q (PCUs)	Period Max RFC
2026 Opening Year AM Peak Hr	0.2	0.13
2026 Opening Year PM Peak Hr	0.1	0.11
2041 Design Year AM Peak Hr	0.2	0.14
2041 Design Year PM Peak Hr	0.1	0.12

All Results Above are well below the recommended RFC of 0.85 (85% Capacity) and therefore no problems whatsoever are anticipated at the Junction in terms of Capacity or excessive vehicle Queues.

<u>NB - Any Small Changes to Selected Opening Year 2026 or Design Year 2041, or</u> <u>indeed significantly higher traffic volumes experienced, as clearly deductable from</u> <u>the positive results presented, will clearly have no significant implications in terms</u> <u>of the conclusions of the Study.</u>

PICADY 9 - Priority Intersection Module
Version: 9.5.2.1013 © Copyright TRL Limited, 2019
For sales and distribution information, program advice and maintenance, contact TRL: +44 (0)1344 379777 software@trl.co.uk www.trlsoftware.co.uk
The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: 2024 AM PM.j9

Path: C:\Users\Eoin\NRB Consulting Engineers Ltd\NRB Server - Documents\2024\24-142 Country Crest AD Plant\Calculations\Site Access Capacity Report generation date: 29/11/2024 14:14:34

»2026, AM »2026, PM

Summary of junction performance

		AM				РМ				
	Set ID	Queue (PCU)	Delay (s)	RFC	LOS	Set ID	Queue (PCU)	Delay (s)	RFC	LOS
	2026									
Stream B-AC	D1	0.1	6.46	0.06	А	Da	0.1	7.14	0.11	A
Stream C-AB		0.2	7.32	0.13	Α	DZ	0.0	6.60	0.02	A

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.

File summary

File Description

Title	(untitled)
Location	
Site number	
Date	23/05/2022
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Enumerator	NRB-004\Eoin
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	PCU	PCU	perHour	s	-Min	perMin

Analysis Options

Calculate Queue Percentiles Calculate residual capacity		RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)	
		0.85	36.00	20.00	

Demand Set Summary

Der	nand Set Su	mmary				^	
ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment (min)	
D1	2026	AM	ONE HOUR	07:45	09:15	15	
D2	2026	PM	ONE HOUR	16:45	18:15	15	
Ana ID	Network flow sc	tails aling factor (%)				· 78-7	` _
A1	100.	000				*	$\vec{\mathbf{x}}$
							•0

Analysis Set Details

ID	Network flow scaling factor (%)
A1	100.000

PECENTED. TOTAL

2026, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	L1155 Site Access	T-Junction	Two-way		3.18	А

Junction Network Options

Driving side	Lighting	
Left	Normal/unknown	

Arms

Arms

Arm	Name	Description	Arm type
Α	L1155 North		Major
в	To Site		Minor
С	L1155 South		Major

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Has right turn bay	Visibility for right turn (m)	Blocks?	Blocking queue (PCU)
С	6.00			90.0	~	1.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arr	Minor arm type	Lane width (m)	Visibility to left (m)	Visibility to right (m)
в	One lane	3.00	90	90

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
B-A	552	0.101	0.254	0.160	0.363
B-C	681	0.104	0.264	-	-
C-B	626	0.243	0.243	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments.

Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2026	AM	ONE HOUR	07:45	09:15	15

Vehicle mix source	PCU Factor for a HV (PCU)		
HV Percentages	2.00		

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		~	63	100.000
в		✓	35	100.000
С		✓	141	100.000

Origin-Destination Data

Demand (PCU/hr)

	То			
		A	в	С
_	Α	0	9	54
From	в	2	0	33
	С	69	72	0

Vehicle Mix

Heavy Vehicle Percentages

		T	ō	
		Α	в	С
F	Α	0	10	2
From	в	10	0	10
	С	2	10	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.06	6.46	0.1	A
C-AB	0.13	7.32	0.2	A
C-A				
A-B				
A-C				

Main Results for each time segment

07:45 - 08:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	26	658	0.040	26	0.0	6.268	А
C-AB	55	620	0.088	54	0.1	6.987	A
C-A	51			51			
A-B	7			7			
A-C	41			41			

08:00 - 08:15

08:00 - 0	8:15					~	
Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	31	655	0.048	31	0.1	6.350	A
C-AB	66	620	0.106	65	0.1	7.129	A
C-A	61			61			· · · ·
A-B	8			8			8
A-C	49			49			3

08:15 - 08:30

A-C	49			49			<u>ر</u> ے ا	
							Č?	5
08:15 - 0	8:30							TX.
Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service	
B-AC	39	651	0.059	38	0.1	6.463	A	
C-AB	81	621	0.130	81	0.2	7.314	A	
C-A	74			74				
A-B	10			10				1
A-C	59			59				

08:30 - 08:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	39	651	0.059	39	0.1	6.463	А
C-AB	81	621	0.130	81	0.2	7.319	A
C-A	74			74			
A-B	10			10			
A-C	59			59			

08:45 - 09:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	31	655	0.048	32	0.1	6.351	А
C-AB	66	620	0.106	66	0.1	7.135	А
C-A	61			61			
ΑB	8			8			
A-C	49			49			

09:00 - 09:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	26	658	0.040	26	0.0	6.272	А
C-AB	55	620	0.088	55	0.1	6.998	А
C-A	51			51			
A-B	7			7			
A-C	41			41			

2026, PM

Data Errors and Warnings

Junction Network

Junctions

202	26, PM					P.C.C.	X
Data Err No errors o	rors and Warni or warnings	ings					VED. 78-12
Junc	tion Netw	ork					TOS
Junctior	IS						×.
Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS]
1	L1155 Site Access	T-Junction	Two-way		1.95	A	

Junction Network Options

Driving side Lighting Left Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D2	2026	PM	ONE HOUR	16:45	18:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		~	63	100.000
в		✓	61	100.000
С		✓	144	100.000

Origin-Destination Data

Demand (PCU/hr)

	То				
		A	в	С	
-	Α	0	2	61	
From	в	13	0	48	
	С	131	13	0	

Vehicle Mix

Heavy Vehicle Percentages

	То				
		Α	в	С	
_	Α	0	10	2	
From	в	10	0	10	
	С	2	10	0	

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.11	7.14	0.1	A
C-AB	0.02	6.60	0.0	А
C-A				
A-B				
A-C				

Main Results for each time segment

16:45 - 17:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	46	630	0.073	46	0.1	6.769	А
C-AB	10	617	0.016	10	0.0	6.520	A
C-A	99			99			
A-B	2			2			
A-C	46			46			

17:00 - 17:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	55	627	0.087	55	0.1	6.922	А
C-AB	12	616	0.019	12	0.0	6.554	А
C-A	118			118			
A-B	2			2			
A-C	55			55			

17:15 - 17:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	67	622	0.108	67	0.1	7.135	А
C-AB	14	614	0.023	14	0.0	6.599	А
C-A	144			144			
A-B	2			2			
A-C	67			67			

17:30 - 17:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	67	622	0.108	67	0.1	7.138	А
C-AB	14	614	0.023	14	0.0	6.599	А
C-A	144			144			
A-B	2			2			
A-C	67			67			

17:45 - 18:00

//:45 - 18:00								
Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service	
B-AC	55	627	0.087	55	0.1	6.928	A	
C-AB	12	615	0.019	12	0.0	6.555	A	
C-A	118			118			· O.	
ΑB	2			2			8	
A-C	55			55			75	

18:00 - 18:15

AC	55			55			<u>ر</u> ے ا		
18:00 - 18:15									
Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service		
B-AC	46	630	0.073	46	0.1	6.779	A	1	
C-AB	10	617	0.016	10	0.0	6.521	A	ĺ	
C-A	99			99					
A-B	2			2				ĺ	
A-C	46			46					

PICADY 9 - Priority Intersection Module
Version: 9.5.2.1013 © Copyright TRL Limited, 2019
For sales and distribution information, program advice and maintenance, contact TRL: +44 (0)1344 379777 software@trl.co.uk www.trlsoftware.co.uk
The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: 2041 AM PM.j9

Path: C:\Users\Eoin\NRB Consulting Engineers Ltd\NRB Server - Documents\2024\24-142 Country Crest AD Plant\Calculations\Site Access Capacity Report generation date: 29/11/2024 14:18:15

»2041, AM »2041, PM

Summary of junction performance

	AM					РМ				
	Set ID	Queue (PCU)	Delay (s)	RFC	LOS	Set ID	Queue (PCU)	Delay (s)	RFC	LOS
					20	41				
Stream B-AC	D1	0.1	6.51	0.06	A	D 2	0.1	7.24	0.12	A
Stream C-AB		0.2	7.41	0.14	Α	DZ	0.0	6.62	0.02	А

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.

File summary

File Description

Title	(untitled)
Location	
Site number	
Date	23/05/2022
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Enumerator	NRB-004\Eoin
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	PCU	PCU	perHour	s	-Min	perMin

Analysis Options

Calculate Queue Percentiles	Calculate residual capacity	RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)
		0.85	36.00	20.00

Demand Set Summary

Der	nand Set Su	mmary				^	
ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment (min)	
D1	2041	AM	ONE HOUR	07:45	09:15	15	
D2	2041	PM	ONE HOUR	16:45	18:15	15	
Ana ID	Network flow sc	tails aling factor (%)					272
A1	100.	000					72
							٠٢

Analysis Set Details

ID	Network flow scaling factor (%)
A1	100.000

PECENTED. TOTAL

2041, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	L1155 Site Access	T-Junction	Two-way		3.15	А

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Arms

Arms

Arm	Name	Description	Arm type
Α	L1155 North		Major
в	To Site		Minor
С	L1155 South		Major

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Has right turn bay	Visibility for right turn (m)	Blocks?	Blocking queue (PCU)
С	6.00			90.0	~	1.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor arm type	Lane width (m)	Visibility to left (m)	Visibility to right (m)
в	One lane	3.00	90	90

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
B-A	552	0.101	0.254	0.160	0.363
B-C	681	0.104	0.264	-	-
C-B	626	0.243	0.243	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments.

Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2041	AM	ONE HOUR	07:45	09:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		✓	71	100.000
в		✓	38	100.000
С		✓	156	100.000

Origin-Destination Data

Demand (PCU/hr)

		То		
		Α	в	С
_	Α	0	10	61
From	в	2	0	36
	С	78	78	0

Vehicle Mix

Heavy Vehicle Percentages

		То			
		A	В	c	
From	Α	0	10	2	
	в	10	0	10	
	С	2	10	0	

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.06	6.51	0.1	А
C-AB	0.14	7.41	0.2	А
C-A				
A-B				
A-C				

Main Results for each time segment

07:45 - 08:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	29	657	0.044	28	0.0	6.299	А
C-AB	59	620	0.096	59	0.1	7.044	A
C-A	58			58			
A-B	8			8			
A-C	46			46			

08:00 - 08:15

08:00 - 08:15								
Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service	
B-AC	34	654	0.052	34	0.1	6.389	A	
C-AB	71	621	0.115	71	0.1	7.201	A	
C-A	69			69			· O.	
A-B	9			9			8	
A-C	55			55			75	

08:15 - 08:30

A-C	55			55				
08:15 - 0	8:30						*~?	22
Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service	
B-AC	42	650	0.064	42	0.1	6.514	A	
C-AB	88	622	0.141	88	0.2	7.402	A	
C-A	84			84				
A-B	11			11				1
A-C	67			67				

08:30 - 08:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	42	650	0.064	42	0.1	6.514	А
C-AB	88	622	0.141	88	0.2	7.408	A
C-A	84			84			
A-B	11			11			
A-C	67			67			

08:45 - 09:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	34	654	0.052	34	0.1	6.390	А
C-AB	71	620	0.115	71	0.1	7.208	А
C-A	69			69			
ΑB	9			9			
A-C	55			55			

09:00 - 09:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	29	657	0.044	29	0.1	6.305	А
C-AB	59	620	0.096	59	0.1	7.058	А
C-A	58			58			
A-B	8			8			
A-C	46			46			

2041, PM

Data Errors and Warnings

Junction Network

Junctions

2041, PM						PRC	\
Data Err No errors o	ata Errors and Warnings lo errors or warnings						ARD. 78-72
Junc	tion Netw	ork					EQ.
Junctior	IS						*
Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS	
1	L1155 Site Access	T-Junction	Two-way		1.88	A	

Junction Network Options

Driving side Lighting Left Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D2	2041	PM	ONE HOUR	16:45	18:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		~	71	100.000
в		~	65	100.000
С		✓	161	100.000

Origin-Destination Data

Demand (PCU/hr)

	То			
		Α	в	С
-	Α	0	2	69
From	в	14	0	51
	С	148	13	0

Vehicle Mix

Heavy Vehicle Percentages

	То				
		Α	в	С	
From	Α	0	10	2	
	в	10	0	10	
	С	2	10	0	

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.12	7.24	0.1	A
C-AB	0.02	6.62	0.0	А
C-A				
A-B				
A-C				

Main Results for each time segment

16:45 - 17:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	49	628	0.078	49	0.1	6.832	A
C-AB	10	616	0.016	10	0.0	6.533	A
C-A	111			111			
A-B	2			2			
A-C	52			52			

17:00 - 17:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	58	624	0.094	58	0.1	7.004	А
C-AB	12	614	0.019	12	0.0	6.568	А
C-A	133			133			
A-B	2			2			
A-C	62			62			

17:15 - 17:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	72	618	0.116	71	0.1	7.241	А
C-AB	14	613	0.024	14	0.0	6.615	А
C-A	163			163			
A-B	2			2			
A-C	76			76			

17:30 - 17:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	72	618	0.116	72	0.1	7.244	А
C-AB	14	613	0.024	14	0.0	6.615	А
C-A	163			163			
A-B	2			2			
A-C	76			76			

17:45 - 18:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	58	624	0.094	59	0.1	7.007	A
C-AB	12	614	0.019	12	0.0	6.569	A
C-A	133			133			Ö.
ΑB	2			2			8
A-C	62			62			73
8:00 - 1	8:15				·		
	Total Demand	Canacity		Throughput			Unsignalised

18:00 - 18:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	49	628	0.078	49	0.1	6.845	А
C-AB	10	616	0.016	10	0.0	6.535	А
C-A	111			111			
ΑB	2			2			
A-C	52			52			

Preliminary Planning Stage Mobility Management Plan (aka Travel Plan)

consulting engineers

Planning Stage Travel Plan (Mobility Management Plan) Appendix F

For

Anaerobic Digestion Plant

At

Collinstown , Lusk, Co. Dublin.

On Behalf of "Country Crest ULC"

SUBMISSION ISSUE

5th Floor, 40 Mespil Road, Ballsbridge, Dublin 4 Tel: +353 1 292 1941, E-mail: info@nrb.ie, Web: <u>www.nrb.ie</u>

Registered in Ireland No. 491679

Contents

Page	Section	Description 78
2	1.0	Introduction
4	2.0	Access to the Site - By Mode
11	3.0	Collection of Baseline Information
12	4.0	The Travel Plan
18	5.0	Implementing the Plan
20	6.0	Monitoring and Review

1.0 INTRODUCTION

- 1.1 NRB Consulting Engineers have been commissioned to prepare a Planning Stage Travel Plan (aka "Mobility Management Plan") in support of a planning application for a new Anaerobic Digestion Plant at Country Quest, Collinstown, Lusk Co Dublin. This plan contains measures to promote sustainable travel modes and to reduce private car borne journeys to and from the site.
- 1.2 The purpose of the Report is to explain the applicant's commitment to the promotion of more sustainable and cost-effective travel habits among the employees and visitors of the scheme and to reduce private car borne journeys to and from the site. It should be remembered that an MMP is best put in place when a development is occupied and occupants are in place. Nonetheless, this report provides a structure for the Management and for the appointed Travel Plan Co-Ordinator to follow from occupation.

What is a "Mobility Management Plan" (or "Travel Plan")?

- 1.3 Originally and elsewhere called Mobility Management Plans (MMPs), they originated in the United States and the Netherlands in the late 1980s. In the US, employers over a certain size (generally over 100 employees) were required to implement 'Trip Reduction Plans' in order to reduce singleoccupancy car commuting trips, and to increase car occupancy.
- 1.4 A MMP or Travel Plan (TP) consists of a package of measures put in place by an organisation to encourage and support more sustainable travel patterns among employees and other visitors. Such a plan usually concentrates on employee commuting patterns for employment-type development. In essence, a TP is useful not only to reduce the attractiveness of private car use, but also for the ability to promote and support the use of more sustainable transport modes such as walking, cycling, shared transport, and mass transit such as buses and trains.

Aims and Objectives of this Travel Plan

- 1.5 The package generally includes measures to promote and improve the attractiveness of using public transport, cycling, walking, car sharing, flexible working, or a combination of these as alternatives to single-occupancy car journeys to work. A TP can consider all travel associated with the work site, including business travel, fleet management, customer access and deliveries. It should be considered as a dynamic process where a package of measures and campaigns are identified, piloted, and monitored on an on-going basis.
- 1.6 The changes to Travel Mode which are being sought as part of any TP may be as simple as car sharing one-day per week, home working initiatives which are a 'new normal', walking on Wednesdays, or taking the bus or train on days which do not conflict with other commitments, leisure or work activities.

- 1.7 It is envisaged that, once in place, the TP will enable the following benefits to be realised for the Development:
 - Reduced car parking demand and reduced congestion on the local road network due to lower demand for private transport and/or more efficient use of private motor vehicles,
 - Improved safety for cyclists and pedestrians,
 - Direct financial savings for those taking part in the developed initiatives, through higher-than-average vehicle occupancy rates,
 - A reduction in car parking and car set-down demand, resulting in improved operational efficiency and safety for all,
 - Improved social networking between all those participating in the shared initiatives,
 - Improved environmental consideration and performance,
 - Improved public image for the development, which sets an example to the broader community & may lead to employees making better travel decisions in the future,
 - Improved health and well-being for those using active non-car transport modes,
 - Regular liaison with the Local Authority and public transport providers to maintain, improve, and support transportation services to and from the site,
 - Improved attractiveness of the development to prospective employees,
 - Optimising levels of safety for all employees and visitors.

Methodology

- 1.8 As part of this Travel Plan, reference has been made to the following documents:
 - Your Step By Step Guide To Travel Plans (NTA 2012);
 - Achieving Effective Workplace Travel Plans (NTA 2011);
 - Traffic and Transport Assessment Guidelines (TII);
 - Traffic Management Guidelines (DoELG, 2003);
 - Mobility Management Plans DTO Advice Note (DTO, 2002);
 - The Route to Sustainable Commuting (DTO 2001);
 - Smarter Travel: A Sustainable Transport Future (DOT)
- 1.9 Consultation with key stakeholders is an essential part of any Travel Plan. As discussed below, as part of the Operational Phase of this Development, a Travel Plan Coordinator Role will be appointed from within Management. Following on, once occupied, employees and visitors of the facility will be asked to complete detailed questionnaires on essential data in relation to their existing travel patterns. This information will be used to inform the on-going implementation, monitoring and review of the TP for this development.
- 1.10 This information will then be used as the basis for assessment, conclusions and recommendations.

2.0 ACCESS TO THE SITE - BY MODE

- 2.1 The proposed development consists of the construction of for a new Anaerobic Digestion Plant at Country Quest, Collinstown, Lusk Co Dublin.
- 2.2 It is essential for successful Travel Planning to concentrate on journeys associated with work commuting patterns. These are the groups which can most practically be encouraged to dee modes of transport other than the car.
- 2.3 A site location plan for the site is included below as *Figure 2.1*.

Figure 2.1 - Site Location

- 2.4 Working hours & shift patterns at facilities of this nature result in employee-arrivals and employeedepartures which for the most part do not coincide with the traditional AM and PM peak commuter periods.
- 2.5 Drivers destinations for this element will mainly be local, however some, and for the remainder of the site, there may be destinations further afield in Ireland, the UK and EU wide. Many drivers, especially long-haul drivers, can work on a long-haul cycle, being away for several days continuously, so although their private car may be parked at the facility, it is not making any daily commuting trips or adding traffic to roads.

2.6 Video conferencing facilities can also be made available to reduce travel requirements. And during Covid-Pandemic times virtual meetings have become very popular, reducing the need to travel. S.

Cycling and Walking Facilities

78/72 2.7 There are no dedicated facilities provide on the immediate local public roads, with shared surfaces predominating. The site will continue to act as a slow zone where pedestrians/cyclists share the road. There are wide hard shoulders and informal intermittent footpaths on the R132 on the approach to the L1155 nearest the site connecting to the adjacent public bus stops. The local bus stops nearest the site on the R132 are illustrated below as Figure 2.2.

Figure 2.2; 10-15 minute walk to Bus Stops locally

- 2.8 In terms of more specific cycle networks, the National Transport Authority has published a series of Network Plans identifying improvements to the cycle networks in towns such as Lusk, the intention being to improve cycle linkages between, and in, towns.
- 2.9 The Greater Dublin Area Cycle Network Plan is the National Transport Authority's plan for a regional cycle network. The Cycle Network Plan aims to ensure that cycling is supported and enhanced in order to achieve strategic objectives and reach national goals for cycle usage. An extract from the Rural Cycle Routes Plan included below as Figure 2.3 illustrates the proposed cycle network plan for Lusk and Skerries. This network will greatly benefit the accessibility of the

site for cyclists with an Inter-Urban route passing near the site on the R132 linking into the GDA Network to the south.

Figure 2.3 – Extract Greater Dublin Area Cycle Network Plan – Lusk & Skerries

- 2.10 The provision of modern improved infrastructure makes the site more accessible and more permeable for Employees. The key to cycle accessibility is convenient safe links, with secure and carefully sited cycle parking. Cycling is ideal for shorter journeys.
- 2.11 For journeys greater than 8km, it is generally recognised that a modal shift to cycling could be achievable for some, but not all, and options such as public transport and car sharing should be considered. Journeys up to 8km could be undertaken by bicycle and journeys up to 3-4km could be undertaken by walking or cycling.

Cycle Parking

- 2.12 It is anticipated that a significant number of Employees will be willing to cycle to work with links and secure parking in place. Cycle parking will be provided at the development consistent with best practice and in accordance with the requirements of Fingal County Council. Showers, changing facilities and lockers for staff will be provided on site.
- 2.13 It is of course acknowledged that cyclists need to be confident that their cycles will not be tampered with. This development will include secure accessible cycle parking spaces for Employees, located within areas which will be subject to passive surveillance and/or security monitoring by CCTV.

- 2.14 The vision is to cultivate a cycling culture, through the implementation of appropriate infrastructure and promotional measures, which positively encourages all members of the community to cycle at all life stages and abilities as a mode of sustainable transport that delivers environmental, health and economic benefits to both the individual and the community.
- 2.15 Puncture repair kits, a basic tool kit and pump can be kept behind the information / reception desk of the development, for the benefit of employees.

Bus Provision

- 2.16 The development is well placed to take advantage of the existing and future bus services to and from Lusk with stops in close proximity to the site on the R132 at set out above. These stops are served by Bus Eireann Bus Route 101 being the regular Dublin-Drogheda Commuter Service. These link the site to other towns such as Dublin City and Balbriggan with stops at other locations in between.
- 2.17 Details of route, timetables and fares are provided on <u>www.dublinbus.ie</u> and on the Transport for Ireland National Journey Planner App.
- 2.18 Public transport maps and timetables will be provided in prominent locations on site and the information will be kept up to date. Details of all routes, timetables and fares are provided on the Transport for Ireland National Journey Planner App.
- 2.19 In terms of Future Planned Services, the NTA have recently published details of Bus Connects and the overall bus network for the GDA, the 'New Dublin Area Network' showing Spine Routes, Feeder and Orbital Routes. An extract from the NTA Plans showing the site location is included below as *Figure 2.4*.
- 2.20 This future network shows that the site's accessibility to bus services will be further slightly enhanced.

Figure 2.4 – NTA GDA New Dublin Area Network - Bus Services Plan

Rail

- 2.21 The site is easily accessible to the Commuter Rail Services at Lusk Station, linked by the Bus Routes via the R132. This provides linkages north towards Drogheda and other destinations and to the heart of Dublin City Centre with onward links to LUAS and also to the mainline Train Services at Connolly Station and to National Bus Services at Busarus. It is accepted that the walk distance to the train station, may serve to make commuting by train or other alternative means less attractive, but it is nonetheless an option, particularly for shared-mode journeys.
- 2.22 The proximity to Rush & Lusk Railway Station by bus is illustrated in *Figure 2.5 & 2.6* below:

Figure 2.5 – Drive Time to Train Station

Figure 2.6 – Access to Rush & Lusk Station (Cycle)

2.23 Rush & Lusk Station is well served by commuter and mainline services with frequent service at peak times and provides for a very reliable service. Timetables for these services are easily accessible. An extract from the Irish Rail routes is included below as *Figure 2.7* showing the routes serving this station.

Number of the serviced Dublin - Dundalk commuter • DART and Dublin Commuter

Figure 2.7- Accessibility to Rail Services

- 2.24 In terms of numbers of routes and frequency of buses and rail services, both of which are available to the Employees, it is considered that the proposed development is relatively sustainable in terms of public transport accessibility, with ever improving provision.
- 2.25 The proximity of the development to bus services means that Employees will have viable alternatives to the private car for accessing the site and for accessing the Local and National Services and need not be reliant upon the car as a primary mode of travel.

Accessibility by Taxi

2.26 In terms of taxis, mobile phones and App Technology (e.g., 'Free Now') allow taxis to be ordered on a demand-basis without any requirement for formal taxi ranks or dedicated taxi folding areas.

Car Sharing

2.27 The option of car sharing will be explored and highlighted to employees. Further details are included at Section 4 of this report.

Communication

- 2.28 Prior to commencing employment, the Management will issue welcome packs to all new employees. These packs will include details of the development and how it is run, advice on access, public transport information, useful local information. The preparation of this information ensures Employers and Employees can be made familiar with the operation of the development before moving in.
- 2.29 In terms of number of transport alternatives easily available to Employees, it is considered that the proposed development is relatively sustainable in terms of public & alternative transport accessibility. The proximity of the development to existing public transport services means that all Employees will have viable alternatives to the private car for accessing the site and will not be reliant upon the car as a primary mode of travel.
- 2.30 Direct pedestrian linkages are provided between the site and the existing pedestrian facilities on the surrounding road network, by way of shared surfaces. The immediate entrance to the site will be well lit, so that people can feel secure in using the facilities & can also be monitored by CCTV.
- 2.31 Public transport maps and timetables can be provided in prominent locations on site and the information will be kept up to date by the appointed Travel Plan Coordinator, a role for the Management.
- 2.32 Staff will be offered the opportunity to purchase public transport commuter tickets under the current 'Employer Pass' and 'TaxSaver' programmes. Under these schemes the employer applies to larnród Éireann / Bus Éireann for tax free public transport tickets for their employees as an incentive for them to use public transport to travel to work. The Bike to Work tax saver scheme will also be made available to staff.
- 2.33 Staff travelling to meetings etc. will be encouraged to travel by public transport so that they can spend time working en-route and also help to reduce traffic congestion or avoiding travelling by using online / video conferencing facilities.
- 2.34 With this in mind, the main focus of this Travel Plan will be to promote and support the use of alternative modes to the private car.

3.0 COLLECTION OF BASELINE INFORMATION

Possible Travel Pattern Questionnaires

- 3.1 Subject to planning, and when the Travel Plan Coordinator is appointed, the occupiers of the proposed development will be encouraged to regularly monitor the Travel Plan initiatives morder to maximise on their success.
- 3.2 Shortly after planning is achieved, a detailed travel-questionnaire will be compiled and distributed to employees and visitors for completion. The aim of the travel questionnaire will be to establish travel patterns between work and home amongst other travel demands. The information gathered from this survey will be used to inform the further development of the Travel Plan.
- 3.3 The Baseline Survey information will also allow the Travel Plan Coordinator for the development to set realistic modal-split targets for the development.
- 3.4 It is anticipated that, given the location and alternative transport links at this development, there will be the opportunity to improve travel via public and alternative transport.
- 3.5 The Travel Plan will need to maintain this positive modal split and improve it, where possible. It is informative to note that the "Smarter Travel: A Sustainable Transport Future" (DOT) objective for 2020 is to achieve a reduced work-related commuting by car modal share of 65% to 45%.

4.0 THE TRAVEL PLAN

- 4.1 The successful implementation of a Travel Plan will ensure that, in-so-far-as-possible, the impacts of this traffic are reduced and minimised where practical, while providing a number of environmental and economic advantages detailed below.
- 4.2 The following sub-sections detail the available initiatives which will serve to better manage traveled demand, and therefore the traffic impact of work-related journeys, focused on the movement of Employees during peak times.

Walking - Key Information				
Approximate Zone of Influence	3.5km			
Percentage of Employees working in area of influence	TBC in each survey			
Percentage of Employees interested in Walking	TBC in each survey			

Walking

Table 4.1 – Key Information: Walking

- 4.3 There are many local, global, and personal benefits to walking to work, a few of which are listed following:
 - <u>W</u> Wake Up! Studies have shown that people who walk to work are more awake and find it easier to concentrate.
 - <u>A</u> Always one step ahead Walking makes people more aware of road safety issues and helps them develop stronger personal safety skills.
 - <u>L</u> Less congestion If you leave the car at home and walk, there are fewer cars on the road which makes it safer for those who walk and cycle.
 - <u>K</u> Kinder to the environment By leaving the car at home you are reducing the amount of CO 2 produced and helping to reduce the effects of climate change and air pollution.
 - <u>I</u> Interpersonal skills Walking to work or school can be a great way to meet other walkers, share the experience, and develop personal skills.
 - <u>N</u> New adventures Walking to work or school is a great way to learn about your local environment and community. It's also a fun way to learn about the weather, landscape, and local ecosystems.
 - <u>**G**</u> Get fit and stay active Walking to and from work or school helps people incorporate physical activity into their daily routines. Research shows that regular physical activity can benefit your body and mind.

- 4.4 Most adults will consider walking a maximum of 3.5 km (Approx. 30/40 minutes) to work. Employees working within a 3.5 km radius of the site will be encouraged to walk to work as often as their schedule permits.
- 4.5 The following initiatives and incentives can be used to encourage walking to work or school:
 - Take part in a 'Pedometer Challenge' which is organised through the Irish Heart Foundation or Smarter Travel Workplaces;
 - Organise special events such as a 'Walk to work on Wednesdays' where participants are rewarded for their participation;
 - Keep umbrellas in public areas on a deposit system for use when raining;
 - Display Smarter Travel Workplaces Accessibility Walking maps on notice boards areas so Employees can plan journeys;
 - Organise lunch time or afternoon walks as part of a health and well-being programme;
 - Highlight the direct savings gained due to reduced use of private vehicles.

Cycling

Cycling – Key Information					
Approx. zone of influence	10-20km				
Percentage of Employees Surveyed known to Work within the area of influence	TBC in each survey				
Percentage of Employees interested in cycling	TBC in each survey				

Table 4.2 : Key Information - Cycling

- 4.6 Research suggests that cycling is a viable mode of transport for people who live up to 10-20km from work.
- 4.7 Cycling is a great way to travel. It helps foster independence, raises awareness of road safety, and helps the environment.
- 4.8 Some positive aspects of cycling to work or school are listed following:
 - <u>C</u> Cycling is fun! Cycling is a great form of transport but it's also a great recreational activity. Cycling is a skill that stays with you for life and it's a fantastic way to explore your local community.
 - <u>Y</u> You save time & money cycling to work reduces the need to travel by car thus reducing fuel costs and freeing up road space for more cyclists;
 - <u>C</u> Confidence building travelling to work as an independent cyclist can give

people increased confidence proving beneficial in all aspects of life;

- <u>L</u> Less congestion If you leave the car at home and cycle to work there are fewer cars on the road which makes it safer for those who cycle and walk to work or school;
- <u>I</u> Interpersonal skills Cycling to work or to school can be a great way to meet other cyclists and share the experience;
- <u>N</u> New adventures Cycling to work or school is a great way to learn about your local environment and community. It helps people to understand where they live and how their actions affect their local environment;
- <u>G</u> Get fit and stay active cycling to and from work or school helps people incorporate physical activity into their daily routines. Research shows that regular physical activity can benefit your body and mind.
- 4.9 The provision of enhanced and attractive cycle parking facilities at the site will clearly play a critical role in promoting journeys by bicycle.
- 4.10 The following initiatives and incentives can be used to encourage cycling to work:
 - New cycle parking installed within the development, secure and well lit;
 - Publicise cycle parking availability by way of signage and on notice boards;
 - Display maps on notice boards areas so people can plan journeys;
 - The development can provide free cycle accessories (panniers, lights, visi-vests, helmets) in periodic draws for cyclists,
 - The Travel Plan Coordinator can organise cycle training sessions on site on the rules of the road and the specific risks associated with the locality;
 - The Travel Plan Coordinator can invite bike suppliers on site for a 'Green Day' or 'Green Week' so that people can try bikes before buying;
 - The Travel Plan Coordinator can set up a Bicycle User Group (BUG) to promote cycling;
 - The Travel Plan Coordinator can highlight the direct savings gained due to reduced use of private vehicles;
 - The Travel Plan Coordinator can encourage Employees to take part in National Bike Week, see.
 - Advise staff of the availability of the Bike to Work Scheme.

Public Transport	A A
Public Transport – Key Information	CCC.
Approx. zone of influence	All
Percentage of Employees in area of influence	100%
Percentage of Employees using Public Transport	TBC in each survey

Table 4.3: Key Information: Public Transport

- 4.11 There are many benefits to taking public transport, some of which include:
 - Personal Opportunities Public transportation provides personal mobility and freedom;
 - Saving fuel Every full standard bus can take more than 50 cars off the road, resulting in fuel savings from reduced congestion;
 - Reducing congestion The more people who travel to work or to school on public transport, especially during peak periods, the less people travelling by private car;
 - Saving money Taking public transport to and from work or school is a lot cheaper than travelling by car and saves the cost of buying, maintaining and running a vehicle;
 - Reducing fuel consumption A full standard bus uses significantly less fuel per passenger than the average car;
 - Reducing carbon footprint Public transport is at least twice as energy efficient as private cars. Buses produce less than half the CO2 emissions per passenger kilometre compared to cars and a full bus produces 377 times less carbon monoxide than a full car;
 - Get fit and stay active Walking to and from work or school to public transport helps people incorporate physical activity into their daily routines. Research shows that regular physical activity can benefit your body and mind.
 - Less stress Using public transport can be less stressful than driving yourself, allowing you to relax, read, or listen to music.
- 4.12 The following initiatives and incentives can be used to encourage people to take public transport:
 - Publicise Employee Tax Saver Commuter tickets, which offer savings to employers in PSRI per ticket sold and significant savings to employees in marginal tax rate and levies on the price of their ticket;
 - Encourage public transport use for travel by promoting smart cards, advertising the availability of these tickets to Employees;
 - Publicise the availability of Real Time Information. Real Time Information shows when your bus is due to arrive at your bus stop so you can plan your journey more accurately;

- Provide maps of local bus routes and the nearest bus stops and the length of time it takes to walk to them;
- Contact local providers about issues such as location of existing and new bus stops, timing of routes, or where you have market information about a potential new route. 12202*

Car Sharing

Car Sharing – Key Information				
Approx. zone of influence	All			
Percentage of Employees in area of influence	100%			
Percentage of Employees Car Sharing	TBC in each survey			

Table 4.4: Key Information - Go-Car/Car Sharing

- 4.13 Every day thousands of commuters drive to work or to school on the same routes to the same destinations, at the same time as their colleagues. By car sharing just once a week, a commuter's fuel costs can be reduced by 20%, and in a similar fashion, the demand for work place parking can be reduced by 20%. If every single-occupancy driver carried another driver, there would be 50% less cars on the road at peak times.
- 4.14 Although use of the car to get to work or to school is essential for some people, car sharing schemes such as GoCar (which are active in Dublin and now nationally) have the potential to deliver a significant reduction in private vehicle trips by promoting higher than average occupancy rates for each vehicle.
- 4.15 Car sharing often happens informally, however some participants often prefer a formal scheme such as a GoCar facility which will normally generate a higher take-up for car sharing, and more efficiency in terms of increased occupancy rates.
- 4.16 Encouraging more Employees to share car journeys to work rather than driving alone as well as encouraging more to set up and take part in car sharing/pooling would prove a very effective means of reducing daily car trips to and from the site.

- 4.17 The following initiatives and incentives can be used to encourage car sharing;
 - Highlight to drivers that they do not have to share with a person that doesn't suit them – allow choice based on gender, route, smoking or non-smoking;
 - Clarify the financial implications of the scheme those accepting a lift could contribute towards fuel costs.
 - Use existing online databases for car sharing. For example, the development could set up its own private car sharing site using <u>www.carsharing.ie</u>.

Action Plan Summary Table

4.18 The Summary Action Plan is described in the Table below. Modal Split Targets will be determined following on from the first Employee survey shortly after full occupation, typically within the first six months. This will be part of the role of the Travel Plan Coordinator. This will show existing travel patterns with realistic targets set to improve the modal split of Employees.

	Initiative	Impact on Delivery	Difficulty Delivering	Current Modal Split	Target MS
Employees Initiatives	Walking	Medium	Low	TBC	TBC
	Cycling	Medium	Medium	TBC	TBC
	Public Transport	High	Low	TBC	TBC
	Other	Medium	Medium	TBC	TBC
	Car - Sharing	Medium	Medium	TBC	TBC
	Cars - 1 Passenger Only	High - Negative	High	TBC	TBC
Promoting the TP	Marketing the Plan	High	Low	Driven By TP Coordinator	
	Measuring Success	High	Medium	Annual	Surveys

Action Plan Summary Table

5.0 IMPLEMENTING THE PLAN

Background

- 5.1 Setting realistic targets and a sustained approach to the promotion of the Travel Plan is important if the measures are to be successful. The objectives and benefits of the Plan will be made clear and broadcast during the full lifecycle of the Plan.
- 5.2 The implementation of a successful Travel plan will require the upfront investment of resources.As well as reviewing objectives and initiatives regularly, it is equally important to measure results.This provides an indication of any Plan's success and ensures that the targets remain realistic.

The Travel Plan Coordinator

- 5.3 The key objective of this Travel Plan is to ensure that the traffic impacts and car usage associated with the operation any development are minimised. Achieving this objective will result in a wide array of benefits for the development and its stakeholders.
- 5.4 To ensure the plan is effective it is essential for a Travel Plan Coordinator to be appointed for the Development.
- 5.5 It is envisaged that the Coordinator will work closely with employees to enthusiastically promote and market the Travel Plan. As employees will be the focus of the plan; their involvement must be sought from the outset.
- 5.6 To support the Travel Plan Coordinator's efforts, the Management must ensure that they have sufficient time to carry out their duties. In addition, it is essential that the powers of decision making are bestowed upon him/her, along with a suitable budget and programme for implementation.

Promoting the Travel Plan

- 5.7 Active promotion and marketing are needed if the Travel Plan is to have a positive impact on stakeholder travel patterns to and from the site.
- 5.8 All marketing initiatives should be focused on areas where there is willingness to change. Such information has been extracted from the questionnaires and has been described in Section 3 of this Plan.
 - Identify the Aim e.g., to reduce low occupancy car commuting, school, and business travel & to promote active travel, public transport & alternatives to travelling by car.

- **Brand the Plan** as part of communicating the Travel Plan, visually brand all work relating to it with a consistent look, slogan, identity or logo
- Identify the Target Audience 'segment the audience' (e.g. shift workers, school travel, sedentary workers, people travelling long/ short distances, mode used, members of a walking club or green team) so you can target the message and events towards these different groups.
- 5.9 As part of the marketing process, the Travel Plan coordinator can personalise a plan for the Development, drawing attention to the benefits of participation and support for its implementation.
- 5.10 The Coordinator can identify communication tools and networks used by the different audiences in the development and use these to communicate about travel.
- 5.11 Promotional material regardless of its quality is only as good as its distribution network; material incentives assist greatly in introducing people to alternative modes of commuting.
- 5.12 The plan should be about promoting equity among modes and offering choice and accessibility.
- 5.13 The Coordinator can promote positive messages associated with a plan, for example, reduced tax/PRSI payments, getting fit and active, reducing congestion, reducing CO2 emissions and so on, and encourage people to start small changing one day per week for example, to explore their options.
- 5.14 Marketing drives which feature individual employees who have reduced their car use can carry a strong message. This will serve to raise not only the profile of the Plan, but also send a clear message in relation to the employees' commitment to the Plan.

6.0 CONCLUSIONS

- 6.1 The development forming the subject of this application accords with the general principles of sustainable development, being located within ever improving access to alternative modes of travel. Once occupied, the Management will utilise pragmatic measures that encourage safe & viable alternatives to the private car for accessing the development, by way of a working MMP.
- 6.2 Good Travel Planning is not a one-off event, it is instead an on-going iterative process requiring continued effort. This Preliminary report assists these efforts by forming an outline framework and providing guidance for its success. Monitoring and reviewing the initiatives set out within the plan will form a far greater part of the Final Travel Plan itself.
- 6.3 The key to the Plans success will be the appointment of a *Travel Plan Coordinator* for the development, once occupied. They will be vested with total responsibility for implementing the plan. They should be granted the authority and time to execute the Plan and be provided with sufficient resources to realise the Plans success.
- 6.4 As employees are the focus of the plan; their involvement should be sought from the outset following occupation. To this end, the Plan Coordinator should be assisted and supported by the Management and employees. This will serve to spread the workload, and also give the employees a valuable input into the operation of the Plan.
- 6.5 Successful Travel Plans require marketing <u>and</u> regular review. The measures set out in the Action Plan Summary Table (Chapter 4) should form the basis of a sound, realistic Plan and should be clearly set out and be fully transparent to all users.
- 6.6 Employees also have an essential responsibility in terms of co-operating with and taking an active part in the plan. They are, after all, the plan's primary focus.
- 6.7 The plan should evolve and develop with the development, taking into account changing employees, visitors and their travel preferences and needs.
- 6.8 Annual reviews of the Plan should include a full stakeholder survey, providing valuable information for target setting and marketing target groups. It is emphasised that failing to meet initial targets should not be seen as failure, as the preliminary 12 to 18 months of the plan should be viewed as a calibration exercise for target setting.